
CANKAYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

INFORMATION TECHNOLOGY

MASTER THESIS

EFFICIENT PARALLEL PROCESSING APPROACH BASED ON

DISTRIBUTED MEMORY SYSTEMS

IMAD RASHED

JANUARY 2014

ACKNOWLEDGEMENTS

First of all, praise to GOD "ALLAH" on all the blessings, one of these blessings

was the help in achieving this research to its end.

I would like to express my sincere gratitude to my supervisor

Prof.Dr. Taner ALTUNOK and Assist.Prof.Dr. Subhi R. MOHAMMED for their

valuable guidance, advice and help.

Finally, my special thanks to my family for the endless help, patience and

encouragement.

iv

ABSTRACT

EFFICIENT PARALLEL PROCESSING APPROACH BASED ON

DISTRIBUTED MEMORY SYSTEMS

RASHED, Imad

M.S. Department Of Information Technology

Supervisor: Prof. Dr. Taner ALTUNOK

Co-Supervisor: Assist. Prof. Dr. Subhi R. MOHAMMED

January 30 , 50 pages

Complex problems need long time to be solved, with low efficiency and

performance. So, to overcome these drawbacks, the approach of breaking the problem

into independent parts and treating each part individually.

When treating with problems that need strong processing, it is necessary to break

these problems to independent parts and specify each one to a certain processor in such

method that these processors can operate in parallel approach. The system that contains

such processors will consist of multiple processing units connected via some

interconnection network and the software needed to make the processing units work

together. These systems can be Shared, Distributed or Hybrid memory systems.

In this thesis, the approach of distributed memory system is depended and based

on client/servers principles, the network can contain any number of nodes; one of them

is a client and the others are servers. The algorithms used here are capable of calculating

v

the (Started, Consumed, and Terminated) CPU-times, Total execution time and

CPU usage of servers and Client hosts. This work addresses an improved approach for

problem subdivision and design flexible algorithms to communicate efficiently between

client-side and servers-side in the way to overcome the problems of hardware

networking components and message passing problems.

Matrix Algebra operations depended as case-study. For this case study, there are

many general algorithms and other related algorithms (i.e. Network-Connection-

Checking, Load-Division, Massages-Sending/Delivering, Timings-Calculating, Results-

Checking, and Results-Receiving/Storing). All these algorithms designed and tested

completely by this work. The obtained results are checked and monitored by special

programming-checking-subroutines through many testing-iterations and proved a high

degree of accuracy. All of these algorithms are implemented using Java Language.

Keywords: Parallel Processing, Clustering , CPU Usage, Load Division , Parallel

Computing ,CPU Timing , Distributed Memory System , Client/Servers.

vi

ÖZET

DAĞINIK BELLEK SISTEMLERINDE DAYALI ETKİN PARALEL İŞLEME

YAKLAŞIMI

RASHED, Imad

M.S. Bilgi Teknolojileri Bölümü

Tez Yöneticisi: Prof. Dr. Taner ALTUNOK

 Ortak Tez Yöneticisi: Yrd. Prof. Dr. Subhi R. MOHAMMED

 Ocak 30, 50 Sayfa

Karmaşık sorunları düşük verimlilik ve performansla çözmek için uzun zamana

ihtiyaç vardır. Bu sebeple bu zorlukların üstesinden gelmek için, problemleri bağımsız

parçalara bölmek ve her birisini ayrı ayrı işlemden geçirme yaklaşımı gerekmektedir.

Problemleri çözmek güçlü bir işlem gerektirdiğinde, bu problemleri bağımsız

parçalara ayırıp, bağımsız parçalardan her birisi ile belli bir işlemcinin paralel bir

yaklaşımla uğraşması gerekir. Bu işlemcileri kapsayan sistemin, birbirlerine bağlayıcı

bir ağ üzerinden bağlanan çoklu işlem birimlerinden ve işlem ünitelerinin birlikte

çalışmasını sağlayacak bir yazılımdan oluşması gerekmektedir. Bu sistemler

Paylaşılabilir, Dağıtılabilir veya Hibrit hafıza sistemleri olabilir.

Bu tezde, dağıtılmış hafıza sistemine dayanılıyor ve müşterilerin/ server’lerin

dayandırılıyor; ağ düğüm rakamlarından her türlü rakamı ihtiva edebilir, onlardan biri

müşteri numarası diğerleri ise server’lerin numaralarıdır. Burada kullanılan algoritmalar

(Başlamış, Tüketilmiş ve Bitirilmiş)CPU-zaman, toplam icra süresi ve Server ile

vii

Müşterilerin CPU kullanımı hesaplaması yapabilirler. Bu iş, donanım ağı

parçaları ve mesaj iletim problemlerinin üstesinden gelmek için problemlerin parçalara

ayrılmasına ve müşteri tarafı ve server tarafı için gelişmiş bir yaklaşıma hitap

etmektedir.

Bu Bir durum çalışması olarak, Matrix Cebir çalışmalarına dayanmaktadır. Bu

durum çalışması için birçok genel olgaritma ve diğer ilgili olgaritmalar vardır (örneğin,

ağ-Bağlantı-Kontrol, Yük Bölme, Mesaj Gönderme/ İletme, Zaman- Hesaplama,

Sonuçlar-Kontrol ve Sonuçlar- alma/ Depolma) bütün bu olgaritmalar, bu iş ile

tamamen tasarlanmış ve test edilmiştir. Alınan sonuçlar, birçok test-yenileme vasıtasıyla

özel programlama-kontrol- alt rutinlerle kontrol edilmiş ve izlenmiş ve yüksek derecede

doğruluğu ispatlanmıştır. Bütün bu olgaritmalar, Java dili kullanılarak uygulanmaktadır.

Anahtar kelimeler: Paralel İşleme, Kümeleme, CPU Kullanımı, Yük Bölümü, Paralel

Bilgisayar, CPU Zamanlama, Dağıtık Bellek Sistemi, Client / Server.

viii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM .. iii

ABSTRACT…………………………………………………………………… iv

ÖZET……………………………………………………………………………… vi

LIST OF CONTENTS…………………………………………………………. viii

LIST OF TABLES……………………………………………………………... xi

LIST OF FIGURES……………………………………………………………. xii

LIST OF ABBREVIATIONS………………………………………………….. xiv

CHAPTERS

1. INTRODUCTION……………………………………………...…………… 1

1.1 OVERVIEW………………………..…… 1

1.2 LITERATURE SURVEY……………………………………………...…... 3

1.4 LAYOUT OF THE THESIS ……………………………………...………. 6

2.BACKGROUND THEORY... 7

 2.1 INTRODUCTION……………………………………………….……… 7

 2.2 COMPLEX PROBLEMS AND THEIR PROCESSING ……………….. 7

 2.2 PARALLEL PROCESSING ………………………................................. 8

 2.2.1 TAXONOMY OF COMPUTER ARCHITECTURE……………….. 8

 2.2.2 RELATED TYPES OF COMPUTER ARCHITECTURE

 TECHNIQUES……………………………………………………….. 10

 2.2.3 PIPELINING………………………………………………………… 11

 2.4 WHY PARALLEL PROCESSING………………………………………. 12

ix

 2.5 PARALLEL AND DISTRIBUTED PROGRAMMING SYSTEMS…… 12

 2.5.1 PARALLEL SYSTEMS…………………………………………… 12

 2.5.2 DISTRIBUTED SYSTEMS……………………………………….. 13

 2.6 PARALLEL PROGRAMMING…………………………...……………. 13

 2.6.1 IMPLEMENTING OF PARALLEL PROGRAMMING………….. 13

 2.7 CLUSTERS……………………………………………………………… 14

 2.8 CLIENT/SERVER PRINCIPLES……………………………………….. 15

 2. 9 PARALLEL COMPUTING………………………………….…………... 15

 2.9.1 APPROACHES TO PARALLEL COMPUTING……………........ 16

 2.9.2 TYPES OF PARALLEL COMPUTING…………………………. 18

 2.9.3 CLASSES OF PARALLEL COMPUTING……………………… 19

 2.10 MASSAGE-PASSING SYSTEMS…………………………………... 20

3.STRUCTURE AND ALGORITHMS OF THE PROPOSED SYSTEM……. 21

 3.1GENERAL VIEW………………………………………………………... 21

 3.2 HARDWARE PART……………………………..……………………… 22

 3.3 SOFTWARE PART………………………………………………............ 22

 3.4 MESSAGES TRANSFERRED BETWEEN CLIENT-SIDE AND

 SERVERS-SIDE…………………………………………………………….. 24

 3.4.1CONTROL MESSAGES…………………………………………… 24

 3.4.2 DATA MESSAGES…………..…………………………………… 24

 3.5 MATRIX ALGEBRA CASE STUDY……………………………........... 25

 3.5.1 CLIENT SOFTWARE PART…………………….......................... 29

 3.5.2 SERVERS SOFTWARE PART …………………………….......... 30

4.IMPLEMENTATION RESULTS AND DISCUSSION………………..…. 32

x

 4.1 INTRODUCTION……………………………………………………….. 32

 4.2 MATRIX ALGEBRA CASE-STUDY…………………………………... 32

 4.3 DISCUSSION OF MATRIX ALGEBRA CASE-STUDY…………........ 44

 4.4 CONCLUSION OF OBTAINED RESULTS……………………………. 45

5.CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK………….. 46

 5.1 CONCLUSIONS…………………………………………………………. 46

 5.2 SUGGESTIONS FOR FUTURE WORK………………………………... 46

 REFERENCES ……………………………………………………………... 48

xi

LIST OF TABLE

TABLE

Table 2.1 Examples of (SISD)………………………………………………. 9

Table 2.3 Examples of (SIMD)……………………………………………….. 9

Table 2.3 Examples of (MIMD)…………………………………………….. 10

Table 4.1 Average Values for Matrix order = 64 * 64………………………… 33

Table 4.2 Average Values of Matrix Algebra-Case for Matrix order = 256 *256. 33

Table 4.3 Average Values of Matrix Algebra-Case for Matrix order =1024* 1024 34

Table 4.4 Average Values of Matrix Algebra-Case for Matrix order = 4096 * 4096 34

