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In this article, we develop a numerical approximation for first-order hyperbolic
equations on semi-infinite domains by using a spectral collocation scheme. First, we
propose the generalized Laguerre-Gauss-Radau collocation scheme for both spatial and
temporal discretizations. This in turn reduces the problem to the obtaining of a system
of algebraic equations. Second, we use a Newton iteration technique to solve it. Finally,
the obtained results are compared with the exact solutions, highlighting the performance
of the proposed numerical method.

Key words: First-order hyperbolic equations; Two-dimensional hyperbolic equa-
tions; Collocation method; Generalized Laguerre-Gauss-Radau
quadrature.

PACS: 02.30.Gp, 02.30.Jr, 02.30.Myv, 02.60.-x.

1. INTRODUCTION

A simple example of a hyperbolic partial differential equation (PDE) is the
wave equation. Hyperbolic PDEs describe a wide range of problems in various fields
of science and engineering such as the phenomena of turbulence and supersonic flow,
flow of a shock wave traveling in a non-viscous and viscous fluid [1], traffic and aero-
foil flow theory [2], process engineering [3], population based modeling and batch
crystallization [4], acoustic transmission [5], hypoelastic solids [6], astrophysics [7],
and many other disciplines. More recently, the study of exact and numerical solutions
of either hyperbolic or parabolic PDEs has received a lot of interest [§—24].

Several mathematical physics problems are studied on semi-infinite domains.
The earthquake engineering field and underwater acoustic problems can be modeled
as semi-infinite domain PDEs. Spectral methods (see for instance, [25-31]) based
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on specific polynomials/functions (Laguerre, Hermite, rational Legendre, rational
Jacobi functions, etc.) [32-35] may be utilized to numerically solve problems on
semi-infinite domains. The mapping problem in an unbounded domain to that in a
bounded domain has been used in [36-38] to approximate the problems in unbounded
domains. For more details about numerical solutions for unbounded domain prob-
lems, see for example [39-44]. The spectral collocation method [45-54] is a very
useful technique for approximating several kinds of equations. Due to its advantages,
such as exponential rate convergence, good accuracy and computational efficiency,
the collocation method has been used successfully in many different fields of science
and engineering. Orthogonal polynomials are usually used as basis functions in the
numerical approximation of the collocation method. Here, we use the generalized
Laguerre polynomials as basis functions.

The main aim of this article is to extend the application of the collocation
method to solve one- and two-dimensional space hyperbolic PDEs of first-order on
semi infinite domains. We propose a generalized Laguerre-Gauss-Radau collocation
(GLGRC) scheme for both spatial and temporal discretizations. The main advantage
of this scheme is to reduce the considered problems to systems of algebraic equations.
The algebraic system of equations is solved by Newton’s iterative method. Finally,
numerical results of both one- and two-dimensional hyperbolic PDEs on semi infinite
domains are given to highlight the applicability and validity of the present numerical
approach.

This article is arranged as follows. We present few definitions and preliminaries
of generalized Laguerre polynomials (GLPs) in Sec. 2. In Sec. 3, we present the
GLGRC method for both one- and two-dimensional first-order hyperbolic PDEs on
semi-infinite domains. Numerical examples and simulations are presented in Sec. 4
to show the effectiveness and accuracy of the proposed method. Some conclusions
are drawn in the last section.

2. PRELIMINARIES

We recall below some revelent properties of the GLPs [55-59]. Now, let A =
(0,00) and w(®) () = e~ be a weight function on A in the usual sense. Define
the space

Li}w (A) = {v | v that is measurable on A and is ||v||,,) < o0},

equipped with the following inner product and norm

1
(U,U)w(a) = /Au(w) ’U(Q?) w(a) (l’) Cl.%', HUHw(G) = (U7U)u2)(a)'
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Next, let Ll(-a) (x) be the GLPs of degree ¢ for o > —1 that is defined by

o 1 _ _ .
L (2) = a7l (a7 ™), i=1,2,
A

For o« > —1, we obtain [60]

