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Abstract: Analytical formula is derived for the 2M -factor of coherent and 
partially coherent dark hollow beams (DHB) in turbulent atmosphere based 
on the extended Huygens-Fresnel integral and the second-order moments of 

the Wigner distribution function. Our numerical results show that the 2M - 
factor of a DHB in turbulent atmosphere increases on propagation, which is 
much different from its invariant properties in free-space, and is mainly 
determined by the parameters of the beam and the atmosphere. The relative 

2M -factor of a DHB increases slower than that of Gaussian and flat-topped 
beams on propagation, which means a DHB is less affected by the 
atmospheric turbulence than Gaussian and flat-topped beams. Furthermore, 

the relative 2M -factor of a DHB with lower coherence, longer wavelength 
and larger dark size is less affected by the atmospheric turbulence. Our 
results will be useful in long-distance free-space optical communications. 
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1. Introduction 

The propagation factor (best known as 2M -factor) proposed by Siegman is a particularly 
important property of an optical laser beam [1] being regarded as a beam quality factor in 
many practical applications. Martinez-Herrero et al. developed the generalized second 

moments of hard-edge diffracted coherent laser beam to calculate its 2M -factor [2,3]. Gori et 

al. extended the definition of 2M -factor from to the partially coherent beam-like fields, and 

studied the 2M -factor of partially coherent beam in the absence of the aperture [4,5]. Zhang 

et al. studied the 2M -factor of hard-edge diffracted partially coherent beams [6,7]. In other 

papers [8–15] various aspects have been related to the 2M -factor of main classes of coherent 
and partially coherent beams. 

Dark hollow beams (DHBs), i.e. the beams with zero on-axis intensity have important 
applications in laser optics, atomic optics, binary optics, optical trapping of particles and 
medical sciences [16]. Up to now, various methods such as geometrical optical method, mode 
conversion, optical holography, transverse-mode selection, hollow-fiber method, computer-
generated holography, nonlinear optical method and spatial filtering have been proposed to 
generate DHBs experimentally [17–22]. Several theoretical models have been used to 
describe DHBs and their propagation properties in free space or through paraxial optical 

system [16,23–35]. The 2M -factor of various DHBs in free space was studied in [27,34–36]. 
Recently, Cai and associates extended DHB to the partially coherent case, and studied the 

2M -factor and propagation properties of a partially coherent DHB of circular or non-circular 
symmetry in free space [37,38]. Zhao et al. generated a partially coherent circular DHB 
experimentally with a multimode fiber [39]. 

Propagation characteristics of different types of laser beams in a turbulent atmosphere are 
being studied extensively due to their important applications in free-space optical 
communications, remote sensing of atmosphere and target tracking [40–50]. It is necessary 
and important to find suitable ways to overcome or reduce the destructive effect of 
atmospheric turbulence in these applications. One possible way for reducing the effect of 
atmospheric turbulence is using partially coherent beam or electromagnetic partially coherent 
beam instead of coherent beam [40–44]. Another possible way is using laser beam with 
special beam profile, such as Helmholtz-Gauss beams [45], cosh-Gaussian beams [46], 
higher-order laser beams [47], flat-topped beams [48,49], DHBs [32,33,49] and so on. The 
average intensity and scintillation index of coherent DHBs in turbulent atmosphere have been 
studied in [32,33] (see also [41] where intensity, coherence and scintillation of an annular 
beam are discussed). It was shown in [32,33] that DHBs have advantage over a Gaussian 
beam and flat-topped beam for overcoming the destructive effect of atmospheric turbulence 
from the aspect of scintillation, and, hence, have important potential application in free-space 
optical communications. It was also shown in [49] that partially coherent DHB have 

advantage over coherent DHB. Up to now, to our knowledge, the 2M -factor of coherent and 
partially coherent DHBs in turbulent atmosphere hasn’t been reported. In fact, only few 

papers have been published on the 2M -factor of laser beams in turbulent atmosphere [50–52]. 