Table 4.5 Maximum Values of Matrix-Algebra Case-Study for:(One, Two,

Four, and Eight) Servers…………………………………………. 41

Table 4.6 Maximum Values of Matrix Algebra-Case for:(One, Two, Four, and

Eight) Servers……………………………………………………… 41

xii

LIST OF FIGURES

FIGURES

Figure 2.1. Shared Memory Systems…………………………………….. 16

Figure 2.2. Distributed Memory Systems………………………………... 17

Figure 2.3. Hybrid Distributed-Shared Memory…………………………. 18

Figure 2.4. Massage-Passing……………………………………………... 20

Figure 3.1. Cases of Matrix Algebra Algorithm. (a) One-Server.

 (b) Two-Servers. (c) Four-Servers. (d) Eight-Servers……… 27

Figure 3.2. All cases of Addition and Subtraction……………………….. 28

Figure 3.3. Third cases of Multiplication of Matrices (cases 1, 2, 3 ,and 4). 28

Figure 3.4. Four cases of Multiplication of Matrices (cases 1, 2, 3 ,4 and 8). 29

Figure 4.1. Elapsed Average Consumed CPU Time of Servers for Matrix-

order of (64*64)…………………………………………..….. 35

Figure 4.2. Elapsed Average Consumed CPU Time of Servers for Matrix-

Algebra of (256*256)………………………………………... 35

Figure 4.3. Elapsed Average Consumed CPU Time of Servers for Matrix-

Algebra of (1024*1024)…………………………….. 36

Figure 4.4. Elapsed Average Consumed CPU Time of Servers for Matrix-

Algebra of (4096*4096)……………………………….…...... 36

Figure 4.5. Average Total Execution Time of Servers for Matrix-Algebra of

(64*64)……………………………………...…………………... 37

Figure 4.6. Average Total Execution Time of Servers for Matrix-Algebra of

(256*256)…………………………….……………………...….. 37

xiii

Figure 4.7. Average Total Execution Time Servers for Matrix-Algebra of

(1024*1024)…………………………………………………….. 38

Figure 4.8. Average Total Execution Time of Servers for Matrix-Algebra of

(4096*4096)…………………………………………………….. 38

Figure 4.9. Average CPU Usage % of Servers for Matrix-Algebra of (64*64). 39

Figure 4.10. Average CPU Usage % of Servers for Matrix-Algebra of

(256*256)…………………………………………………….. 39

Figure 4.11. Average CPU Usage % of Servers for Matrix-Algebra of

(1024*1024)………………………………………………….. 40

Figure 4.12. Average CPU Usage % of Servers for Matrix-Algebra of

(4096*4096)………………………………………………….. 40

Figure 4.13. Maximum Consumed CPU Time for Matrix-Algebra of

(1024*1024)…………………………………………………..
42

Figure 4.14. Maximum Consumed CPU Time for Matrix-Algebra of

(4096*4096)………………………………………………… 42

Figure 4.15. Maximum Total Execution Time for Matrix-Algebra

(1024*1024)………………………………………………….. 43

Figure 4.16. Maximum Total Execution Time for Matrix-Algebra

(4096*4096)………………………………………………….. 43

xiv

LIST OF ABBREVIATIONS

ABBREVIATIONS

PP Parallel Processing

PrC Parallel Computers

PS Parallel System

I/O Input /Output

MP Multi-Processors

NUMA Non-Uniform Memory Access

SMP Symmetric Multiprocessors

PProg Parallel Programming

IGSCR Iterative Guided Spectral Class Rejection

OpenMP Open Multi-Processing

CPU Central Processing Unit

SISD Single-Instruction Single-Data

SIMP Single-Instruction Multiple-Data

MISD Multiple-Instruction Single-Data

MIMD Multiple-Instruction Multiple-Data

SPMD Single Program Multiple Data

DS Distributed Systems

NOW Network Of Workstations

SMS Shared Memory Systems

DMS Distributed Memory Systems

DM Distributed Memory

GPU Graphics Processing Units

MPMD Multiple Program Multiple Data

LAN Local Area Network

WAN Wide Area Network

1

CHAPTER 1

INTRODUCTION

1.1 Overview

 Parallel Processing (PP), which cause to distribute the program into multiple

fragments, represents the idea of speeding−up the program execution that can

perform simultaneously. In addition, the process of each program is fulfilled by

program itself. A program that fulfilled across N processors with comparing to a

single processor might execute N times faster [1].

Furthermore, Parallel Computers (PrC) is anticipated to make a hither to

unpredictable impact on our lives. Nowadays, parallel computers, which support

human in order to approach information via web search engines. Consequently, the

searching progresses is like to do typing the keywords. An interconnection network,

which permit changing the data among and between the processors, and shared or

distributed memories, is required by Parallel computers. Moreover, the processors

are connected in a parallel computer system by interconnection networks [2].

The PrC can also be dispersed to control flow and data flow, which are two

major categories. Firstly, the principles of control-flow parallel computers are similar

to the sequential or von Neumann computer. Secondly, Data-flow parallel computers

may relate to a"non-von Neumann" and extremely various, as there is no pointer to

activate instruction(s) or a locus of control. The control is totally divided, with the

accessibility of operands and triggering the activation of instructions. From here, the

control-flow parallel computer will be focused exclusively [3].

Parallel System (PS) consists of multiple processors that communicate with

each other using shared memory. Distributed systems, which are systems of

2

computer, consist of multiple processors that connected by a communication

network [4].

The provision of the PS must be done with using high-bandwidth that the data

supplied to the processors by the ability of input/output devices, and also adequate

proportion eliminated by the computation results. The input/output (I/O) capabilities

of parallel computers are essential in application of intensive data, which are found

in corporate database and network server environments [3]. Furthermore, the high

power processors of massive PS for some of applications of data-intensive is not

valuable unless the I/O subsystem can protect with the processors [5].

The main argument for using Multi-Processors (MP) is to create powerful

computers by simply connecting multi-processors solely. A multi-processor is

anticipated to reach faster speed than the fastest single-processor system. In addition,

a MP, which is consisting of a number of single processors, is predicted to be more

cost-effective than building a high-performance single processor. Another benefit of

a MP is fault tolerance. As a result, if a processor fails, the remaining one should be

able to provide continued service, albeit with degraded performance [5].

A conventional way in order to increase system’s performance is to utilize

MP that can run in parallel to support a given workload. There are two main common

MP organizations, which are Symmetric Multiprocessors (SMP) and clusters. More

recently, Non-Uniform Memory Access (NUMA) systems have been introduced

commercially [6].

An importantly and relatively recent developed computer system design is

clustering. Clustering is an alternative computer to SMP as an approach in order to

provide high performance and availability and particularly attractive for server

applications. Cluster can also be defined as a group of interconnected computers,

which leads to work whole computers together simultaneously as a unified

computing resource to be able of creating the illusion of being one machine. In

addition, the term whole computer means that a system are capable to run on its own,

3

apart from the cluster in the literature computer in a cluster is typically referred to as

a node individually [6].

Parallel programming (PProg) and the design of efficient parallel programs,

which are computed scientifically for many years, have been set-up in high-

performance. The problems of scientific simulation are an important region in the

sciences of natural and engineering. More accurately, A massive computing power

and memory space are required by simulations or the larger problems of simulations.

In the last decades, high-fulfilment researches, which are consisted of new

evolvements in part of hardware and software and a progression are steadily evolved

in parallel the computing of high-performance, are observed [7].

There has been an opportunity in order to solve a broader range of intensive

problems of computation Parallel by increasing the computing power of sequential

computers, which are offered by the distributed computing. Important improvements

have been achieved in this field in the last 30 years, although there are many

unresolved issues so far. These issues arise from various wide areas, like the design

of PS and scalable, which interconnects the efficient dispersion of task processes, or

growing the parallel algorithms [8].

Client/server computing, which enables the use of low-cost hardware and

software, raises local autonomy and data possession, and gives also better

performance and more availability. [9].

1.2 Literature survey

Wesley M. Eddy and Mark Allman, [10], 2000, produced an experiment

exploring the possibility of using several computers in parallel in order to solve the

problems, which take long periods of time to complete on a single machine. Hence,

the use of more computers, the total time of calculation can be reduced dramatically.

