

WEB SERVICES BASED REAL TIME DATA WAREHOUSE

MURAT OBALI

JULY, 2012

ii

iii

iv

ABSTRACT

WEB SERVICES BASED REAL TIME DATA WAREHOUSE

Obalı, Murat

M.S.c., Department of Computer Enginnering

Supervisor: Assist. Prof. Dr. Abdül Kadir GÖRÜR

Co-Supervisor : Dr. Zeki ERDEM

July 2012, 84 pages

Today's business environment is quickly changing and business decision makers

need for a historical picture of what happened and a picture of what was

happening today. Traditional data warehouses provide a historical picture, but

there is lack of fresh data. However, fresh data in data warehouses is a strong

feature from the part of the users. The aim of this study is building a real time data

warehouse using web services. First, we modelled both the conceptual and the

logical design of real time data warehouse. For change data capture from source

systems, we implemented web services based server and client software. Then,

we used real time partition for real time data which is merged into data warehouse

in a daily fashion. We, also, implemented a data integration service using query

re-write approach to integrate data warehouse and real time partition data.

Keywords: Real Time Data Warehouse, Data Warehouse, Web Service, Real

Time Partition, Clean Delta, On Demand Aggregation

v

ÖZ

WEB SERVİSLERİ TABANLI GERÇEK ZAMANLI VERİ AMBARI

Obalı, Murat

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd. Doç. Dr. Abdül Kadir GÖRÜR

Ortak Tez Yöneticisi: Dr. Zeki ERDEM

Temmuz 2012, 84 pages

Günümüz iş dünyası çok hızlı değişmektedir ve karar vericilerin geçmişte neler

olduğuna ve bugün neler olmakta olduğuna dair bir resme ihtiyaçları vardır.

Geleneksel veri ambarları tarihsel resmi sağlamaktadır, fakat taze veriden

yoksunlardır. Oysa ki, veri ambarlarındaki taze veri kullanıcı açısından oldukça

önemli bir özelliktir. Bu çalışmanın amacı web servisleri kullanarak gerçek

zamanlı bir veri ambarı geliştirmektir. İlk olarak, gerçek zamanlı veri ambarının

konsept ve mantıksal modellemesini yaptık. Kaynak sistemlerdeki değişen verileri

yakalamak için web servis tabanlı istemci-sunucu yazılımı geliştirdik. Daha sonra,

veri ambarına günlük bazda yükleyeceğimiz veriler için gerçek zamanlı bölüm

oluşturduk. Ayrıca, sorgu yeniden yazma yaklaşımını kullanarak, veri ambarı ile

gerçek zamanlı bölüm verilerini birleştirmek için bir veri entegrasyon servisi

gerçekleştirdik.

Keywords: Gerçek Zamanlı Veri Ambarı, Veri Ambarı, Web Servisi, Gerçek
Zamanlı Bölüm, Temiz Fark, Taleb Bazlı Toplama

vi

ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to my supervisor Assist. Prof.

Dr. Abdül Kadir GÖRÜR and co-supervisor Dr. Zeki ERDEM for their guidance,

advices, criticism, encouragements, and insight throughout the research.

I should also express my appreciation to examination committee members for

their valuable suggestions and comments.

I would like to express my thanks to Fırat KÜÇÜK for his suggestions and

comments.

I would like to express my thanks to my wife for her assistance, encouragement

and all members of my family for their patience, sympaty and support during the

study.

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM .. iii

ABSTRACT .. iv

ÖZ .. v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF TABLES... xi

LIST OF FIGURES ... xii

CHAPTERS:

