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ABSTRACT

ON CAPUTO MODIFICATION OF THE HADAMARD FRACTIONAL
DERIVATIVES

Gambo, Yusuf Ya'u
M.S.c., Department of Mathematics and Computer Science
Supervisor : Assoc. Prof. Dr. Fahd Jarad
September 2013, 54 pages

In this thesis, more properties of the Caputo modification of the Hadamard
fractional derivatives are studied. The fundamental theorem of fractional
calculus (FTFC) in the Caputo-Hadamard setting is presented. The theorem

is then used in formulating several original results.

Keywords: Caputo; Hadamard fractional derivatives;

fundamental theorem of fractional calculus.
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Gambo, Yusuf Ya'u
Yiikseklisans, Matematik-Bilgisayar Boltimii
Tez Yoneticisi : Assoc. Prof. Dr. Fahd Jarad
Eyliil 2013, 54 sayfa

Bu tezde, Hadamard kesirli tiirevlerinin Caputo uyarlamasinin daha fazla
Ozellikleri incelenmistir. Kesirli kalkultstin temel teoreminin Caputo-
Hadamard sekli sunulmustur. Bu teorem daha sonra cesitli 6zgin

sonuglarin formiile edilmesinde kullanilmistir.

Anahtar Kelimeler: Caputo, Hadamard kesirli tirevi, Kalkuliistin temel

teorimi
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CHAPTER 1

INTRODUCTION

The birth of fractional calculus is popularly known to take place in the late
17th century with an interesting question raised to Gottfried Wilhelm
Leibniz (1646-1716) by Marquis de L'Hopital (1661-1704).

“Can the meaning of derivatives with integer order be

generalised to derivatives with non-integer orders?”

L’'Hopital was somewhat curios about that question and replied by

another question to Leibniz:

“What if the order will be % 27

Leibniz in a letter dated September 30, 1695 (the exact birthdate of the
fractional calculus!) replied:

“It will lead to a paradox, from which one day useful

consequences will be drawn.”

Fractional calculus is the generalisation of differentiation and
integration of integer order to arbitrary ones. As the field is as old as the
usual calculus, considerable amount of researches and developments in the
field are made and has been applied in the fields of science and engineering.
Indeed recent developments in the field are dominated by modern
applications in differential and integral equations, signal processing, fluid

mechanics, viscoelasticity, mathematical biology, electrochemistry and so

forth.



Perhaps the well-known fractional integral is the Riemann-Liouville
type which is based on the generalisation of the usual Riemann integral
f; f(t)dt [8]. Although the Riemann-Liouville fractional integrals and
derivatives contributed immensely to the development of the theory of
fractional calculus, it turns out that this approach has certain disadvantages
when trying to model real-world phenomena with fractional differential
equations. On the other hand, Riemann-Liouville fractional derivatives of a
constant are, in general, not zero. Such problems were overcome with Caputo

fractional derivatives.

Hadamard also proposed a fractional power of the form ( — ) This

fractional derivative is invariant with respect to dilation on the whole axis.
The Hadamard approach to fractional integral was based on the

generalisation of the nth integral

tn-1

dty | dz dty
(G )00) = j L2 fﬂn)t—t ¢ED

Just like Riemann-Liouville, Hadamard derivative has its own disadvantages
as well, one of which is the fact that the derivative of a constant is not equal
to 0 in general. The authors in [8] resolved these problems by modifying the
derivative into a more suitable one having physically interpretable initial
conditions similar to the ones in the Caputo settings. In this thesis, we study
much of this modified derivative thereby formulating some important
theorems and results. The Caputo-Hadamard fractional derivatives are used
to develop the FTFC and then the new results are applied in the formulation
of some other theorems. As we shall see later, some interesting properties of
the modified derivatives are necessary in order to formulate some important

results.



The presence of the §- differential operator (§ = x :—x) in the definition
of Hadamard fractional derivatives could make their study uninteresting
and less applicable than Riemann-Liouville and Caputo fractional
derivatives. More so, this operator appears outside the integral in the
definition of the Hadamard derivatives just like how the usual derivative
D= :—x is located outside the integral in the case of Riemann-Liouville which
make the fractional derivative of a constant of these two types not equal to
zero in general. The authors in [8] studied and modified the Hadamard

derivatives into a more useful type using Caputo definitions.

1.1 Auxiliary Results
111 L, - Space

Definition 1.1
Let Q =[a,b], —0 < a < b <  be a finite interval, a half-line or the whole
line. We denote by L,(a,b) (1 <p < ) the set of those Lebesgue complex-

valued measurable functions f on Q for which ||f||, < o, where

1

14
1f o = ( | If(x)lpdx> (12)
Q

If p = oo, the space L, (Q) is defined as
If |20y = ess suplf(x)l (1.3)
xX€EQ

Where ess sup |f(x)] is the essential maximum of the function |f(x)].
The weighted L, - space with power weight, denoted by X7 (a,b)
(c €R, 1 <p < ™), consists of those complex-valued Lebesgue measurable

functions f on (a, b) for which ||f]| xP <, with

3



1

dt\P
Ifllp = ( | |th(t>|p7> , 1Sp<o (1.4)
Q

and

If llxeo = ess sup[x©|f(x)l] (1.5)
X€EQ
In particular, when c =% then the space X% (a,b) coincides with the

L,(a, b) - space as Xf/p (a,b) = Ly(a,b).
Properties of L, - Space
a) The Minkowsky’s inequality
IF + gl < Il + gl (1.6)

b) Holder’s inequality
[Ireg@lax <l g, o 1.7)
Q

Where p’ = ﬁf(x) € L,(Q), g(x) € L,y () and % + i =1

1.1.2 Space of absolutely continuous functions

Definition 1.2

Let Q = [a,b], —0 < a < b < x, so that the interval is finite, a half-line or the
whole line. A function ¢:Q — R is said to be absolutely continuous on Q if
Ve >0 38 >0 such that for any finite set of pairwise non-intersecting set

intervals [ay, b,] € Q, k = 1,2, ...,n such that h=1(b —ay) < 6,
n
> lom) - pa)] <e (18)
k=1
This space is denoted by AC(Q).

Remark 1.1
It has been proved that the space AC(Q2) coincides with the space of primitive

of Lebesgue summable functions as



x b
fx)eAC(Q) & f(x)=c +f p(t)dt, f lp(t)|dt < oo (1.9)

Definition 1.3
For n € N, AC™(Q2) where Q is an interval, is the space of functions ¢(x)

which have continuous derivatives up to order n — 1 on Q with ™ V(x) e

AC(Q). In particular, AC* () = AC(Q).