Furthermore, an experiment results showed that for tasks, which involve multiple

requests over a long-delay network, adding more machines to the parallel processing

system can also help to reduce the negative effects of the network’s delay. The

researcher has concluded that with more speed a large job can be performed by

4

adding more computers to the task, the role communications time plays in the total

execution time, and the impact a long-delay network has on a distributed computing

system.

Pan Lei, Et Al, [11], 2002, described three transformations that turn

distributed sequential programs into distributed parallel programs. Real-life examples

and performance data were presented, and the advantages of their approach were

discussed.

Francios Alexandre R.J, [12] 2004, introduced a software architecture

model for designing, analyzing, implementing applications, and performing

distributed, asynchronous parallel processing of generic data streams. This model

provided a universal framework for the distributed implementation of algorithms and

their easy integration into complex systems that exhibit desirable software

engineering qualities such as efficiency, scalability, extensibility, reusability and

interoperability.

Silva, Luciano, Denise Stringhini, Ismar Frango Silveira, [13] 2005,

presented a set of design patterns that could be used to model applications that rely

on large hierarchical structures, like trees in a parallel and distributed way. They also

presented the modeling of several parallel and distributed applications to which the

presented set of design patterns are applied.

O.Yaseen Numan, [14] 2010, addressed distributed memory system depends

on client/servers principles, the network was consisted of one client and the others

were servers. He improved an approach for problem subdivision and design flexible

algorithms to communicate efficiently between client-side and servers-side. His

algorithms were capable of calculating the several types of timings for the Client and

server hosts. Two case studies depended; namely, Matrix Algebra and Sorting

Algorithms with Order up to 4096.

Wang, Qing, Zhenzhou Ji, Tao Liu Qing W. [15] 2011, proposed an

efficient implementation of parallel programming open multi-processing(OpenMP)

5

on embedded multi-core platform. For embedded multi-core platform, there are

limited memory resources. Incorporating limited memory hierarchy into OpenMP

was challenging. Their work presented the solution to extend OpenMP custom

directive tiling to improve performance. OpenMP with supporting loop tiling is

proposed to utilize memory hierarchy. Preliminary performance evaluations showed

that performance improvement was gained from the OpenMP implementation on the

target embedded multi-core platform.

Fatohi Ban B. , [16] 2011, addressed the building of a software application

that consists of three stages; monitoring, controlling and tracking the program that is

currently running on a multi-processor systems such as those having (2, 4 and 8)

central processing units (CPU). The implementation of these tested-programs

represented applying the principles of shared memory system parallel processing as

an additional step to her work.

Asaad Farah H. , [17] 2011, built an application algorithm for implementing

the principles of parallel processing using shared memory system to reduce the

execution time gradually by increasing number of cores. Two investigations were

addressed: Matrix Multiplication which represents balanced load-division and

Sorting Algorithms as unbalanced load-division with Order up to 20000. The

obtained results are related with analyzing the average and maximum values of (real

consumed CPU and thread total execution) times and CPU usage. These algorithms

were implemented using Quasar toolkit .

Rashid Zryan N. , [18] 2012, addressed distributed memory system

depending on client/servers principles. His work addressed an improved approach for

problem subdivision and design flexible algorithms to communicate efficiently

between client-side and servers-side. From the main depended trends are: Distributed

Parallel Processing technique depending on message passing interface. The

algorithms related with these two case-studies were implemented using Java

language.

6

1.4 Layout of the thesis

 This thesis is organized into five chapters as follows:

Chapter 2: Describes the PP techniques in general, with the related techniques of

PProg, Parallel Computing (PrC), Shared and distributed memories, client/server,

and clusters.

Chapter 3: Deals with the proposed algorithms for improved approach of PP and its

Applications.

Chapter 4: Introduces the output results and the related discussions, which are

representing the application of the algorithms discussed in chapter

three using two major case-studies.

Chapter 5: Illustrates the conclusions of this work, and the future work suggestions.

7

CHAPTER 2

BACKGROUND THEORY

2.1 Introduction

The PP interested by both architectural and algorithmic methods in order to

enhance their performance or other elements, such as cost-effectiveness, and

reliability of digital computers through different forms of concurrency. Although,

concurrent computation has been existed till the earlier of digital computers, it has

been applied recently in a manner, and on a scale that leads to a better performance,

or a higher cost-effectiveness, comparing with vector supercomputers. Furthermore,

motivation is required to the study of parallel architectures and algorithms [3].

2.2 Complex problems and their processing

The PP deals with issues in a centralized manner. This means that the

information of process requires transition to such location so that the parallel system

is existed. On the contrary, process, which is distributed, deals with the information

in a distributed manner [19].

The techniques, such as processing of parallel and distribution, have

developed as a relevant field of computation. Moreover, the solution of large-scale

problems with the technique that previously explored may be outilined their main

process as follows: Firstly, the problems for both parallel and distributed processing

formulations. Secondly, the development of specific parallel and distributed

algorithms may solve the large scale problems. Thirdly, the algorithm complexity

and performance are evluated in order to measure the precise and the reliability of

the suggested solution [19].

8

2.3 Parallel processing

 The term PP is the process of taking the responsibility of a big task without

utilizing the computer feeding. Since the big task may take long time to accomplish,

it is preferred to disperse into small subtasks in order to go on simultaneously

.Ultimately, The larg-task accomplishment in short time with dividing into smaller

tasks is the aim of division-and-conquer approach instead of processing the whole

large task altogether. Furthermore, multiple processors and disks are used in PS in

order to improve the process and I/O speeds. The latter assist multiple processors to

be capable of working on various parts of task at the same time in order to

accomplish thereof in faster way than could be done in vise versa. In addition,

database processing works well with parallelism [20].

2.3.1 Taxonomy of computer architecture

Flynn, 1966, classification scheme, who defined the main popular taxonomy

of computer architecture, is related to the concept of a stream information.

Moreover, the information of instruction and data flow into a processor. Firstly, the

instruction stream is the instruction sequences that is fulfilled by the unit processing.

Secondly, the data stream is also known as traffic data is the alteration between the

memory and the unit of processing. Consequently, the instruction or data streams can

be single or multiple depending on Flynn [5].

Conventional single-processor von Neumann computers are classified as

Single-Instruction Single-Data (SISD) systems. In addition, PrC is classified in both

as a Single-Instruction, or Multiple-Data (SIMD) or Multiple-Instruction. Multiple -

Data (MIMD) is defined that there is solely one control unit and the same instruction

executed all processors in a synchronized fashion [5].

The PrC with using and proposing many various architectural alternatives;

have been utilized for a long period of time. Generally, a parallel computer, which is

described as a collection of elements processing, is capable of solving large problems

quickly with the characteristic of communication and cooperation. In addition, this

latter definition is deliberately quite vague in order to seizure the main different of

parallel platforms. Nonetheless, the definition has not addressed some essential

9

detailsm including, the interconnection network’s structure and the work’s

coordination between the processing elements, and essential characteristics of the

problems so that to be solved [7].PrC characterize based on the global control, the

resultant of data, and control flows. Four categories are recognized [7]:

1. Single-Instruction Single-Data (SISD): a serial (non-parallel) computer and CPU

acts on single instruction stream per cycle, only one-data item is being used at

input each cycle [21] . The processing element in every step loads an instruction,

the data correspondence, and the instruction execution. Consequently, the results

are stored in the data storage. Hence, SISD is the convention of the serial

computer according to the von Neumann model [7].

Table 2.1: Examples of (SISD)

2. Multiple-Instruction, Single-Data (MISD):

MISD consists of multiple processing elements, and those elements has their own

private program memory, although in each step MISD has solely one common

access to a single global data memory [7].

3. SIMD: There are multiple processing elements, that contain a share or distribute

access to a data memory individually. The address of shared and distributed

debate have explored in the spaces. However, solely one program memory has

its control processors, fetches and dispatches instructions [7].

Table 2.2: Examples of (SIMD)

Load X

Load Y

Z=X+Y

Store Z

X=Y*2

Store X

Load X(1) Load X(2) Load X(3)

Load X(1) Load Y(2) Load Y(3)

Z(1)=X(1)+Y(1) Z(2)=X(2)+Y(2) Z(3)=X(3)+Y(3)

Store Z(1) Store Z(2) Store Z(3)

X(1)=2*Y(1) X(2)=2*Y(2) X(3)=2*Y(3)

Store X(1) Store X(2) Store X(3)

T
im

e

10

4. MIMD: Each element of processing, which is multiple, is separated in instruction

and data access so that to (share or disperse) program and data memory.

Moreover, every step of processing element loads an instruction and data

separately, which the instruction of the data element applies. The example for the

MIMD model is Multi core processors or cluster systems. The advantage of SIMD

computers with comparison to MIMD computers are easily programmed [7].

