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Bu tezde, Hadamard kesirli türevlerinin Caputo uyarlamasının daha fazla 

özellikleri incelenmiştir. Kesirli kalkulüsün temel teoreminin  Caputo-

Hadamard  şekli sunulmuştur. Bu teorem daha sonra çeşitli özgün 

sonuçların  formüle edilmesinde kullanılmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

The birth of fractional calculus is popularly known to take place in the late 

17th century with an interesting question raised to Gottfried Wilhelm 

Leibniz (1646-1716) by Marquis de L'Hopital (1661-1704). 

“Can the meaning of derivatives with integer order be 

generalised to derivatives with non-integer orders?” 

L’Hôpital was somewhat curios about that question and replied by 

another question to Leibniz: 

“What if the order will be 
 

 
 ?” 

Leibniz in a letter dated September 30, 1695 (the exact birthdate of the 

fractional calculus!) replied: 

“It will lead to a paradox, from which one day useful 

consequences will be drawn.” 

Fractional calculus is the generalisation of differentiation and 

integration of integer order to arbitrary ones. As the field is as old as the 

usual calculus, considerable amount of researches and developments in the 

field are made and has been applied in the fields of science and engineering. 

Indeed recent developments in the field are dominated by modern 

applications in differential and integral equations, signal processing, fluid 

mechanics, viscoelasticity, mathematical biology, electrochemistry and so 

forth. 
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Perhaps the well-known fractional integral is the Riemann-Liouville 

type which is based on the generalisation of the usual Riemann integral 

∫       
 

 
 [8]. Although the Riemann-Liouville fractional integrals and 

derivatives contributed immensely to the development of the theory of 

fractional calculus, it turns out that this approach has certain disadvantages 

when trying to model real-world phenomena with fractional differential 

equations. On the other hand, Riemann-Liouville fractional derivatives of a 

constant are, in general, not zero. Such problems were overcome with Caputo 

fractional derivatives. 

Hadamard also proposed a fractional power of the form ( 
 

  
)
 

. This 

fractional derivative is invariant with respect to dilation on the whole axis. 

The Hadamard approach to fractional integral was based on the 

generalisation of the  th integral 

 

    
       ∫

   
  

 

 

∫
   
  

  

 

 ∫      
   
  

    

 

                                              

Just like Riemann-Liouville, Hadamard derivative has its own disadvantages 

as well, one of which is the fact that the derivative of a constant is not equal 

to 0 in general. The authors in [8] resolved these problems by modifying the 

derivative into a more suitable one having physically interpretable initial 

conditions similar to the ones in the Caputo settings. In this thesis, we study 

much of this modified derivative thereby formulating some important 

theorems and results. The Caputo-Hadamard fractional derivatives are used 

to develop the FTFC and then the new results are applied in the formulation 

of some other theorems. As we shall see later, some interesting properties of 

the modified derivatives are necessary in order to formulate some important 

results. 
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The presence of the  - differential operator (   
 

  
) in the definition 

of Hadamard fractional derivatives could make their study uninteresting 

and less applicable than Riemann-Liouville and Caputo fractional 

derivatives. More so, this operator appears outside the integral in the 

definition of the Hadamard derivatives just like how the usual derivative 

  
 

  
 is located outside the integral in the case of Riemann-Liouville which 

make the fractional derivative of a constant of these two types not equal to 

zero in general. The authors in [8] studied and modified the Hadamard 

derivatives into a more useful type using Caputo definitions. 

 

1.1 Auxiliary Results 

1.1.1    – Space 

Definition 1.1 

Let   [   ],          be a finite interval, a half-line or the whole 

line. We denote by                 the set of those Lebesgue complex-

valued measurable functions   on   for which ‖ ‖   , where 

‖ ‖      (∫|    |   

 

 

)

 
 

                                                  

 

If    , the space       is defined as 

 

‖ ‖             
   

|    |                                                      

 

Where         |    | is the essential maximum of the function |    |. 

The weighted    – space with power weight, denoted by   
       

           , consists of those complex-valued Lebesgue measurable 

functions   on       for which ‖ ‖  
   , with 
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‖ ‖  
  (∫|      | 

  

 

 

 

)

 
 

                                               

and 

‖ ‖  
         

   
[  |    |]                                                               

In particular, when   
 

 
 then the space   

       coincides with the 

        – space as    ⁄
              . 

Properties of    – Space 

a) The Minkowsky’s inequality 

‖   ‖      ‖ ‖      ‖ ‖                                     

b) Hölder’s inequality 

∫|        |   

 

 

‖ ‖     ‖ ‖ 
                                         

Where    
 

   
           ,             and 

 

 
 

 

  
  . 

 

1.1.2 Space of absolutely continuous functions 

Definition 1.2 

Let   [   ],         , so that the interval is finite, a half-line or the 

whole line. A function       is said to be absolutely continuous on   if 

            such that for any finite set of pairwise non-intersecting set 

intervals [     ]                such that  ∑        
 
     , 

∑|           |

 

   

                                                  

This space is denoted by      . 

