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ABSTRACT 
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M.S.c., Department of Computer Enginnering 

Supervisor: Assist. Prof. Dr. Abdül Kadir GÖRÜR 

Co-Supervisor : Dr. Zeki ERDEM 

 

July 2012, 84 pages 

 

 

Today's business environment is quickly changing and business decision makers 

need for a historical picture of what happened and a picture of what was 

happening today. Traditional data warehouses provide a historical picture, but 

there is lack of fresh data. However, fresh data in data warehouses is a strong 

feature from the part of the users. The aim of this study is building a real time data 

warehouse using web services. First, we modelled both the conceptual and the 

logical design of real time data warehouse. For change data capture from source 

systems, we implemented web services based server and client software.  Then, 

we used real time partition for real time data which is merged into data warehouse 

in a daily fashion. We, also, implemented a data integration service using query 

re-write approach to integrate data warehouse and real time partition data. 

 

Keywords: Real Time Data Warehouse, Data Warehouse, Web Service, Real 

Time Partition, Clean Delta, On Demand Aggregation 
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ÖZ 

 

WEB SERVİSLERİ TABANLI GERÇEK ZAMANLI VERİ AMBARI 

 

Obalı, Murat 

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Abdül Kadir GÖRÜR 

Ortak Tez Yöneticisi: Dr. Zeki ERDEM 

 

Temmuz 2012, 84 pages 

 

 

Günümüz iş dünyası çok hızlı değişmektedir ve karar vericilerin geçmişte neler 

olduğuna ve bugün neler olmakta olduğuna dair bir resme ihtiyaçları vardır. 

Geleneksel veri ambarları tarihsel resmi sağlamaktadır, fakat taze veriden 

yoksunlardır. Oysa ki, veri ambarlarındaki taze veri kullanıcı açısından oldukça 

önemli bir özelliktir. Bu çalışmanın amacı web servisleri kullanarak gerçek 

zamanlı bir veri ambarı geliştirmektir. İlk olarak, gerçek zamanlı veri ambarının 

konsept ve mantıksal modellemesini yaptık. Kaynak sistemlerdeki değişen verileri 

yakalamak için web servis tabanlı istemci-sunucu yazılımı geliştirdik. Daha sonra, 

veri ambarına günlük bazda yükleyeceğimiz veriler için gerçek zamanlı bölüm 

oluşturduk. Ayrıca, sorgu yeniden yazma yaklaşımını kullanarak, veri ambarı ile 

gerçek zamanlı bölüm verilerini birleştirmek için bir veri entegrasyon servisi 

gerçekleştirdik. 

 

Keywords: Gerçek Zamanlı Veri Ambarı, Veri Ambarı, Web Servisi, Gerçek 
Zamanlı Bölüm, Temiz Fark, Taleb Bazlı Toplama 
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CHAPTER 1 

INTRODUCTION 

1 DATABASE 

Today's business environment is quickly changing and business decision 

makers need for a historical picture of what happened and a picture of what was 

happening today. Engineers strongly defended the notion that the data 

warehouse needed to provide a reliable information floor upon which to stand, 

providing an unwavering set of data to business decision makers. Because of the 

twinkling database, business users were directed to the production applications 

that run the business for up-to-the-moment reporting. Therefore, users had to go 

to the data warehouse for a historical picture of what happened in the business as 

of yesterday and had to look across many OLTP systems for a picture of what 

was happening today. This division never fully accepted by business users. They 

want to go to one place to get the business information that they needed [19]. 

Fresh data in data warehouses is a strong feature from the part of the users. 

Traditionally, loading data into warehouses has been performed in an off-line 

period. In such a data warehouse setting, data are extracted from the sources, 

transformed, cleaned, and loaded to the warehouse. To avoid overloading the 

source production systems, data warehouse activities takes place during a 

loading window, usually during the night. In most cases, a data warehouse is 

typically updated every day (24 hours period) [39]. 

The delay between a business transaction and its appearance in the data 

warehouse is too much for many organizations in fast-moving vertical industries. 

Additionally the data warehouse has become mission critical. That is, feeding 

enriched information back to operational systems that is then used to process 

transactions; personalize offers, and present up-sell promotions. The push for 

ever-fresher information is needed [19]. 
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The traditional data warehouses are implemented using batch driven 

approach and mainly according to the pull technology principle. The data loading 

from source systems to data warehouses is generally performed on a nightly 

basis or even in some cases on a weekly basis; therefore typical data 

warehouses normally do not have the most current data [39]. Furthermore the 

operational systems may have to be go offline during the data extraction process. 

It is an unacceptable situation which generates delays in businesses especially 

that require instantaneous access to up-to-date information [44]. 

 A real time data warehouse eliminates the data availability gap and enables 

organizations to concentrate on processing their valuable data. Furthermore, 

continuous data processing without delay opens up significant new opportunities 

[46]. 

The zero-latency enterprise is ideal for a business. This ideal urges the 

benefits of speed and a single version of the truth. In a real time, generally mean, 

information is delivered to the right place at the right time for maximum business 

value. We may call these right-time systems. At present, true zero latency is an 

unattainable ideal—it takes some time to synchronize information across several 

production systems and data warehouse—but there is a pressure on many 

modern data warehouses to provide a low-latency view of the business [19]. 

In summary, we may list three major reasons why we need a Real Time in a 

Data Warehouse: 

 Faster reaction time 

 Reduced decision time 

 New process capabilities.  
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CHAPTER 2 

DATABASE 

2 DATABASE 

2.1 Definition of Database 

Databases and database technology are an essential component and play a 

critical role in almost all areas where computers are used, including business, 

engineering, medicine, law, education, and library science, to name a few. The 

growing use of computers increases its impact. Database technology is the corner 

stone of most of the modern information systems. Therefore, it will be good to 

begin with the word database. 

“A database is a collection of related data. By data, we mean known facts 

that can be recorded and that have implicit meaning” [1]. For example, consider 

the list products that a company manufactured or names and telephone numbers 

of customers. This data may have been recorded in an indexed address book, or 

may have been stored on a hard disk or flash memory, using a personal computer 

and software such as Microsoft ACCESS or EXCEL. The collection of related data 

usually referred to as the database. 

In addition, the common use of the term database is usually more restricted. 

With own words of Ramez and Navathe, a database has the following implicit 

properties:  

 “A database represents some aspect of the real world, sometimes 

called the miniworld or the universe of discourse (UoD). Changes to 

the miniworld are reflected in the database”.  

 “A database is a logically coherent collection of data with some 

inherent meaning. A random assortment of data cannot correctly be 

referred to as a database”.  
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 “A database is designed, built, and populated with data for a specific 

purpose. It has an intended group of users and some preconceived 

applications in which these users are interested”.  

So to summarize, a database has some source from which data is taken, a 

degree of interaction with the events in the real world, and an audience that is 

actively interested in the contents of a database [1]. 

The size and complexity of a database can vary. The Çankaya University 

library database may include hundreds of thousands of items, whereas a small 

company may maintain a database for only 20 employees. 

2.1.1 Database Management System 

The knowledge and technology that has developed over several decades 

resulted in specialized software called a database management system (DBMS) 
or generally a "database system". With a DBMS, you can create and manage 

large amounts of data efficiently. Also it is a powerful tool for allowing it to persist 

over long periods of time, safely. These systems are among the most complex 

types of software available [2]. Some of the world's most popular databases are: 

Oracle, DB2, Microsoft SQL Server and MySQL.  

2.1.2 Data Model 

The main purpose of the database systems is to manage large bodies of 

information. This data management involves both defining structures for storage 

of information and providing mechanisms for the manipulation of information. 

Also, the safety of the information stored must be ensured by the database 

system, despite system crashes or attempts at unauthorized access. If several 

users have to share data, the system must avoid possible anomalous results. 

Because information is so important in most organizations, a large body of 

concepts and techniques for managing data has been developed [3]. 

Database systems can be based on different data models or database models 

respectively. Data modeling is a way for specifying the structures of data. A data 

model is a collection of concepts and rules for the description of the structure of 

the database. Data types, the constraints and the relationships for the description 

or storage of data are main structures of the database. The most often used data 

models are [4]:  
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Network Model and 
Hierarchical Model 

The network model and the hierarchical model build upon 

individual data sets and are able to express hierarchical or 

network like structures of the real world. They are the 

predecessors of the relational model. 

  

Relational Model 

The relational model defines a database as a collection of 

tables (relations) which contain all data. It is the best 

known and in today’s DBMS most often implemented 

database model. 

  

Object-Oriented 
Object-oriented models define a database as a collection 

of objects with features and methods.  

  

Object-Relational 
Model 

Object-relational database model is the wide spread and 

simple relational database model extended by some basic 

object-oriented concepts. Object-oriented models are very 

powerful but also quite complex, therefore object 

relational model allow us to work with the widely know 

relational database model but also have some 

advantages of the object-oriented model without its 

complexity. 

  

The relational model is today the primary data model for commercial data 

processing applications. It attained its primary position because of its simplicity, 

which eases the job of the programmer, compared to earlier data models such as 

the network model or the hierarchical model. Relational model is developed by 

E.F. Codd and a database based on this model allows the definition of data 

structures, storage and retrieval operations and integrity constraints. In such a 

database the data and relations between them are organized in tables which are 

a collection of records [3].   

2.1.3 Transaction 

A transaction is a unit of work submitted to a database by a single database 

user or collections of operations that form a single logical unit of work. 

Transactions are  important  to  multiuser  databases  because  databases 

provide many concurrency control mechanisms by using transactions that is either  
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succeed  or fail  as  a  whole. A database system must ensure proper execution of 

transactions despite failures. Also, it must manage concurrent execution of 

transactions in a way that avoids the inconsistency [3] [5].   

In a transaction various data items are accessed and possibly updated or 

deleted. To initiate a transaction, usually a user program is used, which is written 

in a high-level data-manipulation language (typically SQL), or programming 

language (for example, C++, or Java), with embedded database accesses in 

JDBC or ODBC. A transaction is delimited by statements of the form “begin 

transaction” and “end transaction” and the transaction consists of all operations 

executed between the begin transaction and end transaction [3]. 

2.1.4 OLTP vs. OLAP 

Database systems can be divided into transactional (OLTP) and analytical 

(OLAP). In general we can say that OLTP systems provide source data to data 

warehouses, whereas OLAP systems help to analyze it [6] [7]. 

 

Figure 1: OLTP and OLAP Systems [6] 

An OLTP (On-line Transaction Processing) deal with operational data and it 

is characterized by a large number of short on-line transactions (INSERT, 

UPDATE, and DELETE). The main importance for OLTP systems is provide very 

fast query processing, maintaining data integrity in multi-access environments. It’s 

effectiveness generally measured by number of transactions per second. There is 

detailed and current data in OLTP database, and the entity model schema is used 

to store transactional databases. Additionally, the data is frequently updated and 
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queried in an OLTP system. The database tables are normalized to prevent data 

redundancy and to prevent update anomalies. This makes the write operation in 

the database tables more efficient [6] [7]. 

An OLAP (On-line Analytical Processing) is deal with Historical Data or 

Archival Data, and it is characterized by relatively low volume of transactions. 

Queries are often very complex and involve aggregations. Response time is an 

effectiveness measure for OLAP systems. OLAP applications are widely used by 

Data Mining techniques. There is aggregated, historical data, stored in multi-

dimensional schemas in OLAP database [6] [7]. 

The design of a data warehouse database and online analytical processing 

(cubes, star schema etc) is fundamentally different than a transactional 

processing database. The data warehouse is particularly designed to facilitate 

super fast query times in a large dataset and multi-dimensional analysis. The 

following table summarizes the major differences between OLTP and OLAP 

system design [8]. 