Table 2.3: Examples of (MIMD)

2.3.2 Related types of computer architecture techniques

Computer architecture have always endeavor to raise their computer

performance. Their fulfilment may come from Furthermore, the fast dense circuitry,

packaging technology, and parallelism may be come from the computer fulfilment [5].

a. Symmetric multiprocessor

SMP system is a process that execute threateness comprising kernel code,

application code, and interrupt service code. The fulfilment of the SMP system,

which permit any processor used entirely and individually, is been done through with

exactly the same processors and interconnection, combined with appropriate

application and OS kernel design. Consequently, the high processing density, low

cost per MIPS, and increase scalability are the main advantages of SMP [22].

b. Single Program Multiple Data (SPMD)

SPMD is the execution of entire processors in parallogram by solely one

parallel program. Furthermore, the execution of program is performed concurrently

with participating the processors. The parallelism data is the resultant of utilizing

P1 P2 P3

Load X(1) X=Y*Z Z=X+Y

Load Y(1) Sumx=Sumx+X K=min(Z,Y)

Z(1)=X(1)+Y(1) If (Sumx>0.0) K=myfun(Y)

Store Z(1) Call sub Z(2) K=K*K

11

SPMD model, and this may occure when each processor taken part in the structural

data [7]. Furthermore, A single program multiple data programming style is that a

number of different processes or threads fulfill the same computation on various sets

of data [23].

2.3.3 Pipelining

It is an implementation technique where overlapped by multiple instructions

in the execution. The parallelism advantages are been taken with existing over the

action requirement so that to execute an instruction. Nowadays, pipelining is

considedered the main techniques od implementation of using to raise the CPUs

speed. The shcedule of pipelining hardware is the concept behind the inheritance of

pipelining software[24]. Pipelining considers a very efficient technique for

improving system throughput, which is the rate of completion task per unit time.

Hence, two conditions are required for raising the influence of the technique [2].

The aim of a pipeline system is to decrease the time of delay that the

computer processor is affected on the delay waiting in order to complete the

instruction Whereas,the current instruction is executing during a pipeline design, the

processor starts the execution of the next instruction. For that reason, The overlap

execute with the different phases of instruction. This caused in order to protect the

pipeline fully with as many execution sequences as possible [25].

 The time declinement between clocked circuits with reducing the quality of

logic per stage in order to execute pipelining, as well as the practical limitation of

stage number with the decomposition of instruction processing [26].

The use of instruction pipelining is identical to an assembly line in term of a

manufacturing plant. An assembly line has an advantage of the fact by going product

through various stages of production. Moreover, the production process, which is

laid out in an assembly line products at different stages, can be operated

meaningwhile. The latter process is also referred to pipelining, because the initial

inputs are accepted at only one end even before accepting previous inputs appear as

outputs at the other end [6].

12

Pipelining in microprocessors works the same as assembly lines in

manufacturing according to the purpose: The details about the last product do not

require to know by the workers (functional units), although it is required to be highly

skilled and specialized for solely one task. The same chore is executed by the

worker respectively on various objects with handing the half finished product to the

next worker in line [27].

2.4 Why parallel processing?

It seem that the quest unfinished for higher-performance digital computers. In

the past two decades, there was an exponential growth by the performance of

microprocessors [3].

The architectural properties of introduction, and improvements like on-chip

cache memories, big instruction buffers, multiple instruction issues per cycle,

multithreading, deep pipelines, expired instruction execution, and prediction of

branch [3].

2.5 Parallel and distributed processing systems

Parallel and distributed processing is considered one of the vast topic that has

been researched for several decades. Moreover, conventional supercomputers with

having solely one single processor are fast in speed, but however, they are very

expensive and their performance relies on their memory bandwidth. This issues have

been resolved by time and the technology development, and hence conventional

supercomputers have been replaced with computers, which are cheap in price, many

parallel power, disperse of process resources [19].

2.5.1 Parallel systems

The physical arrangement is represented by PS for PP and parallel machine

and computer network are types of PS. And moreover, number of processors are

comprised that connected closely to a small physical space by both type of PS. There

are many types of parallel machines available in the market. The use of computer

13

network for parallel computation that with the whole network computers represent

and be the processors meaning while a virtual parallel machine [19].

2.5.2 Distributed Systems (DS)

 The DS is the arrangement of physics for process diepersion. DS is almost

similar to a parallel system, but although DS is various in term of geographical

division oer a large areas. It is also not compulsorily the DS computers to be similar

and could also be heterogenous. The information acquisition is the main advantage of

; for instance, DS might be a network of sensors, which is used for measuring the

environment, where a giographical set of sensors dispersion might get the

environmental information state. The systems of large scale controlling and

computating like reserving airelines and anticipating weathers [19].

In DS , inter-process communication is generally subject to various delays,

so, state messages can arrive to synchronizers in unpredictable order[28].

2.6 Parallel programming

The PProg is considered as an essential aspect of high-fulfilement computing

scientific and working a niche within the whole products of hardware and software

field is the advantages of PProg. Although, more recently PProg instead of working

to be a niche, a mainstream of software development techniques is taken place due to

a radical change in hardware technology [7].

PProg is for applications to enjoy a continued increase in speed in future

hardware generations. One might ask why applications will continue to demand

increased speed. Many applications that we have today seem to be running quite fast

enough [29].

2.6.1 Implementing parallel programming

PProg is the design of a program or of a parallel algorithm intended for an assumed

application problematic. Tasks is the design, which can start with the decomposition

of the computations of an application into numerous portions, and it is possible to be

computed in parallel on the processors of the parallel hardware or the cores. Parallel

14

programming languages plus environments with the aim of simplifying parallel

programming by given that sustenance at the correct level of abstraction [7].

The PProg is expressive enough to permit the specification of many parallel

algorithms, is easy to use, and leads to efficient programs. Moreover, the more

transparent its implementation is, the easier it is likely to be for the programmer to

understand how to obtain good performance. Unfortunately, there are trade-offs

between these goals and parallel programming APIs differ in the features provided

and in the manner and complexity of their implementation [23].

2.7 Clusters

An important and relatively recent development computer system design is

clustering. Clustering is an alternative to SMP as an approach to providing high

performance and high availability and is particularly attractive for server

applications. We can define a cluster as collection of interconnected, all computers

operating together as a united computing resource, which can produce the desired

impression of being one machine [6].

Clustering shows four benefits and can moreover be supposed of as design or

objectives requirements [6]:

• Absolute scalability: there is the option to make large clusters that far exceed the

power of the largest standalone machines.

• Incremental scalability: there is the possibility to add a new desired systems to the

cluster however in small increments .

• High availability: Each node in a cluster is described as a standalone computer.

Any failure or problem of one node does not lead to the damage or loss of service.

There are a lot of products, which the fault tolerance is touched automatically in

software.

• Superior price/performance: commodity building blocks make it probable to put

together a cluster with equal or bigger computing power than a single large machine,

moreover at greatly lower price.

15

Clusters are very popular in the high performance computing community. A

cluster consists of several cheap computers (nodes) linked together. The simplest

case is the combination of several desktop computers - known as a network of

workstations (NOW). Most of the time, SMP systems (usually dual-CPU system with

Intel or AMD CPUs) are used because of their good value for money. They form

hybrid systems. The nodes, which are themselves shared memory systems, form a

distributed memory system [30].

2.8 Client/Server principles

A Client/Server is a DS, which the application is distributed into at least two parts:

It is possible that one or more servers perform the desired one part and the other

wanted part is performed by one or more clients. The clients are linked directly to the

servers by some kind of network. It is possible that a client computer could do more

than only display data retrieved from the server. Using the desired data, this is

provided by the server a sophisticated client possibly run a full application. As two-

tier or three-tier a Client/Server systems are regularly classified. A two-tier system

splits clients from servers .The whole clients stand on one tier, in addition all servers

stand on the second tier [5].

Client/server model of computing in its architecture as does many distributed

systems (with the noted exception of peer-to-peer [31].Clients and servers can use

hardware and software uniquely suited to the required functions. In particular, front-

end and back-end systems normally require computing resources that differ in type

and power. Database management systems can employ hardware specifically

designed for queries, while graphics functions can employ memory and computing

resources that can generate and display intricate diagrams [9].

2.9 Parallel computing

Software usually has been designed for serial computation [21]:

o A single CPU should be able to run on a single computer.

o Each problem should be broken into a separated series of instructions.

o Typically every instruction will be performed one after another.

16

o There will be only one instruction, which may effect at any moment in time.

o Solving a computational problem there is the need to use Parallel

Computing, which is the simultaneous use of multiple compute resources

[21]:To be run using multiple processors.

o A problem is broken into discrete parts that can be solved concurrently.

o Each part is further broken down to a series of instructions.

o Instructions from each part execute simultaneously on different processors.

o An overall control/coordination mechanism is employed.

2.9.1 Approaches to parallel computing

In general, there are three main approaches of parallel processing systems

according to the organization of their memories:

1. Shared Memory Systems (SMS)

The major category of multiprocessors will be formed by the SMS.

Accordingly in the category, the whole processors share a global memory. The way

of communication between tasks is based on diverse processors, which is prepared

via writing to and reading from the global memory. shown in Figure 2.1. [5].