In this paper, our aim is to investigate the 2M -factor of coherent and partially coherent 

DHBs in turbulent atmosphere. Analytical formula for the 2M -factor of DHBs on 
propagation is derived, and some numerical examples are given. Our results clearly show that 
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DHBs have advantage over a Gaussian beam and flat-topped beam for overcoming the 

destructive effect of atmospheric turbulence from the aspect of 2M -factor 

2. Formulation 

The electric field of a DHB with circular symmetry at z = 0 can be expressed as the following 
finite sum of Gaussian modes [27] 

 ( )
( ) 1

2 2

2 2
1 0

1
; 0 exp exp ,

n
N

N
n p

N n n
E

nN w w

−

=

  −   
= − − −             
∑

ρ ρ
ρ   (1) 

where 
N

n

 
 
 

denotes a binomial coefficient, N is the beam order of a circular DHB, 

( )x yρ ρ≡ρ  is the position vector in the source plane, 
0pw pw=  with 

0
w being the beam 

waist size of the fundamental Gaussian mode, p ( 0 1p< < ) is a scaling factor for controlling 

the dark size of the DHB. When N = 1 and p = 0, Eq. (1) reduces to the expression for the 
electric field of a fundamental Gaussian beam. When N>1 and p = 0, Eq. (1) reduces to the 
expression for the electric field of a flat-topped beam. Figure 1 shows the cross line (y = 0) of 
the normalized intensity distribution of a circular DHB for several different values of N and p 

with
0

1w mm= . One sees from Fig. 1 that the central dark size across a DHB increases as N or 

p increase. 

 

Fig. 1. Cross line (y = 0) of the normalized intensity distribution of a circular DHB for different 

values of N and p with
0

1w mm=  

A partially coherent beam which has a DHB intensity distribution and a Gaussian spatial 
correlation can be characterized by the cross-spectral density (CSD) [53] of the form [37,38] 
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where ' '

1 2
,  ρ ρ are two arbitrary points in the source plane, gσ is the transverse coherence 

width. Under the condition of gσ − > ∞ , a partially coherent DHB reduces to a coherent 

DHB. 
Within the validity of the paraxial approximation, the propagation of the cross-spectral 

density of a partially coherent beam in the turbulent atmosphere can be studied with the help 
of the following generalized Huygens-Fresnel integral [40,41] 

 

2 ' '

' ' ' 2 ' 2 '

( , ; ) ( ) ( , ; 0)
2

                      exp ( ) ( ) ( , ; ) ,

d d

d d d d d
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W z W
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ρ ρ ρ ρ ρ ρ ρ ρ

 (3) 

where 2 /k π λ=  is the wave number with λ  being the wavelength. In Eq. (3) we have used 

the following sum and difference vector notation 

 

' '

' ' ' '1 2 1 2

1 2 1 2

( ) ( )
,  ,  ,  ,

2 2
d d

+ +
= = − = = −
ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ   (4) 

where 
1 2
,  ρ ρ are two arbitrary points in the receiver plane, perpendicular to the direction of 

propagation of the beam. We can express the cross-spectral density in the source plane as 
follows 

 

' '

' ' ' ' ' '

1 2( , ; 0) ( , ; 0) ( , ; 0).
2 2

d d
dW W W= = + −

ρ ρ
ρ ρ ρ ρ ρ ρ   (5) 

In Eq. (3), the term '( , , )d dH zρ ρ is the contribution from the atmospheric turbulence 

expressed as 

 
1

' 2 2 '
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where 
0

J  is the Bessel function of zero order, nΦ  represents the one-dimensional power 

spectrum of the index-of-refraction fluctuations [41]. 
After some operations as shown in [50], Eq. (3) can be expressed in the following 

alternative form 
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where ( )d dx dyκ κ≡κ  is the position vector in spatial-frequency domain. For a partially 

coherent circular DHB, using Eq. (2), we can express the CSD ( '', ; 0)d d

z
W

k
+ρ ρ κ  as 
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The Wigner distribution of a partially coherent beam on propagation in turbulent atmosphere 
can be expressed in terms of the cross-spectral density function by the formula [50] 
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where ( , )x yθ θ≡θ  denotes an angle which the vector of interest makes with the z-direction, 

xkθ and ykθ  are the wave vector components along the x-axis and y-axis, respectively. 