Table 1: The major differences between OLTP and OLAP system design  [8] 

 OLTP System 
Online Transaction 

Processing 
(Operational System) 

OLAP System 
Online Analytical 

Processing 
(Data Warehouse) 

Source of data 
Operational data; OLTPs are 
the original source of the 
data. 

Consolidation data; OLAP 
data comes from the various 
OLTP Databases 

Purpose of 
data 

To control and run 
fundamental business tasks 

To help with planning, problem 
solving, and decision support 

What the data Reveals a snapshot of 
ongoing business processes 

Multi-dimensional views of 
various kinds of business 
activities 

Inserts and 
Updates 

Short and fast inserts and 
updates initiated by end 
users 

Periodic long-running 
batch jobs refresh the data 

Queries 
Relatively standardized and 
simple queries Returning 
relatively few records 

Often complex queries 
involving aggregations 

Processing 
Speed Typically very fast 

Depends on the amount of 
data involved; batch data 
refreshes and complex queries 
may take many hours; query 
speed can be improved by 
creating indexes 

Space 
Requirements 

Can be relatively small if 
historical data is archived 

Larger due to the existence of 
aggregation structures and 
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history data; requires more 
indexes than OLTP 

Database 
Design 

Highly normalized with many 
tables 

Typically de-normalized with 
fewer tables; use of star 
and/or snowflake schemas 

Backup and 
Recovery 

Backup religiously; 
operational data is critical to 
run the business, data loss is 
likely to entail significant 
monetary loss and legal 
liability 

Instead of regular backups, 
some environments may 
consider simply reloading the 
OLTP data  as a recovery 
method 
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CHAPTER 3 

DATA WAREHOUSE 

3 DATA WAREHOUSE 

3.1 Definition of Data Warehouse 

The term data warehouse (DW) is commonly used in industry and it denote 

to a kind of heterogeneous information system. We have to disclose firstly that a 

data warehouse is an environment, not a product. The need for building a data 

warehouse is that corporate data is often scattered in different databases and 

possibly in different formats. In order to view a complete picture of information, it 

is necessary to access these heterogeneous databases. Therefore we have to 

obtain data and pieces of partial information from each, and then put them 

together to produce an overall picture. Attempting this process without a data 

warehouse is a cumbersome task, inefficient, ineffective, error-prone. Moreover 

this task usually will need huge efforts of system analysts. All these difficulties 

discourage the effective use of complex, but valuable corporate data [9]. 

The definition of data warehouse has evolved since its origins in the early 

1980s. Some of the more common definitions [10]: 

 Data Warehouse is a repository of subject-oriented, historical data. 

 Data Warehouse is a collection of smaller “data marts”. 

 Data Warehouse can be considered any separate hardware platform that 

enables a business person to make a decision. 

All of these definitions can be correct, depending on your environment. Dyche 

[10] defines the data warehouse as a separate platform – a computer different 

from other computers in your IT environment. 
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A data warehouse consolidates and integrates information from many internal 

and external sources and arranges it in a meaningful format for making accurate 

and timely business decisions. In fact, data warehouse is a database and mainly 

used for reporting and analysis purposes. It is different from the organization’s 

Online Transaction Processing (OLTP) database. The data stored in the 

warehouse is uploaded from the operational systems.  

Figure 2: Sample Data Warehouse Architecture [11] 

Bill Inmon [11] defines the term DW as: “A data warehouse is a subject-

oriented, integrated, time-variant, non-volatile collection of data in support of 

management’s decisions”. This definition contains four key elements that are 

worthy of a detailed explanation: 

 Subject-Oriented: In the data warehouse, all the data elements relating to 

the same real-world event are organized or object are linked together. The 

data in the warehouse should be organized based on subject, that is only 

subject-oriented data should be moved into a warehouse; for example, it 

can be product sales focusing on client interests in some sales company, 

the client behavior in utilization of different banking services, the insurance 

history of the clients, the railroad system utilization or changes in structure, 

etc. 

 Integrated: DW is an architecture constructed by integrating data from 

multiple heterogeneous sources (such as relational database (DB), flat 
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files, excel sheets, XML data, data from the legacy systems) to support 

structured and/or ad hoc queries, analytical reporting and decision making. 

In this process, some problems have to be resolved: differences in data 

format, data codification, synonyms (fields with different names but the 

same data), homonyms (fields with the same name but different meaning), 

multiplicity of data occurrences, nulls presence, default values selection, 

etc. 

 Non-Volatile: The data in the data warehouse can neither be modified nor 

removed, that is durable.  Once committed, data in the data warehouse 

are never over-written or deleted. The data are static, read-only, and 

retained for future reporting. 

 Time-Variant: DW is time variant in the sense that they maintain both 

historical and (nearly) current data. In contrast, operational databases 

contain only the most current, current (up-to-date) data values.  DW 

provides information from a historical prospective. Therefore, every key 

structure in the DW contains, either implicitly or explicitly, an element of 

time. This indicates the possibility to count on different values of the same 

object according to its changes in time. For example, in a banking DW, the 

average balances of client’s account during different months for the period 

of several years.  

On the other hand, Ralph Kimball [12] briefly defines a DW as “a copy of 

transaction data specifically structured for query and analysis”.  He provides a 

more precise definition by means of requirements: 

1. The data warehouse provides access to corporate or organizational 

data. 

2. The data in a data warehouse is consistent. 

3. The data in a data warehouse can be separated and combined by 

means of every possible measure in a business (the classic slice and 

dice requirement). 

4. The data warehouse is not just data, but also a set of tools to query, 

analyze, and present information. 

5. The data warehouse is the place where we publish used data. 

6. The quality of the data in the data warehouse is a driver of business 

reengineering 
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Alternatively, Han and Kamber [13], define a DW as “a repository of multiple 

heterogeneous data sources organized under a unified schema at a single site to 

facilitate management decision making”.  

Finally, other authors focus their interest on the final users of the DW. For 

example, in [14], a DW is defined as a “collection of technologies aimed at 

enabling the knowledge worker (executive, manager, and analyst) to make better 

and faster decisions”.  

After these definitions we can focus on the four general principles of data 

warehousing listed below. These are true regardless of the platform, amount of 

data, and software being used [10]. 

1. A data warehouse is usually a separate computer, or hardware platform. 

This platform may be large or small and in some cases it might a collection 

of distributed platforms. In other words, it could be a set of “nodes” on a 

large computer platform. 

2. The data on the data warehouse is used for decision making. 

3. Data warehouses duplicate data that already exists elsewhere in the 

business. While this data redundancy sounds wasteful, it’s actually a very 

good thing. 

4. A data warehouse is not just a computer sitting someplace in the bowels 

of your companies data center. It’s a combination of hardware, specialized 

software, and data. Normally, when people refer to “our data warehouse”, 

they are talking about a hardware box, a collection of software products 

and tools, and lots and lots of data. 

In short, a data warehouse is a repository of information extracted from other 

corporate systems such as transactional systems, departmental databases, 

company’s intranet or Internet. 

3.2  Data Warehouse, Decision Support, and Business 
Intelligence 

Even before adopting data warehousing, an executive’s assistant would be 

requesting a report for a certain product or some success rates from the IT 

department. While the IT person was querying the data and preparing the report, 

executive was waiting along day(s)/week(s). Figure 3 illustrates a typical lifecycle 

for acquiring valuable business information [10]. 
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Figure 3: The Historical Process of Retrieving Information [10] 

It is important here to understand the difference between data and 

information. The data warehouse synthesizes some very important data, but only 

when this data is combined into meaningful answers or reports that can support 

the interpretation of business events, then it can be considered information. While 

data has been difficult enough for companies to find and process, information has 

been next to impossible to obtain. Data in a data warehouse is cleansed and 

consolidated for access by variety of purposes [10]. 

One of the most important human activities is decision-making. It is more 

difficult in today’s complex and rapidly changing decision environment than ever 

before. Decision Support Systems (DSS) are playing an important role in 

organizational decision-making for business intelligence in all disciplines, 

including health, business, engineering, education and finance. Organizational 

decision makers’ requirements are increasing for advanced knowledge, previous 

successful experiences, and intelligent technical conditions to support and enable 

better decisions. In current advanced DSS, computational intelligence and 

knowledge-based methods and new analytical intelligence techniques, have 

become essential components. The ever-increasing distributed decision situations 

and related computing systems have triggered the development of a new 

generation of Intelligent Decision Support Systems (IDSS) [16]. 
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In the new digital economy, rapid, relentless change is the only constant. So 

that companies must be able to forecast and adapt to ever-evolving market 

conditions to compete such a change. The key to achieving rapid and fast 

strategic performance is maintaining a steady flow of fully-integrated, actionable 

information about all key business areas, including production, customer service, 

supply, marketing, sales, and HR [17]. 

However, Liautaud [17] says that, when it comes to corporate intelligence, 

most companies are still plodding along at the speed of the steam-driven 

locomotive.  

3.3 Definitions of Some Data Warehouse Terms 

Term Definition 

Aggregation 

A summarized, typically additive value. The level of aggregation 
depends on the scenario. Many star schemas are aggregated to 
some base level, called the grain, although this is becoming 
somewhat less common as developers rely on cube building 
engines to summarize to a base level of granularity [18]. 

Change Data 
Capture 

Change Data Capture (CDC) is a generic term for techniques 
that monitor operational data sources with the objective of 
detecting and capturing data changes of interest [19]. 

Drill-down 
The process of probing beyond a summarized value to 
investigate each of the detail transactions that comprise the 
summary. 

Drill-up 

A way of viewing related items of a Dimension as defined in 
the Hierarchy by collapsing members to come up to a 
summarized data range, or simply put, to hide child members 
associated with a specific parent or aggregate member within a 
defined hierarchy [20]. 

ETL / ELT 

The Extract-Transform-Load (ETL) or Extract-Load-Transform 
system is the foundation of any data warehouse [19]. The 
objective of the ETL/ELT system is extracting data from 
multiple, heterogeneous data sources, transforming and 
cleansing data, and finally loading data into the data warehouse 
where it is accessible to business intelligence applications [21]. 

Grain A definition of the highest level of detail that is supported in a 
data warehouse. 

Incremental 
Load 

“Full reloading is obviously inefficient considering that most 
often only a small fraction of source data is changed during 
loading cycles. It is rather desirable to capture source data 
changes and propagate the mere changes to the data 
warehouse. This approach is known as incremental loading” 
[21]. 

Initial Load 
“The first population of a data warehouse is referred to as initial 
load. During an initial load, data is typically extracted 
exhaustively from the sources and delivered to the data 
warehouse. As source data changes over time, the data 
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warehouse gets stale, and hence, needs to be refreshed. Data 
warehouse refreshment is typically performed in batch mode on 
a periodical basis. The naive approach to data warehouse 
refreshment is referred to as full reloading. The idea is to simply 
rerun the initial load job, collect the resulting data, and compare 
it to the data warehouse content. In this way, the required 
changes for data warehouse refreshment can be retrieved. Note 
that it is impractical to drop and recreate the data warehouse 
since historic data has to be maintained” [21].  

Pivot Table 

A pivot table is a program tool that allows you to reorganize and 
summarize selected columns and rows of data in 
a spreadsheet or database table to obtain a desired report. A 
pivot table doesn't actually change the spreadsheet or database 
itself. In database lingo, to pivot is to turn the data (slice and 
dice) to view it from different perspectives [22]. 

Rollup 
Relational Online Analytical Processing. ROLAP is a flexible 
architecture that scales to meet the widest variety of DSS and 
OLAP needs. ROLAP architecture access data directly from 
data warehousing using SQL [23]. 