Figure 2.1. Shared Memory Systems

2. Distributed Memory Systems(DMS)

Like SMS , DMS share a common characteristic and at the same time vary

widely. DMS need a typical communication network to be able to connect inter-

processor memory. However processors have got their own local memory. Across all

processors there is no concept of global address space because the memory addresses

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory

17

in one processor do not map to another processor. Each processor works

independently since each of them has its own local memory. Any changes to its local

memory have no influence on the memory of other processors. Following the

concept of cache coherency does not apply to it .The programmer decides how and

when data is communicated, if a processor needs access to data in another processor.

It is the programmer's responsibility to manage between tasks [21].

Distributed memory is an important advantage of PS over uniprocessor

workstations, since it enables them to run much larger problems and to run them

much faster. However, the super linear speedup does not allow us to separate out the

two effects, and as such does not help us evaluate the effectiveness of the machine’s

communication architecture. Finally, using the same problem size (input

configuration) as the number of processors is changed often does not reflect realistic

usage of the machine[32].

 Figure 2.2. Distributed Memory Systems

3. Hybrid distributed-shared memory

It is considered the fastest and biggest in size computers all over the world

nowadays which is woked by both shaared and distributed architectural memory. The

component shared memory is also a shared memory of machine and/or Graphics

Processing Units (GPU). Moreover, the component of distributed memory is the

machines of shared memory or GPU of multiple networking, as well as the memory

is familiar with its own memory. Hence, shifting data from a machine to another can

not be done with the use of network communications [21].

CPU Memory CPU Memory

CPU Memory CPU Memory

18

 Figure 2.3. Hybrid Distributed-Shared Memory

2.9.2 Types of parallel computing

 The connection of parallel computing are been done in such a way that the

information exchanged between processes or threads. The latter connection relies on

the memory organization of the hardware, parallel computing kinds [7].

a. Parallel computing in software

In order to supply static and dynanmic balance of loading with application

with the existance of several packages of software. The different implementation

with high-quality of algorithm partision is accessed by application developers with

using software packages. Those packages with functional support with the use of

balancing load are mostly required by applications. The acknowledge and

implementation of partitioning algorithm attemption of developer applications are

saved with the use of Packages, however, the comparison between partitioning

strategies and their applications are permitted [33].

b. Parallel computing in hardware

The PProg is considered as an essential aspect of high-fulfilement computing

scientific and working a niche within the whole products of hardware and software

field is the advantages of PProg. Although, more recently PProg instead of working

to be a niche, a mainstream of software development techniques is taken place due to

a radical change in hardware technology [7].

CPU CPU

M

em
o
ry

CPU CPU

CPU CPU

M

em
o
ry

CPU CPU

CPU CPU

M

em
o
ry

CPU CPU

CPU CPU

M

em
o
ry

CPU CPU

19

2.9.3 Classes of parallel computing

In order get a good idea about parallel computing, this section will deal with

five famous parallel computing classes.

a. Multi-core computing

It is a system with more than one core on a single chip, and this system is

utilized to program the MPMD (multiple program multiple data) in non

uniform multi-core system. Various program are run and various set of data are

worked in the MPMD model [34].

b. Symmetric multiprocessing

Inside the communication space, two variants of SMP have illustrated. The

first variant contains multi core processors, which execute coupled SMP on a single

chip firmly. However, the second variant, in order to implement concurrently on a

single processor core, multiple tasks or threadsare permitted by simultaneous

multithreading[22]. Usually all processors are identical and have equal memory

access. This is called symmetric multiprocessing [30].

c. Distributed computing

Distributed computing is a process that connect a set of computers with the

use of network, which is used in order to figure out an individual large problem.

With more organizing the system the speed interconnection of local area network is

increased and consequently the power of a single high-fulfilment computer may be

exceeded by many general workstation with the combination of computational

resources. Distributed computing can facilitate collaborative work. To be elective

distributed computing requires high communication speeds [35].

d. Cluster computing

Cluster Computing consists of more than two computers and used to

implement problem or section that has given. Usually, the computers are tied

together in a computer cluster by the interconnection network, which is known as a

local Area Network (LAN). The computer communaction in the cluster are being

20

done among each other and a shared memory. For that reason, packets over the LAN

is mainly used to communicate the processors in a cluster [2].

e. Grid computing

Grid computing refers to provide an accessability of computing resources,

which is distributed over a Wide Area Network (WAN). Hence, distributing a

collection of huge quantity of processors over a broaden a geographic area. A grid

computer is capable of handling large - scale of computational issues; for instance,

N - body simulations, seismic simulations, and atmospheric and oceanic simulations.

In comparison with computer cluster, a large cluster with exchanging the LAN to

WAN; for example the internet [2].

2.10 Massage-passing systems

Message Passing Systems are multiprocessor class systems that any of this

process has an accessability to go through its local memory. Opposite to shared

memory systems, The fulfilment of message passing communication systems by

sned and receive operations [5].

Massage-Passing, which is a collection of tasks, utilize its own local memory

during computation. The exchange of data are occurred through sending and

receiving messages. Moreover, the cooperative operations are required in order to

transfer data, which is fulfilled by every process. For instance, a send and receive

operations must be matched [21].

Figure 2.4. Massage-Passing

 Machine A Machine B

 Network

Task 0

Data

Send()

Task 2

Data

Task 1

Data

Recv()

Task 3

Data

 Recv() Send()

21

CHAPTER 3

STRUCTURE AND ALGORITHMS OF THE PROPOSED SYSTEM

3.1 General view

The SM is a common inter-processor communication paradigm for a single-

chip multi-processor platforms. All processors are connected to a common memory

RAM. Moreover, the big advantage of SM systems is that all the processors can

make useful for the entire memory. As a result, this helps the simplicity of

programming and useful in efficiency. Furthermore, the factor limitations of their

performance are the number of processors and memory modules that can be

connected to each other. Due to these, SM-systems usually consist of rather few

processors.

On the other hand, in a distributed memory system, each process, which has

its own address space, communicates with other processes by MP as (sending and

receiving messages). In addition, a processor, which is connected to each other, has

its own local memory. Furthermore, there is no limitation on number of processors

and memory modules in a distributed memory system, because of servers, which are

connected as cluster-network, can be extended to any required number.

Consequently, the second technique in this work depends on the number of servers,

which are 8-servers of identical properties in the cluster-network.

The proposed algorithms have two main parts; first one related to hardware of

the work, and the second is about the software that guides the components of

hardware and manages the passing of messages between Client and Servers with

deferent cases.

22

3.2 Hardware part

The hardware is consisted of client-side, and servers-side. In addition, the

network that contains from both sides is designed according to star topology. In such

works, the properties of computers, which are different or similar from one computer

to another, are essential. This means having identical-computers. In fact, for more

accurate results with acceptable comparisons, it is preferred to depend on identical-

computers. Therefore, in this work all computers in both sides, which have the

following properties: (CPU: Core 2 Due, Speed 2.4 GHz, RAM: 4 GByte, and

HD:500 GByte), are identical completely.

Furthermore, client-side has only one host, which controls the sending of MP

as operations to other side. Client-host contains the main program that can treats with

all server-hosts in individual, subgroups, or all of them. The secondary storage of the

client-host contains the original data on each case of study that sends to the other

side, and then receives the results, which were calculated by the servers-side.

Servers-side consists of eight hosts (or sockets) connected in such a way in

order to get a cluster of 8-sockets. Moreover, each socket contains a program that has

an ability of receiving data, making the requirement of processing, calculating the

results, and then sending them to the client-side. Furthermore, servers-side can also

store the received data and determined the results on secondary storages, or send

them directly to the client-side.

3.3 Software part

 The software part same as hardware part also consists of two sides that are

client-side-software and servers-side-software.

 Client-side-software , represents the main-program, which is responsible of the

following tasks:

1. Detecting the number of connected server-sockets on other side.

2. Deciding the number of server-hosts that will receive the messages from the

client.

3. Sending control-messages to server-sockets.

23

4. Sending related data (as message-text or as data-files) to server-socket.

5. Monitoring all related server-sockets in case if they send any result or any

query-message.

6. Responding the query-messages that received from other side.

7. Receiving the calculated results by server-sockets and accumulating in order to

get the final results.

8. Making sure that all sending or receiving messages and data are stored on the

Client-side in secondary storages.

On the other hand, servers-side-software represents the programs that serve

the commands issued from the main program (i.e. client program). Moreover, the

software at each server-host is responsible of the following tasks:

1. Detecting the connection status of the client-host.

2. Deciding to work as which socket, according to the number of server-sockets,

sent by the client, taking into account that it may be out of work for certain

numbers of server-socket. For example; if the number of server-sockets is 2, then

only servers (1 & 2) will work.

3. Receiving the control-messages from client-host and guiding the execution of the

server-program so that to apply the client-requirements.

4. Receiving the related data (as message-text or as data-files) from client-socket.

5. Monitoring client-host in such case if it sends any immediate command, message,

or data.

6. Run the appropriate-subroutines according to the requirements of client-host and

calculate the correct results, knowing that each server will treat with part of data,

which is selected for server by the client.

7. Sending the calculated results to client-host, knowing that these results will be

arranged in a form in order to be managed by the client-host in a suitable manner.

8. Each server-program contains all subroutines of the same case study. This gives

the server-program the ability of treating with any selected part of data and

chose the appropriate subroutine to calculate the required results.