Remark 1.1 

It has been proved that the space       coincides with the space of primitive 

of Lebesgue summable functions as 
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                       ∫       
 

 

      ∫ |    |  
 

 

                            

Definition 1.3 

For               where   is an interval, is the space of functions      

which have continuous derivatives up to order     on   with           

     . In particular,             . 

Lemma 1.1 

The space        consists of those and only those functions     , which are 

represented in the form 

         
       ∑   

   

   

                                                  

Where   is an interval,            ,                   being arbitrary 

constants and 

    
       

 

      
∫

      

        

 

 

                                          

Equation (1.9) gives 

                
       

  
                                        

Definition 1.4 

The weighted    [   ] denoted by      
 [   ]               , consists of 

the complex-valued Lebesgue measurable function   on       such that 

       has  -derivative up to order     on [   ] and       [      ] is 

absolutely continuous on [   ]. That is 

 

     
 [   ]  {  [   ]          [      ]    [   ]        

 

  
} 
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Where 

      
 

  
                                  

is called  -derivative. 

 In particular, when     then the weighted space is defined as 

     
 [   ]     

 [   ]  {  [   ]          [    ]    [   ]     
 

  
} 

       

Additionally, if    , then the space    
 [   ] coincides with   [   ]. 

Lemma 1.2 

Let             and    . The space      
 [   ] consists of those 

and only those functions      which are represented in the form 

       [
 

      
∫(   

 

 
)
   

    
  

 
 ∑  

   

   

(   
 

 
)
 

 

 

]                         

Where             and                   being arbitrary constants. It 

is clear that    
 [   ] if and only if 

     
 

      
∫(   

 

 
)
   

    
  

 
 ∑  

   

   

(   
 

 
)
 

 

 

                            

It follows from equation (1.15) that 

                
       

  
                                           

 

1.1.3 Laplace and Mellin transforms 

Definition 1.5 (Laplace transform) 

Let     . The Laplace transform of a function      is given by 

         [    ]     ̃    ∫                         
 

 

                

 The inverse Laplace transform is defined for      by 

             [    ]    
 

   
∫                         
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Where    is the abscissa of convergence which is defined as the infimum of 

values   for which the Laplace integral in (1.18) converges. 

Definition 1.6 

Let      . The translation    and dilation    operators are defined 

respectively by 

                                                                      

                                                                   

 

Properties of Laplace transform 

                                                                         

          
 

 
 (

 

 
)                                                             

 [        ]                                                      

 [      ]                                                                    

                [      ]                                          

Definition 1.7 (Mellin transform) 

The Mellin transform of a function      of a real variable      is define by 

         [    ]          ∫                      
 

 

                         

and the inverse is 

             [    ]    
 

   
∫                      

    

    

               

 

1.1.4 Gamma and beta functions 

The gamma function      is defined by the integral 

     ∫                           
 

 

                                 

 It can be observed that the gamma function is the Mellin transform of 

the exponential function 

 [   ]                                                                         
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Properties of Gamma Function 

 An elementary property: 

                                                                

Reduction formula: 

                                                   

Pochhammer function: 

     
      

    
                          

  {        }             

on the half-plane        

where      is known as the Pochhammer symbol (raising factorial or 

Pochhammer function), defined by 

                                                          (1.35) 

Using equations (1.31) to (1.34) we obtain 

                              {      }                             

Equation (1.33) shows that gamma function is analytic everywhere in the 

complex plane except at             where      has simple poles and is 

defined by the asymptotic formula 

     
     

   
[        ]                                        

Functional equation: 

            
 

     
            

            

 (
 

 
)  √                

Legendre duplication formula: 

      
     

√ 
     (  

 

 
)                                                       

 Gauss-Legendre multiplication theorem: 

      
     

    
     

 

∏  (  
 

 
)

   

   

                 { }                 

Stirling asymptotic formula: 
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           ⁄      ⁄    [   (
 

 
)]        |      |    | |               

Euler psi function: 

     
 

  
        

     

    
                                      

with the property 

            ∑
 

   

   

   

                                      

and 

            
 

 
                                  

The beta function        is defined by 

       ∫                                                       
 

 

 

The connection of gamma function with the beta function is given by 

the formula 

       
        

      
               

                                          

The incomplete gamma functions        and        are defined for 

      by 

       ∫                                                     
 

 

 

       ∫                                                                
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CHAPTER 2 

 

FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES 

 

2.1 Riemann-Liouville Fractional Integrals and Fractional Derivatives 

Let   [   ] be a finite interval on the real axis   . 

Definition 2.1 

The left-sided and the right sided Riemann-Liouville fractional integrals of 

order                are defined respectively by 

    
       

 

    
∫

      

        
                                        

 

 

 

    
       

 

    
∫

      

        
                                       

 

 

 

Definition 2.2 

The left-sided and right-sided Riemann-Liouville fractional derivatives of 

order                

    
       (

 

  
)
 

    
        

 
 

      
(
 

  
)
 

∫
      

          
                 [      ] 

 

 

 

               

    
       ( 

 

  
)
 

    
         

 

      
( 

 

  
)
 

∫
      

          
        

 

 

 

      [      ]                  

Where [    ] is the integral part of     . 