Lemma 1.1
The space AC™(Q)) consists of those and only those functions f(x), which are

represented in the form

F0) = (2 + ) a (= ) (1.10)
k=0

Where Q is an interval, ¢(t) € L(a,b), ¢,y (k=0,1,...,n— 1) being arbitrary

constants and

. 1 [ eat
(1a+(P)(x) - (n _ 1)' (x _ t)l_n (111)
Equation (1.9) gives
(k)
o(6) = D@, =L k'(a) k=01,..,n—1 (1.12)

Definition 1.4

The weighted AC™[a, b] denoted by AC(?,M [a,b], (n €N; u € R), consists of
the complex-valued Lebesgue measurable function ¢ on (a,b) such that
x*g(x) has §-derivative up to order n—1 on [a,b] and ™ V[xte(x)] is

absolutely continuous on [a, b]. That is

d
ACg la,b] = {go: [a,b] = C: @™ V[xtp(x)] € AC[a, b], HUER,GS = xa}

(1.13)



Where

d
6 =xD = X (1.14)

is called §-derivative.

In particular, when p = 0 then the weighted space is defined as

d
ACgla, bl = AC§[a,b] = {<p: [a,b] = C: 6™ V[p(x)] € AC[a,b] § = xa}

(1.15)
Additionally, if n = 1, then the space ACj[a, b] coincides with AC[a, b].

Lemma 1.2

Let 0<a<b <o, neN and u € R. The space ACgﬂ[a, b] consists of those

and only those functions f(x) which are represented in the form

X

FOx) = xk [(n _1 = f (1og§)n_1 o(0) % + Z d, (logg)k] (1.16)
k=0

a

Where ¢(t) € L(a,b) and d, (k=0,1,...,n— 1) being arbitrary constants. It
is clear that AC[a, b] if and only if

() = —— fx(l x)n_1 (t)dt+nz_1d (1 x)k 1.17
fx—(n_l)! ogr) ¢~ k(log~ (1.17)
a k=0
It follows from equation (1.15) that
(k)
o) = f™®, dk=f kfa), k=0,1,..,n-1 (1.18)

1.1.3 Laplace and Mellin transforms

Definition 1.5 (Laplace transform)

Let t € R*. The Laplace transform of a function ¢(t) is given by

(0]

(Lp)(s) = LIpD)](s) = ¢(s) = f e fp()dt  seC (1.19)
0

The inverse Laplace transform is defined for x € R* by

y+ico

(L) = L7 g ()] () = o] e7g()ds y=R(s)>0, (1.20)
y—ioo

6



Where o, is the abscissa of convergence which is defined as the infimum of

values s for which the Laplace integral in (1.18) converges.

Definition 1.6
Let x,h € R. The translation 7, and dilation Il operators are defined
respectively by
(the)(x) =@p(x—h) x,h€R (1.21)
(Me)(x) =p(Ax) x€RA>0 (1.22)

Properties of Laplace transform

(Ltpp) () = e P"(Lp)(p) hER (1.23)

L
ULe)P) =L (I) 1€ RY (1.24)
Lle=pO](P) = (t-LYP)=Lp+a) a€C (1.25)
LID*e®O](p) = p*(Lp)(p) kEN (1.26)
D*(Lp)(s) = (=D L[t*p()](s) kEN (1.27)

Definition 1.7 (Mellin transform)

The Mellin transform of a function ¢(t) of a real variable t € R is define by

o)

M)(s) = MIpDI(s) = ¢°(s) = f £p()dt s €C (1.28)
0

and the inverse is

1 Y+ioco
M@ = M IOIW =5 [ 1 PgEds ¥ =R (129)
y—iw

1.1.4 Gamma and beta functions

The gamma function I'(z) is defined by the integral
I'(z) = f tZ letdt R(z)>0 (1.30)
0

It can be observed that the gamma function is the Mellin transform of
the exponential function
M[e t](z2) =T(z) R(E=)>0 (1.31)
7



Properties of Gamma Function

An elementary property:

r()=0'=1 (1.32)
Reduction formula:
I'(z+1) =2zI(2) R(z) >0 (1.33)
Pochhammer function:
I'(z) = % R(z)>-nneNz¢¢Z;, ={0,—-1,-2..} (1.34)
n

on the half-plane R(z) < 0
where (z), is known as the Pochhammer symbol (raising factorial or
Pochhammer function), defined by
2)o=1,2),=2(z+1)..(z+n—-1) neN, zeC (1.35)
Using equations (1.31) to (1.34) we obtain
Fz+1) =T(M)(1),=n! neN,={0,1,2..} (1.36)
Equation (1.33) shows that gamma function is analytic everywhere in the
complex plane except at z = 0,—1, -2, ... where I'(z) has simple poles and is
defined by the asymptotic formula
(-D*
z+k

Functional equation:

I'(z) =

[1+0(z+k)] z - —k, k € N, (1.37)

I'z2)T(1—12z) =— z &7y, 0<R(2=) <1,
sinwz
1
r (E) =+vm  (1.38)
Legendre duplication formula:
2z—-1 1

I'(2z) = FZF(Z+—) z€C 1.39
(2) = =T (243 (139

Gauss-Legendre multiplication theorem:

mz—1 ™M1

I'(mz) = —nD 1_[ r (Z + %) z€e C,meN\{1} (1.40)

2m) 7 k=0

Stirling asymptotic formula:




['(2) = (2n)V/22771/2¢~2 [1 +0 G)] larg(2)| < m,|z| » 0 (1.41)

Euler psi function:

—dl r L@ C 1.42
¥(@) = eI =75 z€ (142)
with the property
m—1 1
1/)(z+m)=lp(z)+kz;z+—k zeCmeN (1.43)
and
Y(@z+1) =9() +§ m=1 (1.44)

The beta function B(z, w) is defined by

1
B(z,w) = f tZ71A -V ldt R >0,Rw) >0 (1.45)
0

The connection of gamma function with the beta function is given by

the formula

_I@rw)

Blzw) = I['(z+w)

z,w & Zy (1.46)

The incomplete gamma functions y(z,w) and I'(z,w) are defined for

z,w € Cby

v(z,w) = jwtz‘le‘tdt R(z) >0 (1.47)
0

I'(z,w) =f tZ e tdt (1.48)
w

Y(z,0) =T(z,0) =T(2) =y(zw) +T'(z,w) R(E=)>0 (1.49)



CHAPTER 2
FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES
21 Riemann-Liouville Fractional Integrals and Fractional Derivatives

Let Q = [a, b] be a finite interval on the real axis R .