CHAPTER 1 .. 1

1 INTRODUCTION.. 1

CHAPTER 2 .. 3

2 DATABASE.. 3

2.1 Definition of Database ... 3

2.1.1 Database Management System ... 4

2.1.2 Data Model .. 4

2.1.3 Transaction .. 5

2.1.4 OLTP vs. OLAP ... 6

CHAPTER 3 .. 9

3 DATA WAREHOUSE ... 9

3.1 Definition of Data Warehouse ... 9

3.2 Data Warehouse, Decision Support, and Business Intelligence 12

3.3 Definitions of Some Data Warehouse Terms .. 14

3.4 Major Components of Data Warehousing ... 15

3.4.1 Data Sources ... 16

viii

3.4.2 Data Extraction / Data Acquisition .. 16

3.4.3 Change Data Capture .. 16

3.4.4 Data Transformation .. 18

3.4.5 Data Loading ... 18

3.4.6 Data Staging .. 19

3.4.7 Operational Data Store .. 19

3.4.8 Data Integration ... 19

3.4.9 Comprehensive Database ... 19

3.4.10 Metadata.. 20

3.4.11 Middleware Tools (enable access to the DW) 20

3.5 Data Warehouse Development Approaches ... 21

3.5.1 Inmon Model .. 21

3.5.2 Kimball Model .. 25

3.6 Dimensional Modeling ... 28

3.6.1 Entities within a Data Warehouse .. 28

3.6.2 Star Schema .. 29

3.6.3 Snowflake Schema .. 31

3.6.4 Slowly Changing Dimensions ... 31

3.6.5 OLAP Cube ... 35

CHAPTER 4 .. 37

4 REAL TIME DATA WAREHOUSE ... 37

4.1 Introduction ... 37

4.2 Real Time Data Warehouse Requirements ... 40

4.2.1 Data Freshness and Historical Needs .. 40

4.2.2 Reporting Only or Integration Also ... 41

4.2.3 Just the Facts or Dimension Changes Also 41

4.2.4 Alerts, Continuous Polling, or Nonevents 41

4.2.5 Data Integration or Application Integration 42

4.2.6 Point-to-Point versus Hub-and-Spoke .. 42

4.2.7 Data Cleanup Considerations .. 43

4.3 How Real Time Data Requirements Change Data Warehouse
Environment .. 43

4.4 Real Time ETL .. 46

4.5 Real Time ETL Approaches .. 47

4.5.1 Microbatch ETL.. 47

ix

4.5.2 Enterprise Application Integration .. 49

4.5.3 Capture, Transform, and Flow ... 51

4.5.4 Enterprise Information Integration .. 51

4.5.5 The Real Time Dimension Manager ... 52

4.5.6 Microbatch Processing... 52

4.6 Choosing an Approach ... 53

CHAPTER 5 .. 55

5 WEB SERVICES BASED REAL TIME DATA WAREHOUSE 55

5.1 Web Services and its Architecture .. 55

5.2 Web Services Based Real Time Data Warehouse Architecture 56

5.2.1 Web Service Client .. 58

5.2.2 Web Service Provider .. 60

5.2.3 Metadata.. 60

5.2.4 ETL .. 60

5.2.5 Real Time Partition .. 60

5.2.6 Data Warehouse .. 62

5.2.7 Real Time Data Integration .. 62

5.3 Alternative Technologies ... 62

5.4 Similar Solutions ... 64

5.4.1 Oracle Data Integrator and GoldenGate... 64

5.4.2 SQLStream .. 67

5.4.3 iWay Data Integration .. 67

5.4.4 Microsoft StreamInsight .. 68

CHAPTER 6 .. 70

6 A CASE STUDY .. 70

6.1 Modeling the Database ... 70

6.1.1 Entity Relation (E-R) Model.. 70

6.1.2 Dimensional Modeling.. 73

6.2 Data Loading and Transformation ... 73

6.2.1 Capturing the Data ... 74

6.2.2 Transforming the Data ... 74

6.3 Real Time Data Integration ... 76

CHAPTER 7 .. 77

7 CONCLUSION AND FUTURE WORK ... 77

7.1 Future Work .. 78

x

8 REFERENCES .. 79

9 APPENDIX .. 88

xi

LIST OF TABLES

TABLES PAGES

Table 1: The major differences between OLTP and OLAP system design 7

Table 2: Which Decisions Benifit ... 44

Table 3: Real Time Reporting Decision Guide Matrix ... 54

Table 4: Metadata Table Structure .. 58

Table 5: Clean Delta Log Type Conversions ... 61

Table 6: A Basic Comparision of Technologies ... 64

xii

LIST OF FIGURES

FIGURES PAGES

Figure 1: OLTP and OLAP Systems ... 6

Figure 2: Sample Data Warehouse Architecture .. 10

Figure 3: The Historical Process of Retrieving Information 13

Figure 4: Major Data Warehouse Components ... 16

Figure 5: Corporate Information Factory .. 22

Figure 6: Relationship between Levels One and Two of Inmon’s Data Model 24

Figure 7: Inmon’s Meth2 .. 25

Figure 8: Sample Kimball Fact and Dimension Tables 28

Figure 9: Sample Dimensional Model (Star Schema) .. 28

Figure 10: Star Schema .. 30

Figure 11: Snowflake Schema .. 31

Figure 12: A 3D Cube View ... 36