For        {       }, 
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For          

    
       

 

      

 

  
∫

      

       [    ]
                               

 

 

 

    
        

 

      

 

  
∫

      

       [    ]
                               

 

 

 

For     , we have 

    
       

 

      
(
 

  
)
 

∫
      

          
                 [ ]     

 

 

 

                

    
       

 

      
( 

 

  
)
 

∫
      

          
        

 

 

      [ ]    

                

    
       

 

      

 

  
∫

      

      
                                     

 

 

 

    
        

 

      

 

  
∫

      

      
                                 

 

 

 

For [    ]            , we have derivatives of a purely imaginary order. 

(   
   )    

 

       

 

  
∫

      

       
          { }                       

 

 

 

(   
   )     

 

       

 

  
∫

      

       
          { }                    

 

 

 

 

 The power functions         ,          

Let        and     with       , then the following properties are 

evident: 

(   
         )    

    

      
                                      

(   
         )    
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(   
         )    

    

      
                                      

(   
         )    

    

      
                                      

From equations (2.15) and (2.17) or otherwise, it can be verified that if     

and       , then the Riemann-Liouville fractional derivatives of a contant 

are generally not zero. 

    
       

       

      
         

       
       

      
              

                  

Lemma 2.1 

If        and       , then the following relations are satisfied at almost 

every point   [   ] for                    . 

(   
    

 
 )    (   

   
 )       (   

    
 

 )    (   
   

 )                     

Moreover, equation (2.19) hold at any point of [   ] if      . 

Definition 2.3 

The left-sided and right-sided fractional integrals and derivatives on the half-

axis    are respectively defined by 

    
       

 

    
∫

      

        
                                        

 

 

 

   
       

 

    
∫

      

        
                                        

 

 

 

    
       (

 

  
)
 

    
        

 
 

      
(
 

  
)
 

∫
      

          
                                        

 

 

 

   
       ( 

 

  
)
 

   
         

 

      
( 

 

  
)
 

∫
      

          
        

 

 

 

              

Where   [      ],        and    . 
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2.2 Caputo Fractional Derivatives 

Although Riemann-Liouville fractional derivatives and integrals are perhaps 

the most commonly used approach and have contributed significantly to the 

development of the field of fractional calculus, however, it turns out that they 

have certain drawbacks in describing real-world phenomena with fractional 

differential equations. Caputo’s approach is highly advantageous for such 

task. 

Definition 2.4 

Let   [   ] be a finite interval of the real line  . Let     
       and 

    
       be the Riemann-Liouville fractional derivatives of order     

with       . The Caputo left-sided and right-sided fractional derivatives of 

order   are defined through Riemann-Liouville fractional derivatives 

respectively by 

   
 

  
       (   

 [     ∑
       

  

   

   

      ])                             

   
 

  
       (   

 [     ∑
       

  

   

   

      ])                             

Where   [    ]    for     ,     for     . 

 For         , equations (2.49) and (2.50) becomes 

   
 

  
           

 [         ]                             

   
 

  
           

 [         ]                              

Further, if      and    [      ], then 

   
 

  
           

       ∑
       

        

   

   

                               

   
 

  
           

       ∑
       

        

   

   

                               

For         , we have 
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Definition 2.5 (Classical Definition) 

Let     and that   is such that   
 [      [   ]] exists, where 

  ⌈ ⌉. Then we define Caputo differential operator of order   by 

   
     

 [      [   ]]                                      

Where     [   ] denotes the Taylor polynomial of degree     for the 

function  , centred at  . 

Theorem 2.1 

Let       . Let   [    ]    for      and     for     . If 

        [   ], then the Caputo fractional derivatives exist almost 

everywhere on [   ]. 

a) If     , then 

   
 

  
       

 

      
∫

         

          

 

 

     
                                   

   
 

  
       

     

      
∫

         

          

 

 

          
                       

For          and        [   ] 

   
 

  
       

 

      
∫

       

      

 

 

     
                                 

   
 

  
        

 

      
∫

       

      

 

 

      
                          

b) If       , then 

   
 

  
                  

 
  
                                       

Property 2.1 

Let        and   [      ] for      and     for     . Let 

      , then the following relations hold: 

(   
 

  
         )    
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(   
 

  
         )    

    

      
                                          

   
 

  
                    

 
  
                                               

In particular, unlike with Riemann-Liouville fractional derivatives, the 

Caputo derivatives of a constant are zero. That is 

   
 

  
               

 
  
                                                

Definition 2.6 

The Caputo fractional derivative of order     (with        and    ) on 

the half-axis    and on the whole axis   are defined respectively as 

   
 

  
       

 

      
∫

         

          

 

 

                                   

   
 

 
       

     

      
∫

         

          

 

 

                                  

and 

   
 

 
       

 

      
∫

         

          

 

  

                                 

   
 

 
       

     

      
∫

         

          

 

 

                                  

In particular,          equations (2.67) to (2.70) take the following form 

   
 

  
       

 

      
∫

       

      

 

 

                                   

   
 

 
        

 

      
∫

       

      

 

 

                              

and 

   
 

 
       

 

      
∫

       

      

 

  

                                   

   
 

 
        

 