Definition 2.1
The left-sided and the right sided Riemann-Liouville fractional integrals of

order a € C, R(a) > 0 are defined respectively by

1 x d
(1%,.¢)(x) = ). (xsv_(tz)lt_ —  x>a R(a)>0 (2.1)
b pt)dt
(IX @) (x) = f@o). oo < b, R(a) >0 (2.2)
Definition 2.2

The left-sided and right-sided Riemann-Liouville fractional derivatives of

ordera € C, R(a) =0

0200 = () Uz

n

fx o(t)dt

m x>a,n=[iR(a)+1]

B ﬁ(%)

(2.3)

05000 = (~35) G000 = o5 (-35) | o

x <b, n = [R(a) + 1] (2.4)
Where [R(a)] is the integral part of R(«).
Fora=neN; ={0,1,2,..},

10



(D 0)(x) = (Dy_p)(x) = 9(x), (DZL)(x) = o™ (x),
(DF-@)(x) = (-D"¢™(x) neN (2.5)
For0 <R(a) <1

d p(t)dt
(D& p)(x) = d—fa G = )a-Ti@] x> a, (2.6)
u d p(t)dt
(Dp—p)(x) = r(1 d—fx G_pem@  *<b (2.7)

For ¢ € R*, we have

1 d\" * o@(t)dt B
(D& ) (x) = F(n—a) (a) L W x>a n=la]+1
(2.8)
o 1 d\" (? o@()dt 3
(Dp_p)(x) = m(— a) fx m x <b, n=[a]+1
(2.9)
(D& p)(x) = d [ e®dt 0<a<l1; x>a, (2.10)

I'(1—a)dx . (x—1)¢

) B 1 d (P e)dt
(Dp-)(x) = — [(1—a)dx x (E—x)¢

O<a<l;x<hb, (2.11)

For [R(a)] =0 (a# O) we have derivatives of a purely imaginary order.
B p(t)dt _
(Do) (x) = 1 “9) de =D 6 € R\{0}; x > a (2.12)
1 d (P e(t)dt
r(1—i0)dx), (t—x)®

0 € R\{0}; x<b (2.13)

(D g)(x) = -

The power functions (x — a)P~1, (b — x)F~1

Let R(a) = 0 and B € C with R(S) > 0, then the following properties are

evident:
(I (t—a)f~ 1)( ) = F(;(-lﬁ-)a) (x —a)f** 1 Ra)>0 (2.14)
r)
I —a)

(x —a)f~* 1 R(a)=0 (2.15)

(D&t —a)f ) (x) =

11



r'(p)
'+ a)

r'(p)
D% (b —t)P 1) (x) = ———
(Db~ P () = = s
From equations (2.15) and (2.17) or otherwise, it can be verified thatif f§ = 1

(I -0P)x) = (b —x)f** 1 R(a) >0 (2.16)

(b—x)f~21 R(a) =0 (2.17)

and R(a) = 0, then the Riemann-Liouville fractional derivatives of a contant

are generally not zero.

(x—a)™@ (b—x)"*

(D& D (x) = T (DED(x) = =

A& Ta—a 0<R@ <1

(2.18)

Lemma 2.1
If R(a) > 0 and R(B) > 0, then the following relations are satisfied at almost
every point x € [a, b] for f(x) € L,(a,b) 1 <p < co.

(18.18,0) 0 = (1557 0) ), (151)-0)) = (52P0) 0 (219)

Moreover, equation (2.19) hold at any point of [a, b] if @ + > 1.

Definition 2.3
The left-sided and right-sided fractional integrals and derivatives on the half-

axis R* are respectively defined by

) ) X o(t)dt
(I o) (x) = f@ ), G—pre x>0, Rla)>0 (2.20)
(%) (x) = T_e@dt o @ >0 (221)

Ma)), (t—x)t~@
d n
PED® = (=) W)@

) (et e

- F'(n—a) x —t)a-n+l

n

f°° o(t)dt

(t — x)a—n+1

(DZg)(x) = (— %)n (U™ %p)(x) = ﬁ (_ % )

(2.23)
Where n = [R(a) + 1], R(a) = 0 and x > 0.

12



2.2 Caputo Fractional Derivatives

Although Riemann-Liouville fractional derivatives and integrals are perhaps
the most commonly used approach and have contributed significantly to the
development of the field of fractional calculus, however, it turns out that they
have certain drawbacks in describing real-world phenomena with fractional
differential equations. Caputo’s approach is highly advantageous for such

task.

Definition 2.4

Let Q = [a,b] be a finite interval of the real line R. Let (DZ,¢)(x) and
(Df_p)(x) be the Riemann-Liouville fractional derivatives of order a € C
with R(a) = 0. The Caputo left-sided and right-sided fractional derivatives of

order a are defined through Riemann-Liouville fractional derivatives

respectively by
i nt W ;
(“Dg+ ) (x) = <Dé’+ Z ( )(t —a)* >(x) (2.24)
1w .
(D) = (Dg_ 00— 5 0D,y )(x) 225)
i k=0

Where n = [R(a)] + 1 for @ € Ny, n = a for a € N,,.
For 0 < R(@) < 1, equations (2.49) and (2.50) becomes

(‘D& @) (x) = (D& [o() — p(a)]) (x) (2.26)
(“Di_9)(x) = (DF_[p(t) — (B (%) (2.27)
Further, if « € Ny and n = [R(a) + 1], then
n-1 x)
(D& () = (D) () - _OF(,E’L—OS:)D(x —ake(228)
n-1 (k) b
D)0 = P00~ ). k-0 (229)
For 0 < R(a) < 1, we have
D) = (D))~ L= (2:30)

13



ob)(b—x)™*
I'l—a)

(“Dp_@)(x) = (Dy_)(x) — (2.31)

Definition 2.5 (Classical Definition)
Let n > 0 and that f is such that DZ|f — Tp—1[f; al]] exists, where
m = [n]. Then we define Caputo differential operator of order n by
Dlof = Di|f — Tm-slf; al] (2.32)
Where T,_;[f;a] denotes the Taylor polynomial of degree m —1 for the

function f, centred at a.

Theorem 2.1

LetR(a) = 0.Letn = [R(a)]+1fora &€ Nyand n = a for a € N,,. If

@(x) € AC™[a,b], then the Caputo fractional derivatives exist almost
everywhere on [a, b].

a) If a € Ny, then

x ) d
I'(n—a) f (x(p_ tg?—naq = Iz “D" ) (%) (2.33)

(D" (P e™(D)dt I
F(n—a)l, (t—x)en+t = (D"(,~*D"p)(x) (2.34)

For 0 < R(a) < 1 and ¢(x) € AC|a, b]

(‘D& @) (x) =

(“‘DF_p)(x) =

X o' (t)dt
1-a)), x—1t)*
1 b o' (t)dt
_F(l—a)Jx (t — x)@

(‘D) (x) = 3 = (lax*De) (x) (2.35)

(“Dy-p)(x) = =—(I,~"Dp)(x)  (2.36)

b) If a =n € Ny, then

(‘D p)(x) = 9™ (), DJ_@)(x) = (=D"p™(x), neN  (237)

Property 2.1
Let R(a) >0 and n=[R(a)+ 1] for a ¢ N, and n=a for a € N,. Let
R(L) > 0, then the following relations hold:

. N (> NP
(it = ) )() = (g o5 = ) R(B) > m (2:38)

14



a _ I
(“DE-(b—0)F M) (%) = TG —a)

D& (t—a))(x) =0, (‘DEB-))(x)=0 k=0,1,..,n—-1 (2.40)

(b—x)F1 R(PB)>n (2.39)

In particular, unlike with Riemann-Liouville fractional derivatives, the
Caputo derivatives of a constant are zero. That is

(“DEHD(x) =0, (“DF_1)(x) =0 (2.41)

Definition 2.6
The Caputo fractional derivative of order a« € C (with R(a) > 0 and a & N) on
the half-axis R* and on the whole axis R are defined respectively as

* oM ()dt
n—-a)l, (x—t)yentt
D" (® M@t
m—a)l), (t—x)entl

(‘D) () = 5 € RY (2.42)

(“D2p)(x) =

€ R* (2.43)

and

1 * oM (t)d
(DL = For— s (x‘p_ tg?_nil x €R (2.44)

—1)" oo M ()d
(€D%p)(x) = an _)a) (t‘p_ xg?_n’il xR (2.45)

In particular, 0 < R(a) < 1 equations (2.67) to (2.70) take the following form

X ! d
000 = | T FER (2:46)
[oe] ! d
(“D2)(®) = ~Fr =3 f (";g)z € R (2.47)
and
DL () = [ 2D R (2.48)

rl—a))_,(x—1t)®

1 [®e'()d
(“DE9)(X) = = (";Etzc)i X €R (2.49)

15



2.3  Hadamard Fractional Integrals and Fractional Derivatives

Definition 2.7
Let (a,b), 0 < a < b < x be finite or infinite interval of the half-axis R*. Let

R(a) > 0 and p € C. The Hadamard fractional integrals of order a € C are
defined by

« 1 (* N\ 1 p(t)dt
G590 = 1 fa (108 ) <x<b  (250)
1 (P t\*Lo(t)dt
(Jp-p)(x) = mfx (log;) ‘p(t) <x<b (2.51)
When a = 0 and b = o, then we have
“ 1 * 1 p(t)dt
(Jor ) (x) = @ jo (log?) - >0 (2.52)
*Lo(t)dt

(J2p)(x) = ﬁfxw (1og§) - x>0 (2.53)

Definition 2.8
The Hadamard-type fractional integrals of order @ € C with those conditions

in definition 3.7, are defined by

t)” (1ogf)0‘_1 o@dt o (2.54)

) =15 | (5) (106D 25

X

(Jf#(p)(x) = ﬁfoo (%)# (log%)a_l <p(tt)dt x>0 (2.55)

Definition 2.9
The left-sided and right-sided Hadamard fractional derivatives of order

a € Cwith R(a) = 0 on (a, b) are defined by

8,000 = "G00 = (1) 7 [ (0n3) L

a<x<bh (2.56)
(Dp-0)(x) = (=8)"(Tp=“p)(x)

_( d)" 1 Jb(l t)”‘“‘1<p(t)dt b
“\ax In—a)l, 8% t asx
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(2.57)
Where § =xD, D=, n=[R(a) +1].
When a = 0 and b = o, then
(Do+ ) () = 6™ (Jox “@) (x) x>0 (2.58)
(DZe)(x) = (=" (I ")(x) x>0 (2.59)

Definition 2.10
The Hadamard-type fractional derivatives of order a € C withu € C and
R(a) = 0 are defined by
(D, ,0) () = x~#6™xk (I35 50) (%) (2.60)
(D%,0) () = X+ (=8)"x ("3 () (2.61)
Where n = [R(a) + 1].
When a = m € N, then
(Do+9)(x) = (M) (x) and (D) (x) = (=)™ (6™ ¢) (x) (2.62)
With0<a<x<b<ow, x>0,and
(@gﬁr#(p)(x) = x*6Mx"*p(x) and
(ZD #(p)(x) =x"H(=6)"x*p(x) (2.63)

Property 2.2
IfR(a) >0, R(B)>0and 0 < a < b < o, then

B+a-1

(a2 (1082) ) 09 = rp s 1og) 264
(:og+ log )(x) . F(z(f )a) (1og )ﬁ o (2.65)
< log ﬁ Voo = - (;(f )a) (1 0g~ )ﬁm_l (2.66)
e Yol

In particular, if f=1 and R(F) =0, then the Hadamard fractional

derivatives of a constant, are not generally zero.
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28, 1)(x) = —— (log § @ D@ = — (10g?)
(Dg+ )(x)—m(oga) and (D )(x)—m(08;>

where 0 < R(a) < 1 (2.68)

Property 2.3
Let a, B € C such that R(a) > R(B) >0
a) f0<a<b<owand1<p < o, then for ¢ € LP(a, b)
D3, JE9 = dar 9 and Dy_Jf 0 =3, e
If @, B € C such that R(a) > R(B) > 0, then

J&E 0= and  JE Il o= (2.69)
If 8 =m €N, then
Dardare =Jax™e and Dy Jp_@ =Ty~ "¢ (2.70)

b) IfuecC ceR, a=0andb = oo, then for ¢ EX?(R-l-)
0+ uJ0+ u® = (.70+ “QU m(/l) > C,
8, 9%0 =35Fe R > —c (2.71)
If 3 =m €N, then

0+ u(70+ u® = (70+,Zl(,0 ER(,M) >,
DM IE 9 =I5 R(u) > —c (2.72)
When u =0and m €N,

DF 950 =3Fp c<0, DEITQ=3g"Fp >0 (2.73)
DI =J5 e ¢ <0, DJ%@=J%™p ¢c>0 (2.74)

24 Applications of Fractional Derivatives
In this section, some few applications out of the vast applications of fractional

calculus are studied.

2.4.1 Viscoelasticity
Hooke gave a connection between stress and strain for solids as
a(t) = Ee(t) (2.75)

In the case of Newtonian fluids

18



de(t)
dt

Initially, Hooke’s (elastic) and Newton’s (viscous) elements were

o(t)=n (2.76)

combined with the aim of combining the properties of both. These give
Maxwell’s model of viscoelasticity as well as Voigt’s model. However, both
these models have obvious disadvantages.

In the case of the Maxwell model, described by

de ldo 4 o 277
dt Edt 7 @2.77)
it implies
de
o = const = pri const (2.78)

That is, if stress is constant, then the strain grows infinitely. This does
not correspond to experimental observations.

On the other hand, Voigt model is given by

J=E6+r]E (2.79)
dt

It follows that

€ = const = o = const (2.80)

This means that there will be no stress relaxation. Such problems
cannot be overcome with the integer-order models.

But it is natural to suppose, as suggested by G. W. Scott Blair, that for
“intermediate” materials stress may be proportional to the stress derivative
of “intermediate” (non-integer) order:

o(t) = E(D§,€e)(t) 0<ax<1 (2.81)

Where E and «a are material-dependent constant.