 

3.4 Major Components of Data Warehousing 

The main reason for building a DW is to clean, consolidate and integrate the 

data coming from different sources, and therefore to improve the quality of 

information for making accurate and timely business decisions. We can list the 

major components of data warehousing as follows: 

1. Data Sources  

2. Data Extraction / Data Acquisition 

3. Change Data Capture 

4. Data Transformation 

5. Data Loading 

6. Data Staging 

7. Operational Data Store (ODS) 

8. Data Integration 

9. Comprehensive Database 

10. Metadata 

11. Middleware Tools (enable access to the DW)  
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Figure 4: Major Data Warehouse Components 

In Figure 4, major components of a data warehouse are shown in their 

architectural places. 

3.4.1 Data Sources 

Data Source, as the name intimates, provides data to DW via data site.  Data 

site successively stores an organization's database, data files including non-

automated data.  A data source can be a relational database or a non-relational 

data source. 

Data sources have to be identified before starting to develop data warehouse. 

The very first step needed to figure out what are the data that are required to be 

put into your data warehouse [24]. 

3.4.2 Data Extraction / Data Acquisition 

Data extraction is the process of retrieving data from data sources for further 

data processing or data storage and it is a very important element of data 

warehouse implementation. 

Extracting data from operational systems, and transform it into a format 

suitable for applications that will run off the data warehouse is an important part of 

the data warehouse implementation [9].  

3.4.3 Change Data Capture 

Capturing changes of data is crucial in refreshing data warehouse. Refreshing 

process begins with transferring the latest source data into the data warehouse. 
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However, we must transfer only the relevant changes to the source data since the 

last transfer because of the difficulty of complete refreshing. Completely 

refreshing our target fact and dimension tables are usually undesirable [25].  

Isolating the latest source data is called change data capture and is often 

abbreviated CDC in high level architecture diagrams. The idea behind change 

data capture is to transfer the data that has been changed since the last load, but 

building a good change data capture system is not as easy. Some of the goals we 

have for capturing changed data [24]: 

 Rather than complete refresh, use selective processing to isolate the 

changed source data  

 Capture all source data changes (deletions, edits and insertions) including 

changes made through non-standard interfaces 

 To distinguish error corrections from true updates, label changed data with 

reason codes 

 Use additional metadata to support compliance tracking 

 Start the change data capture process as early as possible, preferably 

before bulk data transfer to data warehouse 

Detecting the changes is the first step in change data capture and there are 

mainly four ways to detect changes [25] [26]: 

 Audit columns: The source system contains audit columns that stores 

the date and time a record was added or modified.  

 Database log scraping or sniffing: Log scraping effectively takes a 

snapshot of the database redo log at a scheduled point in time (usually 

midnight) and scours it for transactions that affect the tables for ETL load. 

Sniffing involves a “polling” of the redo log, capturing transactions on-the-

fly. 

 Timed extracts: With a timed extract you typically select all of the rows 

where the date in the Create or Modified date fields equal SYSDATE-1, 

meaning you’ve got all of yesterday’s records, but this process is horribly 

unreliable. Time-based data selection loads duplicate rows when it is 

restarted from mid-process failures. This means that manual intervention 

and data cleanup is required if the process fails for any reason. 
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Meanwhile, if the nightly load process fails to run and misses a day, a risk 

exists that the missed data will never make it into the data warehouse. 

 Full database “diff compare”: A full diff compare keeps a full snapshot 

of yesterday’s database, and compares it, record by record against today’s 

database to find what changed. It’s good that you are guaranteed to find 

every change in this technique, but this technique is very resource 

intensive.  

3.4.4 Data Transformation 

Data transformation is converting data from a source data format into 

destination data format. The data transformation process typically consists of 

multiple steps and each step may perform schema and instance-related 

transformations (mappings). Importantly, transformation codes are generated to 

reduce the amount of self-programming. Thus, it is necessary to specify the 

required transformations in an appropriate language, e.g., supported by a 

graphical user interface. Various ETL tools offer this functionality by supporting 

proprietary rule languages. A more general and flexible approach is the use of the 

standard query language SQL to perform the data transformations. Moreover you 

can utilize the possibility of application specific language extensions, in particular 

user-defined functions (UDFs) supported in SQL: 99 [27]. 

The functionality of data transformation includes [9]: 

 Removing unwanted data 

 Converting to common data names and definitions 

 Calculating summaries and derived data 

 Establishing defaults for missing data 

 Accommodating to source data definition changes. 

3.4.5 Data Loading 

After data has been extracted, it is time to be load into a data warehouse. The 

data which is cleansed and transformed to comply with the data warehouse 

standards is moved into the appropriate data warehouse entities. In this step, data 

may be summarized and reformatted as part of this process. This depends on the 

extraction and cleansing specifications and the performance requirements of the 

data warehouse. After the data has been loaded, metadata information is updated 

to reflect the activity that has just been completed [9].  
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3.4.6 Data Staging 

To simplify the cleansing and transformation process, it may be practice 

creating and defining a staging area. This is a simple concept and allows 

maximizing up-time of a data warehouse while extracting and cleansing the data. 

A staging area is simply a temporary work area that data from source systems is 

copied and also it can be used to manage transactions that will be further 

processed to develop data.  A staging area is mainly required for timing reasons.  

Briefly, in advance of data integration into the Data Warehouse, all required data 

must be available [9] [28]. 

3.4.7 Operational Data Store 

For the need for integrated tactical and operational reporting database, the 

data warehouse was included a new database called the Operational Data Store 
(ODS) [29]. 

An ODS is an environment where data from different operational databases is 

integrated. It provides an integrated view of enterprise data to the users and 

enables the user to address operational challenges that span over more than one 

business function [30]. 

An ODS is subject to change much more frequently than a DW and stores, in 

contrast to a DW, no histories over operational data. Thus, an ODS provides 

support for activities such as collective operational decisions based on current 

company-wide information. 

3.4.8 Data Integration 

A data warehouse is an integrated collection of subject-oriented data in the 

support of decision making. Therefore, data integration is a core requirement of 

any data warehouse. The integration of data sources is mainly accomplished by 

the use of ETL processes. Hence, the appropriate designs of the ETL processes 

are key factors in the success of data warehouse projects [31]. 

3.4.9 Comprehensive Database 

A comprehensive database platform is needed for data warehousing and 

business intelligence that combines scalability and performance, reliability, 

security, deeply integrated analytics, and embedded integration and data-quality. 
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Also it may provide an integrated platform for analytics; by embedding OLAP, 

Data Mining, and statistical capabilities directly into the database [32]. 

3.4.10 Metadata 

Metadata is a kind of data that describes the data warehouse itself, in short 

data about data and it is a vital area of data warehouse. Metadata within a data 

warehouse describes and locates data components, their origins (which may be 

either the operational systems or the data warehouse), and their movement 

through the data warehouse process. The data access, data stores, and 

processing information will have associated descriptions about the data and 

processing documented in the metadata. This metadata should be managed from 

the beginning of data warehouse project. Information in the metadata repository 

includes [9]:  

 The data model description 

 Description of the layouts used in the database design 

 Definition of the primary system managing the data items 

 A data map, from the system of record to other locations in the data 

warehouse, including the  descriptions of transformation and aggregations 

 Database design definitions  

 Data element definitions, including rules for derivations and summaries. 

3.4.11 Middleware Tools (enable access to the DW)  

The main purpose of data warehousing is to provide information to business 

users for strategic decision making and interaction with the data warehouse made 

by using front-end tools. Although, main delivery tools for analysis in a data 

warehouse are ad hoc requests, regular reports, and custom applications, many 

development efforts of data warehousing projects are focusing on exceptional 

reporting also know as alerts. The alerts warn a user when a certain event has 

occurred. For example, if a data warehouse is designed to assess the risk of 

stock decrease, an alert can be activated when a certain stock rate drops blow a 

predefined threshold. When an alert is well synchronized with the key objectives 

of business, it can provide warehouse users an enormous advantage. The front-

end user tools can be grouped as follows [9]: 

 Data query and reporting tools 

 Application development tools 
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 Executive information systems (EIS) tools 

 Online analytical processing (OLAP) tools 

 Data mining tools. 

3.5 Data Warehouse Development Approaches 

Data Warehouse development approaches are evolves in time and today 

there are many approaches but two of them are very famous: 

1. Inmon Model: Enterprise Data Warehouse (EDW) approach  

2. Kimball Model: Data Mart approach  

A comprehensive comparison summary of these models published by Breslin 

[33]. 

Bill Inmon suggests a top-down development approach. This approach 

adapts traditional relational database tools to develop needs of an enterprise wide 

data warehouse. Individual departmental databases are developed to serve most 

decision support needs from this enterprise data store [33]. 

Ralph Kimball, on the other hand, advocates a bottom-up development 

approach. This approach uses dimensional modeling, a data modeling approach 

unique to data warehousing. Kimball suggests creating one database (or data 

mart) per major business process, rather than building a single enterprise wide 

database.  Enterprise wide cohesion is accomplished by using another Kimball 

innovation, a data bus standard [33]. 

Here, one may be ask which model is the best. Indeed, there is no one-size-

fits-all strategy to data warehousing. 

3.5.1 Inmon Model 

Inmon's model is a top-down approach. Inmon’s model consists of all 

information systems and their databases throughout a given organization and this 

is called the Corporate Information Factory (CIF) [34]. Figure 5 shows Inmon's 

Corporate Information Factory.  
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Figure 5: Corporate Information Factory [34] 

In Inmon's CIF architecture; first there were applications, then online 

applications, followed by extract processing. After that a spider’s web mess of 

data and systems came, then data warehouse and the Corporate Information 

Factory with its many architectural components [34]: 

 The Operational Data Source  

 The data marts environment  

 Decision Support Systems 

 Exploration/data mining warehouses  

 Alternate storage, et al.  

The overall database environment of the organization is divided into four 

levels by Inmon. [33]: 

1. Operational 

2. Atomic data warehouse 

3. Departmental  

4. Individual 

The first level contains data from other transaction processing and legacy 

systems. The day-to-day operation of the organization is supported in this level; in 
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other words, the first level supports all transaction processing. Data from the 

operational systems is extensively manipulated and then moved to the atomic 

data warehouse. The last three levels comprise the data warehouse [35]. 

Inmon exemplifies the difference between operational data and data stored in 

the atomic data warehouse. In the example, the entity is a customer, and the 

attribute of most interest is the customer’s credit rating. The operational system’s 

database contains the customer’s current credit rating and related information of 

interest such as loan balances, address, in a single record. By contrast, the 

atomic data warehouse contains the credit history for this customer, summarized 

by year, with one record per year [35]. 

The data contained in the departmental level is small to a great extend 

summarized. Each department’s database can hold data summarized according 

to its information needs. In addition, Inmon’s architecture ensures data 

consistency because all departmental data comes from the atomic data 

warehouse [35]. 

The fourth and final level of the architected environment is created by 

individual users. They create heuristic, ad hoc data sets as part of decision 

support analyses. This fourth level is housed on the individual user’s personal 

computer and temporary [35]. 

It is possible to query the atomic data warehouse, if the department’s 

database has not retained the data at the level of detail needed. Inmon says that 

the atomic data warehouse is worth the initial effort to construct because it allows 

the creation of any number of departmental databases without risking creating 

incompatible data between them [35]. A three-level data model is used for this. 

3.5.1.1 The Three-Level Data Model 

Inmon proposes three levels of data modeling.  

1. ERD (Entity Relationship Diagram) 

2. DIS (Data Item Set) 

3. Physical  

The first is just as in the development of operational databases. ERDs are 

used to explore and refine entities, their attributes, and the relationships between 
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entities. A set of ERDs are created for each department. The sum of all 

department ERDs is the corporate ERD [35]. 