24

3.4 Messages transferred between client-side and servers-side

There are two types of messages, which are (control-messages and data-

messages), related to the PP approaches.

3.4.1 Control messages

Control messages, which is issued by client-host, is sent to servers-sockets.

These messages control the management of the processing of the entire network and

monitor the performance of the hosts, especially servers-hosts.

The structure of control-messages can be implemented through the following

steps:

1. Connection status of each server-socket, either it is ready or not

2. Send a message for each unready server to open its embedded connection link

3. Selecting number of server-sockets to be participate with task

4. Send a control message to connect the selected servers to be able for receiving

data receiving data

5. Acknowledgment from the selected server

6. Sending the starting-signal and/or termination-signal for any selected server-

socket

7. Return termination signals from the selected servers

8. Tear-down signal from client to terminate the connection

3.4.2 Data messages

Data messages , issued by client-side and/or servers-side. These messages

carry specific data, which help running processes at server-sockets if the messages

are issued by client-host. In addition, data messages may represent specific results,

when the messages are issued by the server-sockets.

The structure of data-messages can be implemented through the following

steps:

25

1. Connection status occurs between client-side and servers-side

2. Starting task-time (issued by client)

3. Starting CPU-time (issued by client)

4. Size of data-arrays that must be generate by client and used by servers

5. Names of files containing these data-arrays stored in a shared-drive to be use by

both client-side and servers-side

6. Starting running time (issued by each server)

7. Starting CPU time (issued by each server)

8. Idling CPU time (issued by each server)

9. Size of data-arrays that must be assigning by servers after processing and used

by client later for rearrangement

10. Names of files created by client and containing these data-arrays to be use by

both client-side and servers-side

11. Terminating CPU-time (issued by each server)

12. Terminating running-time (issued by each server)

13. Consumed CPU-time (issued by each server)

14. Consumed running time (calculated by each server)

15. CPU usage percentage ratio (calculated by each server), then:

 CPU idling percentage ratio (calculated by each server)

 Terminating CPU-time (issued by client)

 Terminating task-time (issued by client)

 Consumed CPU-time (calculated by client)

 Consumed task-time (calculated by client)

3.5 Matrix algebra case study

In order to observe the importance of PP techniques, researchers usually

depend on one or more cases of study, which explain these algorithms and produce

the results with less time of execution comparing with single processing technique.

26

The latter works are avoided with using the large number of computers as servers

(even for testing purposes) because of the following reasons:

1. The complexity of providing the large number of computers in order to operate

as servers.

2. Problems of interface-network components of connections.

3. Interfaces the problems between client-side and servers-side.

4. Synchronize the operation of servers with respect to the client (this is a major

problem).

5. The difficulty of the program for both client-side-software and servers-side-

software.

6. The difficulty of jobs, which are distributed by the client-side among servers-

sockets.

7. The difficulty of message-passing operations between both client-side and

servers-side.

8. The difficulty of subdividing the problem in the client-side, so that to be solved

by a cluster of servers.

9. The difficulty of preparing the servers in order to be able of treating the sub-

problems, which are provided by the client.

Matrix algebra is an essential kind of case study related to PP, and the

previous works were solely depended on eight servers as maximum. However, eight

servers are used in this work, and it can be N-servers according to the capacity of the

laboratory of these experiments, the algorithm is designed to treat with two original

matrices of square order (4096, 4096). This means that each matrix will contain

(16,777,216) elements. Therefore, there will be (33,554,432) elements divided into

sub parts (sub-matrices) to perform the (ADDING, SUBTRACTING, and

MULTIPLICATION) operations as part of matrix algebra according to the following

situations:

1. Apply all operations on one server-socket.

2. Apply all operations on two server-sockets.

3. Apply all operations on four server-sockets.

4. Apply all operations on eight server-sockets.

27

Number of servers=2
m

, where m= {0, 1, 2, 3 and 4}

First Case: Addition and Subtraction of two matrices A and B without dividing

 A server 1 ± B server 1 = C server 1

Second case: Addition and Subtraction of two matrices A and B after dividing each

matrix into two parts

 A server1 server2 ± B server1 server2 = C server1 server2

 A1 A2 B1 B2 C1 C2

Third case: Addition and Subtraction of two matrices A and B after dividing each

matrix into four parts

 server1 server2 server1 server2 server1 server2

 A ± B = C

 Server3 server4 server3 server4 server3 server4

 Figure 3.1. Cases of Matrix Algebra Algorithm.

(a) one-server. (b) two-servers. (c) four-servers. (d) eight-servers.

Client Server 1

(a)

Server 1

Server 2 (b)

Client

Server 1

Server 2

Server 3

Server 4

(c)

Client

Server 7

r 7 Server 8

r 8

Server 1

Server 2

22
Server 3

3

Server 5

r 5

Server 4

Server 6

r 6

(d)

Client

28

Fourth case: Addition and subtraction of two matrices A and B but divided each matrix in to

eight parts.

 server1 server2 server3 server4 server1 server2 server3 server4

A ±B

 Server5 server6 server7 server8 server5 server6 server7 server8

 server1 server2 server3 server4

 =C

 server5 server6 server7 server8

First case: Multiplication of two matrices A and B without divided

 A server1 * B server1 = C server1

Second case: Multiplication of two matrices A and B but divided A matrix in to two

parts

 server1 server1

 A ± B server1,2 = C

 erver2 server2

Third case: Multiplication of two matrices A and B but divided the matrix A in to

four parts.

 server1 server1

 server2 servers 1,2 server2

 server3 3 ,4 server3

 server4 server4

A * B = C

Figure 3.2. All cases of Addition and Subtraction of Matrices

Figure 3.3. Third cases of Multiplication of Matrices (cases 1, 2, 3 ,and 4)

29

Fourth case: Multiplication of two matrices A and B but divided the matrix A in to

eight parts

 server1 server1

 server2 servers server2

 server3 1, 2, 3, 4, server3

 server4 5, 6, 7, 8 server4

 server5 server5

 server6 server6

 server7 server7

 server8 server8

 3.5.1 Client software part

The structure of client-software-part can be implemented through the

following steps:

1. Connection status occurs between client-side and servers-side

1. Input unsorted array elements or read them from certain files at client side

2. Detect all socket-servers connected to the client

3. Record starting running client-times

4. Select No. of servers to do the job.

5. If No=1 then: Send the matrices A and B without dividing them, go to step 9.

Else

6. If No=2 Send the matrices A and B with dividing them into 2 parts, , then go

to step 9, else

7. If No=4 Send the matrices A and B with dividing them into 4 parts, , then go

to step 9, else

* B = C A

Figure 3.4. Four cases of Multiplication of Matrices (cases 1, 2, 3 ,4 and 8)

30

8. If No=8 Send the matrices A and B with dividing them into 8 parts, then go to

step 9, else (The No. must be one of {1, 2, 4, and 8 }) then go to step 4.

9. Store the contents of the two matrices and there dimensions in shared files

10. Send the files names to servers-side

11. Receive CPU-usage percentage, running time and CPU-idle-percentage

12. Receive the files-names of result matrices from servers-side

13. If No=1 then: There is no need for reassembling the matrices A, B , go to

step 17. Else

14. If No=2 .Reassemble the matrices A ,B from 2-resultant-parts

15. If No=4 . Reassemble the matrices A ,B from 4-resultant-parts

16. If No=8 . Reassemble the matrices A ,B from 8-resultant-parts,if (The No.

must be one of {1, 2, 4, and 8 }) continue .else if (The No. must be one of

{1, 2, 4, and 8 }) go to step 13.

17. Record termination running client-times

18. Consumed running client-times

19. Display assembled matrices

20. CPU-usage percentage, running time and CPU-idle-percentage

3.5.2 Servers software part

The structure of Server-software-part can be implemented through the

following steps:

1. Connection status occurs between client-side and servers-side

1. The server-side receives the files names from client-side

2. Load the files from shared-drive and extracts the matrices dimensions and

there elements

3. Each server record starting (running, CPU) servers-times

4. Each server perform to calculate the matrices operations such as: (addition,

subtraction and multiplication)

5. Each server record terminating (running, CPU) times

31

6. Each server calculate the consumed (running, CPU) times, (CPU-usage and

Idle) percentages

7. Send the results of corresponding matrices and times to separated shared files

and send files names to client-side

32

 CHAPTER 4

IMPLEMENTATION RESULTS AND DISCUSSION

4.1 Introduction

In order to illustrate the efficiency of the proposed parallel processing system,

the matrix-algebra case-study is depended to be applied on the system that contains one

client and eight servers. The results are obtained for four matrix-orders starting with

(64*64) and increasing this load yet reaching (4096*4096) as a high-load.

4.2 Matrix algebra case-study

This case-study needs to one client and eight servers for this situation and the

algorithms are divided according to the steps illustrated in chapter three. The obtained

results are illustrated in the Tables (4.1 to 4.6) and Figures (4.1 to 4.16). Also, the results

are divided into two main groups; one of them is related to the average values of average

and total execution timings and usages for servers-side which are represents the average

of related times or usages for all servers as an acceptable value to be depended, these

values are illustrated in Tables (4.1 to 4.4) and plotted as in Figures (4.1 to 4.12).

