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ABSTRACT

MATHEMATICAL ASPECTS OF SUPERINTEGRABLE SYSTEMS

Defterli, Ozlem
M. S., Department of Mathematics and Computer Science

Supervisor: Assoc. Prof. Dr. Dumitru Baleanu

June 2004, 51 pages

Polynomial invariants and the geometric aspects of superintegrable systems in two-
dimensional space were analyzed. Killing tensors and Killing-Yano tensors corre-
sponding to a set of four two dimensional superintegrable systems were found. The
geometries obtained by adding a suitable term involving the components of the angu-
lar momentum to the corresponding free Lagrangians. Killing vectors, Killing-Yano

and Killing tensors of the obtained manifolds were investigated.
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Yano tensors.
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Oz

MATEMATIKSEL YONLERIYLE SUPERINTEGRALLENEBILIR SISTEMLER

Defterli, Ozlem
Yiiksek Lisans, Matematik ve Bilgisayar Boliimii

Tez Yoneticisi: Assoc. Prof. Dr. Dumitru Baleanu

Haziran 2004, 51 sayfa

Polinom degismezler ve geometrik yonleriyle iki boyutlu uzayda siiperintegrallenebilir
sistemler analiz edilmigtir. Iki boyutlu siiperintegrallenebilir sistemlerden dérdiine
iligkin Killing tansorleri ve Killing-Yano tansorleri hesaplanmigtir. Verilen bagimsiz
bir Lagrangian’a agisal momentin bilegenlerini igeren uygun bir terimin eklenmesiyle
geometriler elde edilmigtir. Bu gekilde olugturulan manifoldlarn Killing vektorleri,

Killing-Yano tansorleri ve Killing tansorleri incelenmigtir.

Anahtar sézciikler: Siiperintegrallenebilir sistemler, polinom degismezler, Killing tansérleri,

Killing-Yano tansorleri.
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CHAPTER 1

INTRODUCTION

The superintegrability in two dimensions represents today one of the hot topics in
applied mathematics. On the other hand, it represents the laboratory where we tested
some techniques and find some important results and we hope that we will apply some-
thing in higher dimensions.

Extensive studies exist about systems with second-order integrals of motion, either in
Euclidean space or in spaces with nonzero-constant curvature.

Highly symmetric systems are often integrable, and in special cases, superintegrable
and exactly solvable, Wojciechowski [47], Kalnins [33].

Superintegrable systems on the two-dimensional Euclidean spaces have been classified
in Evans [18], and also extended to the two dimensional spheres, Grosche [25].
Recent classifications of superintegrable systems for these two dimensional Rieman-
nian spaces can be found in Ranada [39], Kalnins [34], Kalnins [35].

A Hamiltonian system of N degrees of freedom is said to be completely integrable,
in the Liouville-Arnold sense, if it possesses functionally independent globally defined
and single valued N integrals of motion in involution Arnold [1], Goldstein [23]. It
is called superintegrable if it admits more than N integrals of motion. Not all the
integrals of superintegrable system can be in involution, but they must be function-

ally independent otherwise the extra invariants are trivial. In analogy to the classical



mechanics, a quantum mechanical system descr‘iB_ed in N-dimensional Euclidean space
by a stationary Hamiltonian operator H is called to be completely integrable if there
exists a set of N - 1 (together with H, N) algebraically independent linear operators
X, i =1,2,..,N — 1 commuting with H and among each other, Fris [21]-Tempesta
[44]. If there exist k additional operators Y; , j = 1,2,...,k where 0 < k < N — 1,
commuting with H it is said to be superintegrable. The superintegrability is said to
be minimal if £ = 1 and maximal if k= N — 1.

The plan of my thesis is as follows:

Basic definitions of the concept of superintegrability with the classifications of the
polynomial invariants are given in Chapter II.

Chapter III covers the problem of superintegrability on a curved manifold in two
dimensjons.

In Chapter IV, non-generic(hidden) symmetries of two dimensional superintegrable
manifolds were calculated.

Chapter V is dedicated to my concluding remarks.



CHAPTER 2
INVARIANTS OF TWO DIMENSIONAL

SUPERINTEGRABLE SYSTEMS

In the first part of this chapter, the fundamental notions of superintegrability are
given and the types of transformations that preserve integrability are discussed. The
polynomial invariants of the two dimensional superintagrable systems are classified in

the second part.

2.1 Basic definitions

The concept of integrability can be formulated for the Lagrange method but we will
use the Hamiltonian approach with Poisson bracket. In that case a Lagrangian L =

L(z;,}), where &’ = dz/di is given and the equations of motion follow from

d 8L 0oL

a_azz_—a;zzo, 1,=1,...,D. (21)

Definition 1 Let the Lagrangian L = L(x;,z}) be given. Consider a function
I = I(z;,x}). Its total time derivative is given by dI/dt = il + xiI;. If dI/dt

vanishes when =] are eliminated using (2.1) then I is a constant of motion.

For higher-dimensional systems there can be several invariants and the definitions

generalize as follows, Hietarinta [28].



Definition 2 A set of functions I, is said to be involution if {Ix, I} =0, for all k,

m.

Definition 3 A D-dimensional Hamiltonian system H is said to be Liouville
integrable if there erists a system of D functionally independent functions I, € F(P)

[I1 = H] which are in involution.

The system is superintegrable if a further m integrals {¥1,...,Ym,1<m <n-1}
exist such that the set of constants {I1 = H,Ia,...,In, Y1,...,Yy} are functionally
independent. The additional integrals have vanishing Poisson bracket with H, but
not necessarily with each other or with the I;’s, Kalnins [33].

This definition is motivated by a famous theorem of Liouville, which states that sys-
tems satisfying the above definition of Liouville integrability can in fact be integrated
by quadratures. The following theorem proves that the property of being in involution

is preserved under generalized canonical transformations.

Theorem 1 A set of functions in involution will stay in involution under the trans-
formation X’t = fi('Th v s ZDyP1, - ,PD): ‘P't = gi(xla e esTDyPLye 7PD) fO‘T' which
{fi, fe} = {95, 9x} =0 and {f;,gx} = 6;xZ, where Z is some function of the p’s and

T’s.

For ordinary canonical transformations Z=1. In most applications below Z will be a
constant, but it could in principle be a more general function.

Proof. Let us consider two commuting functions K (X, P) and L(X, P), and their
transformed counterparts k(z, p) = K(f(z,p), 9(z,p)) and l(z,p) = L(f(z, p), §(, p))-

By the chain rule and the commutation properties of the f’s and the g’s we have

0K 6L 0K 6L
{k, D} zp) = (EX_,-E’; - '@E){fi,gj} = {K,L}x,p)Z (2.2)

4



and thus k and ! commute if and gnly if K and L commute, Hietarinta [28].

The rest of this section is devoted to a discussion of certain simple transformations
that preserve integrability and to demonstrating how they can be used to eliminate
at least some of the nonessential degrees of freedom.

The first simplification in the search of any kind of constant of motion is obtained by

considering its invariance when p — —p.

Definition 4 A function K of the p’s and z’s is said to have a good time reflection

parity if K(—p,z) = cK(p,z). K is said to be even if c =1 and odd if c = —1.

Theorem 2 If for a nontrivial pair of functions K,L we have {K,L} = 0, and K
has good time reflection parity, then there exists a nontrivial function L, such that it

has good time reflection and {K yLe} =0.