0, L\ (2) = —L{*TV(x),

@ 1 o () , (@) .
Li+1(x)—m[(21+04+1_x)Li (x)_(l"i_a)[’ifl(x)]v 1=1,2,...,

where L(()a) () =1and Lga)(x) =1l+a—ux.
The set of GLPs is the Lfv(a) (A)-orthogonal system

/0 L) () L ()0 (2)dz = hidy,

where hy = M . The analytical form of GLPs, is given by [55]:
i .
Ii+a+1) .
L(z) = —1)* ko =01
i (@) k_o( S Thvarnamm s T0L
The special value is
— 2' 1)!
DILE(0) = (~1)" el L), iz
JZ (i—j—q! ©)
(@) ) — LlGtat+l)
where L. (0) = F(JTQDJ,
Let u(z) € qum) (A), then u(z) can be expanded by means of GLPs as
oo
= ZQJL§Q) (33),
j=0

and in numerical approximations, the GLPs up to degree N + 1 are considered.

We present now the quadratures based on GLPs, including Laguerre-Gauss and

Laguerre-Gauss-Radau. Let {xg\?)J, wﬁg} be the set of generalized Laguerre-Gauss
or generalized Laguerre-Gauss-Radau quadrature nodes and weights (see e.g. [55]).

/qﬁ dx—quxN]wN]

e For the generalized Laguerre-Gauss quadrature:
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{x(a) } are the zeros of Lii)l( );

o L(i+a+1)
M )L @0 L ()
L(i+a+1) 25

- ‘ @ (@)’ O=j=i
(i+a+1)(i+ 1)L @)
e For the generalized Laguerre-Gauss-Radau quadrature:
xgvo 0, {a:g\(f)J %1 are the zeros of 0 LEJr)l( )
@ _ (a+ I (a+1)I(i+1)
No L(i+a+2) ’
(a) _ Fi+a+1)
N, — ..
! z!(z+a+1)[8xL§a)(xg\?i)j)]2
_ I'(i+a+1) 1 <j<i

il +a+1) (L (2))?

3. GLGRC METHOD

In this section, we derive the GLGRC method and describe its implementa-
tion for solving the one- and two-dimensional hyperbolic PDEs of first-order. The
core of the proposed method is to discretize the equation in the spatial and temporal
directions and create a system of algebraic equations of the unknown expansion co-
efficients. The collocation points are selected to be the generalized Laguerre-Gauss-
Radau interpolation nodes.

3.1. ONE-DIMENSIONAL HYPERBOLIC PDES OF FIRST-ORDER

The main objective of this subsection is to develop the collocation method to
solve numerically the one-dimensional hyperbolic equations of first-order in the fol-
lowing form

8tu(x>t):ala:pu(x7t)+a2u($7t)+H(x¢t)7 (:L‘at) € [0,00)X [0,00), (6)
subject to the initial conditions

u(x70) = gO(x)v UAS [0,00), (7

U(O,t) =01 (t)a te [0700)7 (3
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where a; and ay are constants, while H(x,t), go(x) and ¢ () are given functions.
Here, we use the set of generalized Laguerre-Gauss-Radau points for the spatial and
temporal approximations. To this end, we approximate the space and time variables
using GLGRC method at = ]3 lr) and tgf}zs) nodes. These collocation points are dis-
tributed in the semi-infinite interval. Now, we outline the main steps of the col-
location method for solving the previous 1 + 1 hyperbolic equations of first-order.
Assume we approximate the solution as a finite double expansion of the form,

uNMa:t ZZGHL(M az)()

=0 5=0

N M o
= Zzai,jféd (1),

i=0 j=0

©)

where

fo? @,t) = L (@) L (8).
Then the spatial and temporal partial derivatives (O,un,ar(2,t) and Jyun ar(x,t))
may be written as

Opun, v (z,t) ZZCLW L(a1 ))Lg.”)(t)