      
∫
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2.3 Hadamard Fractional Integrals and Fractional Derivatives 

Definition 2.7 

Let                  be finite or infinite interval of the half-axis   . Let 

       and    . The Hadamard fractional integrals of  order      are 

defined by 

    
       

 

    
∫ (   

 

 
)
         

 

 

 

                               

    
       

 

    
∫ (   

 

 
)
         

 

 

 

                               

When     and    , then we have 

    
       

 

    
∫ (   

 

 
)
         

 

 

 

                               

   
       

 

    
∫ (   

 

 
)
         

 

 

 

                              

Definition 2.8 

The Hadamard-type fractional integrals of order     with those conditions 

in definition 3.7, are defined by 

(     
  )    

 

    
∫ (

 

 
)
 

(   
 

 
)
         

 

 

 

                                

(    
  )    

 

    
∫ (

 

 
)
 

(   
 

 
)
         

 

 

 

                               

Definition 2.9 

The left-sided and right-sided Hadamard fractional derivatives of order 

    with        on       are defined by 

    
             

         ( 
 

  
)
  

      
∫ (   

 

 
)
           

 

 

 

   

                        

    
                

        

 (  
 

  
)
  

      
∫ (   

 

 
)
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Where             
 

  
      [      ]. 

When     and    , then 

    
             

                                               

       
               

                                        

Definition 2.10 

The Hadamard-type fractional derivatives of order     with      and 

       are defined by 

(     
  )           (     

    )                                

    (    
  )              (    

    )                         

Where   [      ]. 

When      , then 

    
                and    

                                        

With                   , and 

  (     
  )                and 

(    
  )                                                 

Property 2.2 

If       ,        and        , then 

(   
 (   

 

 
)
   

)     
    

      
(   

 

 
)
     

                       

(   
 (   

 

 
)
   

)     
    

      
(   

 

 
)
     

                       

(   
 (   

 

 
)
   

)     
    

      
(   

 

 
)
     

                       

(   
 (   

 

 
)
   

)     
    

      
(   

 

 
)
     

                        

In particular, if     and       , then the Hadamard fractional 

derivatives of a constant, are not generally zero. 
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(   

 

 
)
  

              
       

 

      
(   

 

 
)
  

 

                                       

Property 2.3 

Let       such that             

a) If         and      , then for           

   
 

   
      

   
              

 
   

      
   

                     

If       such that            , then 

   
    

 
     

   
         and           

    
 

     
   

                      

 If      , then 

   
    

      
                 

    
      

                            

b) If                   and    , then for     
      

     
 

     
        

   
             

                     
 

    
       

   
                                          

If      , then 

     
      

        
                

                     
     

       
                                          

When     and    , 

   
 

   
      

   
                 

   
     

                                    

   
    

      
                  

   
     

                                   

 

2.4 Applications of Fractional Derivatives 

In this section, some few applications out of the vast applications of fractional 

calculus are studied. 

2.4.1 Viscoelasticity 

Hooke gave a connection between stress and strain for solids as 

                                                                     

In the case of Newtonian fluids 
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Initially, Hooke’s (elastic) and Newton’s (viscous) elements were 

combined with the aim of combining the properties of both. These give 

Maxwell’s model of viscoelasticity as well as Voigt’s model. However, both 

these models have obvious disadvantages. 

 In the case of the Maxwell model, described by 

  

  
 

 

 

  

  
 

 

 
                                                              

it implies 

                          
  

  
                                                    

That is, if stress is constant, then the strain grows infinitely. This does 

not correspond to experimental observations. 

On the other hand, Voigt model is given by 

      
  

  
                                                             

It follows that 

                                                                           

This means that there will be no stress relaxation. Such problems 

cannot be overcome with the integer-order models. 

But it is natural to suppose, as suggested by G. W. Scott Blair, that for 

“intermediate” materials stress may be proportional to the stress derivative 

of “intermediate” (non-integer) order: 

          
                                                                

Where          are material-dependent constant. 

A. N. Gerasimov  suggested a similar generalisation of the basic law 

of deformation using Caputo fractional derivative 
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2.4.2 Ultrasonic wave propagation in human cancellous bone 

Cancellous bone, otherwise known as trabecular bone or spongy bone, is one 

of two kinds of osseous tissue which form bones. Unlike other type of 

osseous tissue such as compact bone (cortical bone), it has a greater surface 

area but less dense, softer, weaker, and less firm. It usually occurs at the ends 

of long bones, proximal to joints and within the interior of vertebrae. 

As shown seen in section 2.4.1, fractional calculus is used to describe 

the viscous connections between fluid and solid structure. Reflection and 

transmission scattering operators are derived for a slab of cancellous bone in 

the elastic frame by using Blot’s theory. Experimental results are compared 

with theoretical predictions for slow and fast waves transmitted through 

human cancellous bone samples. 