Figure 13: Point-to-Point Application Integration ... 42

Figure 14: Hub and Spoke Application Integration .. 43

Figure 15: Strategy, Decisions and Data Latency ... 44

Figure 16: Three Vs of Big Data ... 45

Figure 17: Options for Big Data Analytics Plotted by Potential Growth and

Commitment .. 46

Figure 18: Traditional ETL Diagram ... 48

Figure 19: Micro-Batch ETL Diagram ... 48

Figure 20: Convensional EAI Diagram ... 49

Figure 21: Real Time DW/EAI Example ... 50

Figure 22: CTF Diagram .. 51

Figure 23: Real Time Dimesion Authority Diagram ... 52

Figure 24: Web Services Architecture Model ... 56

Figure 25: Web Services Based Real Time Data Warehouse Architecture.......... 57

Figure 26: Log Capture Architecture on Source Tables 60

xiii

Figure 27: Query Rewrite Flow .. 62

Figure 28: ODI Trigger Based Capture ... 65

Figure 29: Streams Based CDC ... 66

Figure 30: GoldenGate Based CDC ... 66

Figure 31: Micro-Batch Architecture using ODI and GoldenGate 67

Figure 32: iWay CDC Solution ... 68

Figure 33: StreamInsight Application Development and Runtime 69

Figure 34: E-R Model Diagram of Sales Schema .. 72

Figure 35: Dimensional Model Diagram of Sales Schema 73

Figure 36: General Data Loading Processes ... 74

Figure 37: Data Transformation Architecture ... 76

1

CHAPTER 1

INTRODUCTION

1 DATABASE

Today's business environment is quickly changing and business decision

makers need for a historical picture of what happened and a picture of what was

happening today. Engineers strongly defended the notion that the data

warehouse needed to provide a reliable information floor upon which to stand,

providing an unwavering set of data to business decision makers. Because of the

twinkling database, business users were directed to the production applications

that run the business for up-to-the-moment reporting. Therefore, users had to go

to the data warehouse for a historical picture of what happened in the business as

of yesterday and had to look across many OLTP systems for a picture of what

was happening today. This division never fully accepted by business users. They

want to go to one place to get the business information that they needed [19].

Fresh data in data warehouses is a strong feature from the part of the users.

Traditionally, loading data into warehouses has been performed in an off-line

period. In such a data warehouse setting, data are extracted from the sources,

transformed, cleaned, and loaded to the warehouse. To avoid overloading the

source production systems, data warehouse activities takes place during a

loading window, usually during the night. In most cases, a data warehouse is

typically updated every day (24 hours period) [39].

The delay between a business transaction and its appearance in the data

warehouse is too much for many organizations in fast-moving vertical industries.

Additionally the data warehouse has become mission critical. That is, feeding

enriched information back to operational systems that is then used to process

transactions; personalize offers, and present up-sell promotions. The push for

ever-fresher information is needed [19].

2

The traditional data warehouses are implemented using batch driven

approach and mainly according to the pull technology principle. The data loading

from source systems to data warehouses is generally performed on a nightly

basis or even in some cases on a weekly basis; therefore typical data

warehouses normally do not have the most current data [39]. Furthermore the

operational systems may have to be go offline during the data extraction process.

It is an unacceptable situation which generates delays in businesses especially

that require instantaneous access to up-to-date information [44].

 A real time data warehouse eliminates the data availability gap and enables

organizations to concentrate on processing their valuable data. Furthermore,

continuous data processing without delay opens up significant new opportunities

[46].