A. N. Gerasimov suggested a similar generalisation of the basic law

of deformation using Caputo fractional derivative

o(t) = k(°D%e)(t) (2.82)
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Figure 4.1: Schiessel and Blumen'’s fractance-type model

2.4.2 Ultrasonic wave propagation in human cancellous bone

Cancellous bone, otherwise known as trabecular bone or spongy bone, is one
of two kinds of osseous tissue which form bones. Unlike other type of
osseous tissue such as compact bone (cortical bone), it has a greater surface
area but less dense, softer, weaker, and less firm. It usually occurs at the ends
of long bones, proximal to joints and within the interior of vertebrae.

As shown seen in section 2.4.1, fractional calculus is used to describe
the viscous connections between fluid and solid structure. Reflection and
transmission scattering operators are derived for a slab of cancellous bone in
the elastic frame by using Blot’s theory. Experimental results are compared
with theoretical predictions for slow and fast waves transmitted through

human cancellous bone samples.
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Lacunae containing osteocytes Osteon of compact bone

Trabeculae of spongy

hone
Osteon = Haversian
canal
Periosteumn

Volkmann's canal

Figure 4.2: Cancellous bone

2.4.3 Neurophysiology of eye movements

A model on the neurodynamics of the vestibulo-ocular reflex (VOR)
designed to keep the retinal image stable by producing eye rotations which
counterbalance head rotations was described by Robinson. At lower
frequencies (less than 0.3Hz), the dynamics of canal afferents A(s)and
vestibular and prepositus nuclei neurons V(s) reflect those of the canal
receptors, and frequency response of neural discharge rate relative to

angular velocity (s) can be described as
21



V(s)  s1y
a(s)  (st,+1)

(2.83)

where s = iw = 2miv is the Laplace transform variable with w in radians/s
and v in Hz, 7, is the vestibular time constant. Motoneurons (M) dynamics
could offset the mechanical lag of the eye when the frequency is above
0.3Hz, and thus, the frequency response of neural discharge rate relative to
eye angular position (E) is approximately equal to a first-order leading

function as
M(s)
E(s)

where 1, is the eye time constant.

=57, +1 (2.84)

Anastasio realised some problems using usual integer-order models
to describe the behaviour of premotor neurons. To resolve these problems,
he suggested a fractional-order model in terms of the Laplace transform R(s)
of the premotor neuron discharge rate r(t) and the Laplace transform Q(s) of

the angular velocity of the head in the form

R(s) Ti(sTp + 1)s"4™%

G(o) = a(s) (s11+ 1)

(2.85)

where 7, and 7, represent time constants of the neuron model, a; and «; are,

respectively, fractional-order derivative and integral of the model.

2.4.4 Electrochemistry and tracer fluid flows

Oldham and his associates have given substantial attention to a new
approach they have established to the solution of electrochemical problems
that deal with diffusion phenomena. Subsequently, Goto and Ishii developed
the idea of semi-differential electro-analysis with the fractional-order
diffusion equation that may occur in other fields including diffusion, heat
conduction, and mass transfer. Oldham and Spanier also proposed the
replacement of the usual integer-order called Fick’s law that describes the
diffusion of electro-active species toward the electrodes by a fractional-order

integral law in the form
22



(2.86)

(Dod?1)(1) = KC, I{1 - C(g' t)} LS {1 _ M}l

o )R Co
where C, is the uniform concentration of electro-active species, k is the
diffusion coefficient, and K and R are constants.

This diffusion problem can be applied to modelling diffusion of
atmospheric pollutants by taking C(z,t) to be the concentration of pollutant

at height z at time t so that C(z,0) = 0.
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CHAPTER 3

REVIEW OF CAPUTO-HADAMARD FRACTIONAL DERIVATIVES
AND FTFC IN CAPUTO SETTINGS

3.1 Caputo-Hadamard Fractional Derivatives

Definition 3.1
The Caputo-type modification of the left-sided and right-sided Hadamard

fractional derivatives are defined respectively by

n-—1 6k k
o(0) - kz P9 (105 ] IRV
=0

CDg+(p(x) = Dg+

n-1
—1Dkskp(b b\*
CDF_p(x) =DF_ |o(t) — kz %(108?) ](X) (3.2)
=0

Where R(a) =0, n = [R(a) + 1] and ¢(x) € AC{[a,b] 0<a<b < oo,

In particular, if 0 < R(a) < 1, then
“Di+o(x) = Do) — p(@)](x) (3.3)
“Dp_p(x) = D5_[p(t) — (b)](x) (3.4)

Theorem 3.1
Let R(a) =20, n=[R(a)]+1 and ¢ € ACj[a,b] 0<a<b <. Then
D%, p(x) and “Df_¢(x)exist everywhere on [a, b] and

a) Ifa ¢ N,

D) = res | (1083)

n—a-1

dt
§p(t) = Ja+“6"e(x) (3.5)
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N B (_1)n b t n-a-1 . dt
“Df_p(x) —mfx (log;) s <P(t)7

= (=D"Jp=%6"p(x) (3.6)

b) If a =n €N,,
“Dirp(x) =8"p(x),  “Dp_e(x) = (—D"6"e(x) (3.7)
In particular,
“Da+9(x) = “Dp-_p(x) = 9(x) (3:8)
Proof:
a) Let a € N,. Using equations (2.56) and (3.1) and using integration by

k
part by taking u = @(t) — X35 Q) (log Z) and

k!

n-a—1
dv = (log %) —(p(tt)dt
we obtain
C:Dg#/’(x) =

n-1 x

(x %)" {[_ - i . (log— < () — > (Sk(p(a) (10g£)k>]
+- i - Jax (log%)n_a [&D(t) - nz_:l 6k<£!(a) (log£>k] %}

a

k=1
d\"L x n-a S 6kp(a) . o\K]dt
() [ o) o0 - 3 D e |
= jxl"(nl a)j log _a_1(5”‘1<0(t)—5"‘1<p(a))%

Integrating by part once more again with the same choice of dv, we
obtain equation (3.5). Equation (3.6) is proved in a similar way.

b) Let @ = n € Ny, then

1

— sk k
o) - > 0D (10 1) ] ()
0

S

C®Z+§0(x) = D+

&
1]

i.e.
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<P(a) x)k

p(x) = I3 “Diro(x )+Z ogE
ﬁf (log )n_ 61)2+<P(t)—+z6 v(a) ogg)k

From equation (1.16), we obtain “D%, ¢(x) = §"¢(x). In a similar way,

we obtain the second relation in equation (3.7).