𝐸  

𝐸  

𝐸  

𝜂  

𝜂  

𝜂3 

Figure 4.1: Schiessel and Blumen’s fractance-type model 

http://en.wikipedia.org/wiki/Osseous_tissue
http://en.wikipedia.org/wiki/Cortical_bone
http://en.wikipedia.org/wiki/Surface_area
http://en.wikipedia.org/wiki/Surface_area
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Figure 4.2: Cancellous bone 

 

2.4.3 Neurophysiology of eye movements 

A model on the neurodynamics of the vestibulo-ocular reflex (VOR) 

designed to keep the retinal image stable by producing eye rotations which 

counterbalance head rotations was described by Robinson. At lower 

frequencies (less than 0.3Hz), the dynamics of canal afferents     and 

vestibular and prepositus nuclei neurons      reflect those of the canal 

receptors, and frequency response of neural discharge rate relative to 

angular velocity      can be described as 
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where           is the Laplace transform variable with   in radians/s 

and ν in Hz,    is the vestibular time constant. Motoneurons (M) dynamics 

could offset the mechanical lag of the eye when the frequency is above 

0.3Hz, and thus, the frequency response of neural discharge rate relative to 

eye angular position (E) is approximately equal to a first-order leading 

function as 

    

    
                                                                   

where    is the eye time constant.  

Anastasio realised some problems using usual integer-order models 

to describe the behaviour of premotor neurons. To resolve these problems, 

he suggested a fractional-order model in terms of the Laplace transform      

of the premotor neuron discharge rate      and the Laplace transform      of 

the angular velocity of the head in the form 

     
    

    
 

               

       
                                                 

where    and    represent time constants of the neuron model,    and    are, 

respectively, fractional-order derivative and integral of the model. 

2.4.4 Electrochemistry and tracer fluid flows 

Oldham and his associates have given substantial attention to a new 

approach they have established to the solution of electrochemical problems 

that deal with diffusion phenomena. Subsequently, Goto and Ishii developed 

the idea of semi-differential electro-analysis with the fractional-order 

diffusion equation that may occur in other fields including diffusion, heat 

conduction, and mass transfer. Oldham and Spanier also proposed the 

replacement of the usual integer-order called Fick’s law that describes the 

diffusion of electro-active species toward the electrodes by a fractional-order 

integral law in the form 
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(   
   ⁄  )       [{  

      

  
}  

√ 

 
   

   ⁄ {  
      

  
}]                          

where    is the uniform concentration of electro-active species,   is the 

diffusion coefficient, and   and   are constants. 

This diffusion problem can be applied to modelling diffusion of 

atmospheric pollutants by taking        to be the concentration of pollutant 

at height   at time   so that         . 
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CHAPTER 3 

 

REVIEW OF CAPUTO-HADAMARD FRACTIONAL DERIVATIVES 

AND FTFC IN CAPUTO SETTINGS 

 

3.1 Caputo-Hadamard Fractional Derivatives 

Definition 3.1 

The Caputo-type modification of the left-sided and right-sided Hadamard 

fractional derivatives are defined respectively by 

  
 

  
         

 [     ∑
      

  

   

   

(   
 

 
)
 

]                        

  
 

  
         

 [     ∑
           

  

   

   

(   
 

 
)
 

]                         

Where          [      ] and         
 [   ]            . 

In particular, if         , then 

  
 

  
         

 [         ]                                        

  
 

  
         

 [         ]                                        

 

Theorem 3.1 

Let       ,   [    ]    and      
 [   ]            . Then 

  
 

  
      and   

 
  
     exist everywhere on [   ] and 

a) If     , 

  
 

  
      

 

      
∫ (   

 

 
)
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b) If       , 

  
 

  
                        

 
  
                                       

 In particular, 

  
 

  
        

 
  
                                        

Proof: 

a) Let     . Using equations (2.56) and (3.1) and using integration by 

part by taking        ∑
      

  

   
   (   

 

 
)
 

 and 

   (   
 

 
)
           

 
 

we obtain 
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]
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 ( 
 

  
)
   

∫ (   
 

 
)
   

[      ∑
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)
 

]
  

 

 

 

 

    
 

  

 

      
∫ (   

 

 
)
     

(                 )
 

 

  

 
 

Integrating by part once more again with the same choice of   , we 

obtain equation (3.5). Equation (3.6) is proved in a similar way. 

b) Let       , then 

  
 

  
         

 [     ∑
      

  

   

   

(   
 

 
)
 

]     

i.e. 
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 ∑
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 From equation (1.16), we obtain   
 

  
            . In a similar way, 

we obtain the second relation in equation (3.7). 

Lemma 3.1 

Let       ,   [      ] and    [   ]. 

a) If        or    , then 

  
 

  
     

                   
 

  
     

                               

b) If        and        then 

  
 

  
     

            
   

         

      
(   

 

 
)
   

                   

  
 

  
     

            
   

         

      
(   

 

 
)
   

                    

Lemma 3.2 

Let      
 [   ] or   

 [   ] and    , then 

   
    

 
  
            ∑

      

  

   

   

(   
 

 
)
 

                    

   
    

 
  
            ∑

      

  

   

   

(   
 

 
)
 

                     

 

Proof: 

The proof of (3.12) and (3.13) follows from the identities 

  
 

  
         

        and   
 

  
         

        respectively. 