The zero-latency enterprise is ideal for a business. This ideal urges the

benefits of speed and a single version of the truth. In a real time, generally mean,

information is delivered to the right place at the right time for maximum business

value. We may call these right-time systems. At present, true zero latency is an

unattainable ideal—it takes some time to synchronize information across several

production systems and data warehouse—but there is a pressure on many

modern data warehouses to provide a low-latency view of the business [19].

In summary, we may list three major reasons why we need a Real Time in a

Data Warehouse:

 Faster reaction time

 Reduced decision time

 New process capabilities.

3

CHAPTER 2

DATABASE

2 DATABASE

2.1 Definition of Database

Databases and database technology are an essential component and play a

critical role in almost all areas where computers are used, including business,

engineering, medicine, law, education, and library science, to name a few. The

growing use of computers increases its impact. Database technology is the corner

stone of most of the modern information systems. Therefore, it will be good to

begin with the word database.

“A database is a collection of related data. By data, we mean known facts

that can be recorded and that have implicit meaning” [1]. For example, consider

the list products that a company manufactured or names and telephone numbers

of customers. This data may have been recorded in an indexed address book, or

may have been stored on a hard disk or flash memory, using a personal computer

and software such as Microsoft ACCESS or EXCEL. The collection of related data

usually referred to as the database.

In addition, the common use of the term database is usually more restricted.

With own words of Ramez and Navathe, a database has the following implicit

properties:

 “A database represents some aspect of the real world, sometimes

called the miniworld or the universe of discourse (UoD). Changes to

the miniworld are reflected in the database”.

 “A database is a logically coherent collection of data with some

inherent meaning. A random assortment of data cannot correctly be

referred to as a database”.

4

 “A database is designed, built, and populated with data for a specific

purpose. It has an intended group of users and some preconceived

applications in which these users are interested”.

So to summarize, a database has some source from which data is taken, a

degree of interaction with the events in the real world, and an audience that is

actively interested in the contents of a database [1].

The size and complexity of a database can vary. The Çankaya University

library database may include hundreds of thousands of items, whereas a small

company may maintain a database for only 20 employees.

2.1.1 Database Management System

The knowledge and technology that has developed over several decades

resulted in specialized software called a database management system (DBMS)
or generally a "database system". With a DBMS, you can create and manage

large amounts of data efficiently. Also it is a powerful tool for allowing it to persist

over long periods of time, safely. These systems are among the most complex

types of software available [2]. Some of the world's most popular databases are:

Oracle, DB2, Microsoft SQL Server and MySQL.

2.1.2 Data Model

The main purpose of the database systems is to manage large bodies of

information. This data management involves both defining structures for storage

of information and providing mechanisms for the manipulation of information.

Also, the safety of the information stored must be ensured by the database

system, despite system crashes or attempts at unauthorized access. If several

users have to share data, the system must avoid possible anomalous results.

Because information is so important in most organizations, a large body of

concepts and techniques for managing data has been developed [3].

Database systems can be based on different data models or database models

respectively. Data modeling is a way for specifying the structures of data. A data

model is a collection of concepts and rules for the description of the structure of

the database. Data types, the constraints and the relationships for the description

or storage of data are main structures of the database. The most often used data

models are [4]:

5

Network Model and
Hierarchical Model

The network model and the hierarchical model build upon

individual data sets and are able to express hierarchical or

network like structures of the real world. They are the

predecessors of the relational model.

Relational Model

The relational model defines a database as a collection of

tables (relations) which contain all data. It is the best

known and in today’s DBMS most often implemented

database model.

Object-Oriented
Object-oriented models define a database as a collection

of objects with features and methods.

Object-Relational
Model

Object-relational database model is the wide spread and

simple relational database model extended by some basic

object-oriented concepts. Object-oriented models are very

powerful but also quite complex, therefore object

relational model allow us to work with the widely know

relational database model but also have some

advantages of the object-oriented model without its

complexity.