Proof. Applying the Theorem 1 with the transformation f;(z,p) = z; and g;(z,p) =
—p; gives Z = —1. Thus if K(p,z) and L(z,p) commute, so do K(—p,z) = cK(p,z)
and L(z,-p). Therefore X commutes with Ly(p,z) = 3{L(p,z) + L(~p,z)} and
L_(p,z) = {{L(p,z) — L(—p,z)} as well. Both of these have good time reflection
parity, and since they cannot vanish simultaneously, if L(p,z) is nonzero we have
found that L, is the invariant, Hietarinta [28].

Note that if we apply this to the Hamiltonian H = §3.(p*); + V(z) then all the
invariants must be either even or odd in momenta.

The version of Theorem 2 for weighted homogeneous functions is given as follows:

Theorem 3 If we have two commuting functions K(p,z), L(p,z), of which K is
weighted homogeneous and L is a polynomial, then L can be written as a sum L =
M
> Li(p, x), where each L; is weighted homogeneous with different degree, and each L;
i=1

commutes with K.



Proqf. Assume that K is weighted homogeneous for the scalings z — ¢z, p — c™p. i
Each monomial of L will get a definite factor c* in this scaling. Collecting terms with
the same k together we can write L(p, z) = %1 Li(p, x), where L;(c™p, c"z)=c* L;(p, z)

i=
and k; # k; for i # j. Each L; is weighted homogeneous and can be shown to
commute with H as follows. Since H is invariant in the above scaling it commutes

with L(c™p, ¢"z) for any c. Let us now take M different ¢’s and consider the sum

M M M M M
Z d;L(cj"p, cjz) = E d; Z c;?"Li(p, z) = Z{Z d; (cj)k"}Li, (2.3)
J=1 j=1 =1 i=1 j=1

which commutes with K as well. Now any given L,, can be picked up from this sum

choosing the d;’s so that they solve the set of equations
M
> dickt =6im,  i=1,...,M. (2.4)
i=1

This set has a nontrivial solution because the c;’s can be chosen so that detij{c;?"}
does not vanish, Hietarinta [28].

As a corollary we find that in the search for integrable weighted homogeneous
Hamiltonians we may assume that a polynomial invariant is weighted homogeneous.

Let us consider, Hietarinta [28], a homogeneous polynomial of z and y (or of p; and

Py)

P(z,y) = i anzN "y, (2.5)

n=0

Since integrability is preserved under the rotations

x = coswX + sinwY, Pz = coswPx + sinw Py,

y = —sinwX + coswY, py = —sinwPx + coswPy, (2.6)

we can use (2.6) to transform the polynomial (2.5) to a more suitable form.

If we substitute (2.6) into (2.5), then we obtain



P(z,y) = P'(X,Y) = X{ f: ancosw® ~™(—sinw)"}

n=0

+XN“1Y{§ cosw™N " (—sinw)*[(n + Dany1 — (N —n+ Dag-al} +... (2.7

n=0

If the coefficient ay—1 = 0 we can make the XV ~1Y term vanish by choosing cosw = 0,
otherwise we divide out by cosw? and then the second term vanishes if

N

> (—tanw)*[(n + 1)ans1 — (N —n+ 1)an-1] = 0. (2.8)

n=0
This method was used in search of integrable cubic potentials.
Now, we will discuss the translations in the coordinates: © — 2 +u, y — y+v, where
u and v are constants. Both in a general search for integrable systems and in the
identification of integrable potentials we are again faced with the problem of fixing
the translational degree of freedom.
In the case where the invariant has leading part consisting some angular momentum
terms, the translation freedom can be used to fix some cof the free paramecters.
Ezample: If the invariant is linear in space and momentum coordinates it must be of
the form I = (az+ b)py + (—ay + ¢)ps. If a # 0 we make the translation z — = —b/a,
y — y + ¢/a to bring I into the form I'= a(zpy — yp:). And if a = 0 we would
make a rotation and scale to bring the invariant into I = pg or I = p; +ipy. In this
simple example the equations for the integrability of the Hamiltonian can be solved
in principle, however in more complicated cases it is necessary to break down the
investigation into simple subcases like the ones above.
The last type of transformation which is called gauge transformation is applicable

only for Hamiltonians that have terms linear in p, i.e.

1
H= 5(103 +p2) + A(z,y)p: + B(z,y)py + C(z, v). (2.9)

7



A Hamiltonian in this form will'stay form-invariant under the canonical transformation

Dz — Pz + F(-T, Y)zs Py — Py + F(:L': y)y’ (2-10)

where F(z,y) is an arbitrary function and the subscripts indicate partial derivatives.
The functions 4, B and C will the change as

A— A+ Fy, B — B+ Fy,
1
C — C+ AF, + BF, + §(F3+Fj). (2.11)
From these equations we see that the quantities U and W, defined by
U= Ay, — By, W=C- %(A2 + B?). (2.12)

are gauge-invariant and therefore suitable to characterize the model.

2.2 Polynomial invariants

In this section the systems having the polynomial invariants are discussed. We

assumed that the Hamiltonian is of the form
H=2@+p)+ V(e 2.1
2( z py) ( ’y)' ( * 3)

The aim is to construct a function which is in involution with H. We know that the
Hamiltonian is even in momenta and so the second invariant is either even or odd in
momenta. Hence the general form of the invariant [ is :
IN/2J N—2n .
I=)" " prp) 2 mdm™N=2n(g,y), (2.14)
n=0 m=0

where the functions d are the unknowns. The problem is how to find these unknown

functions d. Taking the Poisson bracket of H with I is the right way of it.

8



" 2,2.1 Linear invariants

The invariant for the Hamiltonian in (2.13) must be either odd or even when p; —
—p;(as it is shown in Section II.1). As potential invariants, we first turn our attention

to functions which are linear in momenta,

I = A(z,y)pz + B(z,y)py. (2.15)

We require I to be in involution with H. So, computing the Poisson bracket of (2.13)

with (2.15) and equating to zero gives the following set of equations Hietarinta [28]:

Az =0, (2.16)
Ay~ By =0, (2.17)
B, =0, (2.18)
AV, + BV, =0. (2.19)

The solutions of these equations (2.16), (2.17) and (2.18) are :
A=ay+b, B=-ar+ec. (2.20)

In connection with (2.19) two cases arise:

Case (1): a = 0. Then (2.19) can be integrated with the result
V = f(cx - by), I =bp, + cpy. (2.21)

Case (2): a # 0. Let us take a = 1. To simplify A and B make the translation
X=zxz+c¢,Y=y—-b, Py =py, Px =p, which is a canonical transformation. Then

(2.19) becomes yV, — 2V, = 0, and the integration gives
y

V= f(a® + %), I =yp, —zpy. (2.22)



By combining the two cases we obtained the solution

V = f(3a(z® + y?) + cz — by)
I = a(yps — zpy) + bps + cpy. (2.23)

2.2.2 Quadratic invariants

In the case of the quadratic invariants the second invariant has the following form

with the coefficients 4, B, C and D which are functions of z and y.
I = Apypy + Bpepy + Cpypy + D. (2.24)

The following set of equations are obtained in Hietarinta [28] by taking the Poisson

bracket (2.24) with (2.13) :

Az =0, Ay+B,=0, B,+C,=0, C,=0, (2.25)

D, =2AV,+ BV,, D, =BV, +2CV,. (2.26)
The equations (2.25) have the solution

A = a+by+e,

B = —2azy—bzr—dy—e,

C = az*+dz+f. (2.27)
When (2.27) is substituted into (2.26) we get the condition in below for the integra-
bility of D :

(2azy + bz + dy + €) (Vs — Vi) — 2[a(z? — y?) +dz — by + f — ] Vay
+3(2ay + b)Vz - 3(2az + d)V, = 0. (2.28)

The equation (2.28) is solved in the following cases :

10



(1) a#0. Take a =1 and integrate it by Darboux,

(2) a#0,butc=0,

(3) a#0,c#0,e?+c? =0, then e= Fic.