The second data model consists of four constructs: 

 A primary data grouping 

 A secondary data grouping 

 A connector, identifying the relationships of data between major subject 

area 

 “Type of ” data 

The second data model creates the DIS for each department. The corporate 

DIS is composed of the sum of the departmental DISs [35]. Figure 6 shows the 

relationship between Levels One and Two of Inmon’s Data Model. 

 

Figure 6: Relationship between Levels One and Two of Inmon’s Data Model [35] 



25 
 

The third and final level of Inmon’s data model is the physical. “The physical 

model is created from the mid-level data model merely by extending the mid-level 

data model to include keys and physical characteristics of the model” [35]. Inmon 

explains various techniques (such as creating arrays of data, pre-formatting, 

rejoining tables etc.) for optimizing the performance of the data warehouse. The 

purpose is optimizing I/O performance that is the same as for operational 

database systems. Most of these techniques involve de-normalization of tables 

[33]. 

After the three-level data model is complete, the data warehouse development 

has begun by using Inmon’s special adaptation of the spiral development 

methodology, which he calls Meth2. (Meth1 is for developing operational systems; 

Meth3 is for tuning an existing data warehouse). Inmon outlines ten steps, shown 

in Figure 7 [35]. 

 

Figure 7: Inmon’s Meth2 [35] 

Inmon sees the data warehouse as an integral part of the Corporate 

Information Factory (CIF). This means that the data warehouse and operational 

databases are all part of a larger whole. Therefore, Inmon’s data warehouse must 

adhere to most of the same standards as operational systems [35] [33]. 

3.5.2 Kimball Model 

Kimball's model is a bottom-up approach. Kimball’s model differs from a 

traditional relational database approach. One significant difference is that data 
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warehouses built with the Kimball model use a data modeling method which is 

called “Dimensional Data Modeling” [33].  

The overall architecture features multiple databases that are expected to be 

highly interoperable. The data bus is the main design feature that makes this 

possible. This is another difference, "The Data Bus and Conformed 
Dimensions” [33]. The Data Bus and Conformed Dimensions is explained in 

section 3.5.2.1. 

Dimensional modeling begins with tables. The tables are called either fact or 

dimension. Fact tables contain metrics, while dimension tables contain attributes 

of the metrics in the fact tables. Dimension tables routinely contain repeating 

groups; this violates normalization rules in order to achieve a high level of 

performance in the data warehouse [33]. Dimensional modeling is explained in 

section 3.6 en detail. 

3.5.2.1 The Data Bus and Conformed Dimensions 

In Kimball’s model, data is copied from operational source systems to a 

staging area. The data is made consistent and suitable for end-user queries. 

From the staging area, data is loaded into data marts. The source of data for user 

queries are data marts [13]. 

Each data mart is based on a single business process such as point of sale, 

inventory, procurement, and order management. More than one department may 

be interested in a given business process. There is no one department that is 

perceived as the sole owner of a given data mart [13]. 

The bus architecture allows the sum of the data marts to be an integrated 

whole. That is, all data marts must use standardized conformed dimensions. 

Keys, column names, attribute definitions, and attribute values are consistent 

across business processes. This is the basic requirements of conformed 

dimensions. In other words, two dimensions are conformed “when they are 

exactly the same, or one is a perfect subset of the other. Most important, the row 

headers produced in answer sets from two different conformed dimensions must 

be able to be matched perfectly” [13]. This may seem an impossible set of 

requirements, but a knowledge of dimensional data modeling and adherence to 

the four-step dimensional design process help keep the requirements 

manageable [33]. 
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A product dimension that spans multiple business processes may be an 

example. An artificial key assigned to the primary key for the product during the 

ETL process. The first data mart development defines the product key, and all 

subsequently developed data marts must use the key. Therefore, queries can be 

made across data marts without conflicting results [33]. 

3.5.2.2 The Four-Step Dimesional Design Process 

Kimball suggests a development methodology that involves a bottom-up 

approach, which in the case of data warehouses means to build one data mart at 

a time. The four steps of the dimensional design process are: 

1. Select the business process 

2. Declare the grain 

3. Choose the dimensions 

4. Identify the facts 

The first step is "select the business process" that has “the most impact—it 

should answer the most pressing business questions and be readily accessible 

for data extraction” [13]. 

The second step is declaring the grain that is the process of deciding what 

level of detail the data warehouse will contain. The lowest level of granularity is 

called atomic, that is, it cannot be further subdivided. Choosing a grain at the 

atomic level is highly important. If you choose a more summarized level, queries 

below that level cannot be fulfilled by the data warehouse [13].  

The third step is to choose dimensions. Each of the dimension tables has a 

large number of attributes. The date dimension table includes many attributes 

such as Day, Week, Month so on [13]. 

The final step is to identify facts which to include in the fact tables. Kimball 

chooses to include some computed values in the fact table as well as truly atomic 

values. Therefore, this makes queries easy for the end user and provides 

acceptable data warehouse performance [13]. The result of the four-step process 

is shown in Figure 8. 
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Figure 8: Sample Kimball Fact and Dimension Tables [13] 

3.6 Dimensional Modeling 

3.6.1 Entities within a Data Warehouse 

A dimensional model such as star schema contains three types of logical 

entities: (1) a measure, (2) dimension, and (3) category detail. It is a logical 

structure which has measure entity at the center containing factual data, and this 

is surrounded by dimension entities containing reference data [9].  

 

Figure 9: Sample Dimensional Model (Star Schema) 
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A dimensional model is shown in Figure 9. Sales table in the figure is a fact 

table; quantity and amount are measures of this fact table. 

3.6.1.1 Measure Entities 

Within a dimensional model (i.e. star schema), the center of the model – and 

often the focus of the users’ query activity – is measure entity (or fact table). The 

data contained in a measure entity is factual information from which users derive 

business intelligence. The measurement data provides users with quantitative 

data about business [9]. 

3.6.1.2 Dimension Entities 

Dimension entities are much smaller entities than measure entities. The 

dimension and their associated data allow users of data warehouse to browse 

measurement data with ease of use and familiarity. These entities assist users in 

minimizing the rows of data within a measure entity, and aggregating key 

measurements data. In this sense, these entities filter data, or force the server to 

aggregate data, so that fewer rows are returned from the measure entities [9]. 

3.6.1.3 Category Detail Entities 

Each element in a dimension is a category, and represents an isolated level 

within a dimension that might be require more detailed information to fulfill a 

user’s requirement. These categories that require more detailed data are 

managed within category detail entities. These entities have textual information 

that supports the measurement data and provides more detailed or qualitative 

information to assist in decision making process [9]. 

3.6.2 Star Schema 

The star schema is the simplest data warehouse schema. It is called a star 

schema because the entity-relationship diagram of this schema resembles a star, 

with points radiating from a central table. The center of the star consists of a large 

fact table and the points of the star are the dimension tables [36]. 

A star query is a join between a fact table and a number of dimension tables. 

Each dimension table is joined to the fact table using a primary key to foreign key 

join, but the dimension tables are not joined to each other. The optimizer 

recognizes star queries and generates efficient execution plans for them. It is not 
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mandatory to have any foreign keys on the fact table for star transformation to 

take effect [36]. 

A typical fact table contains keys and measures. For example, in the Figure 9 

sample schema, the fact table, sales, contain the measures quantity and amount, 

and the keys product_id, customer_id, supplier_id and time_id. The dimension 

tables are customers, times, products and suppliers. The products dimension 

table, for example, contains information about each product number that appears 

in the fact table. 

A star join is a primary key to foreign key join of the dimension tables to a fact 

table. 

The main advantages of star schemas are [36]: 

 Provide a direct and intuitive mapping between the business entities being 

analyzed by end users and the schema design. 

 Provide highly optimized performance for typical star queries. 

 Are widely supported by a large number of business intelligence tools, 

which may anticipate or even require that the data warehouse schema 

contain dimension tables. 

Star schemas are used for both simple data marts and very large data 

warehouses. Figure 10 presents a graphical representation of a star schema. 

 

Figure 10: Star Schema 
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3.6.3 Snowflake Schema 

The snowflake schema is a more complex data warehouse model than a star 

schema, and is a type of star schema. It is called a snowflake schema because 

the diagram of the schema resembles a snowflake [36]. 

Snowflake schemas normalize dimensions to eliminate redundancy. That is, 

the dimension data has been grouped into multiple tables instead of one large 

table. For example, a product dimension table in a star schema might be 

normalized into a products table, a product_type table, and a 

product_manufacturer table in a snowflake schema. While this saves space, it 

increases the number of dimension tables and requires more foreign key joins. 

The result is more complex queries and reduced query performance. Figure 11 

presents a graphical representation of a snowflake schema. 

 

Figure 11: Snowflake Schema 

3.6.4 Slowly Changing Dimensions 

Entities such as customer demographics, product characteristics, classification 

rules, status of customers change over time. In a transaction system, many times 

the change is overwritten and track of change is lost. 
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For example a source system may have only the latest customer PIN Code, as 

it is needed to send the marketing and billing statements. However, a data 

warehouse needs to maintain all the previous PIN Codes as well, because we 

need to track on how many customers move to new locations over what 

frequency. 

A key benefit for Data Warehouse is to provide historical information, which is 

typically over-written (and thus lost) in the transaction systems. How to handle 

slowly changing dimensions in a Dimensional Model is a key determinant to that 

benefit [37]. 

Dimension is a term that refers to logical groupings of data such as 

geographical location, customer information, or product information. Slowly 

Changing Dimensions (SCDs) are dimensions that have data that changes 

slowly, rather than changing on a time-based, regular schedule [13].  

The SCD technique is used to preserve history in the Data Warehouse 

environment. The most common slowly changing dimensions are Types 1, 2, and 

3. 

3.6.4.1 Type 1 

SCD Type 1 methodology overwrites old data with new data, and therefore 

does not track historical data at all. It is a simple overwrite of the existing 

dimension record. This means that no history will be preserved. This is most 

appropriate when correcting certain types of data errors, such as the spelling of a 

name [38].  

For example, a database table that keeps supplier information. In this 

example, Supplier_Code is the “natural key” and Supplier_Key is a “surrogate 

key”. Technically, the surrogate key is not necessary, since the table will be 

unique by the natural key (Supplier_Code). However, the joins will perform better 

on an integer than on a character string. 

Now imagine that this supplier moves their headquarters to İstanbul. The 

updated table would simply overwrite this record: 
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Before Update: 

Supplier_Key Supplier_Code Supplier_Name Supplier_City 

345 ASC ABC Supply Co Ankara 

 

After Update: 

Supplier_Key Supplier_Code Supplier_Name Supplier_City 

345 ASC ABC Supply Co İstanbul 

 

The obvious disadvantage to this method of managing SCDs is that there is 

no historical record kept in the data warehouse. You can't tell if your suppliers 

are tending to move to the Midwest, for example. But an advantage to Type 1 

SCDs is that they are very easy to maintain. 

If you have calculated an aggregate table summarizing facts by city, it will 

need to be recalculated when the Supplier_City is changed. 

3.6.4.2 Type 2 

SCD Type 2 method tracks historical data by creating multiple records for a 

given natural key in the dimensional tables with separate surrogate keys and/or 

different version numbers. With Type 2, we have unlimited history preservation as 

a new record is inserted each time a change is made. 

In the same example, if the supplier moves to İstanbul, the table could look 

like this, with incremented version numbers to indicate the sequence of changes: 

Before Update: 

Supplier_Key Supplier_Code Supplier_Name Supplier_City Version 

345 ASC ABC Supply Co Ankara 0 
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After Update: 

Supplier_Key Supplier_Code Supplier_Name Supplier_City Version 

345 ASC ABC Supply Co Ankara 0 

346 ASC ABC Supply Co İstanbul 1 

 

Another popular method for tuple versioning is to add “effective date” columns. 