The relational model is today the primary data model for commercial data

processing applications. It attained its primary position because of its simplicity,

which eases the job of the programmer, compared to earlier data models such as

the network model or the hierarchical model. Relational model is developed by

E.F. Codd and a database based on this model allows the definition of data

structures, storage and retrieval operations and integrity constraints. In such a

database the data and relations between them are organized in tables which are

a collection of records [3].

2.1.3 Transaction

A transaction is a unit of work submitted to a database by a single database

user or collections of operations that form a single logical unit of work.

Transactions are important to multiuser databases because databases

provide many concurrency control mechanisms by using transactions that is either

6

succeed or fail as a whole. A database system must ensure proper execution of

transactions despite failures. Also, it must manage concurrent execution of

transactions in a way that avoids the inconsistency [3] [5].

In a transaction various data items are accessed and possibly updated or

deleted. To initiate a transaction, usually a user program is used, which is written

in a high-level data-manipulation language (typically SQL), or programming

language (for example, C++, or Java), with embedded database accesses in

JDBC or ODBC. A transaction is delimited by statements of the form “begin

transaction” and “end transaction” and the transaction consists of all operations

executed between the begin transaction and end transaction [3].

2.1.4 OLTP vs. OLAP

Database systems can be divided into transactional (OLTP) and analytical

(OLAP). In general we can say that OLTP systems provide source data to data

warehouses, whereas OLAP systems help to analyze it [6] [7].

Figure 1: OLTP and OLAP Systems [6]

An OLTP (On-line Transaction Processing) deal with operational data and it

is characterized by a large number of short on-line transactions (INSERT,

UPDATE, and DELETE). The main importance for OLTP systems is provide very

fast query processing, maintaining data integrity in multi-access environments. It’s

effectiveness generally measured by number of transactions per second. There is

detailed and current data in OLTP database, and the entity model schema is used

to store transactional databases. Additionally, the data is frequently updated and

7

queried in an OLTP system. The database tables are normalized to prevent data

redundancy and to prevent update anomalies. This makes the write operation in

the database tables more efficient [6] [7].

An OLAP (On-line Analytical Processing) is deal with Historical Data or

Archival Data, and it is characterized by relatively low volume of transactions.

Queries are often very complex and involve aggregations. Response time is an

effectiveness measure for OLAP systems. OLAP applications are widely used by

Data Mining techniques. There is aggregated, historical data, stored in multi-

dimensional schemas in OLAP database [6] [7].

The design of a data warehouse database and online analytical processing

(cubes, star schema etc) is fundamentally different than a transactional

processing database. The data warehouse is particularly designed to facilitate

super fast query times in a large dataset and multi-dimensional analysis. The

following table summarizes the major differences between OLTP and OLAP

system design [8].

Table 1: The major differences between OLTP and OLAP system design [8]

 OLTP System
Online Transaction

Processing
(Operational System)

OLAP System
Online Analytical

Processing
(Data Warehouse)

Source of data
Operational data; OLTPs are
the original source of the
data.

Consolidation data; OLAP
data comes from the various
OLTP Databases

Purpose of
data

To control and run
fundamental business tasks

To help with planning, problem
solving, and decision support

What the data Reveals a snapshot of
ongoing business processes

Multi-dimensional views of
various kinds of business
activities

Inserts and
Updates

Short and fast inserts and
updates initiated by end
users

Periodic long-running
batch jobs refresh the data

Queries
Relatively standardized and
simple queries Returning
relatively few records

Often complex queries
involving aggregations

Processing
Speed Typically very fast

Depends on the amount of
data involved; batch data
refreshes and complex queries
may take many hours; query
speed can be improved by
creating indexes

Space
Requirements

Can be relatively small if
historical data is archived

Larger due to the existence of
aggregation structures and

8

history data; requires more
indexes than OLTP

Database
Design

Highly normalized with many
tables

Typically de-normalized with
fewer tables; use of star
and/or snowflake schemas

Backup and
Recovery

Backup religiously;
operational data is critical to
run the business, data loss is
likely to entail significant
monetary loss and legal
liability

Instead of regular backups,
some environments may
consider simply reloading the
OLTP data as a recovery
method