Substituting from Eqs. (7), (8) and (9) into Eq. (10), we obtain (after tedious integration) 
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where 
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In above derivations, we have used the integral formula [54] 
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Based on the second-order moments of the Wigner distribution function, the 2M -factor of a 
partially coherent beam is defined as follows [2–7,50,51] 
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M z k

k x y x y

ρ θ ρ θ

θ θ θ θ

= − ⋅

 + + − +  

 (14) 

where 

 1 2 1 2 1 2 1 2 2 21
( , , ) ,

n n m m n n m m
x y x yx y x y h z d d

P
θ θ θ θ

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞
< >= ∫ ∫ ∫ ∫ ρ θ ρ θ   (15) 

 2 2( , , ) .P h z d dρ θ ρ θ
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞
= ∫ ∫ ∫ ∫   (16) 

Substituting Eq. (11) into Eqs. (15) and (16), we obtain (after integration) the expressions 

 
2

1 1 1 1 1 1

( 1) 1 1 1 1
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N N
P
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π

+
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= − − +   

   
∑∑   (17) 

 

2 2 2 22 2
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2 2 2 2 2 2 2 2 2
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2 2 2 22 2
2 32 2

2 2 2 2 2 2 2 2

1 1 1 1

( 1) 1 1
[( ) ( )

1 1 4
             ( ) ( )] ,

3
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N N A z B zz z

n mP N k A A k k B B k

C z D zz z
Tz

k C C k k D D k

π
ρ

π

+

= =

−    
< >= + − − + −   

   

− + − + + − +

∑∑
 (18) 

 

2 2

2 2 2

2 2 2 2 2 2 2
1 1 1 1

2 2

22 2

2 2 2 2 2 2

1 1

( 1) 1 1
( ) ( )

1 1
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n mN N

n m

N N A B

n mP N k A k k B k

C D
zT

k C k k D k

π
θ

π

+

= =

−    
< >= − − −   

    


− − + − +



∑∑
 (19) 
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2 2

2 2

2 2 2 2 2 2 2
1 1 1 1

2 2

2 22 2

2 2 2 2 2 2

1 1

( 1)
( ) ( )

               ( ) ( ) 2 ,

n mN N

n m

N N zC zDz z

n mP N k C k k D k

zA zBz z
z T

k A k k B k

π
ρ θ

π

+

= =

−    
< ⋅ >= − − −   
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∑∑
 (20) 

where 

 3

0
( ) .  nT dκ κ κ

∞
= Φ∫   (21) 

In above derivations, we have used the following relations 

 
1

( ) exp( ) ,      
2

s isx dxδ
π

∞

−∞
= −∫   (22) 

 
1

( ) ( ) exp( ) , ( 0,  1,  2) 
2

n ns ix isx dx nδ
π

∞

−∞
= − − =∫   (23) 

 ( )( ) ( ) ( 1) (0),  ( 1,  2)  n n nf x x dx f nδ
∞

−∞
= − =∫   (24) 

Substituting from Eqs. (17)-(20) into Eq. (14), we obtain the following expression for the 
2M -factor of a partially coherent circular DHB in turbulent atmosphere 

(

2 2 2 2 1/2

2 2 2 22 2
2 2
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2 2 2 2 2 2 2 2

1 1 1 1

          ( ) ( )

( 1) 1 1
          { [( ) ( )
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k
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+
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−    
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π

π

π
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+

= =
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1
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zC z
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k D k
π
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(25) 

Equation (25) is the main analytical result of the present paper, which provides with a 

convenient way for studying the 2M -factor of coherent ( gσ − > ∞ ) and partially coherent 

circular DHBs in free space ( ( ) 0n κΦ = ) and turbulent atmosphere. 

