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ON THE CHRISTENSEN-WANG BOUNDS FOR THE GHOST

NUMBER OF A p-GROUP ALGEBRA

FATMA ALTUNBULAK AKSU AND DAVID J. GREEN

Abstract. Christensen and Wang give conjectural upper and lower bounds for the
ghost number of the group algebra of a p-group. We apply results of Koshitani and
Motose on the nilpotency index of the Jacobson radical to prove the upper bound
and most cases of the lower bound.

1. Introduction

Let G be a group and k a field of characteristic p. A map f : M → N in the stable
category stmod(kG) of finitely generated kG-modules is called a ghost if it vanishes

under Tate cohomology, that is if f∗ : Ĥ
∗(G,M) → Ĥ∗(G,N) is zero. The ghost maps

then form an ideal in the stable category; Chebolu, Christensen and Mináč [4] define
the ghost number of kG to be the nilpotency degree of this ideal.

If G is a p-group, then by [3] the ghost ideal is nontrivial – that is, the ghost number
exceeds one – unless G is C2 or C3. But the exact value of the ghost number is only
known in a few cases; for example, it is not yet known for the quaternion group Q8.

In [5], Christensen and Wang give conjectural upper and lower bounds for the ghost
number of a p-group. Our main result establishes most cases of this conjecture:

Theorem 1.1. Let G be a p-group of order pn, and k a field of characteristic p. Then

(1) ghost number(kG) ≤ ghost number(kCpn).
(2) If G is neither extraspecial of exponent p for odd p, nor extraspecial of order p3

and exponent p2 for p ∈ {3, 5}, then

ghost number(k(Cp)
n) ≤ ghost number(kG) .

We do not know whether the lower bound holds in the excluded cases. The upper
bound is only rarely attained:

Proposition 1.2. Let G be a group of order pn, and k a field of characteristic p. If G
is non-cyclic but has the same ghost number as Cpn, then p = 2; and G is one of the
groups C2 × C2n−1, Q2n , SD2n or Mod2n.

Remark 1.3. By work of Chebolu, Christensen and Mináč – specifically, Theorem 5.4
and Corollary 5.12 of [4] – it follows that

ghost number(k(C2 × C2n−1)) = 2n−1 = ghost number(kC2n) .
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We do not know whether the other groups in Proposition 1.2 attain the upper bound.

The nilpotency index of the radical J(kG) is the smallest positive integer s such that
J(kG)s = 0. Following Wallace [9], we denote the nilpotency index of the radical
by t(G). We shall prove Theorem 1.1 using known properties of t(G). The first link
between ghost number and nilpotency index is given by the following result:

Theorem 1.4 ([4], Theorem 4.7). Let k be a field of characteristic p and let G be a
finite p-group. Then

ghost number(kG) < t(G) ≤ |G| .

For most p-groups we can use t(G) to strengthen the lower bound in Theorem 1.1 (2):

Proposition 1.5. Let k be a field of characteristic p. If G is a p-group of order pn

which is not elementary abelian, and moreover

• G is neither an extraspecial 2-group nor an almost extraspecial 2-group;
• G is not extraspecial of exponent p for p odd;
• G is not p1+2

−
for p ∈ {3, 5};

• G is neither C4 nor C9,

then ghost number(kG) ≥ t((Cp)
n).

2. The upper bound

Let us recall the ghost number of a cyclic group.

Theorem 2.1 ([4], Theorem 5.4.).

ghost number(kCpn) =

⌈

pn − 1

2

⌉

=

{

2n−1 p = 2
p
n
−1

2
p odd

.

Proof of Theorem 1.1 (1). Let G be any p-group of order pn. Theorem 1.4 tells us that

ghost number(kG) ≤ t(G)− 1 .

Motose and Ninomiya [8, Thm 1] demonstrated that if t(G) = |G| then G is cyclic;
and Koshitani [6, Thm 1.6] showed that if n ≥ 2 then the following three statements
are equivalent:

(1) t(G) = pn−1 + p− 1
(2) pn−1 < t(G) < pn

(3) G is not cyclic, but it does have a cyclic subgroup of index p.