9

CHAPTER 3

DATA WAREHOUSE

3 DATA WAREHOUSE

3.1 Definition of Data Warehouse

The term data warehouse (DW) is commonly used in industry and it denote

to a kind of heterogeneous information system. We have to disclose firstly that a

data warehouse is an environment, not a product. The need for building a data

warehouse is that corporate data is often scattered in different databases and

possibly in different formats. In order to view a complete picture of information, it

is necessary to access these heterogeneous databases. Therefore we have to

obtain data and pieces of partial information from each, and then put them

together to produce an overall picture. Attempting this process without a data

warehouse is a cumbersome task, inefficient, ineffective, error-prone. Moreover

this task usually will need huge efforts of system analysts. All these difficulties

discourage the effective use of complex, but valuable corporate data [9].

The definition of data warehouse has evolved since its origins in the early

1980s. Some of the more common definitions [10]:

 Data Warehouse is a repository of subject-oriented, historical data.

 Data Warehouse is a collection of smaller “data marts”.

 Data Warehouse can be considered any separate hardware platform that

enables a business person to make a decision.

All of these definitions can be correct, depending on your environment. Dyche

[10] defines the data warehouse as a separate platform – a computer different

from other computers in your IT environment.

10

A data warehouse consolidates and integrates information from many internal

and external sources and arranges it in a meaningful format for making accurate

and timely business decisions. In fact, data warehouse is a database and mainly

used for reporting and analysis purposes. It is different from the organization’s

Online Transaction Processing (OLTP) database. The data stored in the

warehouse is uploaded from the operational systems.

Figure 2: Sample Data Warehouse Architecture [11]

Bill Inmon [11] defines the term DW as: “A data warehouse is a subject-

oriented, integrated, time-variant, non-volatile collection of data in support of

management’s decisions”. This definition contains four key elements that are

worthy of a detailed explanation:

 Subject-Oriented: In the data warehouse, all the data elements relating to

the same real-world event are organized or object are linked together. The

data in the warehouse should be organized based on subject, that is only

subject-oriented data should be moved into a warehouse; for example, it

can be product sales focusing on client interests in some sales company,

the client behavior in utilization of different banking services, the insurance

history of the clients, the railroad system utilization or changes in structure,

etc.

 Integrated: DW is an architecture constructed by integrating data from

multiple heterogeneous sources (such as relational database (DB), flat

11

files, excel sheets, XML data, data from the legacy systems) to support

structured and/or ad hoc queries, analytical reporting and decision making.

In this process, some problems have to be resolved: differences in data

format, data codification, synonyms (fields with different names but the

same data), homonyms (fields with the same name but different meaning),

multiplicity of data occurrences, nulls presence, default values selection,

etc.

 Non-Volatile: The data in the data warehouse can neither be modified nor

removed, that is durable. Once committed, data in the data warehouse

are never over-written or deleted. The data are static, read-only, and

retained for future reporting.

 Time-Variant: DW is time variant in the sense that they maintain both

historical and (nearly) current data. In contrast, operational databases

contain only the most current, current (up-to-date) data values. DW

provides information from a historical prospective. Therefore, every key

structure in the DW contains, either implicitly or explicitly, an element of

time. This indicates the possibility to count on different values of the same

object according to its changes in time. For example, in a banking DW, the

average balances of client’s account during different months for the period

of several years.

On the other hand, Ralph Kimball [12] briefly defines a DW as “a copy of

transaction data specifically structured for query and analysis”. He provides a

more precise definition by means of requirements:

1. The data warehouse provides access to corporate or organizational

data.

2. The data in a data warehouse is consistent.

3. The data in a data warehouse can be separated and combined by

means of every possible measure in a business (the classic slice and

dice requirement).

4. The data warehouse is not just data, but also a set of tools to query,

analyze, and present information.

5. The data warehouse is the place where we publish used data.

6. The quality of the data in the data warehouse is a driver of business

reengineering

12

Alternatively, Han and Kamber [13], define a DW as “a repository of multiple

heterogeneous data sources organized under a unified schema at a single site to

facilitate management decision making”.

Finally, other authors focus their interest on the final users of the DW. For

example, in [14], a DW is defined as a “collection of technologies aimed at

enabling the knowledge worker (executive, manager, and analyst) to make better

and faster decisions”.