(4) a=0,but bord0. Let us investigate this case in details. If we do the
rotation as b =1, d = 0 and the translations so that f =0 and ¢ =0, e = 0. So, the

equation( 2.28) becomes
2yVay + 3V + & (Voe — Vi) = 0, (2.29)

with the solution

V = [f(r+y)+g(r—y)l/r
I = (yps — zpy)pz + [(r +9)g(r —y) — (r = y) f(r + )]/ (2.30)

(5) a=0,b%#0but b?+d*=0,

(6)  when the constants e, c and f are eliminated,

(7) a=0,b=0and d=0,

(8) a=0,b=0,d=0,f=0,c#0bute*+c*>=0.
Superintegrability: Observe that we have two independent invariants other than H,
i.e. superintegrability, when a potential is two of the following potential types simulta-
neously; homogeneous, polynomial or in the form V = (z? + y2)? + Az? + By? (order

doubling, see Hietarinta [28], page 107-108). For example in Fris [21]:
V=a(z®+?) + bz 2 +cy™? (2.31)

belongs simultaneously to the cases (2) (where V = g(r) + f(z/y)r~2) and (7) (where
V = f(z) +9(y)),
V = ax? + by? + cz 2 (2.32)

11



to the cases (4)( where V = [f(r +y) + g(r — y)]/r ) and (7),"'a;r_1d

V =afr+[b/(r+y)+c/(r—y)l/r (2.33)
to the cases (2) and (4).
2.2.3 Cubic invariants
The invariant cubic in momenta has the form
I, = Ap} +'Bp§py + Cpep2 + Dp3 + Fps, + Gpy. (2.34)
where A, ..., G are functions of z and y. Taking the Poisson bracket (2.13) with

2.34) and then collecting the coefficients of the terms plp?™ gives the following set of
zly

equations, Hietarinta [28]:

F, - 3AV, - BV, =0,

Gz + F, — 2BV, — 2CV, =0,

Gy ~ CV, — 3DV, =0,

12

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)



FVy+ GV, =0. (2.43)

Equations ( 2.35) - { 2.39) have the polynomial solutions

A =ag+ a1y + agy® + azy®, (2.44)
B =bg + biy + doy? — a1z — 2a9zy — 3azzy’, (2.45)
C = cg — b1z + asz? — diy — 2dazy + 3asz?y, (2.46)
D =dy + diz + doz® — azz. (2.47)

There are many ways to complete the computation but in Holt [32] the following

method was used. Firstly, the solution of (2.43) is found by

F=V,Z, G=-V,Z, (2.48)

where Z is a new unknown function of z and y. Then, by substituting this to (2.40)

- (2.42) results that

ZVyy + 25V, — 3AV, — BV, =0, (2.49)
Z(Vyy — Vag) + ZyVy — ZoVe — 2BV, — 2CV,, (2.50)
—ZVyy — ZyVy — 3DV, — CV, = 0. (2.51)

Now we have three equations for two unknown functions and ten free constants. Then

adding ( 2.49) and ( 2.51) gives that

Vo(3A+CZ,) + V, (3D + B ~ Z;) =0, (2.52)

13



from which Z can be solved as

Z=98(V)+Y, (2.53)

Y = z+(3do+bo)z + (3d1 — a1)2?/2 + daz® — (3ao + co)y — (3a1 — d1)y?/2

—agy® — azy + dazy® + byzy — 3az(x? + y2)?/4. (2.54)
When these values of Z and Y are put into ( 2.49) and ( 2.50) then

Y (Vyy = Vaz) = 3(A+ C)Wy = 3(D + B)Ve = B(V)zz — B(V)yy- (2.56)

The equations ( 2.55) and ( 2.56) can be solved in three cases which are the following
with their results :

(1) when &(V) #0

1 -
H =502+ 1) + (a2 = ), (2.57)

Iy = (92 - p2)(zpy — yPs) — A(ype + zpy) (2% — y2) 723, (2.58)

(2) assume ®(V) = 0, then ( 2.55) and ( 2.56) are linear in V. Therefore a linear
superposition rule is applied to the integrable potentials.
(3) taking @ = 0 in each case for the certain choices of parameters and then solving

the equations ( 2.55) and ( 2.56) the following results are obtained in Holt [32]:

V= %y4/3 + a?y~ 3 4 5y~23, (2.59)
Ip = 2p5 + 3p,p? + 3po(—3y*/® + 2%y ~/% + 26y~2/3) 4 18pyzy'/3,  (2.60)

V =22+ 4% + 5272, (2.61)

14



I3 = pﬁpy + 8zyp, + 2(—:1:2 + 6x"2)py. (2.62)

In the last case the system has a third invariant which means that it is

superintegrable. Another superintegrable case was found in Fokas [20] with

V =z%/2 +1%/18, (2.63)

Iy = (zpy — yp=)rs + ¥°Pe /27 — zy’py /3. (2.64)

2.2.4 Higher order invariants

There are few results about the invariants of order higher than four. Some examples
are given :

L. Holt - type potentials :

From Painlevé analysis in Grammaticos {24] and Hietarinta [29] the potential V=
12243 4 422-2/3 is integrable and a search at p® produced a positive result. This

potential can have additional terms, in Hietarinta [30] it was found that
V=122 4+ (® + )3 + Ly~ (2.65)
is also integrable with
I = pf+3pp) + 72" 2ypap + 69 (323 + (4% + d)o /%) + 64827y}
+648y* + L[12y~2p2p2 + 6y~ 2ph + 12Ly~*p2 + 14423y p,p,

+12(62Y3y~2 4 2dz~/3y=2 4 2573 4 Ly=*)p? 4 §(542%/3

+9Lz*3y~4 + 3dLz~%/3y~4 + 3Lz~2/3y~2 L%y~ 9). (2.66)

II. Toda - type potentials -

The Toda - type potential has the form
V — e[\/gz_y]/2 - ey + e[_\/§z+y]/2. (2.67)

15



There are some generalizations of ( 2.67) that are integrable with a sixth order
invariant. If we denote the cubic invariant of first two terms of { 2.67) with Isp, then

the sixth order results are as follows :

I = I+ e=V3)6[pt — 4p2p2 + 3pt) + 12(2e(lV32-0l/2)
(V8 — 46}y + 12V3 (V82 - 3)/2)papy
+12(—3¢(V32=31/2) _ 96(=V32) | gev)p2

+8[_ge([\/§$+y]/2) + 36(—[\/52"*'9]/2)

_68(_\/§z+y) + e(—2\/§x) + 96(21/)]}, (2.69)
Vy = e(V32-3l/2) 4 v 4 o(-V32/3) (2.70)

I = L+ e(“ﬁm/3){6[p§ — 4p2p? + 3p)] + 12(2¢(1V3=-1i/2)
+e('—\/§z/3'—4ey)pg + 36\/56([\/§m—y]/2)pzpy
+12(3e([\/§w—y]/2) — 9e(=V32/3) | 6ey)p§

—ge(~VBz/3+y) 4 ((-2V3z/3) | 9e(2¥1}, (2.71)

V1 can be identified as Vo of Bogoyavlensky [12] while for V5 similar Lie-algebraic
identifications were given in Yoshida [46] and Dorizzi [17]. The above potentials are

also integrable when the eV term is omitted. Both potentials can then be rotated to

Vy = eVB-341/2) | b (2.72)

I = pb—6pipd+opipl + 6e(-V3—3/2) (pt 1 3v/3p3p,
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+5p2p2 — V3pep3) + 1269 (—ph + pp?) — 3(5e(V3239)
+4e([\/§z—y]/2) — 123(2y))p2 —_ 18\/5(6(\/53—32;)
+26([\/§$—y]/2))pzpy 4+ 36(\/§m—3y)p3 + 8(36(\/5:5—23;)

+e(B1VEs=311/2)) (2.73)

II1. The Calogero system :
The Calogero-Moser (C-M) system, Ranada [41}, is a completely integrable system of
n particles with interaction force, between every two particles, given by the inverse of

the square of their relative distance. The Lagrangian is given by

13 c
Loy = 5 Svi->"Vi, Vii=-3, (2.74)
j=1 i<j i
where ¢;; = ¢; — ¢5,1,§ = 1,2,...,n, and ¢g is an arbitrary constant (the masses of

the particles are set equal to unity).