Lemma 3.1
Let R(a) > 0,n = [R(a) + 1] and ¢ € Cla, b].

a) If R(a) # 0 or @ € N, then

DI (L)) = (), “DF_(JF-@)(x) = p(x) (3.9)
b) If R(a) € N and R(a) # 0 then
D )0 = o) - T (10g7)" 10)
a+1 n b n-a
CDE_(JIE)x) = () — (—g‘;()) (10g2) (311)
Lemma 3.2
Let ¢ € AC{[a, b] or C§la,b] and a € C, then
n-—1 6k X
95 (D) = 90 - Y 0D (0g?) @12)
k=0
R IOV
IE DL = ) — ¥ 0 (1og?) (3.13)
k=0
Proof:

The proof of (3.12) and (3.13) follows from the identities

DI, p(x) = Ji % (x) and “Df_p(x) = J5-%@(x) respectively.

Property 3.1
Let R(a) = 0,n = [R(a)] + 1 and R(B) > 0, then
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cpe, (1ogf)ﬁ_1 _ %( ogg)ﬁ_a_l RPB)>n  (3.14)
p-1 L—a-1
Cpg_ (logg) = %(log;) R(PB) >n (3.15)

x\ K b\*
Ca\a s — Cr\a _ — — —
D¢, (log a) =0, ‘DL (logx) =0 k=0,1,..,n—1 (3.16)

In particular, when g =1

(‘D4,1)=0, (“D¥1)=0 (3.17)
On the half-axis R*, the Caputo-Hadamard fractional derivative take the
form
1 x X\l dt
Cpya — - n =
500 = gy | (7)) FeOF  (18)
D) = f . (1 t)n_a_l 5 (t) % 3.19
_(px_F(n—a)x %8y PR (3.19)

3.2 FTFC in Caputo Settings
The fundamental theorem of calculus (FTC) states that the two fundamental
operations in calculus, differentiation and integration, are inverse to one
another. i.e. when we first integrate a continuous function and then we
differentiate, the original function is obtained.
Dol (x) = ¢ (x) (3.20)
Where D = :—x and oLy (x) = [ p(t)dt.
Consequently, one can compute integrals by using an antiderivative of the
function to be integrated what is otherwise known as the second
fundamental theorem of calculus.
alpDo(x) = p(b) — ¢(a) (3.21)
In fractional case, if Riemann-Liouville integrals and derivatives are to be
used [10, 16], (3.21) cannot be generalized, since
alpDar @ (x) # ¢(b) — ¢(a) (3.22)
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The FTC talks about how the integral of a function ¢ over the interval [a, b]
can be calculated by finding an antiderivative &, i.e., a function, whose
derivative is ¢. The FTFC for finite interval [a, b] can be generalized in the

Caputo settings as follows [19].

Theorem 3.2
(@) Let ¢(x) be a real-valued function defined on a closed interval [a, b].

Let ®(x) be the function defined for x in [a, b] by

®(x) = I3+ 9 (x) (3.23)

where [, is the Riemann-Liouville fractional integral defined by (xx).
Then

‘D@ (x) = ¢(x) (3.24)

for x € (a, b), where D%, is the Caputo fractional derivative.
(b) Given a real-valued function ¢(x) defined on a closed interval [a, b],
then if ®(x) is a function given by (3.23), then
Ig+o(x) = F(b) — F(a) (3.25)
Observe that (3.25) may be considered as fractional Newton-Leibniz

formula.
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CHAPTER 4

ON CAPUTO MODIFICATION OF THE HADAMARD FRACTIONAL
DERIVATIVES

4.1 FTFC in the Caputo-Hadamard Setting

The fundamental theorem of calculus FTC

x b
%faf(t)dt = f(x) and L dt%F(t) =F(b)-F(@=F@®I5, (41

replaces tedious computations of the limit of sums of rectangular areas with
a more easier way of finding an anti-derivative. The first part of the theorem
says that integration can be reversed by a differentiation for a continuous
function. The second part allows one to find the definite integral of a
function using any of its anti-derivatives.

In the fractional case, Riemann-Liouville as well as Hadamard
integro-differentiation (for example) do not have generalisation of the
Fundamental Theorem of Fractional Calculus (FTFC) in the form of (4.1). i.e.

WIEDEDE) % 9ob) — (@), (IEDEPIX) # 9(@) —p(b)  (42)
(adp Da+@) () # @(b) — @(a), (aJp Dp-9)(x) # @(a) — ¢(b) (4.3)

. d\" a\"
This is because the differential operators D™ = (E) and 6" = (x E) used

in the definitions of Riemann-Liouville and Hadamard fractional derivatives
respectively, appear outside the integrals and therefore as those operators
and the integrals are not commutative, the semi-group properties for
integrals (2.94) and lemma 2.3 of [2] cannot be applied. i.e.

g+ Davp)(x) = 18 D gy “ o (x) # 131 1gx* D" o (x) (4.4)

(Ja+Da+@)(0) = Ja+6"Jai “@0(x) # Ja+Jar* 6" @ (x) (4.5)
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However, from theorem 2.3 of [2], we have

= (8" (Jae) ) (@)
(Jd+Da+@)(x) = @(x) — z ( [(a—j+ 1))
=1

xX\%J

(1og —) (4.6)

a

In particular, if 0 < R(a) < 1, thenn =1 and

(Jaz*p) (@) (10 x)“‘l

(96, D)) = 9 () — =17 (108, (47)
If «a =1, then

(Ja+Da+ @) (x) = (x) — ¢(a) (4.8)
which implies

(a5 Da+9)(x) = ¢(b) — () (4.9)

Thus, (4.7) cannot be considered as the fractional generalisation of FTC in the
form of (4.1). Similarly, using lemma 2.5 of [2], we can see that Riemann-
Liouville fractional integrals and derivatives cannot be used to generalise
FTFC in the form of (4.1) as well.

On the other hand, replacing the Riemann-Liouville fractional

derivative with Caputo fractional derivative, it was shown (for example, [6]
and [13]) that
(al5 D+ ) (x) = p(b) — 9(a) (4.10)
Note: In most cases, I will only be using the left-sided definitions of
fractional derivatives or integrals where the definitions are quite
similar to the right-sided ones.
Therefore (4.10) can be considered as a fractional generalisation of FTC in the
form of (4.1).
In the next theorem, we give the FTFC in the Caputo-Hadamard
setting.
Theorem 4.1: Fundamental theorem of fractional calculus
Let ¢ € C with R(a) = 0 and n = [R(a)] + 1. Let ¢(x) € AC§[a, b],
0<a<b<oo,

a) If &(x) =J& o) or ®(x) = J5_p(x) Vx € [a, b], then
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D+ @) = o), “Dp_P(x) = p(x) (4.11)
b) oIy ‘DG P(x) = @(b) — P(@),
(JEEDE_D(x) = B(a) — D(b) (4.12)
Proof
a) Using lemma 2.4 of [8], it can be seen that the Hadamard fractional
integrals and the Caputo-Hadamard fractional derivatives are inverse
operations.
(“Da+Ja)e(x) = 9(x), (“Dp_Jp)e(x) = ¢(x) (4.13)
Thus, if ®(x) = J&@(x) or ®(x) = Jp—¢p(x) then we have (34).
b) Using (3.5), we have
J&+ DG P () = Jg+ T * 8" P (x) (4.14)
In this case we can apply the semi-group property (2.69), unlike in the cases
of Hadamard and Riemann-Liouville fractional derivatives where §" and D"
respectively, are located outside the integrals.
Therefore
Ja+ D+ P(x) = g4 6" P (x) (4.15)
In particular, if n = 1, then
G+ DG P(x) = Ja4 81O (x)

