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The groundwater flow equation is used to simulate the movement of water under the 
confined aquifer. In this paper we study a modification of the groundwater flow 
equation within a newly proposed derivative. We numerically solve the generalized 
groundwater flow equation with the Crank-Nicholson scheme. We also analytically 
solve the generalized equation via the method of separation of variable.  
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1. INTRODUCTION 

In recent years, attention has been paid by several scholars working in the 
field of groundwater studies to model with accuracy the movement of water under 
the confined geological formation called aquifer. The first attempt to describe this 
phenomenon has been done by Theis [1]; see also Ref. [2]. However, in his work, 
Theis put in place some assumptions, which help him to have a more simplified 
equation. For instance, Theis [1] assumed that the aquifer is homogeneous, but all 
the aquifer investigated were not at all homogeneous, but rather they were 
heterogeneous. In fact we have concluded that it is not possible to find a 
homogeneous aquifer in a real life situation. Clearly, the model presented by Theis [1] 
has some limitations and this has been a worry in the circle of groundwater studies.  
 To the best of our knowledge, the authors of Ref. [3] were the first to 
generalize the groundwater flow equation to the concept of fractional derivative. 
However the fractional derivative used in their work was the Liouville one [4]. Due 
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to the rewards of the fractional derivative application to the groundwater flow 
equation, the groundwater flow equation using the Caputo fractional derivative was 
investigated in [5–7], which allows the use of the standard initial and boundary 
conditions. The results obtained from this study were much better than the one 
obtained with Riemann-Liouville fractional derivative. Due to the benefits 
provided by the fractional calculus while modeling real world problems, several 
applications of this type of calculus were proposed [8–15]. A new type of 
derivative was proposed and applied in Refs. [16,17]. Although the conformable 
derivative displays useful properties than Caputo and Riemann-Liouville fractional 
derivatives, this last version has very big disadvantage because all differentiable 
functions has zero as conformable derivative at the point zero.  The aim of this 
paper is to analyze the modification of the groundwater flow equation within this 
new derivative. 

2. THE BETA-DERIVATIVE AND ITS GEOMETRICAL 
INTERPRETATION 

We shall briefly present in this section the β - derivative and its numerical 
presentation. 
Definition 1 [18]: Let f be a function, such that :[ , )f a ∞ →ℜ . Then the 
β − derivative is defined as: 

( )

1

0 0

1 ( )

( ( )) limA
x

f x x f x

D f x

−β

β

ε→

  
 + ε + −   Γ β  =

ε
 

(1) 

for all , (0,1]x a≥ β∈ . Then if the limit of the above exists, f is said to be 
β −derivable. 
The β - derivative can be written as   

( ) 1

0 0

( ) 1( ( )) lim
( )

A
x h

f x h f x
D f x x

h

−β
β

→

+ −  
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We can easily prove this result by making the notation with h as follows    
1

1
( )

h x
−β

 
= + Γ β 

. 

We obtain  
( ) 1

0 0

( ) 1( ( )) lim
( )
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x h

f x h f x
D f x x

h

−β
β

→

+ −  
= + Γ β 

. 

and this completes the proof. Accordingly, we will propose the numerical 
approximation of the β - derivative as follows   
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For a function of two variables we have the following notation 
( ), n

i n iu x t u=  
Then the approximation of the above expression shall be for the explicit method 
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(4) 

Finally if we use the central difference at time 1/ 2nt + , then a second-order central 
difference for the space derivative at position jx , we have the recurrence equation 
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(5) 

The stability and convergence analysis of the scheme will be verified by 
solving the well-known Theis groundwater flow equation. This will be presented in 
the section below. We shall illustrate this technique with an example, see Figs. 1 
and 2.  
 

 
Fig. 1 – The case β = 0.5. 
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Fig. 2 – The case β = 1. 

Let consider the function ( ) 2f x x= , we chose two points 0 1x =  and 1 2x = .  