Moser proved in Moser [38] that this system can be presented as a Lax equation

% = {A, B}, A= Ag+icgAn, B = iCo(Bd = Bn), (2.75)

where A4 and By denote the diagonal matrices
Ag = diagonallvy, va,...,vn], Bg = diagonal[z x%j, ngj, ceey Z xflj], (2.76)
J#1 J#2 i#n

and A, and B, take the form
An=[(1-6;)zi5],  Bn=[(1-8&;j)zF), (2.77)

where z;; = 1/¢;;. The important point is that, because of the Lax equation, the

traces of the powers of the matrix A are constants of motion

1 d
Ly = (— m —Iy = = ceey T2 .
m (m)trA , dtIm 0, m=12,...,n (2.78)
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These n functions, which are globallj;‘deﬁned, independent, and in involution, take

the form

1
I, = (T—n~)(v§”+v§n+...+v2‘)

+terms of lower order in the velocities. (2.79)

The main objective of this example is the study of a Lax representation with the
following three main characteristics: (i) it depends on two parameters, (ii) it is time
dependent, and (iii) it includes, as a particular case, the standard(time-independent)
Lax representation.

We begin by introducing the following notation: K will represent a linear polnomial

in the time ¢t ,
K = kg + kit, (2.80)
and @Q the diagonal matrix defined as

Q = diagonal(qy, g2, .- -, gn]- (2.81)

Next we introduce the following time-dependent matrix:
At =KA - kQ. (2.82)
In the following the two coefficients, kg, k1, taken as parameters.

Proposition 1 The two matrices (A?, B) are a Laz pair for the Calogero-Moser

system.

Proof. The time derivative of A? is given by

d , d d
-(Tt.A =kA+ KEI‘:A — k1 a—tQ (2.83)
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The tixiié’-evolution of Q can be written as follows:
d _
ZQ={Q.B}+4 (2:84)

Thus we obtain

4 4 =kA+ K{A,B) - ]s({Q, B} + A) = {KA~ k1Q,B} = {4, B}, (285)

so the proposition is proved Ranada [41].
The eigenvalues of A(t) or, alternatively, the traces of the powers of the matrix A*(t)

are constants of motion

— 1 tym d _ _
Kp=(S)tr(A)" —ZKm=0, m=12..,n (2.86)
They take the form
1 n n
Km=(—n;)[kg‘ngn+...+kTZ(tvi—qi)m]+.... (2.87)
i=1 i=1

Consequently, this two-parameter dependent Lax equation extend, and include as a
particular case, the standard Lax representation discussed in the beginning of this
model. The case (kg # 0, k1 = 0) reduces to the classical time-independent case
studied by Moser. The other particular case (kg = 0, k; # 0) leads to the following
set of integrals, Ranada [41]:

1 d
Jm = (E)tT’(tA - Q)m, d—iJm = 0,

3
Il

1,2,...,n. (2.88)
Notice that théy have the form

T = (o1 = g™+ e (b0 = )"

+ terms of lower degree in the velocities. . (2.89)

The general expression for K, will be
m=—1

g=1
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Since kg and k; are arbitrary, the m functions {Krs,7 + s = m} are, all of them,
integrals of motion.

Next we illustrate this situation with the n = 3 particular case as an example:
1
Lo = 5(v} + 93 +03) = (Vi + Va3 + Vag). (2.91)

In this simple case the three time-dependent functions K, m = 1,2,3, have the

following expressions :

K1 = koli+k1J1,
Ky = kI + koky K11 + k3 Ja,

Ky = Kk3Is+ kiki Ko + kok? K1 + k3 J3, (2.92)
where Ip,, m = 1, 2, 3, are the three time-independent standard constants of motion,

I

vy + ve + va,
I, = (1/2)(}+v3 +v3) + (Viz + Vas + Vi3),

I3 (1/3)(11:13 + vg + vg) + (V12 + Vis)uy

+ (Va1 + Vag)ve + (Vag + Vao)vs, (2.93)

in which Jp, m = 1, 2, 3, are the three time-dependent constants corresponding to

the parameter k;,

Ji = tlvi+ve+u3) ~ (1 + g2 + g3),
Jo = (1/2)[(tv1 — q1)® + (tva ~ g2)% + (tvs — 3)?] + t>(Vag + Va3 + VA3),

J3

(1/3) + [(tvr — 1) + (tvz — ¢2)® + (tvs — g3)®] + t*{(tv1 — q1) (Va2 + Vis)
+ (tvz - g2) (Vi + Va2) + (tvs — q3)(Vag + Vaa)], (2.94)
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and K11, Ksi1, K2 are given by

Ki = 2t - (qv1 + qev2 + q3v3),
Ko = 3tls — [q1(v? + Viz + Vis) + g2 (v + Vig + Vas) + g3(v3 + Vas + Vas)l,

Kia

3t°I5 — 2t[q1 (v? + Vag + Vis) + qa(v] + Vig + Vas) + g3(v3 + Vaz + Va3)]

+ (gfv1 + G2 + g3vs). (2.95)

As a conclusion, the superintegrability of a ( time-independent ) system means two
facts : first, integrability in the Liouville-Arnold sense, second, existence of an
additional independent family of integrals.

The C-M system is a superintegrable system that, in addition, also possesses time-

dependent constants of motion.
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CHAPTER 3
GEOMETRICAL ASPECTS OF
SUPERINTEGRABILITY IN TWO DIMENSIONAL

SPACE OF NON - CONSTANT CURVATURE

The problem of when a two dimensional Riemannian space admits more than one
quadratic constant is discussed and the results given by Darboux and Koenigs are
listed. By considering the Darboux space of type one, the method of separation of
variables in three different coordinate systems is applied for the Schrodinger equation
that corresponds to the free Hamilton-Jacobi equation. The last section deals with

the potentials that gives superintegrability.

3.1 Preliminaries

If we consider a Riemannian space in two dimensions with the following infinitesimal

distance and classical Hamiltonian

ds® = gi;(w)du'dud, i,j=1,2, (3.1)

H = gi;pip; + V(u), - (3.2)

respectively, Kalnins [33]. Then the corresponding Schrédinger equation is of the form

T - E g ( mik -
A= - ﬁauz(\/gg 8,40) + V(u)¥ = ET, (3.3)
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where g = det(g;;). Now, the problem is to investigate the potentials V(u) of (3.2)
and Riemannian spaces generated by the metric g;; such that they admit at least two

extra (other than H) functionally independent constants of motion of the form
M o= a¥ (w)psp; + b(u) (3.4)
or
A2 = a*(u)p; + c(u). (3.5)

The corresponding Hamilton-Jacobi equation to be solved is obtained from the equa-
tion H = E by substituting p; = £ as

1
2

g4 95 93 | V{u) =E. (3.6)

H=39" 5050

The method of separation of variables can sometimes solve the equation (3.6) by

additive separation
S =51(u!,a,E) + Sa(u?, o, E) (3.7)
and can solve the corresponding Schrédinger equation by the product separation
U = 1 (ul, A, E)pa(u?, A E). (3.8)

If the condition {A;, H} = 0 is satisfied then the quantities A; are constants of the
motion. This condition implies for A, that a’(u) is a Killing vector and af(u)p; is a
symmetry of the free Hamiltonian and also c¢(u) = 0, and for A, a¥(u) is a Killing

tensor.