_ LA
T, t dt

X d
=Jadtad>(t) = &(x) — P(a)

b q
= LJECDE () = f dt - 0() = () — P(@)

Alternatively, using lemma 2.5 of [8], we have

N |
®(a) gx)] (4.16)

&, DL, d(x) = D(x) Z o 5(

In particular, if 0 < R(a) < 1, thenn = 1 and ®(x) € ACs[a, b] or ®(x) €
Csla, b]. Thus
2 D P(x) = P(x) — DP(a) (4.17)
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Hence ,J5 D%, ®(x) gives (4.12). The right-sided case can be proven in a

similar way.

Lemma 4.1
Let ¢ € C with R(a) = 0 and n = [R(a)] + 1. If p(x) € AC§[a, b], where
0<a<b< oo, then

“Dgr0(&) (l X)“

T(a+1) a

" §€(ax) or

p(x) = ¢(a) +

£ € (x,b) (4.18)

C\a a
o) = p(b) + =28 (105 )

T(a+1) x

x
This is where we make the first use of theorem 2.

Proof
Using (2.50) and (4.17), we obtain

1 x a-1 dt
s f (l0g%)  DEp(®F = 9@ - 9@

where the function is ‘D%, ¢(t). Applying the Mean Value Theorem for
integrals [14, page 287] we have

a—1

1 d
DO | (087) ToeW-e@  fe@n @19

The left hand side of (4.19) contains the Hadamard fractional integral of the
function ¢(t) = 1, i.e.,, 3+ (1) . Then by definition implies § = 1 and thus
(4.19) becomes

“DE, a
r(a—f(f))( Og% =¢(x) —¢(a) £ € (ax) (4.20)

Rearranging (4.20) gives (4.18). This completes the proof.

Note that the right-sided case can also be proven in a similar way.

Lemma 4.2
If « € CwithR(a) >0,n =[R(a)] +1and k,m € N. p(x) € AC§[a, b],
0<a<b< o, then
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°pg, )™ va
@5 D500 = L (10gT) e @n) o
Cpe ym b ka
G = it D 0g ) fewh) @2

Proof
The proof is similar to the proof of lemma 4.1. Observe that the sequential
integral

(&) = J&I&s - I& (4.22)

k—times
can be written as the J¥¢ with order ka by the semi-group property (2.69).
Thus,

-1

1 x x\ ke dt
G DI = s | (oBT) DL T (4.23)

Applying mean value theorem for integral and simplify as before we obtain

(4.21).

Lemma 4.3
R(a) = 0and n = [R(a)] + 1, if ¢ is a function such that *D%, ¢ and D%, ¢

exist, then

n-1
5 ¢(a) xy\ k@
Cn\a — \a _ S —
Disp () = D00~ ) T i) (log>) (424)
and when 0 < R(a) < 1 then
¢(a) x\ ¢
‘Do) = Do) - - (loga) (4.25)

Proof
Using (2.56) and (3.1), we obtain

-1

S

g

Sk k
D () = Vs () — Y (% (10g:) ) (x)

— §%p(a) T(k+1) X\ K~
LThk+D Tk—a+1D ( OgE)

==
I

0

S

= Dg o) —
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Thus we have (4.24). Then if 0 < R(a) < 1, implies n = 1 and from (4.24) we

have (4.25). We can get an immediate consequence of lemma 4.3.

Corollary 4.1
Under the conditions of lemma 4.3
“DE o (x) = DG (x) (4.26)
if and only if ¢ has an n-fold zero at q, i.e., if and only if
8p(a)=0, j=01,..,n—1 (4.27)

The proof is straightforward.
Now, it is known [8, theorem 2.2] that if R(a) = 0 and
a & Ny =1{0,1,2 ...} such thatn = [R(a)] + 1, then
(D% p(a)=0 and Df @) =0 (4.28)
This fact disallows us to obtain (for example) a fractional Taylor series using
the fractional derivatives evaluated at these points. Otherwise, we can have a

series expansion in the form

C (CDL) 0(a) /, xyie
p(x) = ;W(loga) + Ry, (a,x) (4.29)

where

Rm(a, x)

Cpya (m+1) (m+1a
_ (*Dg4) 40(5)( g) £ € [a,x] (4.30)

" T(m+ Da+1)
is the remainder of the terms in the expansion.
However, we may relax the conditions on ¢ in corollary 4.1 as in the

next result.

Lemma 4.4
Let R(a) = 0 and n = [R(a)] + 1 such that a & Ny and ¢(x) € ACj[a, b].
More so, suppose that %5 +¢(x) is continuous on [a, b] for some B € (a, n).

Then “D%, ¢(x) is continuous and ‘D%, ¢(a) = 0.

Proof

Using (3.5), we obtain
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‘DL p(x) = Jar 0" (x) = Jhy “Jav’ S"9(%) = Ja; ““ Do, 9 (%) (431)
Thus, D%, ¢ (x) is continuous and D%, ¢(a) = J°7DF p(a) = 0 by (4.28).

This completes the proof of the lemma.

4.2 Semigroup Properties of Caputo-Hadamard Operators
We present the first proof of the semigroup properties of Caputo-Hadamard

fractional derivatives.

Theorem 4.2 (semigroup property for Caputo-Hadamard derivatives)
Let p(x) € C§**™[a,b], 0 < a < b < . Moreover, leta > 0, = 0 such that

n—1<a<n m-1<pB<m and a+ f <n.Then

‘DZ, DL, p(x) = DL p(x) (4.32)

Proof
Without loss of generality, let m > n. Thus, n =n+k, k € {0,1,2, ... }. Since
a + f < m + n, then by definitions and using semigroup properties for

Hadamard fractional integrals (2.69) we have
“DE D0 (x) = T O™ Dy p () = T35 87Ty M ()
=Jn a5n(7n+k .36n+k<p(x) = Jie5n " —ﬁJCIlc+ 5"k (x)
= JE DL,k S ™ 0 (x) = 307 P D03k e ()
Then using (4.6) with y(x) taken as J¥, 6 "+k<p(x) we obtain

C@(x C®ﬂ+(,0(X)

= Jr P | gk, 67 (x)

‘ (6” i BJ&‘&”*"QD)@)) x\ B
]z ME—j+ 1 (1og7)
n—(a+p) C 5n ]C:Dﬁ (p(a)) x\B—J
= Jas Jar 8" e (0 Z —j+ 1) (logE)

35



= 30 “P(gk 5" p()) by (428)

Jn+k (a+ﬁ)5n+k(p(x) — CiDa+ﬁ<p(x)

This ends the proof.