3. Numerical examples 

In this section, we study the 2M -factor of a circular DHB in turbulent atmosphere 
numerically. In the following numerical examples, we choose the Tatarskii spectrum for the 
spectral density of the index-of-refraction fluctuations, which is expressed as [41] 

 
2

2 11/3

2
( ) 0.033 exp( )  n n

m

C
κ

κ κ
κ

−Φ = − �   (26) 
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where 2

nC  is the structure constant of the turbulent atmosphere, 
0

5.92 /m lκ =  with 
0l  being 

the inner scale of the turbulence. Substituting from Eq. (28) into Eq. (21), we obtain 

 3 2 1/3

0
0

( ) 0.1661 . n nT d C lκ κ κ
∞ −= Φ =∫   (27) 

Substituting Eq. (26) into Eqs. (25), we calculate the 2M -factor of a partially coherent 
circular DHB numerically. 

To check the validity of our formulae, we calculate in Fig. 2 the 2M -factor of a coherent 

circular DHB in the source plane (z = 0) versus N and p using Eq. (25) with 
0

1w mm= , 

gσ = ∞ , 2 0nC =  and 632.8nmλ = . One finds that our results agree well with Fig. 3 of [27]. 

The 2M -factor increases as p or N increases (i.e., the central dark size increases). 

For the convenience of comparison, we now study the normalized 2M -factor of DHBs 

defined as 2 2 2( ) ( ) / (0)rM z M z M= on propagation in turbulent atmosphere. We calculate in 

Fig. 3 the normalized 2M -factor of a coherent circular DHB on propagation using different 

values of the structure constant ( 2

nC ) of the turbulent atmosphere with 

0
20 ,  =10,  0.9w mm N p= = , gσ = ∞ , 632.8nmλ = and 

0
10l mm= . For comparison, the 

corresponding result in free space ( 2 0nC = ) is also shown. One finds from Fig. 3 that the 

normalized 2M -factor of a coherent circular DHB remain invariant on propagation in free-

space as expected, while the normalized 2M -factor increases on propagation in turbulent 

atmosphere, and its value increases more rapidly as 2

nC  increases, which means that the beam 

quality of a DHB degrades in turbulence. Figure 4 shows the normalized 2M -factor of a 
coherent circular DHB on propagation in turbulent atmosphere for different values of inner 

scale of the turbulence (
0

l ) with 
0

20 ,  =5,  0.9w mm N p= = , gσ = ∞ , 632.8nmλ = and 

2 15 2/310nC m− −= . It is clear from Fig. 4 that the normalized 2M -factor increases more rapidly 

as 
0

l  decreases. 

 

Fig. 2. 2M -factor of a coherent circular DHB in the source plane (z = 0) versus N and p 
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Fig. 3. Normalized 2M -factor of a coherent circular DHB on propagation in turbulent 

atmosphere for different values of the structure constant (
2

nC ) of the turbulent atmosphere 

 

Fig. 4. Normalized 2M -factor of a coherent circular DHB on propagation in turbulent 

atmosphere for different values of inner scale of the turbulence (
0

l ) 

To learn about the dependence of 2M  -factor of a circular DHB in turbulent atmosphere 

on its initial beam parameters, we calculate in Fig. 5 the normalized 2M -factor of a coherent 
circular DHB on propagation in turbulent atmosphere for different values of beam order N 

with 
0

20 ,  0.9w mm p= = , gσ = ∞ , 632.8nmλ = , 2 15 2/310nC m− −=  and 
0

10l mm= . Figure 6 

shows the normalized 2M -factor of a coherent circular DHB on propagation in turbulent 

atmosphere for different values of scaling factor p with 
0

20 ,  =10w mm N= ,
gσ = ∞ , 

632.8nmλ = , 2 15 2 / 310nC m− −=  and 
0

10l mm= . Figure 7 shows the normalized 2M -factor of a 

coherent circular DHB on propagation in turbulent atmosphere for different values of 

wavelength λ with 
0

20 ,  0.9,  =5w mm p N= = , gσ = ∞ , 2 15 2/310nC m− −=  and 
0

10l mm= . 