The second main group of the results is an additional assessment of performance

of this work in the view of the latest returning results by the servers-side which is named

here as Maximum-Values. These values are shown in Table (4.5 and 4.6) and illustrated

in Figures (4.13 to 4.16).

33

Table 4.1: Average Values For Matrix Order = 64 * 64

 Matrix Order = 64 * 64

Time (Sec.) One server
Two

servers

Four

servers

Eight

servers

Elapsed CPU Time of Client 0.2875 0.275 0.325 0.3

Total Execution Time of Client 0.34917 0.347313 0.445618 0.405016

Elapsed Average Consumed CPU

Time of Servers
0.0375 0.03125 0.04375 0.035938

Average Total Execution Time of

Servers
0.238018 0.189448 0.143308 0.199

Average CPU Usage % of Servers 12% 12.8% 28% 14.4%

Table 4.2 :Average Values of Matrix Algebra-Case For Matrix Order = 256 * 256

Matrix Order = 256 * 256

Time (Sec.)
One

server

Two

servers

Four

servers

Eight

servers

Elapsed CPU Time of Client 0.85 0.7 0.75 0.8

Total Execution Time of Client 1.012807 0.887018 0.930387 1.010495

Elapsed Average Consumed CPU

Time of Servers
0.35 0.275 0.221875 0.215625

Average Total Execution Time of

Servers
0.690817 0.533898 0.396176 0.321609

Average CPU Usage % of Servers 40% 40.8% 44% 54.4%

34

Table 4.3: Average Values of Matrix Algebra-Case For Matrix Order = 1024 * 1024

 Matrix order = 1024 * 1024

Time (Sec.) One server
Two

servers

Four

servers

Eight

servers

Elapsed CPU Time of Client 23.7875 15.75 14.7375 15.425

Total Execution Time of Client 25.63199 17.57746 16.58674 17.29236

Elapsed Average Consumed

CPU Time of Servers
17.025 10.00625 6.68125 4.948438

Average Total Execution Time

of Servers
21.30418 13.04144 8.365478 5.965315

Average CPU Usage % of

Servers
63.2% 60.8% 63.2% 65.6%

Table 4.4: Average Values of Matrix Algebra-Case For Matrix Order = 4096 * 4096

 Matrix Order = 4096 * 4096

Time (Sec.)
One

server

Two

servers

Four

servers

Eight

servers

Elapsed CPU Time of Client 1450.713 807.375 569.05 497.55

Total Execution Time of Client 1478.944 836.3778 599.8794 530.8112

Elapsed Average Consumed CPU

Time of Servers
1312.912 684.1312 375.1906 222.3969

Average Total Execution Time of

Servers
1401.361 758.6677 439.9162 276.198

Average CPU Usage % of

Servers
74.4% 72% 71.2% 72%

35

Figure 4.1. Elapsed Average Consumed CPU Time of Servers For Matrix-Algebra

of (64*64)

Figure 4.2. Elapsed Average Consumed CPU Time of Servers For Matrix-Algebra

of (256*256)

0.0375

0.03125

0.04375

0.0359375

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 1 2 3 4 5 6 7 8 9

 T
im

e(
se

co
n

d
)

 Number of Servers

 Elapsed Average Consumed CPU Time of Servers

Matrix Order=

64*64

0.35

0.275000024

0.221875 0.215625

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n
d
)

Number of Servers

Elapsed Average Consumed CPU Time of Servers

Matix order

=256*256

36

Figure 4.3. Elapsed Average Consumed CPU Time of Servers For Matrix-Algebra

of (1024*1024)

Figure 4.4. Elapsed Average Consumed CPU Time of Servers For Matrix-Algebra

of (4096*4096)

17.025

10.00625

6.68125

4.9484376

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n

d
)

Number of Servers

Elapsed Average Consumed CPU Time of Servers

Matix Order

=1024*1024

1312.91248

684.131248

375.19064

222.396896

1312.91248

684.131248

375.19064

222.396896

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9

 T
im

e(
se

co
n
d
)

 Number Of Servers

 Elapsed Average Consumed CPU Time of Servers

Matix Order

=4096* 4096

37

Figure 4.5. Average Total Execution Time of Servers For Matrix-Algebra of (64*64)

Figure 4.6. Average Total Execution Time of Servers For Matrix-Algebra of

(256*256)

0.23801752

0.18944808

0.143307808

0.199000344

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n

d
)

Number of Servers

Average Total Execution Time of Servers

Matrix

Order=

64*64

0.690816592

0.53389752

0.396176144

0.321609376

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n

d
)

Number of Servers

Average Total Execution Time of Servers

Matix Order

=256*256

38

Figure 4.7. Average Total Execution Time of Servers For Matrix-Algebra of

(1024*1024)

Figure 4.8. Average Total Execution Time of Servers For Matrix-Algebra of

(4096*4096)

21.304184

13.0414352

8.3654784

5.9653152

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n

d
)

Number of Servers

Average Total Execution Time of Servers

Matrix Order=

1024*1024

1401.36056

758.66768

439.916208

276.197952

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n
d
)

Number of Servers

Average Total Execution Time of Servers

Matix Order=

4096*4096

39

Figure 4.9. Average CPU Usage % of Servers For Matrix-Algebra of(64*64)

Figure 4.10. Average CPU Usage % of Servers For Matrix-Algebra of(256*256)

12% 12.80%

28%

14.40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9

(C
P

U
 U

sa
g
e

%
)

Number of Servers

Average CPU Usage % of Servers

Matix Order=

64*64

40% 40.80%
44%

54.40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9

(C
P

U
 U

sa
g
e

%
)

Number of Servers

Average CPU Usage % of Servers

Matrix Order=

256*256

40

Figure 4 .11. Average CPU Usage % of Servers For Matrix-Algebra of(1024*1024)

Figure 4.12. Average CPU Usage % of Servers For Matrix-Algebra of(4096*4096)

63.20% 60.80% 63.20% 65.60%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9

(C
P

U
 U

sa
g
e

%
)

Number of Servers

Average CPU Usage % of Servers

Matix order=

1024*1024

63.20% 60.80% 63.20% 65.60%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9

(C
P

U
 U

sa
g
e

%
)

Number of Servers

Average CPU Usage % of Servers

Matrix order=

4096*4096

41

Table 4.5: Maximum Values of Matrix-Algebra Case-Study For:

(One, Two, Four, and Eight,) Servers.

 Matrix Order = 1024 * 1024

Time (Sec.)
One

server

Two

servers

Four

servers

Eight

servers

Max Consumed CPU time 17.025 10.0875 7.2625 5.325

Max Total Execution Time 21.304184 13.1406 8.82682 6.27662

Table 4.6: Maximum Values of Matrix Algebra-Case For:

(One, Two, Four, and Eight,) Servers.

 Matrix order = 4096 * 4096

Time (Sec.)
One

server

Two

servers

Four

servers

Eight

servers

Max Consumed CPU time 1312.9128 684.212 387.775 235.65

Max Total execution time 1401.3608 757.955 454.114 291.271

42

Figure 4.13. Maximum Consumed CPU Time For Matrix-Algebra of (1024*1024)

Figure 4.14. Maximum Consumed CPU Time For Matrix-Algebra of (4096*4096)

17.025

10.087504

7.2625

5.325

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n

d
)

Number of Servers

Max Consumed CPU Time

Matrix order=

1024*1024

1312.9128

684.21248

387.77504

235.65

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n
d
)

Number of Servers

Max Consumed CPU Time

Matrix order=

4096*4096

43

Figure 4.15. Maximum Total Execution Time For Matrix-Algebra (1024*1024)

Figure 4.16. Maximum Total Execution Time For Matrix-Algebra (4096*4096)

21.304184

13.140632

8.826816

6.2766176

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

T
im

e(
se

co
n

d
)

Number of Servers

Max Total Execution Time

Matrix Order=

1024*1024

1401.3608

757.95472

454.11376

291.27056

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10

T
im

e(
se

co
n

d
)

Number of Servers

Max Total Execution Time

Matrix Order=

4096*4096

44

4.3 Discussion of matrix algebra case-study

 As mentioned, there are results of both (Average and Maximum)-values of

both of (CPU and total execution)-times.

Figures (4.1 to 4.4) represent four sub-groups of Matrix-orders of results of

elapsed Average Servers Consumed CPU time for matrix-algebra operations which

are (64, 256 ,1024 and 4096)-orders respectively. This arrangement of curves is

dependent because of the high-gap of obtained-results among these four groups.

These results are very acceptable. While Figures (4.5 to 4.8) represent four sub-

groups of these orders for results of total execution-time of Matrix-algebra

operations. It is clear that these results are very acceptable which brows the behavior

of the proposed system according to the load-increasing.

Figures (4.13 and 4.14) represent the results of Maximum consumed CPU-

time for orders (1024 and 4096) respectively, these results also are very acceptable.

The results of orders less than (1024) which are small-loads, are ignored because of

the instability of decreasing the Maximum consumed CPU-time with the increasing

number of servers. This is applied also on the results of Figures (4.15 and 4.16) that

related with Maximum total execution-time of the program.