=0 5=0

N M N (10)
- Zzai,jf?](xat)v
i=0 j=0
Orun, v (,t) ZZCL,J (1) (Lg-az)(t))
=0 7=0
N - (11)
- Zzai,jf;](xat)a
i=0 j=0
where N
f17 (@, t) = 0 (LI (2)) LS (1),
and

2 (2,1) = LI ()0 (LL (1)),

Now, adopting (9)-(11), enable one to write (6)-(8) in the form:

N M N N M N N M N
SO aiify (@) =a1 > > aii i (@) +az Y Y aigfe? (w,t) (12)

=0 j=0 i=0 j—=0 i=0 j—=0
+ H(x,t), (z,t) € ]0,00) x [0,00).
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The functions ff’j (z,t) and fé’j (z,t), can be explicitly obtained by using (3) with
q = 1. The initial conditions immediately give

UNMJJO Zzaljf[) ‘750 ()

zO]O

UNMOt Zzaljfo (0,t) = g1(?)-

=0 5=0

13)

In the proposed collocation method the residual of (12) is set to be zero at (N M) col-
location points; this yields (M N) algebraic equations in (M + 1)(/N + 1) unknown
expansion coefficients, a; j, © =0,--- ,N; j=0,--- , M,

ZZF%]alﬁ_H S\?i)vtg\?i)% r=1,---,N; s=1,---, M, (14)
i=0 j=0

where
F = 570 1520 — o £ 52 — o o7 e 57)),

and the initial conditions (13) give

ZZawf 0.0 =go(2G), r=1,,N, (15)
=0 5=0

and
Zza f()y‘7 OtMs)) 91(755\3,25))7 SZO)"'5M7 (16)
=0 7=0

and this in turn, yields (M +1)(NN + 1) algebraic equations, namely

ZZF%J% xg\of‘;)’t(az))’ r=1,---,N; s=1,---,M,

1= O] 0

ZE:EE:Q ﬂ ,0) = go(aly —1.....N 7
z,JO goﬂ?N’r), r=1, N, (17)

1=0 j7=0

N M .. ..

SN a0 = gt s=0, M.

i=0 j=0

The resulting system of algebraic equations (14) is then solved by any standard iter-
ative solver.
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3.2. TWO-DIMENSIONAL HYPERBOLIC PDES OF FIRST-ORDER

This subsection is devoted to extend the GLGRC method discussed in the pre-
vious subsection to numerically solve the two-dimensional hyperbolic PDEs of first-
order of the following form

8tu(x,y,t) :aoaxu(x7yvt) +ax 8yu(x,y,t) +a2u(:v,y,t) +H(x7y7t)7

(33,3/,75) S [O,OO) X [0,00) X [0,00), (18)

subject to the initial conditions

u(z,y,0) = go(z,y), (x,y) €[0,00) x[0,00),
u(0,y,t) = g1(y,t), (y,t) € [0,00) x [0,00), (19)
u(x,0,t) = ga(z,t), (,t) €[0,00) x [0,00),

where ag, a; and ay are constants, while H (x,y,t), go(x,y), g1(y,t) and g2(x,t) are
given functions. Also, we use the set of generalized Laguerre-Gauss-Radau points
for the spatial and temporal approximations. Now, we outline the main steps of the
collocation method for solving the two-dimensional hyperbolic equations of first-
order. Let

N M K

un, M,k (T, Y, t) ZZZ%ML(%) ( D)L (1)

i=0 j=0 k=0
N M K

=22 D aly™ @ pt)

i=0 j=0 j=0

(20)

where

Gk
157 (@,y,8) = L (@) L () L™ (1),
Then the spatial and temporal partial derivatives (O, un, v,k (2, Y,t), Oyun a,k (2,Y,t)
and Oyun, v,k (2,y,t)) can be computed as