Since f is differentiable and is 1
2
− differentiable then                      

0.5

0
1( ( )) 2

(0.5)
A

xD f x x xβ  
= + Γ 

 (6) 

Therefore at the points 1 and 2 we have the following    

( )( ) ( )

0.50.5
0.5 0.5

0 0
1 1( (1)) 2 1 , 2 4 2

(0.5) 0.5
A A

x xD f D f
G G
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and 

( ) ( ) ( )
0.50.5

1 2
1 11 2 1 1 , 4 4 2 2

(0.5) 0.5
y x y x

Γ Γ

     − = + − − = + −       
. 

3. GENERALIZATION OF THEIS GROUNDWATER EQUATION 

The mathematical formula describing the movement of water in a confined 
aquifer was first proposed by Theis and we will present it as [3]            

( ) ( ) ( )2
0

1( , ) ( , ) ( , )A
t rr r

S D s r t s r t s r t
T r

β = ∂ + ∂  (8) 

The above equation is subjected to the following initial and boundary conditions    

( )( )0 0( ,0) , lim 2 , ,b r br
s r s s Q r Kd s r t

→∞
= = = π ∂  (9) 

where ( , )s r t  is the drawdown or change in the level of water; S  is the specific 
storativity of the aquifer, and T  is the transmissivity, with K  as the hydraulic 
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conductivities of the main and confining layers, d is the thickness of the main and 
confining layers, and Q  is the discharge rate of the pumping. We shall use the 
Crank-Nicholson scheme [19] to solve numerically equation (8) together with 
equation (9).  

3.1. NUMERICAL SOLUTION AND ITS STABILITY 

Before performing the numerical methods, we assume that equation (8) has a 
unique and sufficiently smooth solution. However in order to establish numerical 
schemes for equation (9), we let: , 0 , , , 0j kx jh j M Mh J t k k N= ≤ ≤ = = τ ≤ ≤  
and N Tτ =  and we let h to be the step size and τ to be the time size, and M  and 
N  to be the grid points. We shall introduce the Crank-Nicholson numerical method 
[19] as follows.  At the onset, the discretization of the first- and second-order space 
derivative are identified as                                                                       

1 1
1 1 1 11 ( )

2

k k k k
j j j j

r
s s s s

s O h
h h

+ +
+ − + −
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 (10) 

The second order derivative shall be considered as             
1 1 1
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Finally, the Crank-Nicholson scheme for the fractional derivative is given as  

( )
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Nonetheless by replacing equations (12), (11) and (10) into equation (8) we 
will obtain the following                                  
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For simplicity let us put 
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1
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−
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Such that equation (13) becomes   

( ) ( )
( )

1 1 1 1
1 1 1 1

1 1
1 1 1 1

2k K k k k k k k
k j j j j j j j j

k k k k
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− + −

γ

µ
 (14) 

The above discretization can be converted to a matrix. We shall present in 
detail the stability analysis of the Crank-Nicholson scheme for the modified 
groundwater equation via the β − derivative. 

Let k k k
j j js Sξ = − , where k

jS  is the approximate solution at the point 

( ) ( ), , 1,2,..., , 1,2,...,l kx t k N l M= =  and in addition      

1 2, ,...,
Tk k k k

M =  ξ ξ ξ ξ  (15) 

We shall reformulate equation (14) as follows  
( ) ( ) ( )
( ) ( ) ( )

1 1
1

1
1 1 1

2 2k k k
j k j k j j

k k k
j j j j j j

a a a

a a a

+ +
+

+
− + −

+ = − + + +

− + + + −

ξ γ ξ γ ξ µ

ξ µ ξ µ ξ µ
 (16) 

The above equation is a recurrence relation for the error. Equations (14) and 
(16) show, that both the error and numerical solution have the same growth or 
decay behavior with respect to time. Since the equation under study is linear with 
periodic boundary condition, the spatial variation of error may be expended in a 
finite Fourier [19] series, in the interval J, which is the length of the aquifer, as        

( )
1

m
M

jk r
m

m
r B e

=

ξ =∑  (17) 

We shall recall that m
mk
J
π=  with 1,2,...,m M=  and /M r∆ .  Time 

requirement of the error is encompassed by supposing that the amplitude of error 
mB  is a function of time [19–20]. Since the error develops an exponentially decay 

with time, it is wise to undertake that the amplitude alters exponentially with time; 
consequently       