3.2 On geodesics with quadratic integrals

G. Koenigs answered the problem of when does the free Hamiltonian of a two-

dimensional Riemannian space admit more than one quadratic constant of the motion
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Koenigs [36]. For a general two-dimensional Riemannian space he took the

infinitesimal distance as
ds® = 4f(z,y)dzdy, (3.9)

which can always be done in two dimensions over C. Then the corresponding free

Hamiltonian has the form

1
H= Tl g (3.10)

Darboux and Koenigs construct the following propositions, Kalnins [33], by assuming
the existence of a second order Killing tensor A = a%(u)p;p; :

1. Any two-dimensional Riemannian space that admits more thap one Killing vector
must be a space of constant curvature and admit three linearly

independent Killing vectors.

2. Any two-dimensional Riemannian space that admits more than three Killing
tensors is a space of constant curvature. It then actually admits five linearly
independent Killing tensors which are all bilinear expressions in the Killing vectors.
The sixth bilinear combination is the Hamiltonian itself.

3. Any two-dimensional Riemannian space that admits precisely three linearly
independent Killing tensors will be a Riemannian space of revolution. In fact there
will be one Killing vector and two Killing tensors.

These kind of two-dimensional Riemannian spaces were classified by the following four

types of infinitesimal distances

(I) ds® = (z+y)dzdy.

(I ds? = (—(-El:—:??)z-+b)dxdy.

(ae‘%z + be™7Y)dzdy.

il

(III)  ds?
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a2 +e" 7 ) +b

z-y }':'_2

s> =
av) d o

dzdy. (3.11)

These are called Darboux spaces denoted by Dj, Da, D3 and D4 respectively.

3.3 The free particle and separation of variables in a Darboux space
of type one

In this section the first infinitesimal distance in (3.11) is investigated. By making the

change of variables as £ = u + iv, y = u — v, we obtain the infinitesimal distance
ds? = 2u(du® + dv?), (3.12)
and the Hamiltonian
H = (o +52) (3.13)
il =% gy
correspondingly. There are three integrals of the free motion given as,

K = p'v7
X1 = pupy— —(o2 +p2)
Qu e Pve

2
v
X2 = po(vpu — upy) - '@(pi +p,2,). (3.14)
which fulfill the polynomial Poisson algebra relations,
{K,X1}=2H, {K,X2}=-X1, {X1,Xo}=2K3 (3.15)

The existence of the following relation implies these integrals can not be functionally

independent.

4HXy+ X} 4+ K4 =0 (3.16)
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Lets consider the following operators for the quantum problem

A 1
H = —@(534‘33),
K = —iav,
X = -auav+%(ag+ag), (3.17)
Xy = J[a v, ——u8]+v—2(62+82) (3.18)
2 2 7y u v 4u u v/ .

where [A, B]y = AB 4+ BA. The quantum versions of the quadratic constants are

obtained by the formula
A= ——L 5, /555). (3.19)
V9

The operators given above have the same relations in (3.15) with the commutator
bracket instead of the Poisson bracket as

[R'a Xl] = QZﬁa [va2] = _ixla [Xla X?] — _27:}{'3 (320)
and also

AHX, + X+ KA =o0. (3.21)

When we consider classically, if we have a general quadratic first integral A with the

free Hamiltonian

H = g;;(u)p:p;, (3.22)
and the characteristic equation,

la¥ — pg| =0, (3.23)

which has two distinct roots p; and pg, then the Hamiltonian will have Liouville form

as follows

5 — 0P1)P +7(p2)rs,

3.24
p1+ p2 ( )
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Now, the separation of variables can solve both classical and quantum systems. e

If all different separable coordinate systems for a given Hamiltonian is classified then
it is needed to know that how many different quadratic first integrals are possible.
Here, by the notion of equivalence we mean that two quadratic integrals are equivalent
if they are related by a motion of this group. As a result the most general quadratic

constant has the form
A= aX) +bXy + cK>. (3.25)
The second order elements X; transform under the adjoint action as

X; — e"‘KXie“"K

= e@Ad(K) x,

1
= Xi-l-a{K, X’t}+ "2'a2{K1 {K’ Xt}}+ (326)
or

Xy — Xi+2aH,

Xy — X3-—aX;-d?H. (3.27)

In the following there are typical representatives of the three classes of possible
quadratic first integrals and for each of them the construction of the separable

coordinates is done.
X1+aK?%,  Xy+aK? K2 (3.28)

1. Separating coordinates associated with X; + aK?

The first representative is

L = Xy +sinhcK?, (3.29)
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with new variables

r = p1=-2(Cu+v),
2 -
s = py= E(U - Cv), C=¢e"¢ (3.30)
where pj, p2 are the roots of the characteristic equation. Then we can rewrite the

Hamiltonian and the corresponding quadratic constant in term of these new

coordinates as

H= 2(6(VZ i 132 (012 3 + pz), (3.31)
2
L= %'(__}-—1)7 czPs P2 + sp?), (3.32)

respectively.
II. Separating coordinates associated with Xo + aK?
In that case the representative is L = X5 + aK?, and the relation between the new

variables £, 7 and the roots p; is given by
n=n2a-n%), p=-£2a+8). (3.33)

Then the corresponding classical Hamiltonian and constant of motion has the form

Pe +p,7
2@ )@ - +2a)

(3.34)

n*(2a — n*)p§ — £2(2a + €)p3

L= mE—ri2

(3.35)
The coordinates u and v can be express in terms of the new coordinates £,7 as
) ‘
u=3(-n)+a v=én (3.36)

I11. Separating coordinates associated with K2

For the last representative K2, we need only the coordinates u, v to recognise the fact
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that K = p,.
Now, let us discuss the solutions to the free particle and free Schrédinger equation of
these three cases.

Case I: Lets make the choice of variables as
u=rcosf+ssinf, v=—rsind+ scosf. (3.37)

Then, the classical Hamilton-Jacobi equation becomes

2+ (G

— or — .
" 4(rcosf + ssinf) (3:38)
with the general separable solution
B _ (4Ercosf— XN)%?  (4Essinf — X\)%/2
=51+ 50) = —Frs 6Esin0 (3-39)
The corresponding free Schrédinger equation
T — 1 2 | a2vqy _
HY = (Groosd 1 s5md) (0:+03)0 = EV (3.40)
has the typical product solutions
- _ K VAE cos O(r — 3/2
v \/(r 4FE cos )+ 4E sin 9 ( 45 cos f(r 4E coS 0) )
4 ; 3/2
XI%(3\/4E5m9(3+4Esm6) ) (3.41)

where I,(z) is a solution of the Bessel’s equation.