One finds from Figs. 5-7 that the normalized 2M -factor of a coherent circular DHB are 
closely related to its initial beam parameters, and its value increases slower on propagation as 

its beam order N, scaling factor and wavelength λ  increases, which means a DHB with larger 

beam order, larger scaling factor and longer wavelength λ  is less affected by the atmospheric 

turbulence. 
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Fig. 5. Normalized 2M -factor of a coherent circular DHB on propagation in turbulent 
atmosphere for different values of beam order N 

 

Fig. 6. Normalized 2M -factor of a coherent circular DHB on propagation in turbulent 
atmosphere for different values of scaling factor p 

 

Fig. 7. Normalized 2M -factor of a coherent circular DHB on propagation in turbulent 

atmosphere for different values of wavelength λ  
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Fig. 8. Normalized 2M -factors of coherent Gaussian beam, circular flat-topped beam and 
circular DHB on propagation in turbulent atmosphere. 

 

Fig. 9. Normalized 2M -factor of a partially coherent circular DHB on propagation in turbulent 

atmosphere for different values of the initial transverse coherence width gσ  

Equation (25) can also be used to calculate the 2M -factor of coherent Gaussian (N = 1 and 

p = 0) or flat-topped beam (N>1 and p = 0). We calculate in Fig. 8 the normalized 2M -factors 
of coherent Gaussian beam, circular flat-topped beam and circular DHB on propagation in 

turbulent atmosphere with 2 15 2/310nC m− −= ,
0

20w mm= , 
0

10l mm= and 632.8nmλ = . One 

finds from Fig. 8 that the normalized 2M -factor of flat-topped beam is larger than that of a 
Gaussian beam at short propagation distance (z<2.5km), but is smaller than that of a Gaussian 
beam at a long propagation distance, which means a flat-topped beam has advantage over a 
Gaussian beam for long-distance free-space optical communications. We also note that 

normalized 2M -factor of a DHB is always smaller than that of Gaussian and flat-topped 
beams at any propagation distance except at z = 0, which means a DHB is less affected by the 
atmospheric turbulence than Gaussian and flat-topped beams. Our results agree well with 
those reported in [33], where we found that a DHB has advantage over Gaussian and flat-
topped beams for overcoming the destructive effect of atmospheric turbulence from the aspect 
of scintillation. The results presented in this paper will be useful in long-distance free-space 
optical communications 

We now turn to calculations relating to the 2M -factor of a partially coherent circular DHB 
on propagation in turbulent atmosphere. Our numerical results (not shown here to save space) 

show that the dependence of the normalized 2M -factor of a partially coherent circular DHB 

on the parameters ( 2

0
 and nC l ) of the turbulent atmosphere and the initial beam parameters 

( ,  and N p λ ) is similar to that of a coherent circular DHB. We calculate in Fig. 9 the 

normalized 2M -factor of a partially coherent circular DHB on propagation in turbulent 
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atmosphere for different values of the initial transverse coherence width gσ with 

0
20 ,  0.9,  =10w mm p N= = , 632.8nmλ = , 2 15 2/310nC m− −=  and 

0
10l mm= . One finds from 

Fig. 9 that the normalized 2M -factor of a partially coherent circular DHB also increases on 
propagation in turbulent atmosphere, but the increment are slower as its initial coherence 
width decreases, which means a DHB with lower coherence is less affected by the 
atmospheric turbulence. 

4. Conclusion 

We have derived the analytical formula for the 2M -factor of coherent and partially coherent 
DHBs in turbulent atmosphere by means of the extended Huygens-Fresnel integral and the 

second-order moments of the Wigner distribution function. We have found that the 2M factor 
of a DHB in turbulent atmosphere increases upon propagation, and these increases become 
accelerated as the structure constant of turbulence increases or as the inner scale decreases, 
which is very different from its properties in free space, where its value remains invariant on 
propagation. Our numerical results have shown that a DHB with lower coherence, longer 
wavelength and larger dark size is less affected by the atmosphere, and a DHB is less affected 
by the atmospheric turbulence than Gaussian and flat-topped beams, which might be very 
useful for free-space optical communications. 
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