N M K

O ar i (2,9,8) = D3 3 a0 (L (@) LIV (y) LM (1)
=0 j=0 k=0
N M K

=22 aigwfi @ y.0),

i=0 j=0 j=0

21
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N M K

Oyun m (T, Y1) ZZZCLW KL (L(al)(y))Léw)(t)
i=0 j=0 k=0
N M K N (22)
- ZZ Zai7j7kf;]7k($,y7t),
i=0 j=0 j=0
N M K
Oun i (@ yt) =SSN ay kL (2) LY ()0, (L) (¢))
1=0 7=0 k=0
N M K N (23)
= ZZ Zai,j,k‘fg’],k(xayat)a
i=0 j=0 j=0
where -
11 (@9,8) = 0 (L @) L () L (),
@y t) = L (@00, (L ) L™ (1),
’% 3.1) = L @) L™ ()L (1)),
Accordingly, adopting (20)-(23), enable one to write (18)-(19) in the form:
N M K N N M K .
Zzzai,j,kf;,’]’k(xvyvt) = aﬂzzzai,j,kfi’]’k(xvyvt)
i=0 j=0 k=0 i=0 j=0 k=0
N oMK » N MK - (24)
""CLIZZZQZ‘J,RJCSJ7 ($7y7t)+a2222ai,j,kfé7]7 (fl?,y,t)
i=0 j=0 k=0 i=0 j=0 k=0

+ H(z,y,t), (z,y,t) €[0,00) x [0,00) X [0,00).
Moreover, the treatment of the initial conditions at the collocation points immediately

gives

un, M,k (2,y,0) = ai j i fo?" (2,9,0) = go(z,y),

M= 11
N iM»

M
ik
un ik (0.9:8) =D Y 0 ai ik fo (0,y,8) = g1 (1), (25)
i=0 j=0 k=0
N M K
un, v,k (2,0,t) ZZZCLZJ kfo (x,0,t) = ga(x,t).
i=0 j=0 k=0

In the proposed collocation method the residual of (18) is set to be zero at (N M K)
of the collocation points. Moreover, the initial conditions in (25) will be collocated
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at these collocation points. First, we have (N M K) algebraic equations for the un-
known expansion coefficients, a; ; 1, from

N M K r=1,---,N;
SN Filbae = H@Ry il tig) s=1- M5 (26)
1=0 j=0 k=0 §:17---,K,

where

B =17 @R i ) — a0 £ @ i ) -

ar 57 @0yl ) tet)) — az i @S ui ) o)

and from the initial conditions, we have N M + (K +1)(M + N + 1) algebraic equa-
tions

(27)

N M K

:k 1) (o) , (a1) T:L'”aN;
Zzzalﬂv fO] xNT’yMs’O) _go(er’yMls) { s=1.---.M

=0 j7=0 k=0

N MK s=0,--- M
zk a o o o =V, M
33 S a0l e = {207 e
i=0 j=0 k=0 R
N M K

g ik (a2)y _ ¢ (a0) ,(az) r=1,---,N;
>SSl 0. ) =l i) { T2

i=0 j=0 k=0

and this in turn yields (M 4 1)(N +1)(K + 1) algebraic equations

N M K r=1,---,N;
SO FiEais = H@RY yii 5, s =1, M,
=0 j=0 k=0 ¢=1,--- K,
N M K
7":1,‘ 7N7
zzz%mwm%Aw%ww%»{ﬁwa
1=0 j=0 k=0 ’ T
N M K
SN S ab, pk Y@ lo2)y o fen) ylaz)y §=0,--, M;
1,9,k Ynm,s Vi Ms’Kg ¢=0,-,K,
1=0 j=0 k=0
N M K
k3 (az) (@0) 4(az) r=1,--,N;
ZZZJmeﬁ%>MWM%ahJWK
i=0 j7=0 k=0 ! e
(29)

This system of algebraic equations can then be solved by using any suitable solver.
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4. NUMERICAL RESULTS

In this section, three examples are considered to show the accuracy of the algo-
rithms presented in the previous section. The obtained results reveal that the present
method is very effective and convenient. The difference between the measured value
of approximate solution and its actual value (absolute error) is given by

E(xayat):‘u(x7y7t)_uN,M,K(xayat)|a (30)

where u(x,y,t) and un a K (x,y,t) are the exact solution and the numerical solution
at the point (z,y,t), respectively. The maximum absolute error is given by