Remark 4.1
The same result cannot be obtained in general if Hadamard fractional
derivative were used instead. To verify this, suppose for example we
have the function ¢(x) = 1 with a = %, f = 1. Thus by definitions, the
left hand side gives
,2D8,(1) = D261 (1) = 0
The right hand side would be

5 1 3
D,/3(1) = 629,2(1) = 62— (log > )’ =0
r(3)
Where § = x :—x. However, one can easily see that if the Caputo-

Hadamard derivative were used, each side gives 0.

In the next lemma, we give the generalisation of theorem 4.2.
Lemma 4.5
For ¢(x) € Cila,b], 0 <a<b < oo,
CDE DT . CDT(x) = CDE T () (4.33)

Wherea; 20, nj_; <a; <n; and Y. a; <nVj={12,..m}

Proof
The proof follows immediately from theorem 4.2 and using mathematical

induction.
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Theorem 4.3
Let p(x) € Cila,b], 0<a<b<wanda €C, B €C suchthatR(a) >
0,R(B) = 0. Then

DL IP () = J5 %p(x) and DE_JE_p(x) = I p(x) (4.34)

Proof
DL 9 () = JE48" I 0 (0) = 3246735 T e ()
= a+a:Dﬁ Zﬁ " @(x)
Then from (2.7.39) of [2] we obtain
‘DI p() = Tir Tar "9 (0) = 35 "9 ()
Observe that theorem 4 is the generalisation of lemma 2.4 (i) of [8]

where 8 = a.

Lemma 4.6
Leta € Cwith 0 < R(a) < 1and k € N. Let p(x) € AC5[a,b],0<a < b < o.
Then

&NV (EDE) " Vo(x) = (4D (DD () (4.35)

Proof
@E) V(DG Vo (x) = (I5:)* I8 DG (CDF ) o (x)
= (98 ((CDEN () — (DL 0 (@)
(by (4.17) with @(x) = (‘D) (x))
= (J&) (“Dg) e (x)
(since (‘D )kp(a) =0 Vk=1,23..)
Both theorem 4.2 and lemma 4.5 deal with the reduction of higher
fractional order differential systems to lower order systems for Caputo-
Hadamard fractional derivatives. However, in some instances it may also be

useful to involve the Caputo-Hadamard and the Hadamard differential

operator.

37



Lemma 4.7
Let ¢(x) € Cg[a, b] forsomen € Nand 0 < a < n. Then

Da: ¥ DFp(x) = 6" (x) (4.36)
Where § = x ;—x.

Proof
1. If @ € N, then by (3.5) and from (2.7.13) of [2], (4.36) becomes
S5 % (x) = 6™ (x).
2. Otherwise since n = [R(a)] + 1, then by definitions

oA C®g+(p(x) — 5[‘.R(n—a)]+1(76[15:{_(Tl—a)]+1—(n—a)(7([191(a)]+1—a8[9i(a)]+1(p(x)

= sn-R@+1 92 (5[m(a)]+1<p(x))

= gn- (@l D292 (S@IH () = 5292, (870 () = 8"p()
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CHAPTER 5

CONCLUSION

The usual integer-order integrals and derivatives are not enough to handle
most of nowadays real-world scientific and engineering phenomena. For this
reason and the likes, attention was paid to the 317-year-old fractional
calculus and since then, vast researches and publications were made in the
field leading to various approaches of analysing and solving real-world
problem:s.

Fractional calculus started to be considered deeply as a powerful tool
to reveal the hidden aspects of the dynamics of the complex or
hypercomplex systems [9,10,13]. Finding new generalization of the existing
fractional derivatives was always a main direction of research within this
field. These generalized operators will give us new opportunities to improve
the existing results from theoretical and applied viewpoints. Although the
works in [2,3,9] played important roles in the development of the fractional
calculus within the frame of the Hadamard derivative, nevertheless, vast and
vital work in this field is still undone.

When the Caputo-Hadamard fractional derivatives were introduced
in [8], not much about the modified derivatives were studied despite the fact
that the derivatives have many advantages (as seen in this thesis) over the
Hadamard derivatives. As seen in the beginning of the thesis, Hadamard
fractional derivatives cannot be used to generalise the FTFC whereas the

Caputo-Hadamard derivative works perfectly. The FIFC is then used in
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formulating other important results whose applications to Fractional Vector
Calculus in the study of Green’s theorem, Stoke’s theorem and so forth, as
well as in the study of anomalous diffusion is a further work. Many non-
existent results such as the semigroup properties for the modified
derivatives are studied in details.

Some interesting properties of Caputo-Hadamard derivatives allow
us to formulate some important results. Among such results is the
formulation of FTFC within the frame of this derivative, semigroup
properties of Caputo-Hadamard derivative, D%, ¢(a) = 0 and so on. The
third result for R(a) =0, a € N, ={0,1,2 ...} and n = [R(a)] + 1, [8, theorem
2.2] disallows us to obtain (for example) a fractional Taylor series using the

fractional derivatives evaluated at these points. Otherwise, we can have a

m (628 0(a)

ja
series expansion in the form ¢(x) = Y72, TGarD) (log g) + R,, (a, x) with

(¢22,) " Vo)

remainder R,,(a,x) = r((m+va+1)

(m+1a
(logg) ¢ € [a,x]. However, we

have seen that the condition on the function ¢ may be relaxed. Lastly, for
p(x) € Cgla,b], 0<a<b<oo, and by the semigroup property of the

Caputo-Hadamard derivative (4.32), we can have the generalisation
CDLD2 .. DM (x) = Cfbgflajq)(x), where @; >0, nj_; <a; <n; and
Yz <nvj={12,..m}

The research in this thesis has been published in Advances in

Difference Equations journal of Springer Open Access database (see

appendix j for a sample page).
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Appendix K: Sample List of Notations

NOTATIONS
150,15 @ Riemann-Liouville fractional integrals.
D&.¢p, Dy Riemann-Liouville fractional derivatives.

D& ¢, °DF @  Caputo fractional derivatives.

JE& o, Ji-@ Hadamard fractional integrals.

DE, 0, Df_ Hadamard fractional derivatives.

Jo+u®, %9  Hadamard-type fractional integrals.
0+u®, D% ¢  Hadamard-type fractional derivatives.

D%, 0, “Df_¢@ Caputo-Hadamard fractional derivatives.
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