After Update: 

Supplier_Key Supplier_Code Supplier_Name Supplier_City Start_Date End_Date 

345 ASC ABC Supply Co Ankara 01.01.2008 21.12.2011 

346 ASC ABC Supply Co İstanbul 22.12.2011 null 

 

The null End_Date in row two indicates the current tuple version. In some 

cases, a standardized surrogate high date (e.g. 31.12.9999) may be used as an 

end date, so that the field can be included in an index, and so that null-value 

substitution is not required when querying. 

Transactions that reference a particular surrogate key (Supplier_Key) are then 

permanently bound to the time slices defined by that row of the slowly changing 

dimension table. An aggregate table summarizing facts by state continues to 

reflect the historical state, i.e. the state the supplier was in at the time of the 

transaction; no update is needed. 

If there are retrospective changes made to the contents of the dimension, or if 

new attributes are added to the dimension (for example a Sales_Rep column) 

which have different effective dates from those already defined, then this can 

result in the existing transactions needing to be updated to reflect the new 

situation. This can be an expensive database operation, so Type 2 SCDs are not 

a good choice if the dimensional model is subject to change. 
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3.6.4.3 Type 3 

SCD Type 3 method tracks changes using separate columns. Whereas Type 

2 had unlimited history preservation, Type 3 has limited history preservation, as 

it's limited to the number of columns designated for storing historical data. Where 

the original table structure in Type 1 and Type 2 was very similar, Type 3 adds 

additional columns to the tables. In the following example, an additional column 

has been added to the table so as to record the supplier's original city: (only the 

previous history is stored) 

After Update: 

Supplier_Key Supplier_Code Supplier_Name 
Original_Sup
plier_City 

Effective_
Date 

Current_S
upplier_Ci
ty 

345 ASC ABC Supply Co Ankara 22.12.2011 İstanbul 

 

Note that this record--having only a column for the original city and a column 

for the current city--can not track all historical changes, such as when a supplier 

moves a second time. 

One variation of this type is to create the field Previous_Supplier_State 

instead of Original_Supplier_State which would then track only the most recent 

historical change. 

3.6.5 OLAP Cube 

Cubes are the logical storage structures that define a set of related 

dimensions. Each cell in the cube holds one value which is an intersection of the 

dimensions. 

A cube view shown in Figure 12. The cube has three dimensions which are 

time, region and product. From the cube in figure, one can get the value(s) of 

cell(s). For example, in the figure, we gets the value of the cell which is the 

intersection of dimension values "City 1", "Product 4" and "January". 

On a cube, each dimension enables you to perform specific OLAP operations. 

The basic OLAP operations are Roll up, Drill down, Slice, Dice, Pivot [14] [1]. 
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Figure 12: A 3D Cube View 
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CHAPTER 4 

REAL TIME DATA WAREHOUSE 

4 REAL TIME DATA WAREHOUSE 

4.1 Introduction 

Today's business environment is quickly changing and business decision 

makers need for a historical picture of what happened and a picture of what was 

happening today. Engineers strongly defended the notion that the data 

warehouse needed to provide a reliable information floor upon which to stand, 

providing an unwavering set of data to business decision makers. Because of the 

twinkling database, business users were directed to the production applications 

that run the business for up-to-the-moment reporting. Therefore, users had to go 

to the data warehouse for a historical picture of what happened in the business as 

of yesterday and had to look across many OLTP systems for a picture of what 

was happening today. This division never fully accepted by business users. They 

want to go to one place to get the business information that they needed [19]. 

Fresh data in data warehouses is a strong feature from the part of the users. 

Traditionally, loading data into warehouses has been performed in an off-line 

period. In such a data warehouse setting, data are extracted from the sources, 

transformed, cleaned, and loaded to the warehouse. To avoid overloading the 

source production systems, data warehouse activities takes place during a 

loading window, usually during the night. In most cases, a data warehouse is 

typically updated every day (24 hours period) [39]. 

The delay between a business transaction and its appearance in the data 

warehouse is too much for many organizations in fast-moving vertical industries. 

Additionally the data warehouse has become mission critical. That is, feeding 

enriched information back to operational systems that is then used to process 
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transactions; personalize offers, and present up-sell promotions. The push for 

ever-fresher information is needed [19]. 

The issues facing managers and government officials in today’s business 

environment is rapidly making historical systems less valuable. Decisions in the 

business world become more real-time and the systems that support those 

decisions need to keep up to date. It is solely natural that Data Warehouse, 

Business Intelligence, Decision Support, and OLAP systems quickly begin to 

include real time data. “Morning sales on the east coast will affect how stores are 

stocked on the west coast. Airlines and government agencies need to be able to 

analyze the most current information when trying to detect suspicious groups of 

passengers or potentially illegal activity. Fast-paced changes in the financial 

markets may make the personalized suggestions on a stockbroker's website 

obsolete by the time they are viewed” [40] [41]. 

During the last five years business users are requesting more freshness. To 

give an example, a case study for mobile network traffic data, involving around 30 

data flows, 10 sources, and around 2TB of data, with 3 billion rows [42]. In that 

case study, it is reported that user requests indicated a need for data with 

freshness at most 2 hours. However, business user requirements are getting 

more pressing as the time passes [39]. 

Today, there are new types of sources. The Web is considered as a source in 

many applications. In such a case, the notion of transaction at source side 

becomes more flexible and the data that appear at a source web site are not 

always available later; therefore, if reaction to a change is not taken instantly, 

important information, possibly, will not be gathered later, by the off-line 

refreshment of the warehouse. At the same time, business necessities - e.g., 

increasing competition, need for bigger sales, better monitoring of a customer or a 

goal, precise monitoring of the stock market, and so on - result in a demand for 

accurate reports and results based on current data and not on their status as of 

yesterday [39]. 

Another important issue that questions the conventional way of thinking about 

ETL is the globalization of the economy and the commodity trading business. The 

usual process of ETL-ing the data during the night in order to have updated 

reports in the morning is getting more complicated if we consider that an 

organization’s branches may be spread in places with totally different time-zones. 
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Based on such facts, data warehouses are evolving to “active” or “live” data 

producers for their users, as they are starting to resemble, operate, and react as 

independent operational systems. In this setting, different and advanced 

functionality that was previously unavailable (for example, on-demand requests 

for information) can be accessible to the end users. For now on, the freshness is 

determined on a scale of minutes of delay and not of hours or a whole day. As a 

result, the traditional ETL processes are changing and the notion of “real time” or 

“near real time” is getting into the game. Less data are moving from the source 

towards the data warehouse, more frequently, and at a faster rate [39]. 

The traditional data warehouses are implemented using batch driven 

approach and mainly according to the pull technology principle. The data loading 

from source systems to data warehouses is generally performed on a nightly 

basis or even in some cases on a weekly basis; therefore typical data 

warehouses normally do not have the most current data [39]. Furthermore the 

operational systems may have to be go offline during the data extraction process. 

It is an unacceptable situation which generates delays in businesses especially 

that require instantaneous access to up-to-date information [44]. 

 The way in which the data is brought into the data warehouse is extremely 

important and keeping the data in the warehouse closely synchronized with data 

from source databases is the most effective approach [45]. 

A real time data warehouse eliminates the data availability gap and enables 

organizations to concentrate on processing their valuable data. Furthermore, 

continuous data processing without delay opens up significant new opportunities 

[46]. 

The zero-latency enterprise is ideal for a business. This ideal urges the 

benefits of speed and a single version of the truth. In a real time, generally mean, 

information is delivered to the right place at the right time for maximum business 

value. We may call these right-time systems. At present, true zero latency is an 

unattainable ideal—it takes some time to synchronize information across several 

production systems and data warehouse—but there is a pressure on many 

modern data warehouses to provide a low-latency view of the business [19]. 

In summary, we may list three major reasons why we need a Real Time in a 

Data Warehouse: 
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 Faster reaction time 

 Reduced decision time 

 New process capabilities. 

4.2 Real Time Data Warehouse Requirements 

Real Time Data Warehouse architecture consists of a lot of views, 

approaches. Therefore, before building RTDW we have to analyze our 

requirements clearly from a real time needs perspective. Here, we will present 

some of these requirements [19]: 

4.2.1 Data Freshness and Historical Needs 

The developmental costs and complexity for reducing latency between 

operational databases (OLTPs) and the data warehouse obey the law of 

diminishing returns, lowering latency increases complexity and cost in a nonlinear 

fashion. Therefore, realistic goals and expectations about the freshness of the 

data warehouse are needed to set. So, for the needs of real time data warehouse 

it will be good to care the following considerations [19]: 

 Less than five minutes of latency. This low latency cannot be reliably 

met through mainstream real time data warehousing. It always takes 

some nontrivial amount of processing and time to move, transform, and 

load information from the OLTP systems to the real time partition.  

 Single data source requirements demanding little or no history. The 

reports that require none of the integrated and historical data features 

provided by the data warehouse are best addressed through the 

operational system itself. In fact, they should present a very small 

reporting overhead on the operational systems and should not degrade 

transactional performance significantly.  

 Reports with an entirely different audience from that of the existing 
data warehouse. These types of reports might demand new reporting 

vocabularies and mechanisms for dissemination, and also factors that can 

overly complicate an already complex real time data warehousing 

development effort. Therefore the real time architect should be consider 

that business vocabularies and metrics. 
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 No real need for ad-hoc analysis. For ad-hoc analysis of the low-latency 

part of data, if there is little need, there may be no need a full-blown 

streaming ETL system redesign. 

4.2.2 Reporting Only or Integration Also 

This is about the need of the organization that if need of the organization are 

a one-way solution for moving operational data into the data warehouse for 

reporting purposes only, or are there also requirements for closing the loop by 

moving conformed dimension data between operational applications themselves 

and/or the data warehouse. 

In fact, as an example, any strategic CRM initiative is wants the timeliest and 

most complete customer information available, which includes both operational 

customer data (information about recent sales or complaints, for example) and 

data-warehouse or data mining-derived customer marketing information such as 

customer segmentation, profiling, and lifetime value. This can be called True CRM 

[19]. 

4.2.3 Just the Facts or Dimension Changes Also 

Facts and dimensions are important by the view of business people and 

dimensional data warehouse architects, but OLTP systems do not make such 

sharp distinctions. So that must be understood and categorized the OLTP 

business transactions of interest and designed appropriately. Are the real time 

report requirements focused exclusively on fresh facts or are they also concerned 

with fresh dimension transactions? If real time dimensional changes are needed 

for reporting, are they slowly or rapidly changing? [19]. 

4.2.4 Alerts, Continuous Polling, or Nonevents 

An ETL system usually has a well-defined boundary where dimensionally 

prepared data is handed to the front room.  A real time system cannot have this 

boundary in many cases. Also, the architecture of front-end tools is affected. 

There are three data-delivery paradigms that require an end-to-end perspective 

reaching all the way from the original source to the end user’s screen [19]: 

 Alerts: “A data condition at the source forces an update to occur at the 

user’s screen in real time.”  
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 Continuous polling: “The end user’s application continuously probes the 

source data in order to update the screen in real time.” 

 Nonevent notification: “The end user is notified if a specific event does 

not occur within a certain time interval or as the result of a specific 

condition.” 

In each of these cases, the real time ETL system is communicate with the 

end user’s application, either by sending a notification or by receiving a direct 

request. 

4.2.5 Data Integration or Application Integration 

You need to categorize your requirement as either data integration or 

application integration. In general, data integration that can be satisfied by 

simply moving data between databases. However, application integration 

(sometimes also called functional integration) can be described as assembling 

applications together through the use of some common middleware [19]. 