 

Property 3.1 

Let       ,   [    ]    and       , then 
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In particular, when     

   
 

  
                

 
  
                                    

On the half-axis   , the Caputo-Hadamard fractional derivative take the 

form 

  
 

  
      

 

      
∫ (   

 

 
)
     

      
  

 

 

 

                    

 

  
 

 
      

     

      
∫ (   

 

 
)
     

      
  

 

 

 

                                       

 

3.2 FTFC in Caputo Settings 

The fundamental theorem of calculus (FTC) states that the two fundamental 

operations in calculus, differentiation and integration, are inverse to one 

another. i.e. when we first integrate a continuous function and then we 

differentiate, the original function is obtained. 

        
                                                                    

Where   
 

  
 and        

  ∫       
 

 
. 

Consequently, one can compute integrals by using an antiderivative of the 

function to be integrated what is otherwise known as the second 

fundamental theorem of calculus. 

   
                                                                              

In fractional case, if Riemann-Liouville integrals and derivatives are to be 

used [10, 16], (3.21) cannot be generalized, since 
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The FTC talks about how the integral of a function   over the interval [   ] 

can be calculated by finding an antiderivative  , i.e., a function, whose 

derivative is  . The FTFC for finite interval [   ] can be generalized in the 

Caputo settings as follows [19]. 

Theorem 3.2 

(a) Let      be a real-valued function defined on a closed interval [   ]. 

Let      be the function defined for   in [   ] by 

        
                                                           

where    
 

 is the Riemann-Liouville fractional integral defined by (xx). 

Then 

  
 

  
                                                                

for        , where   
 

  
  is the Caputo fractional derivative. 

(b) Given a real-valued function      defined on a closed interval [   ], 

then if      is a function given by (3.23), then 

   
                                                                     

Observe that (3.25) may be considered as fractional  Newton-Leibniz 

formula. 
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CHAPTER 4 

 

ON CAPUTO MODIFICATION OF THE HADAMARD FRACTIONAL 

DERIVATIVES 

 

4.1  FTFC in the Caputo-Hadamard Setting 

The fundamental theorem of calculus FTC 

 

  
∫       

 

 

                 ∫   
 

  
    

 

 

               | 
                 

replaces tedious computations of the limit of sums of rectangular areas with 

a more easier way of finding an anti-derivative. The first part of the theorem 

says that integration can be reversed by a differentiation for a continuous 

function. The second part allows one to find the definite integral of a 

function using any of its anti-derivatives. 

 In the fractional case, Riemann-Liouville as well as Hadamard 

integro-differentiation (for example) do not have generalisation of the 

Fundamental Theorem of Fractional Calculus (FTFC) in the form of (4.1). i.e. 

   
 

 
    

                              
 

 
    

                                 

   
 

 
    

                         
 

 
    

                                     

This is because the differential operators    (
 

  
)
 

 and    ( 
 

  
)
 

 used 

in the definitions of Riemann-Liouville and Hadamard fractional derivatives 

respectively, appear outside the integrals and therefore as those operators 

and the integrals are not commutative, the semi-group properties for 

integrals (2.94) and lemma 2.3 of [2] cannot be applied. i.e. 
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 However, from theorem 2.3 of [2], we have 

    
    

            ∑
(        

     )    

        
(   

 

 
)
   

                                 

 

   

 

In particular, if         , then     and 

    
    

            
    

        

    
(   

 

 
)
   

                               

If    , then 

    
    

                                                                

which implies 

   
 

 
    

                                                                 

Thus, (4.7) cannot be considered as the fractional generalisation of FTC in the 

form of (4.1). Similarly, using lemma 2.5 of [2], we can see that Riemann-

Liouville fractional integrals and derivatives cannot be used to generalise 

FTFC in the form of (4.1) as well. 

 On the other hand, replacing the Riemann-Liouville fractional 

derivative with Caputo fractional derivative, it was shown (for example, [6] 

and [13]) that 

   
 

 
   

 
  
                                                                     

Note: In most cases, I will only be using the left-sided definitions of 

fractional derivatives or integrals where the definitions are quite 

similar to the right-sided ones. 

Therefore (4.10) can be considered as a fractional generalisation of FTC in the 

form of (4.1). 

In the next theorem, we give the FTFC in the Caputo-Hadamard 

setting. 

Theorem 4.1: Fundamental theorem of fractional calculus 

Let     with        and   [    ]   . Let         
 [   ], 

       . 

a) If         
                   

                  [   ], then 
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b)   
   
 

  
       

              

  
   
 

  
       

                                                      

Proof 

a) Using lemma 2.4 of [8], it can be seen that the Hadamard fractional 

integrals and the Caputo-Hadamard fractional derivatives are inverse 

operations.  

   
 

  
    

                  
 

  
    

                                                 

Thus, if         
       or         

      then we have (34). 

b) Using (3.5), we have 

   
   

 
  
         

    
                                                          

In this case we can apply the semi-group property (2.69), unlike in the cases 

of Hadamard and Riemann-Liouville fractional derivatives where    and    

respectively, are located outside the integrals. 