If p = 2 and G is not cyclic then by Koshitani’s result and Theorem 2.1

t(G)− 1 ≤ 2n−1 = ghost number(kCpn) .

If p is odd and G not cyclic, then t(G)− 1 ≤ pn−1+ p− 2. This is strictly smaller than
ghost number(kCpn) =

p
n
−1

2
, except for the one case pn = 32. But the cyclic group of

order 9 has ghost number 4, whereas C3×C3 has ghost number 3 by [5, Thm 1.1]. �

Proof of Proposition 1.2. Inspecting the proof of Theorem 1.1 (1) we see that p = 2,
and that G has a cyclic subgroup of index p. By the classification of such groups (see
e.g. [1, 23.4]) it follows that G is either D2n or one of the stated groups. But D2n has
ghost number 2n−2 + 1 by [5, Cor 1.1]. �
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3. Nilpotency index and a lower bound

The following result is a special case of [5, Thm 4.3]:

Theorem 3.1 (Christensen–Wang). Let G be a finite p-group and k a field of charac-
teristic p. Suppose that C ≤ Z(G) is cyclic of order p. Then

ghost number(kG) ≥ t(G/C) .

Proof. In [5, Thm 4.3], take Mn to be the trivial kC-module. Then the induced kG-
module k(G/C) has ghost length equal to its radical length. But its radical length is
t(G/C), and by definition the ghost number is the largest ghost length. �

One immediate corollary generalizes [4, Corollary 5.12]:

Corollary 3.2. Let H be a 2-group and G = H × (C2)
r for r ≥ 1. Then

ghost number(kG) = t(G)− 1 = t(H) + r − 1 .

Proof. The Jennings series of G is given by

Γs(G) =

{

Γ1(H)× Cr

2 s = 1

Γs(H) otherwise
.

By Jennings’ Theorem (Theorem 3.14.6 in [2]) it follows that t(G) = t(H) + r. For
the first inequality it suffices to consider the case r = 1; so G = H × C with C ∼= C2.
Theorem 3.1 tells us that

ghost number(kG) ≥ t(G/C) = t(H) = t(G)− 1 .

Now apply Theorem 1.4. �

4. Proposition 1.5: the (almost) extraspecial case

Recall that a p-group G is extraspecial if Φ(G), [G,G] and Z(G) coincide and have
order p; and almost extraspecial if Φ(G) = [G,G] has order p, but Z(G) is cyclic of
order p2. That is, an almost extraspecial group is a central product of the form H ∗Cp2,
with H extraspecial. The following lemma is presumably well known.

Lemma 4.1. Suppose that G is a p-group of order pn whose Frattini subgroup has
order p. Then

t(G) =

{

(n+ 1)(p− 1) + 1 if G has exponent p

(p+ n− 1)(p− 1) + 1 if G has exponent p2
.

In particular, if p = 2 then t(G) = n + 2.

Proof. Consider the Jennings series Γr(G). We certainly have Γ1(G) = G and Γ2(G) =
Φ(G). If the exponent is p then Γ3(G) = 1, whereas if the exponent is p2 then Γp(G) =
Γ2(G) and Γp+1(G) = 1. The result follows by Jennings’ Theorem (Theorem 3.14.6
in [2]). �

Recall from [8, Thm 1] that t(Cn

p
) = n(p− 1) + 1.
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Proposition 4.2. Let G be a 2-group of order 2n whose Frattini subgroup has order 2.
If G is neither C4 nor extraspecial nor almost extraspecial then

ghost number(kG) = n + 1 = t(Cn

2 ) .

Proof. By assumption, G has the form G = H × C with C ∼= C2, and Φ(H) cyclic
of order 2. So ghost number(kG) = t(H) by Corollary 3.2, and t(H) = n + 1 by
Lemma 4.1. �

Proposition 4.3. Let p be an odd prime and G be a p-group of order pn whose Frattini
subgroup has order p. Then

ghost number(kG) ≥ n(p− 1) + 1 = t(Cn

p
)

except possibly in the following cases:

• G is extraspecial of exponent p, for any odd p;
• G is extraspecial of order p3 and exponent p2 for p ∈ {3, 5}.
• G = C9, with ghost number 4 and t(C3 × C3) = 5.