Case II: The classical Hamilton-Jacobi equation with the general solution S is

Br+&)?
= ST @ -T2 = P (342)
S = / V2B £ 2Beg? — dt + / \J=2Ent + 2Ben? + Mdn. (3.43)

The corresponding Schrodinger equation has a solution of the form ¥ = 1 (§)y2(n)

where the 1); satisfy the following equations
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(82 + 2E€* + 4Ec€® + M)y (£)=0,
(82 — 2En* + 4Ecn® — Na(n) = 0. (3.44)
Case III: The classical Hamilton-Jacobi equation with the separable solutions S is

(( )2+( ))=E, (3.45)

- __IE(4Eu — k23?4 k. (3.46)
The free Schrédinger equation with the separable solutions ¥ is given by

"Zld(ai +82)T = EV (3.47)
having the solution

m ‘Lmv
U= 1/u—21—511( VAE(u - )3/2) (3.48)

In classical motion or the corresponding Schrédinger equation, their solutions depends

on which real manifold we are considering.

3.4 Integrable and superintegrable systems for the Darboux space

of type one

This section deals with the problem of superintegrability for the following type of the

Hamiltonian

1
H = —(p, + 1), (3.49)

so we search for potentials V (u, v) such that (3.50) admits at least two extra quadratic

integrals.

H=H +V(u,v) (3.50)
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To solve this problem, we assume first that one quadratic first integral already exists

and has the form
L = a(u, v)p2 -+ b(u, v)pupy + o(u, v)p2 + d(u, v) (3.51)

The quadratic part of L in (3.51) must relate with one of the cases discussed in the
Section III. 3. The separation of variables can be applied in coordinates a, 8 where
u = u(a, 8),v = v(a, B) for each of these cases. The addition of a potential implies

that separation is preserved and hence we can write H and L as

~  Pa+ 1+ fa)+ g(B)

==& (3:52)
_ o(a)(p} +9(8)) - T(B)PE + f(a))
L= o(a) T (0) . (3.53)

We force the existence of a further quadratic first integral by putting some conditions

on the functions f(a) and g(3). So we reach the following three cases:

L
) 2, .2
P54+ pi  bhi(du+v*) by b

— =8, I, .54
i 4u u 4y & n * uv? (3.54)

The additional constants of motion have the form

b1’U4 bz’U2 b3 (4u2 + ’U2) b

Ry=X2- o uw vu  u? (3:55)

4
Ry = K? 4 byo? 4+ 228 (3.56)

2
and the corresponding quadratic algebra Daskaloyannis [16], Létourneau [37] relations

are determined by

{R,R1} = 8HRy+6R%+ 16boRy — 32b1b3,

{R,R;} = -8HR;-16b1R;,
R? = —16HR;1R; — 4R3 — 16b2R2 — 64bgH? — 16b; R? + 64b1 b3 R?
+256b1bobs, (357)
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where R = {Ry, Ra}. By changing the coordinates as u = %({2 ~n¥) +a, v =E£n, the o

Hamiltonian, that separates also in these coordinates, is

2 .2
+
= 2 f ¢ 2107, 2 (3.58)
2082 +1?)(§2 — n* + 2a)
bi((€ —n* +20)” + %) + dbp + 5%
2@ — 1 + 2a)
with the corresponding quadratic quantum algebra relations
[R,R1] = —6R%-8HR; + 16byRy + 2b1(3 + 16b3),
[R, Rg] = SﬁRg - 16b1é1,
R* = +44R3 —-8H[Ry, Ry, — 16b21% — 166, R2
—4by (11 + 16b3) Ry — 4(3 + 16b3) A2
+16b1b2(3 + 16b3), (3.59)
where R = [Ry, Ra).
1L
2 4 2 2,2
H=PutP o o o) (3.60)
du U U U
The additional constants of the motion have the form
R = Xi- 2a1v + 2a0(u? — v?) 4 2a3v(u? — v?) ’
U U U
Ry = K2+ 4agv + 4agv? (3.61)
and the corresponding quadratic algebra relations are determined by
{R,R;} = 8H?+16a3Rz+ 8(a2 + 4aja3),
{R,Ry} = 16agsH — 16a3Ry,
R? = 16H?R, — 16a3R2% + 3202 HR, — 16a3R?
— 16(a2 + 4a1a3) Ry — 64a;a2. (3.62)
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By making the change of coordinates as 1 = rcosf + ssinﬁ, v = —rsinf + scosf the

Hamiltonian has the form

_ P2+ p?+4ay + 4ag(—rsinf + scosb) + das(r* + 5°)

3.63
A 4(r cos 6 + ssinf) ’ (3.63)
which clearly also separates in these coordinates.
The commutation relations of the corresponding quantum algebra are
[R, j‘?]_] = 16(13]%2 + 8];{2 - 8((1% + 4a1a3),
[R,Ry) = —16a3R; + 16a.H,
R? = -16a3R2 — 16ask?} + 16H%Ry + 3202 A Ry
—16(a2 + 4a1a3) Ry + 64(a2 — a1a?). (3.64)
I
2 4 2
Puthy, O
H="2—"% 4. .
. + " (3.65)
There are three extra constants associated with this Hamiltonian,
2av av?
Ri=Xy——, Ry=Xp—-— and K. (3.66)
u U
and the associated Poisson bracket relations are
{K,R1} = 2H,
{K1 R2} = _Rla
{R1,R2} = 2K(K?+2a)  (3.67)
with
4HR; + R? + K* + 4aK? = 0. (3.68)
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In the following there are commutation relations of the corresponding quantum prob-

lem and the relation between the operators, respectively.

K,R)) = 2if,

[K,Ry] = -iRy,
[R1,Ry] = —2iK(K? - 2a), (3.69)
4HRy + R? + R* — 4aK? = 0. (3.70)

So while constructing of the various superintegrable potentials by multiplying the
equation H = E by a suitable factor, we reobtain one of the superintegrable
systems that is already classified for spaces of constant(or zero) curvature. For the

first potential above, the equation H = E may be written

DY - 4b
Pa+ P+ bi(du +0%) + 4by + —5 ~ dBu=0. (3.71)

This equation is known to have separable solutions in coordinates u, v and associated
parabolic coordinates £, 7 given by u = (€2 —n?), v = &n. With the second potential,

H = E becomes
' pi + pf, + 4a3(u2 + 'u2) +4a; +4av - 4Eu =0 (3.72)
and the third,
P2+ p2 — 4Bu +4a =0, (3.73)

All three of the above systems are special cases of the superintegrable systems found

in Ey, Fris [21], Sheftel [43].
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CHAPTER 4

APPLICATIONS

In this chapter, I calculate the Killing tensors and Killing-Yano tensors for the four
types of metrics listed by Darboux, observing that the two dimensional systems repre-
sented by these four metrics are superintegrable and admit Killing tensors and Killing-
Yano tensors. In the second application, the total time derivative term which includes
the components of the angular momentum is added to a given free Lagrangian.

Finally, I investigate the Killing vectors, Killing-Yano tensors and Killing tensors for
these newly constructed spaces both in non-singular and singular case. The case of

motion on a sphere is considered, as well.

4.1 Killing tensors and Killing-Yano tensors for superintegrable

systems in two dimensions

The Killing-Yano (KY) tensors, that were first introduced by Yano [45] in a purely
mathematical setting, have profound implications for the supersymmetric classical
and quantum mechanics on curved manifolds where such tensors exist, Gibbons [22].
KY tensors, Baleanu [2]-Baleanu [8], play an important role in theories with spin
and especially in the Dirac theory on curved spacetimes where they produce first
order differential operators, called Dirac-type operators, which anticommute with the

standard Dirac one, Carter [13]. Another virtue of the KY tensors is that they enter
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as square roots in the structure of several second rank Stickel-Killing tensors that
generate conserved quantities in classical mechanics or conserved operators which
commute with Dirac operator. The symmetric Stdckel-Killing tensor &, involved in

the constant of motion quadratic in the four-momentum p,
1 "
L= §k Puby (4.1)

has a certain square root in terms of KY tensors f,,, Baleanu [9, 10]:

k;w = quf:;\- (4°2)
The KY tensor here is a 2-form f,,, = —f,, which satisfies the equation
Juvix + furp = 0. (4.3)

Another method of obtaining a Killing tensor is to solve the corresponding equations
ku)\;u + k,\u;u + ky,u;)\ =0, (4.4)

where k,, is a symmetric tensor.