Therefore 

   
   

 
  
         

                                                              

In particular, if    , then  

                         
   

 
  
         

        

                         
 

    
∫
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      ∫   

 

 

 

  
                                                             

Alternatively, using lemma 2.5 of [8], we have 

   
   

 
  
           ∑

      

      

   

   

(   
 

 
)
 

                                    

In particular, if         , then     and         [   ] or      

  [   ]. Thus  
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Hence   
 

 
   

 
  
      gives (4.12). The right-sided case can be proven in a 

similar way. 

Lemma 4.1 

Let     with        and   [    ]   . If         
 [   ], where 

       , then 

          
  

 
  
     

      
(   

 

 
)
 

                       

          
  

 
  
     

      
(   

 

 
)
 

                                                    

This is where we make the first use of theorem 2.  

Proof 

Using (2.50) and (4.17), we obtain 

 

    
∫ (   

 

 
)
   

  
 

  
     

  

 

 

 

             

where the function is   
 

  
     . Applying the Mean Value Theorem for 

integrals [14, page 287] we have 

  
 

  
     

 

    
∫ (   

 

 
)
     

 

 

 

                                                   

The left hand side of (4.19) contains the Hadamard fractional integral of the 

function       , i.e.,    
     . Then by definition implies     and thus 

(4.19) becomes 

  
 

  
     

      
(   

 

 
)
 

                                                   

Rearranging (4.20) gives (4.18). This completes the proof. 

Note that the right-sided case can also be proven in a similar way. 

Lemma 4.2 

If     with       ,   [    ]    and      .         
 [   ],  

       , then 
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(   

 

 
)
  

                                            

Proof 

The proof is similar to the proof of lemma 4.1. Observe that the sequential 

integral  

    
       

    
     

 ⏟        
       

                                                           

can be written as the    
   with order    by the semi-group property (2.69). 

Thus, 

    
      

 
  
        

 

     
∫ (   

 

 
)
    

   
 

  
       

  

 

 

 

                         

Applying mean value theorem for integral and simplify as before we obtain 

(4.21).  

Lemma 4.3 

       and   [    ]   , if   is a function such that   
 

  
   and    

   

exist, then 

  
 

  
         

      ∑
      

        

   

   

(   
 

 
)
   

                                   

and when          then 

  
 

  
         

      
    

      
(   

 

 
)
  

                                               

Proof 

Using (2.56) and (3.1), we obtain 
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Thus we have (4.24). Then if         , implies     and from (4.24) we 

have (4.25). We can get an immediate consequence of lemma 4.3. 

Corollary 4.1 

Under the conditions of lemma 4.3 

  
 

  
         

                                                                     

if and only if   has an  -fold zero at  , i.e., if and only if 

                                                                                   

The proof is straightforward. 

 Now, it is known [8, theorem 2.2] that if        and 

     {      }             [    ]   , then 

  
 

  
                      

 
  
                                                         

This fact disallows us to obtain (for example) a fractional Taylor series using 

the fractional derivatives evaluated at these points. Otherwise, we can have a 

series expansion in the form 

     ∑
   
 

  
       

       
(   

 

 
)
  

   

 

   

                                   

where 

        
   
 

  
           

 (        )
(   

 

 
)
      

       [   ]                         

is the remainder of the terms in the expansion. 

 However, we may relax the conditions on   in corollary 4.1 as in the 

next result. 

Lemma 4.4 

Let        and   [    ]    such that      and         
 [   ]. 

More so, suppose that   
 

  
 

     is continuous on [   ] for some        . 

Then   
 

  
      is continuous and   

 
  
       . 

Proof 

Using (3.5), we obtain 
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Thus,   
 

  
      is continuous and   

 
  
         

   
  

 
  
 

       by (4.28). 

This completes the proof of the lemma. 

 

4.2 Semigroup Properties of Caputo-Hadamard Operators 

We present the first proof of the semigroup properties of Caputo-Hadamard 

fractional derivatives. 

Theorem 4.2 (semigroup property for Caputo-Hadamard derivatives) 

Let        
   [   ]           . Moreover, let         such that 

                                           . Then 

  
 

  
   

 
  
 

       
 

  
   

                                                                     

Proof 

Without loss of generality, let    . Thus,            {       }. Since           

       , then by definitions and using semigroup properties for 

Hadamard fractional integrals (2.69) we have 

  
 

  
   

 
  
 

        
       

 
  
 

        
        

   
       

      
        

     
            

        
   

   
          

       
      

 
   

             
     

   
 

   
 

   
          

Then using (4.6) with      taken as    
          we obtain 
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(   
         )                         

       
         

           
 

  
   

     

This ends the proof. 

Remark 4.1 

The same result cannot be obtained in general if Hadamard fractional 

derivative were used instead. To verify this, suppose for example we 

have the function        with   
 

3
    . Thus by definitions, the 

left hand side gives 

   

 
3⁄    

        

 
3⁄         

The right hand side would be 

   

 
3⁄          

 
3⁄       

 

 (
 
 )

(   
 

 
)

 
3
   

Where    
 

  
. However, one can easily see that if the Caputo-

Hadamard derivative were used, each side gives 0. 

In the next lemma, we give the generalisation of theorem 4.2. 