After these definitions we can focus on the four general principles of data

warehousing listed below. These are true regardless of the platform, amount of

data, and software being used [10].

1. A data warehouse is usually a separate computer, or hardware platform.

This platform may be large or small and in some cases it might a collection

of distributed platforms. In other words, it could be a set of “nodes” on a

large computer platform.

2. The data on the data warehouse is used for decision making.

3. Data warehouses duplicate data that already exists elsewhere in the

business. While this data redundancy sounds wasteful, it’s actually a very

good thing.

4. A data warehouse is not just a computer sitting someplace in the bowels

of your companies data center. It’s a combination of hardware, specialized

software, and data. Normally, when people refer to “our data warehouse”,

they are talking about a hardware box, a collection of software products

and tools, and lots and lots of data.

In short, a data warehouse is a repository of information extracted from other

corporate systems such as transactional systems, departmental databases,

company’s intranet or Internet.

3.2 Data Warehouse, Decision Support, and Business
Intelligence

Even before adopting data warehousing, an executive’s assistant would be

requesting a report for a certain product or some success rates from the IT

department. While the IT person was querying the data and preparing the report,

executive was waiting along day(s)/week(s). Figure 3 illustrates a typical lifecycle

for acquiring valuable business information [10].

13

Figure 3: The Historical Process of Retrieving Information [10]

It is important here to understand the difference between data and

information. The data warehouse synthesizes some very important data, but only

when this data is combined into meaningful answers or reports that can support

the interpretation of business events, then it can be considered information. While

data has been difficult enough for companies to find and process, information has

been next to impossible to obtain. Data in a data warehouse is cleansed and

consolidated for access by variety of purposes [10].

One of the most important human activities is decision-making. It is more

difficult in today’s complex and rapidly changing decision environment than ever

before. Decision Support Systems (DSS) are playing an important role in

organizational decision-making for business intelligence in all disciplines,

including health, business, engineering, education and finance. Organizational

decision makers’ requirements are increasing for advanced knowledge, previous

successful experiences, and intelligent technical conditions to support and enable

better decisions. In current advanced DSS, computational intelligence and

knowledge-based methods and new analytical intelligence techniques, have

become essential components. The ever-increasing distributed decision situations

and related computing systems have triggered the development of a new

generation of Intelligent Decision Support Systems (IDSS) [16].

14

In the new digital economy, rapid, relentless change is the only constant. So

that companies must be able to forecast and adapt to ever-evolving market

conditions to compete such a change. The key to achieving rapid and fast

strategic performance is maintaining a steady flow of fully-integrated, actionable

information about all key business areas, including production, customer service,

supply, marketing, sales, and HR [17].

However, Liautaud [17] says that, when it comes to corporate intelligence,

most companies are still plodding along at the speed of the steam-driven

locomotive.

3.3 Definitions of Some Data Warehouse Terms

Term Definition

Aggregation

A summarized, typically additive value. The level of aggregation
depends on the scenario. Many star schemas are aggregated to
some base level, called the grain, although this is becoming
somewhat less common as developers rely on cube building
engines to summarize to a base level of granularity [18].

Change Data
Capture

Change Data Capture (CDC) is a generic term for techniques
that monitor operational data sources with the objective of
detecting and capturing data changes of interest [19].

Drill-down
The process of probing beyond a summarized value to
investigate each of the detail transactions that comprise the
summary.

Drill-up

A way of viewing related items of a Dimension as defined in
the Hierarchy by collapsing members to come up to a
summarized data range, or simply put, to hide child members
associated with a specific parent or aggregate member within a
defined hierarchy [20].

ETL / ELT

The Extract-Transform-Load (ETL) or Extract-Load-Transform
system is the foundation of any data warehouse [19]. The
objective of the ETL/ELT system is extracting data from
multiple, heterogeneous data sources, transforming and
cleansing data, and finally loading data into the data warehouse
where it is accessible to business intelligence applications [21].

Grain A definition of the highest level of detail that is supported in a
data warehouse.