There exist some two dimens.ional superintegrable systems which admit Killing tensors
and KY tensors. In the following, the metrics in Kalnins [33] that describe these
superintegrable systems are given with the corresponding calculated Killing tensors
and KY tensors.

The first metric is given by

. 0 4y
9i; = , . (4.5)
z+y 0
If we do the change of coordinates as (z,y) — (u,v), where z = u+iv and y = u —iv,

then we reobtain the metric gj; as follows
2u 0

gilj = . (4.6)
0 2u
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The Killing tensor for the metric (4.6) is calculated as

ki1 = 1/2((01’02 + 2C5v + 2C3)u),

k1o = —u2(0111+02),

koo = 1/2(u(Civ? 4+ 2Cov + 4C1u® + 2C3 + 2Cyu)).

and the KY tensor is
fi2 = Ciu.

For the second metric having the form

) (a/(—4v)) + b 0
9ij = )
0 (a/(—4v2)) + b

the components of the Killing tensor were found as follows

(4.7)

(4.8)

(4.9)

=2 4 bo?)((%L + Cyu + C3 — 46Cy — E2%)a + 166°Cav® + 2C10%h)

ku = but
(4.10)
Ciua? - 8C uabv? + 16C ub?v* + Cha? - 8Cyabv? + 16Cb%v*
k12 = 3 ’
8bv
2 _ 2
k22 — (C’lu + 2C’2u+ 203)( a +4bv ) (4'11)
202
with the KY tensor
Ci(—a + 4bv?
fi2 = —1'(—”[__')" (4.12)
The next metric has the following form
5 ae™® + be~ 2 0
9ij = ) - (413)
0 ae~ 4 be~ 2

and the components of its corresponding Killing tensors are given by

ot = (C1 + Casin(v) + Cscos(v))(a + be~*)?
11 h (aeu + b) 3

37



ks = ——[(a3e““Cg + 2a2(e“u)202b + a(e‘”)302b2 +‘é).63_2u020,2
+2b%e~ 2 Chae™" + b3e "2 Cy(e7¥)?)cos(v) + (—ade (3
-2a2(e‘“)203b - a(e_“)e’C;;b2 — be~2C3a?% — 2b%e~ 2 Chae™

—b3e~2C3(e7*)?)sin(v)]/((ae® + b)ae™™),

ko = [(—2ae™36°C; — 9a%e~24b2Cy — 6ba’e*Cy — 16a3e 4“b3C,
—~14a*b?C2 — a8 Cy)sin(v) + (—6badeCs — 9b*aZe 2 Cs
—2ae~ 3305 — abe®tC5 — 14b%a*Cs — 16a3e_"b3C3)cos(v)
+-e%(a’Cy + 5a°bCy) + e7¥(14a3C1b% + 10a°H2Cy)
+e2(106%a%Cy + 116*C1a?) 4 e 34(56°Cra + 5b*Cha®)
+e~ 4 B5Cy + b°Cya?) + a®Cre?® + 54560y

+11a%b?C1]/(a®(ae* + b)%) (4.14)
and the corresponding KY tensor is
fie=C1 (ae“ -+ b)e_zu. (4.15)

Finally, for the fourth metric

(2acos(v) + b)/(4(sin(v))?) 0

0 (2acos(v) + b)/(4(sin(v))?)

we calculated the Killing tensors as

— 4l(a_? U344 (—Cob + Dytan(Y)?
ki = 4{(a —2-)C'2tan(2) + (—Cab+ 2)tan(2)

(3 +a)Ca)(tan(2)* + 1)((a — Dtan(2)? - o~ D}ftan(2),

k12 = Os

2atan(2)* — 2a — btan(2)? — 2btan(2)2 - b
by = Caeten@) 20 Mot lent3 -0 (@10
(L’I’l(i)
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with the KY tensor

Ci(2atan($)* — 2a — btan(§)* — 2btan(})* - b)
tan(g)? :

fiz= (4.18)

It was observed that the first three metrics admits Killing tensors with three non-zero

components but the last one has only two.

4.2 Killing-Yano tensors and angular momentum

In the following part, the generic(standard) and non-generic(hidden) symmetries of
the extended Lagrangians are investigated with symmetries of the geometries induced

by the motion on a sphere.

4.2.1 Extended Lagrangians and their corresponding geometries

Let us assume that a given free Lagrangian L(¢%,q%) admits a set of constants of
motion denoted by L;, i = 1,2, 3. If we add the components of the angular momentum

corresponding to L, the extended Lagrangian
L'=L+XL;, i=1,23 (4.19)

can be rewritten as L' = 3a;;¢°¢”. In this context the second term in (4.19) is a total
time derivative and the Lagrangians L and L' are equivalent. Since aj; is symmetric
by constructioq, the issue is to find a way to construct induced manifolds. In other
words we are looking to find whether a;; is singular or not. If the matrix a;; is
singular L' corresponds to a singular system in Giiler [27). Assuming that a;j is a
singular nxn matrix of rank n-1 we obtain non-singular symmetric matrices of order
(n-1)x(n-1), where n will be 3,5 and 6. The final step is to consider the obtained
matrices as metrics on the extended space and to investigate their generic(standard)

and non-generic(hidden) symmetries.
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4:2.1.1 The nonsingular case
As a starting point let us consider the following Lagrangian
1 c . .
L' = 5@ +§%) + Xs(aj ~ yi) (4.20)

From (4.20) we obtain L' = 3a;;¢*¢7, where a;; is given by

1 0 -y
Qij = 0 1 =z . (4.21)
-y z 0

The corresponding Killing vector is V=(y, -x, 0).

A KY is an antisymmetric tensor defined as
f;w;)\ s f)\u;y. = 0. (422)
Solving (4.22) corresponding to (4.21) we obtained the following KY tensor

fiz=0, faa=-Cx\/22+3%,  fi3=Cyy/2? +4?, (4.23)

where C is a constant in Baleanu [11].

If a KY tensor exists, then a Killing tensor of order two is generated as

Kp.u = fu)\fﬁ" (424)

Using (4.23) and (4.24) a Killing tensor is constructed as

y? —zy  -y(y® +2?)
Kij = —zy z? z(z? 4+ %) (4.25)
~y(y® +2%) z(2® +47) 0

Solving (4.4) corresponding to (4.21) we obtain a class of solutions given by Baleanu

[11]
1,
ki = oY (Car + C3) + C4,
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k12

k13

ko

ko3

k33

1
= ——'éxy(CQA + C3)7
= P+ arctan(—Z—) — 4Cy) +4Cy),

1
= 52:2()\02 + C3) + Cy,

S

= -:I-:[(:c2 +y23)(C, a,rctan(g) — 4Cy) + 4Cy),

= 0. (4.26)

We observed that if C; = C = Cy = 0,C3 = % we reobtain the solution from (4.25).