Lemma 4.5 

For        
 [   ]           , 

  
 

  
    

 
  
     

 
  
         

 
  

∑   
 
                                                                        

Where                      and  ∑   
 
         {      }. 

Proof 

The proof follows immediately from theorem 4.2 and using mathematical 

induction. 
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Theorem 4.3 

Let        
 [   ]            and                          

        . Then 

  
 

  
    

 
        

   
               

 
  
    

 
        

   
                                  

Proof 

  
 

  
    

 
        

        
 

        
        

   
   

    
    

    
      

 
   

    
     

Then from (2.7.39) of [2] we obtain 

  
 

  
    

 
        

      
   

        
   

     

Observe that theorem 4 is the generalisation of lemma 2.4 (i) of [8] 

where    . 

Lemma 4.6 

Let     with          and    . Let         
 [   ],        . 

Then 

    
          

 
  
                

      
 

  
                                                 

Proof 

    
          

 
  
                

      
   

 
  
    

 
  
                                 

                             
   (   

 
  
           

 
  
       )        

       (                       
 

  
       ) 

       
      

 
  
                            

                                         (since    
 

  
                       ) 

 Both theorem 4.2 and lemma 4.5 deal with the reduction of higher 

fractional order differential systems to lower order systems for Caputo-

Hadamard fractional derivatives. However, in some instances it may also be 

useful to involve the Caputo-Hadamard and the Hadamard differential 

operator. 
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Lemma 4.7 

Let        
 [   ] for some     and      . Then 

   
     

 
  
                                                                             

Where    
 

  
. 

Proof 

1. If    , then by (3.5) and from (2.7.13) of [2], (4.36) becomes 

                 . 

2. Otherwise since   [    ]   , then by definitions 

   
     

 
  
       [      ]     

[      ]        
   

[    ]     [    ]       

 

          [    ]     
 ( [    ]      ) 

          [    ]        
 ( [    ]      )       
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CHAPTER 5 

 

CONCLUSION 

 

The usual integer-order integrals and derivatives are not enough to handle 

most of nowadays real-world scientific and engineering phenomena. For this 

reason and the likes, attention was paid to the 317-year-old fractional 

calculus and since then, vast researches and publications were made in the 

field leading to various approaches of analysing and solving real-world 

problems.  

  Fractional calculus started to be considered deeply as a powerful tool 

to reveal the hidden aspects of the dynamics of the complex or 

hypercomplex systems [9,10,13]. Finding new generalization of the existing 

fractional derivatives was always a main direction of research within this 

field. These generalized operators will give us new opportunities to improve 

the existing results from theoretical and applied viewpoints. Although the 

works in [2,3,9] played important roles in the development of the fractional 

calculus within the frame of the Hadamard derivative, nevertheless, vast and 

vital work in this field is still undone. 

 When the Caputo-Hadamard fractional derivatives were introduced 

in [8], not much about the modified derivatives were studied despite the fact 

that the derivatives have many advantages (as seen in this thesis) over the 

Hadamard derivatives. As seen in the beginning of the thesis, Hadamard 

fractional derivatives cannot be used to generalise the FTFC whereas the 

Caputo-Hadamard derivative works perfectly. The FTFC is then used in 
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formulating other important results whose applications to Fractional Vector 

Calculus in the study of Green’s theorem, Stoke’s theorem and so forth, as 

well as in the study of anomalous diffusion is a further work. Many non-

existent results such as the semigroup properties for the modified 

derivatives are studied in details. 

 Some interesting properties of Caputo-Hadamard derivatives allow 

us to formulate some important results. Among such results is the 

formulation of FTFC within the frame of this derivative, semigroup 

properties of Caputo-Hadamard derivative,   
 

  
        and so on. The 

third result for       ,      {      } and   [    ]   , [8, theorem 

2.2] disallows us to obtain (for example) a fractional Taylor series using the 

fractional derivatives evaluated at these points. Otherwise, we can have a 

series expansion in the form      ∑
(   
 

  
 )

 
    

       
(   

 

 
)
  

   
 
         with 

remainder         
(   
 

  
 )

     
    

 (        )
(   

 

 
)
      

       [   ]. However, we 

have seen that the condition on the function   may be relaxed. Lastly, for 

       
 [   ]           , and by the semigroup property of the 

Caputo-Hadamard derivative (4.32), we can have the generalisation 

  
 

  
    

 
  
     

 
  
         

 
  

∑   
 
       , where                      and  

∑   
 
         {      }. 

 The research in this thesis has been published in Advances in 

Difference Equations journal of Springer Open Access database (see 

appendix j for a sample page). 
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Appendix K: Sample List of Notations 

 

 

NOTATIONS 

 

   
  ,    

   Riemann-Liouville fractional integrals. 

   
  ,    

   Riemann-Liouville fractional derivatives. 

  
 

  
  ,   

 
  
   Caputo fractional derivatives. 

   
  ,    

   Hadamard fractional integrals. 

   
  ,    

   Hadamard fractional derivatives. 

     
  ,     

   Hadamard-type fractional integrals. 

     
  ,     

   Hadamard-type fractional derivatives. 

  
 

  
  ,   

 
  
   Caputo-Hadamard fractional derivatives. 
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