Remark 4.4. In the proof we use the Proposition 4.9 from [4]: If H is a subgroup of a
finite p-group G, then

ghost number(kH) ≤ ghost number(kG) .

Proof. By assumption we have Φ(G) ≤ Ω1(Z(G)). Since Φ(G) 6= 1 we have n ≥ 2.
Step 1: Reduction to the case Φ(G) = [G,G] = Ω1(Z(G)).
If Φ(G) � Ω1(Z(G)) then there is C ≤ Z(G) with |C| = p and C ∩ Φ(G) = 1, hence
|Φ(G/C)| = p and so by Theorem 3.1 and Lemma 4.1

ghost number(G) ≥ t(G/C) ≥ n(p− 1) + 1 .

So we may assume that Φ(G) = Ω1(Z(G)). If [G,G] 6= Φ(G) then G is abelian; and
therefore cyclic of order p2, since Ω1(G) = Φ(G). By Theorem 2.1 the ghost number is
p
2
−1

2
; for p > 3 this is at least 2p− 1.

Step 2: Reduction to the case G extraspecial.
Extraspecial means that Φ(G) = Z(G) = [G,G]. So if G is not extraspecial then
Φ(G) � Z(G), so Z(G) ∼= Cp2 and there is a maximal subgroup E < G with G =
EZ(G) and E ∩ Z(G) = Φ(G). It follows that E is extraspecial, with Φ(E) = Φ(G).
As E is extraspecial it has a maximal subgroup of the form H × Cp, with Φ(G) ≤ H .
Then L := HZ(G)× Cp is maximal in G, and by Theorem 3.1 and Remark 4.4

ghost number(kG) ≥ ghost number(L) ≥ t(HZ(G)) .

As HZ(G) has order pn−2 and exponent p2, Lemma 4.1 says that t(HZ(G)) = (p +
n− 3)(p− 1) + 1.
Step 3: Reduction to the case G ∼= p1+2

−

We may asume that G has exponent p2, so G ∼= p1+2r
+ . If r ≥ 2 then G has a maximal

subgroup of the form H × Cp, where H has order pn−2 and exponent p2. The result
now follows by the argument of the previous step.
Step 4: The case G ∼= p1+2

−

G has a subgroup of the form Cp2, so ghost number(kG) ≥ ghost number(Cp2) by

Remark 4.4. But Cp2 has ghost number p
2
−1

2
, which exceeds 3p− 2 for p ≥ 7. �
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5. The lower bound

Lemma 5.1. Let G be a p-group of order pn. If |Φ(G)| > p, then

ghost number(kG) > n(p− 1) + 1 = t(Cn

p
) .

Proof. Let C ≤ Φ(G) ∩ Z(G) be cyclic of order p. Then ghost number(kG) ≥ t(G/C)
by Theorem 3.1. Since G/C has order pn−1 and is not elementary abelian, we have
t(G/C) ≥ n(p− 1) + 1 by [7, Thm 6]. But t(Cn

p
) = n(p− 1) + 1 by [8, Thm 1]. �

Proof of Proposition 1.5. Follows from Propositions 4.2 and 4.3, and Lemma 5.1. �

Proof of Theorem 1.1 (2). Let G have order pn.
First suppose that p = 2. Let C ≤ Z(G) have order 2, then ghost number(kG) ≥

t(G/C) by Theorem 3.1. Since G/C has order 2n−1 we have t(G/C) ≥ (n − 1) + 1 =
n = t(Cn

2 )−1. The result follows since ghost number(kH) ≤ t(H)−1 by Theorem 1.4.
Now suppose that p is odd. By Proposition 1.5 we only need consider the case

G = C9, with ghost number 4. But C3 × C3 has ghost number 3 by [5, Thm 1.1]. �
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