Figure (4.9, 4.10, 4.11 ,412) illustrates the Average Servers CPU-usage of all

servers with all tested sets of Matrix-orders; it represents the relationship between

CPU-usage and number of servers to determine the Average Servers CPU-usage

according to all cases of matrix-orders. It is clear that CPU-usage is increasing with

increasing of the load for the same number of used-servers. It is expected that for

each certain number used servers, the value of CPU usage will increase by increasing

the load. This is clear with the cases of high-number of servers (i.e. > 2 servers), but

for (≤ 2 servers) the average of CPU-usage is unstable and may be the changing is

independent on this manner because the value of CPU-usage is affected by any

instance under-running tasks depending on the computer status also may be the

nature of the data that under-processing effects on the value of CPU-usage.

45

4.4 Conclusion of obtained results

There is no any previous work depended exactly on the case-studies

addressed in this work, because each work applied the principles of parallel

processing on a certain application with certain approach (Technique) of parallel

processing.

The important of this work illustrated on; applying the principles of parallel

processing and forking the jobs among all processors in a specific approach to

overcome the complexity of the problem with as possible as minimum duration of

time execution. Adding to that, this work is deal with the pure consumed CPU time,

which is had not been addressed clearly before by any previous work.

However, to compare the results obtained by this work with those of previous

works; it can be seen that all steps of parallel-processing that applied by previous

works, are applied here with a suitable approach. And the principles of parallel-

processing operations are implemented correctly here. So, this work produces

complete CPU-related calculations with very accurate results and specific concepts

are added to the parallel processing approach in general and especially to distributed

type of them.

64

CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

5.1 Conclusions

The main points arise from the research employed in this thesis can be

summarized by the following:

1. Distributed memory systems addressed depending on client/servers principles with a

network consists of nine nodes one of them is a client and the others are servers.

2. Started, Consumed, and Terminated values for (CPU and total execution) times,

CPU usage of servers, and (CPU and total execution) times for the Client are

calculated by using specific algorithms based on Matrix Algebra case study.

There are many general algorithms and other related algorithms which are

designed and tested completely by this work.

3. The obtained results are checked and monitored by special programming-

checking-subroutines through many testing-iterations and proved a high degree

of accuracy.

4. The results showed that parallel-processing operations are ineffective and

inefficient with small load applications, and this efficiency is growing with

increasing the task load. So, the highest load task will be implemented in high

efficiency and the lowest load task implemented with low efficiency, taking in

the consideration number of servers used.

5.2 Suggestions for future work

The following are some suggestions for the future works:

1. Apply approaches of monitoring the CPU and states of the processes and threads

during implementing the parallel processing approaches. And design software

that can control the priority of processes and threads during their life-cycles of

implementing the parallel processing approaches.

64

2. Improve this approach to be applied with for cloud computing via Internet

instead of a LAN network.

84

REFERENCES

[1] HANK DIETZ , HANKD@ENGR.UKY.EDU (2004), Linux Parallel

Processing HOWTO, http://aggregate.org/LDP/, v2.0 .

[2] GEBALI FAYEZ (2011), Algorithms and Parallel Computing, Vol. 84. Wiley.

com.

[3] PARHAMI BEHROOZ (2002), Introduction to Parallel Processing: Algorithms

and Architectures ,Kluwer Academic.

[4] GARG, K.VIJAY (2004) ,Concurrent and Distributed Computing in Java, John

Wiley & Sons, Inc.

[5] EL-REWINI, HESHAM, MOSTAFA ABD-EL-BARR (2005), Advanced

computer architecture and parallel processing , Vol. 42. Wiley. com.

[6] STALLINGS WILLIAM (2010) , Computer Organization and Architecture

Designing For Performmance 8th Edition, Pearson Education, Inc.

[7] RAUBER THOMAS, GUDULA RÜNGER (2010), Parallel programming: For

Multicore And Cluster Systems ,Springer.

[8] EECKHOUT LIEVEN (2010), Computer architecture performance evaluation

methods, Synthesis Lectures on Computer Architecture 5.

[9] LOOSLEY CHRIS , FRANK DOUGLAS (1998) ,High-performance

client/server: a guide to building and managing robust distributed systems , John

Wiley & Sons, Inc.

[10] EDDY WESLEY M. ,MARK ALLMAN(2001), Advantages of Parallel

Processing and the Effects of Communications Time, Ohio University and NASA

GRC / BBN Technologies.

[11] PAN LEI , ET AL (2002), From Distributed Sequential Computing to

Distributed Parallel Computing, School of Information and Computer Science

University of California, Irvine, CA 92697-3425, USA.

mailto:HANKD@ENGR.UKY.EDU

84

[12] FRANCOIS, ALEXANDRE RJ(2004), Hybrid Architectural Style for

Distributed Parallel Processing of Generic Data Streams, University of Southern

California Los Angeles, CA.

[13] SILVA, LUCIANO, DENISE STRINGHINI, ISMAR FRANGO

SILVEIRA(2005), Parallel Processing Of Distributed Trees: A Pattern Language

And Applications, University Mackenzie, Brazil.

[14] O.YASEEN NUMAN (2010), Diagnostic Approach for Improving the

Implementation of Parallel Processing Operations, MSc Thesis, University of Zakho,

October.

[15] WANG, QING, ZHENZHOU JI, TAO LIU QING W. (2011) ,Efficient

OpenMP Extension for Embedded Multicore Platform, Journal of Frontiers of

Computer Science and Technology, Vol. 5, No. 1.

[16] FATOHI BAN B. (2011) ,Modified Approach for Processes and Threads

Monitoring and Tracking , MSc Thesis, University of Zakho, Dec.

[17] ASAAD FARAH H. (2011) , Shared Memory Performance Analysis on Parallel

Processing Applications , MSc Thesis, University of Zakho, Dec.

[18] RASHID ZRYAN N.(2012) , Client/Servers Clustering Effects on CPU

Execution-Time, CPU Usage and CPU Idle Depending on Activities of Parallel-

Processing-Technique Operations, MSc Thesis, University of Sulaimani, Jan.

[19] SHAHIDEHPOUR MOHAMMAD, YAOYU WANG (2003),

Communication and Control in Electric Payer Systems: Application of Parallel and

Distributed Processing, John Wiley t Sons, Inc.

[20] TANIAR, DAVID, CLEMENT HC LEUNG, WENNY RAHAYU,

SUSHANT GOEL (2008) ,High Performance Parallel Database Processing And

Grid Databases , A John Wiley & Sons, Inc.

[21] BARNEY BLAISE (2010), Introduction To Parallel Computing , Lawrence

Livermore National Laboratory 6.1.

[22] MARINEAU-MES SEBASTIEN (2003), Using Symmetric Multiprocessing

(SMP) to Scale Data Plane and Control Plane Performance.

[23] CHAPMAN, BARBARA, GABRIELE JOST, RUUD VAN DER PAS

(2008), Using OpenMP: portable shared memory parallel programming ,Vol. 10.

The MIT Press.

05

[24] LIU, ZHAOBIN, WENYU QU, HAITAO LI, MIN RUAN, WANLEI

ZHOU (2009) , I/O scheduling and performance analysis on multi‐core platforms,

Concurrency and Computation: Practice and Experience 21.10 1405-1417.

[25] SCHNEIDEWIND NORMAN F. (2012) , Computer Network Software and

Hardware Engineering with Applications, John Wiley & Sons, Inc.

[26] MCCOOL MICHAEL, JAMES REINDERS, ARCH ROBISON (2012) ,

Structured Parallel Programming: Patterns for Efficient Computation , Elsevier, Inc.

[27] HAGER GEORG, GERHARD WELLEIN (2011) , Introduction to high

performance computing for scientists and engineers , CRC Press.

[28] ZOLTặN JUHặSZ , PÉTER KACSUK , DIETER KRANZLMULLER

(2005) , Distributed and parallel systems: cluster and grid computing, springer.

[29] KIRK, DAVID B., W. HWU WEN-MEI (2010) , Programming Massively

Parallel Processors: A Hands-on Approach ,Morgan Kaufmann.

[30] WITTWER TOBIAS (2006), Introduction to Parallel Programming ,Vol. 1.

VSSD.

[31] MORRISON S.RICHARD (2003) , Cluster Computing-Architectures,

Operating Systems, Parallel Processing, & Programming Languages, GNU General

Public Licence.

[32] CULLER DAVID, JASWINDER PAL SINGH, ANOOP GUPTA (1997) ,

Parallel Computer Architecture: A Hardware/Software Approach , Morgan

Kaufmann Publishers.

[33] BRUASET, ARE MAGNUS, ASLAK TVEITO (2006) , Numerical Solution

of Partial Differential Equations on Parallel Computers (Lecture Notes in

Computational Science and Engineering), Springer-Verlag New York, Inc.

[34] Q. ZHANG , L. CHENG, R. BOUTABA (2010) , Algorithms and

Architectures for Parallel Processing , Springer-Verlag Berlin Heidelberg 7-18.

[35] GEIST AL, ADAM BEGUELIN , JACK DONGARRA , WEICHENG

JIANG , ROBERT MANCHEK , VAIDY SUNDERAM (1994) , PVM: Parallel

virtual machine: a users' guide and tutorial for networked parallel computing , MIT

press.