( )
1

, ,m
M

bt jk r

m
r t e e

=

ξ =∑   b is constant       (18) 

The difference equation for error is linear, it follows that the growth of error 
of a typical term is                                          

( ), mbt jk r
m r t e eξ =  (19) 
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The stability features can be predicted exploiting just this form for error with 
no loss in oversimplification.  Nonetheless to investigate the variation of error in 
steps of time, we shall replace equation (19) in (16), but this will happen only after 
we write down        

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

1 1 1
1 1 1

1 1

, ,

, , ,

, .

m m
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This shall yield  
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Now after re-arranging and simplification we obtain    
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2 e e

2 e e
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Note that the stability is achieved if and only if               
1

1
k
j
k
j

+ξ
<

ξ
. (23) 

But note that     

tb
k
j

k
j e ∆
+

=
ξ
ξ 1

 (24) 

Thus in our case of study we have then       

( ) ( )
( ) ( )

1 2 e e

2 e e
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=
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Remark: Note that for all 0 , 0 , 0, 0kj M k N a≤ ≤ ≤ ≤ > γ > , thus it follows 
without any doubt that 

( ) ( )
( ) ( )

1 2 e e
1

2 e e

m m

m m

j rk j rkk
k j jj

k j rk j rk
j k j j
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∆ − ∆
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. 

We can conclude that the Crank-Nicholson scheme is unconditionally stable 
for the generalized groundwater flow equation using the beta derivative. 
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3.2. ANALYTICAL SOLUTION OF THE GENERALIZED  
GROUNDWATER FLOW EQUATION 

In the following we shall see if with this fractional derivative, the 
groundwater flow equation can be solved analytically. We shall use in this section 
the so-called method of separation of variables. To solve equation (8) with this 
method, we assume that the solution can be found in the following form       

( , ) ( ) ( )s r t f r g r= . (26) 

We obtain the following equation  
2

0 ( ) ( )A
t

TD g t g t
S

β = −λ .           (27) 

The second equation is given by  

( ) ( )2 21( ) ( ) ( ) 0rr rf r s r f r
r

∂ + ∂ − λ = .         (28) 

The exact solution of equation (27) is given as         
2

2

1
( )

( )
2

T t
g t cE xp

−β  
 +  Γ β  = − λ − β
 
  

.          
(29) 

The solution of equation (28) has been provided in [4] as      
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0
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1
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k k

k
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∞
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Thus the exact solution of equation (8) can be written as          
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2

2
2
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1
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2 ! 1 2
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n

n
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∞ ∞
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  
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  

∑ ∑ .   (31) 

However by applying the initial condition on (31), we obtain that 

4
Qc

T
=

π
. 

Then the solution of generalized groundwater flow equation using the 
β −derivative is given by 

( )
( )

2

2
2

0 0

1
1( )

( , )
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kk
n

n
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T t
Q rs r t Exp

T k k

−β

∞ ∞
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  

∑ ∑ .       (32) 
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Figure 3 shows the numerical simulation of the modified groundwater flow 
equation for different values of the order of the β-derivative.  

Here we chose Q = 350, T = 700, S = 0.001, r = 50. It is clear from the figure 
that the solution of this equation does not depend only on the aquifer parameters, 
but also on the new parameter β. When the parameter β is equal to 1, we recover 
the exact solution of the classical groundwater flow equation; this solution is 
overestimating the change of level of water during the time of removal of water 
from the confined aquifer, because the classical equation does not take into account 
any presence of uncertainties in the physical problem. 
 

 
Fig. 3 – Solution of the groundwater flow equation for different values of β. 

However, with the new derivative, the modified equation is clearly depending 
on the order of the derivative, which can be seen as contribution of uncertainties in 
the geological formation. 

4. CONCLUSION  

In this paper, we have presented a geometrical interpretation of the  
β-derivative with an example. The numerical approximation of this operator was 
presented and the stability analysis was investigated. The generalized groundwater 
flow equation within this β-derivative was investigated and the exact solution was 
also reported. As it can be seen from Fig. 3, the parameter β plays a crucial role in 
the numerical solution and it can be used to find new insights of the generalized 
groundwater flow equation.   
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