4.2.6 Point-to-Point versus Hub-and-Spoke 

An important factor in selecting architecture is the number of publishing and 

subscribing systems that supports in the foreseeable future. If real time data 

warehouse is also supporting some degree of application (or functional) 

integration, this number can help to decide if a relatively simple point-to-point 

solution will suffice or if a more robust hub-and-spoke architecture will be required 

[19]. 

 

Figure 13: Point-to-Point Application Integration 
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Figure 13 shows a point-to-point application integration example.  In this 

example, a small number of applications are exchanging data but point-to-point 

solutions can demand a very large number of data-exchange interfaces. Each of 

the interfaces requires maintenance whenever its source or target applications 

change. 

In contrast to point-to-point architectures, a hub-and-spoke integration 

approach can be minimizing the number of customer interfaces and cross-system 

dependencies as seen on Figure 14. 

 

Figure 14: Hub and Spoke Application Integration 

4.2.7 Data Cleanup Considerations 

If the organization needs real time cleanup and synchronization of data, some 

additional factors in selecting an approach need to be considered. This often falls 

upon the data warehouse customer dimension manager to provide that ensures 

that no redundant data are created for the enterprise. It may be appropriate for 

the real time dimension manager to assume responsibility for matching (de-

duplicating) records [19]. 

4.3 How Real Time Data Requirements Change Data 
Warehouse Environment 

Most real time need will be driven by operational decision making, not 

strategic decisions [47]. 
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Figure 15: Strategy, Decisions and Data Latency [47] 

Madsen (2008) briefly lists as follows (Table 2) which decisions benefit: 

Table 2: Which Decisions Benifit 

 Strategic Operational 

Decision Time Flexible, Long Cycle Constrained, Short Cycle 

Decision Scope Broad, Organizational 
Narrow, Departmental or 

Process 

Decision Model Complex Simple 

Decision Latency 
High, History is the Core 

to Decisions 

Low, Recent Data is Core to 

Decisions 

Data Scope 
Many Sources, Many 

Types, Aggregated 

Few Sources, Structured, 

Detailed 

 

In a Data Warehouse we mostly handle big data. Definitions of big data focus 

on the size of data in storage but there are other important attributes of big data, 

namely data variety and data velocity. As seen in Figure 16, the three Vs of big 

data (volume, variety, and velocity) constitute a comprehensive definition and 

each of the three Vs has its own ramifications for analytics [48]. 
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Figure 16: Three Vs of Big Data [47] 

A number of unique challenges and opportunities come with real time data 

warehousing. These can be describing in two points of view: One is from a 

technical architecture perspective, and other is a data architecture perspective. 

First one has the potential to change the big-bang approach. Big-bang 

approach needed during the nightly batch ETL load windows to a continuous ETL-

like flow throughout the day. System-availability requirements may intensify the 

business comes to rely on low-latency availability of business transactions in the 

data warehouse.  

The latter is that real time data warehousing challenges the posture of the 

data warehouse as system of discrete periodic measurements—a provider of 

business snapshots—advocating instead a system of more comprehensive and 

continuous temporal information. If the frequency of fact loading increases from 

once per day to every 15 minutes, but more dramatically if the loading of facts and 

dimension records occurs continuously. The data warehouse might then capture 

the business transactions and their dimensional context at all points in time. 

Slowly changing dimensions become rapidly changing dimensions. The data 

warehouse becomes more operational in nature [19].  
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Figure 17: Options for Big Data Analytics Plotted by Potential Growth and 
Commitment [48] 

4.4 Real Time ETL 

Real time ETL is a miscall for a category of data warehousing services that is 

neither true real time nor, in many cases, but this term is mostly used in this area 

and so we used here. Instead, the term refers to that data moves asynchronously 

into a data warehouse with some urgency—within minutes of the execution of the 

business transaction. In many cases, real time data warehousing approaches are 

quite different from the ETL methods used in batch-oriented data warehousing. 

Basically, executing traditional ETL batches on an ever-more frequent schedule 

throughout the day might not be practical, either to the OLTP systems or to the 

data warehouse. Conversely, including the data warehouse in the OLTP system’s 
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transaction commit logic cannot work either. The OLTP system does not have the 

luxury of waiting for the data warehouse loading transaction to commit before it 

proceeds with its next transaction, nor is any locking or two-phase commit logic 

practical across systems with different structures and different levels of 

granularity. Instead, you aim simply to move the new transactions into a special 

real time partition of the data warehouse within some timeframe acceptable to 

the business, providing analytic support for day-to-day operational decisions [19].  

4.5 Real Time ETL Approaches 

Addressing real time data warehousing requirements, a number of 

technologies are available. Here, we will discuss some of these technologies. 

4.5.1 Microbatch ETL 

 A data warehouse can only be considered real-time, or near real-time, when 

all or part of the data is updated, loaded or refreshed on an intra-day basis, 

without interrupting user access to the system. Traditional ETL is useful for 

addressing daily, weekly, and monthly batch reporting requirements. Micro batch 

ETL designed for real-time data acquisition from an operational data source. 

Figure 18 and Figure 19 give a representation of the system. All of the new or 

changed transactions are captured as point-in-time snapshots for each load and 

moved to the data warehouse. Thus, changes to dimensions that occur between 

batch processes are lost in the warehouse. Therefore, we may say that ETL is not 

a suitable technique for data or application integration for organizations needing 

low latency reporting or for organizations that need more detailed dimensional 

change capture. But traditional ETL is a simple, direct, and tried-and-true method 

for organizations that have more casual latency requirements and complex 

integration challenges. Figure 18 shows the traditional ETL process [19] [48]. 
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Figure 18: Traditional ETL Diagram [19] 

 
Micro-batch ETL is similar to traditional ETL. The frequency of batches is 

increased in micro-batch ETL. These frequent micro batches are run through 

another ETL process and directly feed the real time partitions of the data marts. 

The real time partitions are moved to the static data marts and are emptied, once 

each day. Figure 19 shows a diagram of micro-batch ETL [19]. 

 

Figure 19: Micro-Batch ETL Diagram [19] 
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Slowly changing dimensions may become rapidly changing and grow deep 

due to the increased run frequency. Micro-batch ETL also demands a 

comprehensive job control, scheduling, dependency, error-mitigation method, 

metadata management and capable of executing data warehouse publication 

strategies in the face of most common data-loading issues. Additionally, micro-

batch ETL demands more frequent detection of new and updated transactional 

records on the OLTP systems [19]. 

4.5.2 Enterprise Application Integration 

Enterprise Application Integration (EAI) is an integration framework and it is 

composed of a collection of technologies and services that support true 

application integration, allowing individual operational systems to interoperate in 

new and potentially different ways than they were originally designed EAI form 

a middleware to enable integration of systems and applications across the 

enterprise, and   sometimes called functional integration [19] [50]. 

EAI typically composed of a set of adapter and broker components that move 

business transactions. Communication across the various systems in the 

integration network is in the form of messages. Application specific adapters are 

responsible for dealing with all of the logic which includes create and execute 

messages. Brokers are responsible for routing the messages appropriately, based 

on publication and subscription rules [19]. 

 

Figure 20: Convensional EAI Diagram [19] 

EAI technologies can be strong enabling vehicles for the real time data 

warehouse. They support the ability to synchronize important data across 

applications and provide an effective means for distributing data-warehouse-

derived information assets, such as new customer segmentation values, across 

the enterprise [19]. 
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There are two fundamental components of EAI [49]: 

 Adapters: The purpose of this component is to hide heterogeneity 

and present a uniform view. In other words, it map heterogeneous 

data formats, interfaces and protocols into a common model and 

format. 

 Message Broker: This component facilitates interaction among 

adapters and, therefore, among the back-end systems that need to be 

integrated. 

The real time EAI data warehouse architecture changes the monolithic ETL 

block. The dimension manager system(s) pulled out as separate architectural 

components, each with its own adapters, and placing responsibility for most of the 

transformation and loading chores of the data mart real time partitions on the data 

mart adapters. Any data-change transaction would be captured from the OLTP 

application by an adapter. After that adapter sent data as a non-conformed 

dimension message to the broker, which then routes it to whichever systems 

subscribe to non-conformed dimension messages. The dimensional record is 

conformed by the dimension manager. Then dimension manager adapter sends it 

back as a conformed dimension message to the broker, which then forwards it to 

all systems that subscribe to conformed dimension data, typically the OLTP 

systems and data marts [19]. Figure 21: Real Time DW/EAI Example Figure 21 is 

a diagram of a real time EAI data warehouse. 

 

Figure 21: Real Time DW/EAI Example [19] 
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4.5.3 Capture, Transform, and Flow 

Capture, Transform, and Flow (CTF) is a relatively new category of data 

integration tools. The aim is simplifying the movement of real time data across 

heterogeneous database technologies. The application layer of the transactional 

applications is bypassed and direct database-to-database exchanges are 

executed. Transactions, both new facts and dimension changes, can be 

transferred directly from the operational systems to the data warehouse staging 

tables with low latency, typically a few seconds. The transformation functionality 

of CTF tools is typically basic in comparison with today’s mature ETL tools. Once 

data is staged, additional transformations beyond the capabilities of the CTF tool 

can be applied either by microbatch ETL or via triggers that fire on INSERT in the 

staging area. In either transformation scenario, records are then written directly 

into the real time partition tables. CTF can offer a compelling blend of the some of 

the benefits of EAI, while avoiding much its complexity [19]. Figure 22 diagrams 

CTF. 

 

Figure 22: CTF Diagram [19] 

4.5.4 Enterprise Information Integration 

Enterprise Information Integration (EII) is another relatively new category of 

software. The aim is quickly adding real time reporting capabilities to business-

intelligence systems. In this architecture, the logical view of the current data in the 

OLTP systems are presented to the business user in a structure appropriate for 
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analysis, and delivered on the fly via inline ETL transformation. It can be sensed a 

virtual real time data warehouse [19]. 

EII operates in somewhat similar conventional data warehouse mechanisms, 

except that instead of a data warehouse, the target might be a report, 

spreadsheet, or OLE DB or XML object. The EII system actually generates a 

series of queries, typically via SQL, at the moment requested, and then applies all 

specified transformations to the resultant data, and delivers the results to the 

business user. EII can be used as an effective data warehouse prototyping device 

and may be a compelling choice for organizations that need real time integrated 

operational reporting as quickly as possible [19]. 

4.5.5 The Real Time Dimension Manager 

The real time dimension manager is used on converting incoming customer 

records into conformed customer records. This data may be incomplete, 

inaccurate, or redundant. Conformed means that dimensional records are turn 

into the best form that the organization is capable of achieving. A general diagram 

of the real time dimension manager is presented in Figure 23 [19]. 

 

Figure 23: Real Time Dimesion Authority Diagram [19] 

4.5.6 Microbatch Processing 

There is a common dilemma when designing real time data mart partition or 

dimensional systems. Should the solution comprise straight through processing or 

utilize more frequent microbatches?  One answer to the conflicting demands may 
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be frequent microbatches that give near real time performance within constraints 

imposed by batch-oriented toolsets. As opposed to using straight-through 

processing, they can be developed independently, have individually tunable 

batch-sizing specifications, and be replaced and/or upgraded independently as 

new toolsets with more features. Additionally, new processes such as specialized 

address verification or creditworthiness scoring can be more easily inserted into 

the job stream, and jobs that require selective processing are more easily 

accommodated. But this flexibility comes at a cost such as each process have 

defined and persistent interfaces, additional I/O [19]. 

4.6 Choosing an Approach 

Selecting an appropriate architecture and approach is a very difficult task. 

Because,  there are so many technologies to choose from, surrounded by so 

much vendor and analyst hype, and with so few successful case studies from 

which to draw best practices. The following table attempt to cut through some of 

this uncertainty by distilling some of the information into guidelines to narrow 

options. Table 3 is a comparison matrix of the presented approaches for real time 

reporting [19]. 