Mg =Max{E(z,y,t) : V(z,y,t) € [0,00[x[0,00[x[0,00[}. (31)
Also, we can define the infinity norm as
Loo =Max{E(z,y,t) : V (2,y) € [0,00[x[0,00[}. (32)
4.1. EXAMPLE 1

Consider the one-dimensional hyperbolic equation of first-order of the form
Syu(z,t) = Opu(z,t) +ulz,t) — V2e VET  (z,t) € [0,00) x (0,00), (33)

subject to the initial conditions

u(0,t)=e" ", z€]0,00), u(x,0)= e_ﬂt, t €[0,00), (34)
The exact solution of Eq. (33) is
u(z,t) = e~ (V2H) - (24) € [0,00) x (0, 00). (35)

Table 1 displays the maximum absolute errors (Mg) using GLGRC method with
several choices of N, M, o and o . Table 2 lists the results obtained by the GLGRC
method in terms of absolute errors at N = M = 16 for t = 0.1, 0.5and 1.0 and some
values of z in the finite interval [0,1]. We see in this tables that the results are very
accurate for small choice of N and M. Fig. 1, allows us to see the coincidence
between the curves of exact and numerical solution at some values of ¢ where a1 =
ag =3 and N = M = 16. In the case of &1 = a9 =1 and N = M = 16, the absolute
error curve in ¢-direction of problem (33) is shown in Fig. 2 in the interval [0, 100].

4.2. EXAMPLE 2

Consider the following hyperbolic equation of first-order
Opu(x,t) =0pu(w,t) +u(z,t) +e "% (cos(t) —sin(t)),

(z,t) € [0,00) x [0,00), (36)
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Table 1

Maximum absolute error using GLGRC method for problem (33)
N=M-=
4 8 12 16
1.58x 1071 1.86x1072 2.06x1073 7.90x10~°
1.28x 1071 1.54x1072 212x1073 2.61x10~*
1.25x 107" 1.93x1072 2.82x107% 3.96x10~*

L»JN»—S
W =8

Table 2

The absolute errors using the GLGRC method for problem (33) at N =M =16and a1 =az =1

T t E €T t E X t E
0.1 0.1 284x10°7]01 05 895x10°6[01 1 4.87x107°
0.2 8.79x107% | 0.2 4.10x107% | 0.2 4.89 x 107°
0.3 1.20x 1075 | 0.3 1.39x107° | 0.3 4.17%x107°
0.4 1.12x 1075 | 0.4 2.07x107° | 0.4 3.037x107°
0.5 7.95x107% | 0.5 2.47x107° | 0.5 1.75x 1075
0.6 3.29%x107% | 0.6 2.62x107° | 0.6 4.74 x 1076
0.7 1.78x 1076 | 0.7 2.55%x107° | 0.7 6.68 x 10~
0.8 6.53x107% | 0.8 2.31x107° | 0.8 1.61 x 1075
0.9 1.04x 1075 | 0.9 1.93x107° | 0.9 2.32x10°°

1 1.32x107° | 1 145%107° | 1 2.79x 1075

0.20 [ - u(x,0.3)
uy (x,0.3)
0.15 - -
- u(x,0.5)
=
=
g 0.10 - uy (x,0.5)
=
- u(x,0.7)
0.05 - — uy (x,0.7) 7
0.00 L. < : ]
(0] 6 8 10

Fig. 1 — z-direction curves of the exact and numerical solutions for problem (33) with a1 = ag = 3
and N = M = 16.
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/r\\

0.00025
0.00020 [ / IR

0.00015 |- (-

E(0.5,t)

0.00010 |- \ |

0.00005 - \ / =

0'00000 ; C \\\/ 1 1 1 \/\ 1 1 1 ‘\V’ 1 1 1 1 1 1 \v 1 1 1 1 1 1 1 1 1 ;

Fig. 2 — t-direction absolute error curve for problem (33) with a; = a2 =1and N = M = 16.