Choosing the appropriate values of the constants C;, i = 1,-.-4, we obtain a set of

non-singular Killing tensors. These Killing tensors can be considered as manifolds

and we have so called geometric duality ( for more details see Refs. Rietdijk [42],

Hinterleitner [31] ). If C3 = 0 the dual metrics have the following forms, Baleanu [11]:

2

S —
1 (x2 +y2)Cy’
g = A
12 (z2 +y2)Cy’
kg = Y
y (22 + y?)[Ca(2? +y?) - C1]
2
T = A
2 W2 +y2)C1
ki = -

(22 + y3)[Ca(a? + y2) - C1)’

- 1 (2% +y*)C3 4 2C1
-1 _ _1
Fas 2T T yC - Ci@ + ) (4.27)

and the scalar curvatures corresponding to (4.27) are

R = 261C[5C4(a® +¢?) + 2]
[-C1 + Cy(z?2 + y2))?

(4.28)

Let us add two components of the angular momentum at a free, three-dimensional

Lagrangian. The extended Lagrangian becomes

LI

(22 + 32 + 22) + Xi(y% — 29) + Xo(2d — 22) (4.29)

N =
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and from (4.29) we identify a;; as the following non-singular matrix

gGj=10 0 1

The metric (4.30) admits three Killing vectors as

‘/1 = (y; ”(L’,0,0,0), 1/'2 = (0) _zay10’0)7

In this case KY tensors components are given in Baleanu [11] as

fis = —Guzy,
f24 P~ _G'Ty’
fos = G(z®+22),

f12 = CZ,

f3s = —Gzz,

fas =
f13 = _Cy')

fl4 = G(Z2 ot y2)7

_ ~Gzzy

3

Vs = (2,0, ~z,0,0).

(4.30)

(4.31)

(4.32)

others zero. Here C and G are constants. The corresponding Killing tensor has the

following form

/ G(~2C + G){(Z* +4°) GDazy
GDzy ~GD(z? + 2?)
K= GDzzx GDzy
0 ~G?2r?
G?zr? 0

where D =2C+G and 7% = 22 4+ 32 4 22.
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GDzz

GDzy

—GD(y* + 2?)

GZ yr2

—G?zr?

0
—r22G?
G?r?y
0

0

G?*r?z

0
—_G?
0

0

7‘212

/

(4.33)



4.2.1.2 The singular case

The final step is to add all angular momentum components at the Lagrangian of the

free particle in three-dimensions. In this case L is given by
e 1, o . . C . c .
L = 5(:32 +y2 + 22) + A1 (y2 — 29) + Aoz — 22) + As(zy — y&) (4.34)

In compact form (4.34) is written as L= %aijq@'qi, where a;; is singular having the

form

agj = . (4.35)

Since the rank of (4.35) is 5 we obtained three non-singular symmetric matrices cor-
responding to three non-zero minors. The first one is given by (4.30) and the other

two are as follows:

D=1 0 0 1 y o0 (4.36)




and

=0 0 1 -z o |- (4.37)

z 0 -z 0 O

\—nyOO)

By direct calculations, Baleanu [11], we observed that (4.36) and (4.37) admit three
Killing vectors given by (4.31) and a KY tensor having the following non-zero

components

fiz=2, fia=-y, fa==z (4.38)

4.2.2 The motion on a sphere and its induced geometries

It was proved in Curtright [15] that the motion on a sphere admits four constants
of motion, the Hamiltonian and three components of the angular momentum. In the
following using the surface term we will generate four -dimensional manifolds. In this
case the Lagrangian is given by

1

L = (1+——) 2+ (1+ )y +——xy—\/_)\1z+(\/_+\/—))\2:z:

- \/—+\/_ u)ag + \/-A2y+:cz\3y yAsd, (4.39)

where u =1 ~ 2 — y2. From (4.39) we identify the singular matrix a;; as

142 @ m ZaE oy
2 2
=y . - T |
aij = _.\%_ﬁ 0 0 o |- (4.40)
§=+\/‘ % 0 0 0
—y z 0 0 0 )
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Because (4.40) is a singular matrix of rank 4 we identify three symmetric minors
of order four. If we treat these minors as a metric we observed that they are not
conformaly flat but their scalar curvatures are zero.

The first metric is given by

- Wit Z —y\

1+ :
2 1+ 2 % T
1) u v v . 4.41
9/ e (4.41)
\ -y T 0 0

The Killing vectors of (4.41) has the following components, Baleanu [11]

Vi = (%“‘33,0,0),
I z? Ty
Vo = — 2 __ a2
2 ( 1 x Yy +1—$2—y2,1—$2-—y2,0’0)’
2
- (" _pe_p_ Y
Vs ( T 22 g 1-z%2—y 1—x2—y2’0’0)' (4.42)

The next step is to investigate its KY tensors. Solving (4.22) we obtain the following

set of solutions:
a. One-solution is fo; = ﬁ;, others zero.
b. Two-by-two solution has the form: fa;3 = fyo = C,
. -by-th jon i =G = fip =
c. Three-by-three solution is fo1 T i and fa1 = f42 = C, where C and

Cj are constants.

From (4.39) another two metrics can be identified as

1+e -% -
£ 14 £ —/u — > g
gg)= v “2 v (4.43)
- - i 0 0
\ Y z 0 0)
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and

v 2 2
1+5 - -2 =+
zy 1+ -2 z
g8 = ¢ , “ Vi v . (4.44)
—m i 0 0
2y 0 0

2
\ vetve
By direct calculations we obtained that (4.43) and (4.44) admit the same Killing

vector as in (4.42). Solving (4.22) corresponding to (4.43) and (4.44) we find one

non-zero component of KY tensor as

G (4.45)

f21=———1_$2_y2.
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CHAPTER 5

CONCLUSION

In this thesis, I presented the classical and geometrical aspects of the superintegrable
systerns in two dimensions.

In Chapter II, the definition of integrability and superintegrability is given. The types
of transformations that preserve the integrability and their usage to find the canonical
forms of the partial differential equations are presented. The systems that have poly-
nomial invariants, with the existence of superintegrability, are classified with respect
to the degree of the invariants. Some types of potentials that give superintegrable
Hamiltonian systems are presented as examples.

The superintegrability of two dimensional space of non-constant curvature was
investigated in Chapter III. The classification was done by Darboux and Koenigs. The
forms of the four superintegrable systems were discussed, the separation. of variables
in a Darboux space of type one as well as the integrability and superintegrability for
this case were presented.

Chapter IV contains my original contribution. In the first part of this chapter,

I calculated the Killing tensors and Killing-Yano tensors corresponding to the four
types of metrics which were discussed in Chapter III. Then as a second application,
integrable geometries were reported by adding a total time derivative involving the

components of the angular momentum to a given free Lagrangian. The existence of
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Killing vectors, Killing-Yano and Killing tensors is investigated and in all ;cases a
solution is presented. The first step was to add, to a free two-dimensional Lagrangian,
a total time derivative involving the third component of the angular momentum. In
this case a three-dimensional metric was induced. This metric is conformaly flat but
its duals are not.

Increasing the number of dimensions to three and adding a total time derivative
involving two components of the angular momentum we obtained geometries, in four
and five dimensions. The obtained induced manifolds are not conformaly flat but all
of them have Ricci scalar zero.

If we add a total time derivative involving all components of the angular momentum
to a three dimensional free Lagrangian we observed that a singular matrix a;; arises.
We identify three symmetric minors of this metric and we investigated the existence
of Killing vectors, KY and Killing tensors corresponding to those induced manifolds.
We observed that the obtained manifolds admit the same Killing vectors but different
KY solutions.

The geometries induced by the motion on a sphere are investigated and a four
dimensional induced manifolds were obtained. As in the previous case the manifolds

admit the same Killing vectors but different KY tensors.
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