54 
 

Table 3: Real Time Reporting Decision Guide Matrix [19] 

 
EII ONLY EII + STATIC DW ETL CTF CTF-MB-ETL EAI 

ENTERPRISE 
INFORMATION 
INTEGRATION 
IN PACE OF 
REAL TIME DW 

ENTERPRISE 
INFORMATION 
INTEGRATION IN 
CONCERT WITH 
CONVENTIONAL 
NON REAL TIME 
DW 

STANDART 
ETL 
PROCESSING 

CAPTURE 
TRANSFORM 
FLOW WITH 
ETL FEEDING 
REAL TIME DW 

MICRO-BATCH 
ETL FEEDING 
REAL TIME DW 

ENTERPRISE 
APPLICATION 
FEEDING 
INTEGRATION 
REAL TIME DW 

Historical Data Supported           
 

Reporting Data 
Integration 
Complexity 

Low             

Moderate             

High       
   

  

Data Freshness 
/ Maximum 
Latency 

1 Minute   
  

     

15 Minutes   
  

      

1 Hour   
  

       

1 Day             
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CHAPTER 5 

WEB SERVICES BASED REAL TIME DATA WAREHOUSE 

5 WEB SERVICES AREHOUSE 

5.1 Web Services and its Architecture 

Web Services is standard set of open technical specifications and developed 

by the W3C. It has self-contained, self-describing and modular features.  It can be 

used web publishing, search and call. Once Web Services configured, the other 

applications and Web Services can be discovered and invoked the service directly 

[51]. 

Web Services architecture composed of three roles, that is, service providers, 

service registry and service consumer. Web Services architecture based on the 

interaction between these three roles. Service provider defines the service 

description, and publishes it to the service registry. Service consumers (or service 

lookup operation from the local registry) search service description, then use the 

service description to bind with the service provider, and call the appropriate Web 

Services. Figure 24 shows these operations, these operations provide the 

components and their interaction [52]. 
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Figure 24: Web Services Architecture Model [52] 

5.2 Web Services Based Real Time Data Warehouse 
Architecture 

In this thesis study, we developed web services based real time data 

warehouse architecture, as shown in Figure 25. Components of this architecture 

as follows: 

 Web Service Client 

 Web Service Provider 

 Metadata 

 ETL 

 Real Time Partition 

 Data Warehouse  

 Real Time Data Integration 
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Figure 25: Web Services Based Real Time Data Warehouse Architecture 
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5.2.1 Web Service Client 

This component is used for getting data changes (known as Change Data 

Capture - CDC) from OLTP systems and send data to the Web Service Provider 

by calling related web service. The real time data is captured through the trigger 

which inserts data an auxiliary table in the database. Our RTDW Web Service 

Client continuously polls the logs data and then pushes the data to the RTDW 

Web Service. Any data inserted, updated or deleted in an OLTP system sent to 

the RTDW Web Service component. 

For determining tables which data is captured, RTDW Web Service Client 

uses OLTP metadata that is prepared for this purpose. The client uses an SQL-

Generator to capture log data. The client calls the SQL-Generator with 

parameters system name, table owner and table name, then SQL-Generator 

returns the required SQL statement to capture log data. The client executes 

generated SQL statement and fetches data, and transfers data via Data Transfer 

Object which is a general object for structured table data. This object holds data 

and metadata about data which it contains. 

In OLTP metadata, we also track the last-change-ids of data in the table. 

After getting data via RTDW Web Service Client, the data in the log table is 

deleted. The structure of this metadata table which holds data about tables and 

last log id is shown Table 4. 

Table 4: Metadata Table Structure 

Table Name: OLTP_TABLES 

Column Name Data Type Size 

ID NUMBER  

OWNER VARCHAR2 30 

TABLE_NAME VARCHAR2 30 

LOG_TABLE_NAME VARCHAR2 30 

LAST_LOG_ID NUMBER  

PK_COLUMNS VARCHAR2 255 
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5.2.1.1 Capturing the Data 

Data that is required to data warehouse is collected from the operational 

systems and other external sources. Data capturing techniques in use mainly 

include; source data extraction, log capture, triggered capture, application-

assisted capture, timestamp-based capture, and file comparison capture. 

Source Data Extraction: This technique provides a static snapshot of source 

data at a specific point in time. Once the data warehouse database is constructed, 

all the data at this time have to be transferred from operational systems to DW. 

This operation is generally called initial load, and after that starts capturing new 

changes. 

Log Capture: Log capture is mainly used technique for collecting changes in 

source systems, but logging has to be supported and turned on the source 

system. The formats of the log records are also so important that it is clearly and 

easily understandable. Today, many commercial database systems have software 

solutions for log capture. 

Triggered Capture: Database trigger is a code block that is executed when 

the predefined events (such as inserting, deleting or updating a row of a table) are 

occurred in the database. Many database management systems support triggers.  

Application-assisted capture: The technique is writing programs to collect 

the data from the operational sources and completely under the control of 

programmer involving testing and maintenance responsibility.  

Timestamp-based Capture: In this technique, timestamp values are used in 

the records. Timestamp values are used as a flag that indicates if the record has 

changed after the last capture or not.  

File Comparison: At a specific point in time, a snapshot of the data source is 

taken and saved in a file and then it is compared with the previous snapshot file. 

In our real time data warehouse architecture, we used triggered capture 

technique, since it can be implemented easily. Log capture might be chosen 

because of that its minimal overhead on source database system, but we have to 

use additional software and need additional configuration issues. Therefore, we 

used a log table for each table in our OLTP system and a log trigger on each 

source tables. Figure 26 shows this architecture. 
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Figure 26: Log Capture Architecture on Source Tables 

5.2.2 Web Service Provider  

Web Service Provider is basically a web service which gets data sent by 

RTDW Web Service Client and adds to Real Time Partition. 

This component gets Data Transfer Object which is sent by RTDW Web 

Service Client, decompose into two parts: data and metadata. RTDW Web 

Service uses metadata to generate SQL via SQL-Generator for inserting data to 

RTDW log tables then executes this generated SQL on RTDW database and 

inserts data. 

5.2.3 Metadata 

Metadata in this architecture is used for two purposes; first is defining and 

tracking OLTP tables from which changed data is captured, the second is defining 

warehouse tables and real time partition log tables. In this architecture, no 

database specific metadata is used. Therefore in this model, any database server 

can be used as an OLTP system and a data warehouse system. 

5.2.4 ETL 

ETL has extremely important role in data warehouse's establishment and the 

maintenance process. In this architecture, we used ETL in the warehouse part for 

transforming log data into aggregated data such as summations and counts. 

5.2.5 Real Time Partition  

Instant data changes (mostly daily) are put into this component first, then 

later merged into data warehouse. In this architecture, we used a novel structure 
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that is different from traditional real time partition implementations. In this 

structure we used three steps: 

1. Put CDC data into related warehouse log table: In the warehouse part 

of the architecture we create log tables for each OLTP table from which 

data is captured. RTDW Web Service puts all the data sent by client into 

this log tables. 

 

2. Clean CDC log data on demand: This step is firstly determines the latest 

state of the data in the log table and we use only latest data at this time 

for aggregations. We call this clean delta. For example, a data is first 

INSERTED and DELETED within the day, and at this moment, the latest 

status of data is DELETED and this step eliminates this data. After that, 

this step uses clean delta records to clean and format CDC data. Clean 

delta log type conversions are shown in Table 5. 

Table 5: Clean Delta Log Type Conversions 

First Record 
Log Type  

Last Record 
Log Type Result 

INSERT DELETE ELEMINATE 

INSERT UPDATE INSERT LAST RECORD 

UPDATE INSERT UPDATE LAST RECORD 

UPDATE DELETE DELETE LAST RECORD 

DELETE INSERT UPDATE LAST RECORD 

DELETE UPDATE UPDATE LAST RECORD 

3. Aggregate clean CDC data on demand: In this architecture, also, the 

real time aggregations calculated on demand. If there is no request for 

real time data the aggregation does not calculated throughout the day. 

When data is requested from real time partition, only the related 

aggregations are calculated on demand. We call this On Demand 
Aggregation. 
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5.2.6 Data Warehouse  

This component, as explained above chapters, not only holds the historical 

aggregated data but also today data via real time partition. Real time partition 

data puts into the data warehouse daily basis.  When a new day begins, 

aggregation are calculated for yesterday data in the real time partition and put into 

data warehouse. 

5.2.7 Real Time Data Integration  

This component is used for integrating the data both in Real Time Partition 

and Data Warehouse. When a user sends a query to this component; if query 

only wants historical data then this component send the query to Data 

Warehouse, if query wants both historical and instant data then this component 

rewrites the query to get and integrate data. 

In our case study, query rewriting is done by using views. First, we get the 

SQL from user and determine the date predicate. Then if date predicate is consist 

of today then we replace the fact table with our view which merges fact table and 

real time partition table as shown in Figure 27. 

 

Figure 27: Query Rewrite Flow 

5.3 Alternative Technologies 

In this thesis study, before using web services, we tried another two different 

technologies which are Hazelcast (In memory data grid.) and Client Server. 
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Hazelcast is an open source clustering and data distribution platform for 

Java, which is:  

 Lightning-fast; thousands of operations/sec. 

 Fail-safe; no losing data after crashes. 

 Dynamically scales as new servers added. 

 Super-easy to use; include a single jar. 

Hazelcast is in-memory data grid solution with its various distributed data 

structures, distributed caching capabilities, elastic nature, memcache support, 

integration with Spring and Hibernate. Hazelcast is released under Apache 

License and the project is hosted at Github. It can be freely used in commercial or 

non-commercial applications [53]. 

The client/server model is a distributed application model which partitions 

tasks or workloads between servers and clients. Clients and servers communicate 

over a computer network. A server machine is a host that is running one or more 

server programs. Server programs share their resources with clients.  A client 

requests a server's content or service function. Therefore Clients initiate 

communication sessions with servers which await incoming requests [54]. 

In this study, first we tried Hazelcast. Since it’s a grid solution, it sends data 

which is captured from one client to all machines (clients and servers). We tried to 

direct to the Data Warehouse machine, but it did not allowed this. Solutions to this 

problem is against to Hazelcast architecture and not easy to use, because it has 

developed for a grid solution. 

In addition, we tried Client-Server solutions that we implemented a client-

server program by using sockets. However, this solution is good for transferring 

text data, but it needs too many controls and also a data transfer protocol for 

transferring objects. There are some solutions to transfer objects but they are not 

easily usable. 

As a result, we have chosen to use web services to transfer data from source 

machines to target server machine. Web services are easy to implement and we 

could develop a solution very fast. 
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A basic comparison of these technologies is shown in Table 6. From the table 

we say that the web services based architecture can be chosen for RTDW 

implementations. 

Table 6: A Basic Comparision of Technologies 

Properties 

Hazelcast 
Based 

Client-
Server 
Based 

Web 
Services 
Based 

Use of http protocol No No Yes 

Dynamically scales Yes 
Development 

Specific 
Yes 

Redundant Yes No No 

Targetted to one server No Yes Yes 

Object transfer is easily implemented Yes No Yes 

Grid solution Yes No No 

Easy to implement Yes No Yes 

Raw data transfer Yes No No 

 

5.4 Similar Solutions 

In this section, we briefly described some today’s solutions proposed some of 

the companies. The solutions are new in the market and there are not many case 

studies about them. 