Table 3

The maximum absolute error using the GLGRC method for problem (33)
N=M-=
4 8 12 16
576x 1072 1.83x1073% 1.30x1073 6.00x10°°
1.10x 1071 2.93x107% 2.19x1073 256 x 1074
1.93x 1071 1.79x1072 592x10~% 13.51x10~*

wN»—S
wl\)P—‘S

with the initial conditions
u(0,t) = e 'sin(t), wu(z,0)=0, (x,t)€[0,00)x[0,00). (37)
The exact solution of Eq. (36) is
w(x,t) = e Hsin(t),  (x,t) €[0,00) x [0,00). (38)

The maximum absolute errors of u(z,t) related to (36)-(37) are introduced in
Table 3 using the GLGRC method with three choices of Nand M. In Fig. 3, we
present the numerical solution of problem (36) at oy = ag =2 and N = M = 16.
Moreover, the three-dimensional graph of absolute error is shown in Fig. 4, with the
values listed in its caption.
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03T

wyr_pg b2

Ebf] p.ooon4

Fig. 4 — Three-dimensional graph of absolute error E(x,t) of (36) with v =g =1and N = M =16.

Table 4

The maximum absolute error using the GLGRC method for problem (39) with N = M = K =4,6,8.

(1,1,1) (3,3,3)
N M K Lo Mg Lo Mg
4 4 4 ]1.90x1072 3.11x1072 | 5.74x10"2 9.17x 1072
6 6 6 |145x1072 145x1072 | 1.51x1072 4.96x1072
8 8 8 [6.15x107% 6.92x1073 | 2.96x107% 2.86x 1072
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4.3. EXAMPLE 3

Finally, we consider the following two-dimensional hyperbolic equation

t+z+y+2
(t+z+y+1)% (39)
(z,y,t) € [0,00) x [0,00) x [0,00),

Btu(a:,y,t) = amu(x7y7t) + ayu(x7yat) +

subject to initial conditions

(2,,0) e (2,0,1) -
ux)y? = 9 uw?? = )
1 1
r+y+ t+ax+ (40)
u(0,y,t) = —, (x,y,t) € |0,00) x [0,00) X [0,00).
Ot =g (@90) €10.00) x[0,00) x[0,00)
The exact solution of Eq. (39) is
1
Y,t) = ——— ,Y,t) € [0, 0, 0,00). 41
u(e,y0) = g, @) €[0,.00)x 0,00) < [0,00). (@)

Fig. 5 — Space graph of absolute error at ¢ = 50 for problem (39) with 1 = ag = a3 =1and N =
M=K =8.

Using three different values of nodes, the maximum absolute errors and the in-
finity norm for the two-dimensional problem using the GLGRC method are presented
in Table 4. The space graph of absolute error at ¢ = 50 of problem (39) is plotted in
Fig. 5 with values of parameters listed in its caption. Inthe case of a3 =ax =3 =1
and N = M = K =8, the t-direction absolute error curve for problem (39) is shown
in Fig. 6. The obtained numerical results are accurate and compare favorably with
the exact solution. The numerical results presented for this example are highlighting
the applicability and validity of the proposed algorithm.
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0.0020

0.0015

0.0010

E(0.50,025,1)

0.0005

L L B S B S B s B B By s s B sy
e
L b b b

0.0000

Fig. 6 — The t-direction curve of absolute error for problem (39) with a1 = a2 = a3 =1and N =
M=K =38.

5. CONCLUSION

We have developed a numerical approach to solve the hyperbolic PDEs of first-
order in one- and two-spatial dimensions. In this approach the solution is approxi-
mated using the generalized Laguerre polynomials with applying the Gauss-Radau
collocation scheme. The numerical simulations given in this article demonstrated the
good accuracy of this approach. It was also confirmed that the generalized Laguerre
collocation method is accurately approximating the exact solution. Moreover, the
numerical approach proposed in this work can be well suited for handling general
linear and nonlinear partial differential equations on a half line.
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