5.4.1 Oracle Data Integrator and GoldenGate 

Conventional ETL tools closely intermix data transformation rules with 

integration process procedures, requiring the development of both data 

transformations and data flow. Oracle Data Integrator (ODI) takes a different 

approach to integration by clearly separating the declarative rules (the “what”) 

from the actual implementation (the “how”). This approach for declarative design 

has also been applied to ODI's framework for Changed Data Capture. ODI’s CDC 

moves only changed data to the target systems and can be integrated with Oracle 
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GoldenGate, thereby enabling the kind of real time integration that businesses 

require [55].  

In order to provide no to low latency loads, ODI has alternative solutions for 

real-time data warehousing through the use of CDC mechanism, including the 

integration with Oracle GoldenGate. This integration also provides seamless 

operational reporting. Data federation and data service use cases are covered by 

Oracle Data Service Integrator (ODSI) [55]. 

5.4.1.1 Methods for Tracking Changes using CDC 

Oracle generally uses three different techniques for capturing CDC data [55]. 

 Trigger Based 

 Streams Based 

 GoldenGate Based 

In the first technique, database triggers are defined that are executed inside 

the source database when a table change occurs as shown in Figure 28. 

 

Figure 28: ODI Trigger Based Capture [55] 

Some databases provide APIs and utilities to process table changes 

programmatically. Oracle database provides the Streams interface to process log 

entries and store them in separate tables. ODI also supports log-based CDC. This 

is shown on Figure 29.  
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Figure 29: Streams Based CDC [55] 

Oracle GoldenGate provides a CDC mechanism that can process source 

changes by processing log files of completed transactions and storing these 

captured changes into external Trail Files independent of the database. Changes 

are then transferred to a staging database. These changes will be loaded into the 

target data warehouse using ODI’s declarative transformation mappings. This 

architecture enables separate real-time reporting on the normalized staging area 

tables in addition to loading and transforming the data into the analytical data 

warehouse tables. This is shown in Figure 30. 

 

Figure 30: GoldenGate Based CDC [55] 

ODI processes datastore changes in two ways [55]:   

 Regularly in batches (pull mode): For example, processes new 

orders from the Web site every five minutes and loads them into the 

operational datastore (ODS).   

 In real time (push mode) as the changes occur: For example, 

when a product is changed in the enterprise resource planning (ERP) 

system, immediately updates the on-line catalog. 

In practice, for Oracle, there is one approach that satisfies the majority of 

real-time data warehousing use cases: The micro-batch approach using 
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GoldenGate-based CDC with ODI. This is shown in Figure 31. In this approach, 

one or more tables from operational databases are used as sources for 

GoldenGate CDC into a staging area database. This staging area provides a real-

time copy of the transactional data for real-time reporting using BI tools and 

dashboards. The separate staging area handles operational BI queries without 

adding load to the transactional system. ODI performs a load of the changed 

records to the real-time data warehouse in frequent periods of 15 minutes or more 

[55].    

 

Figure 31: Micro-Batch Architecture using ODI and GoldenGate [55] 

5.4.2 SQLStream 

SQLstream enables multiple sources of heterogeneous data to be 

aggregated, correlated and filtered in real-time. Change Data Capture adapters 

provide the real-time ‘Extract’ function, delivering a stream of relational data from 

the source systems. SQLstream processes the relational data streams, providing 

both the ‘Transform’ and ‘Aggregation’ functions in a single platform.  Most 

importantly, the data is aggregated in SQLstream, in real-time, before the ‘Load’ 

operation takes place. Aggregate and raw data are pushed from SQLstream into 

the data warehouse in real-time [56]. 

5.4.3 iWay Data Integration 

iWay Software data integration solution allow for direct access to data. iWay 

supports extract, transform, and load; enterprise information integration  

initiatives; and web services deployments [57]. The iWay CDC solution is shown 

in Figure 32. 
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Figure 32: iWay CDC Solution [57] 

Service Manager provides real-time event listening capabilities for sources 

including applications, databases, cloud, and legacy systems. Each event can 

trigger a variety of business processes while feeding the data warehouse in real-

time [57]. 

DataMigrator Change Data Capture provides a real-time capability using 

database logs to read only the changes (inserts, updates, and deletions) made to 

tables in any of the major relational databases and delivers those changes to 

DataMigrator. DataMigrator CDC makes database logs from disparate databases 

available in a common format so that they can be used as a data source. 

Processing the changes as they occur lets a data warehouse provide near real-

time access to operational data. A polling interval (how often to check for 

changes) can be specified as often as once a minute. A timeout interval (how long 

to keep checking) can also be specified. Once a CDC source is configured, it can 

be read using SQL and used like other data sources [57].  

5.4.4 Microsoft  StreamInsight 

Microsoft StreamInsight is a platform to build low-latency event-driven 

analytics applications. StreamInsight is available as part of Microsoft SQL Server 

since Microsoft SQL Server 2008 R2 in April 2010. StreamInsight complements 

SQL Server with new capabilities to build event-driven solutions and to inject time-

based analytics into the event processing pipeline. This enables organizations to 

be event-driven: analytical results are available for human consumption right 

away, or systems can react to events independently based on automated 
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workflows [58]. Figure 33 depicts the developer and runtime experience of a 

StreamInsight application and introduces some of the key concepts. 

 

Figure 33: StreamInsight Application Development and Runtime 
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CHAPTER 6 

A CASE STUDY 

6 A CASE STUDY 

This section describes a case study of implementing a RTDW for an 

Inventory Control System. Inventory control systems are used for managing the 

stocks of companies and big distribution organizations. Therefore, it's valuable to 

build a RTDW for decisions which needs historical and current status. 

 In this study, we designed a database for simulating an OLTP application. 

The aim of this case study is to build a RTDW to enable analysis of the data in the 

OLTP database. The conceptual design is modeled using Kimball model. And 

finally this case study illustrates an implementation of a real time data 

warehousing solution covering all phases of design.  We have chosen Oracle 11g 

R2 as database server for OLTP and RTDW systems, since it's widely used 

database in the world. 

6.1 Modeling the Database 

The first step of building (or creating) a database after getting business 

requirements is to construct a data model, which represents the business 

process, its attributes and relationships between them. In our case study we 

constructed two models: one for OLTP and one for OLAP. 

6.1.1 Entity Relation (E-R) Model 

Entity-relationship (E-R) modeling is a high-level data modeling technique 

that is originally developed by Professor Peter Chen to serve as a tool for 

communication between designers and users. E-R models are best expressed 

using graphical E-R diagrams. 
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An E-R data model is a high-level conceptual model that describes data as 

entities, attributes, and relationships and pays particular attention to the 

interactions among entities. In the development of databases, relationships are 

the glue that holds information together and their realization in relational 

databases is particularly important [59].  

In our case study, we modeled a database for simulating an OLTP 

application. Figure 34 shows the E-R model diagram of this OLTP database. 
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Figure 34: E-R Model Diagram of Sales Schema 
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6.1.2 Dimensional Modeling 

Dimensional modeling (DM) is a logical design technique that tries to present 

the data model in an accessible and intuitive standard frame and favorite in data 

warehousing. This data is visualized as a set of measures that are defined 

according to the business. The purpose is optimizing decision support query 

performance in relational databases, relative to a measurement or set of 

measurements of the outcome(s) of the business process being modeled [60].  

In our case study, we modeled a database for OLAP purposes. Figure 35 

shows the dimensional model diagram of this OLAP database. 

 

Figure 35: Dimensional Model Diagram of Sales Schema 

6.2 Data Loading and Transformation 

Design of the data loading and transformation strategy is another crucial 

point. General data loading processes which we used in this study is shown in 
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Figure 36: General Data Loading Processes 

6.2.1 Capturing the Data 

In this study, we used trigger to capture changed data. For this purpose we 

created log triggers and log tables for every table which we track changes in our 

OLTP system. This technique can be implemented easily implemented since 

many databases support this feature. Log capture might be chosen because of 

that its minimal overhead on source database system, but we have to use 

additional software and need additional configuration issues. Therefore, we 

created a log table for each table in our OLTP system and a log trigger on each 

source tables. The OLTP system begins to log changes immediately after log 

tables and log triggers created. 

6.2.2 Transforming the Data 

The data transformation process is converting the captured data into a format 

and structure suitable for loading into the data warehouse. Data transformations 

are often the most complex part of the ETL process. They can range from simple 

data conversions to extremely complex data scrubbing techniques. From an 

architectural perspective, there are two ways to transform data: [61] 

 Multistage Data Transformation 

 Pipelined Data Transformation  
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The Multistage Data Transformation logic for most data warehouses consists 

of multiple steps. For example, to insert new records into a sales table, there may 

be separate logical transformation steps to validate each dimension key. 

In Pipelined Data Transformation, the ETL process flow can be changed 

dramatically and the database becomes an integral part of the ETL solution. The 

new functionality shifts from serial transform-then-load process (with most of the 

tasks done outside the database) or load-then-transform process, to an enhanced 

transform-while-loading. 

 The transformation process includes standardizing, integrating, cleansing, 

augmenting, aggregating and creating the data sets for loading into the repository. 

The main types of ETL transformations done in the data are as follows: [62] 

 Creating common keys: 

 Creating surrogate keys 

 Standardizing the descriptions, textual attributes: 

 Translation and standardization across organization standards & 

structures 

 Transformation for common dimension attributes 

 Data Quality 

 Data Relevance 

 De-Duping, Merging and data cleansing 

 Data Augmentation and enrichment 

 Data Type conversion 

 De-normalization 

 Normalization 

 Create Derived Attributes 

 Calculation, Derivative, Allocation 

 Aggregation 

In our case study, we used PL/SQL for data transformation. For example, 

aggregations such as sales quantity, sales amount, is calculated by using 

PL/SQL. Figure 37 shows data transformation architecture that we used. 
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Figure 37: Data Transformation Architecture 

6.3 Real Time Data Integration 

Real Time Data Integration is used for integrating the data both in Real Time 

Partition and Data Warehouse. When a user sends a query to this component; if 

query only wants historical data then this component send the query to Data 

Warehouse, if query wants both historical and instant data then this component 

rewrites the query to get and integrate data. 

In our case study, query rewriting is done by using views. First, we get the 

SQL from user and determine the date predicate. Then if date predicate is consist 

of today then we replace the fact table with our view which merges fact table and 

real time partition table. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7 CONCLUSION AND FUTURE WORK 

Real time data warehouse is much more than a new feature. Moving to real 

time delivery of data challenges every aspect of the data warehouse. 

We designed, developed and built a web services based real time data 

warehouse. Web services are important component as they communicate easily 

to the servers which publish services. Because of easily adaptable and maintains 

many of the communication problems, we think that web services are preferable 

choice.  

Capturing change data from source systems is also a major problem for data 

warehouse constructions. Log capture and triggering is mostly used techniques in 

this area. We think log capture may be preferred to triggering which gets come 

overhead to the source system database. However, it’s easy to implement and 

need nothing except source database. Since today, triggers are supported most 

of the databases, it may be a good choice.  

Real time partition is another important issue for building a real time data 

warehouse. Because of the design purposed of the data warehouses, you could 

not load instant data to your data warehouse immediately. You need a staging 

table before aggregating data and load it to the data warehouse, because your 

data is completed later (for example at the end of the day). Therefore, we use real 

time partition. In addition to that, if user requests real time data for his analysis 

then the data in the real time partition and data warehouse have to be merged. 

For this purpose, we used query rewriting which decides to rewrite and replaces 

the fact table with a view joined by real time partition. 
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7.1 Future Work 

As a future work different change data capture methods can be applied to 

data capturing process. Unstructured data issues in this area can also be 

researched. 

Additionally new approaches can be applied to manage the real time 

partition. One approach may be using an in-memory database or a caching 

mechanism to hold real partition time data, but at this time new data integration 

issues arises, because of the using different databases. 

Finally many query re-writing methods can be implemented to integrate real 

time partition and data warehouse data. 
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