Incremental
Load

“Full reloading is obviously inefficient considering that most
often only a small fraction of source data is changed during
loading cycles. It is rather desirable to capture source data
changes and propagate the mere changes to the data
warehouse. This approach is known as incremental loading”
[21].

Initial Load
“The first population of a data warehouse is referred to as initial
load. During an initial load, data is typically extracted
exhaustively from the sources and delivered to the data
warehouse. As source data changes over time, the data

15

warehouse gets stale, and hence, needs to be refreshed. Data
warehouse refreshment is typically performed in batch mode on
a periodical basis. The naive approach to data warehouse
refreshment is referred to as full reloading. The idea is to simply
rerun the initial load job, collect the resulting data, and compare
it to the data warehouse content. In this way, the required
changes for data warehouse refreshment can be retrieved. Note
that it is impractical to drop and recreate the data warehouse
since historic data has to be maintained” [21].

Pivot Table

A pivot table is a program tool that allows you to reorganize and
summarize selected columns and rows of data in
a spreadsheet or database table to obtain a desired report. A
pivot table doesn't actually change the spreadsheet or database
itself. In database lingo, to pivot is to turn the data (slice and
dice) to view it from different perspectives [22].

Rollup
Relational Online Analytical Processing. ROLAP is a flexible
architecture that scales to meet the widest variety of DSS and
OLAP needs. ROLAP architecture access data directly from
data warehousing using SQL [23].

3.4 Major Components of Data Warehousing

The main reason for building a DW is to clean, consolidate and integrate the

data coming from different sources, and therefore to improve the quality of

information for making accurate and timely business decisions. We can list the

major components of data warehousing as follows:

1. Data Sources

2. Data Extraction / Data Acquisition

3. Change Data Capture

4. Data Transformation

5. Data Loading

6. Data Staging

7. Operational Data Store (ODS)

8. Data Integration

9. Comprehensive Database

10. Metadata

11. Middleware Tools (enable access to the DW)

16

Figure 4: Major Data Warehouse Components

In Figure 4, major components of a data warehouse are shown in their

architectural places.

3.4.1 Data Sources

Data Source, as the name intimates, provides data to DW via data site. Data

site successively stores an organization's database, data files including non-

automated data. A data source can be a relational database or a non-relational

data source.

Data sources have to be identified before starting to develop data warehouse.

The very first step needed to figure out what are the data that are required to be

put into your data warehouse [24].

3.4.2 Data Extraction / Data Acquisition

Data extraction is the process of retrieving data from data sources for further

data processing or data storage and it is a very important element of data

warehouse implementation.

Extracting data from operational systems, and transform it into a format

suitable for applications that will run off the data warehouse is an important part of

the data warehouse implementation [9].

3.4.3 Change Data Capture

Capturing changes of data is crucial in refreshing data warehouse. Refreshing

process begins with transferring the latest source data into the data warehouse.

17

However, we must transfer only the relevant changes to the source data since the

last transfer because of the difficulty of complete refreshing. Completely

refreshing our target fact and dimension tables are usually undesirable [25].

Isolating the latest source data is called change data capture and is often

abbreviated CDC in high level architecture diagrams. The idea behind change

data capture is to transfer the data that has been changed since the last load, but

building a good change data capture system is not as easy. Some of the goals we

have for capturing changed data [24]:

 Rather than complete refresh, use selective processing to isolate the

changed source data

 Capture all source data changes (deletions, edits and insertions) including

changes made through non-standard interfaces

 To distinguish error corrections from true updates, label changed data with

reason codes

 Use additional metadata to support compliance tracking

 Start the change data capture process as early as possible, preferably

before bulk data transfer to data warehouse

Detecting the changes is the first step in change data capture and there are

mainly four ways to detect changes [25] [26]:

 Audit columns: The source system contains audit columns that stores

the date and time a record was added or modified.

 Database log scraping or sniffing: Log scraping effectively takes a

snapshot of the database redo log at a scheduled point in time (usually

midnight) and scours it for transactions that affect the tables for ETL load.

Sniffing involves a “polling” of the redo log, capturing transactions on-the-

fly.

 Timed extracts: With a timed extract you typically select all of the rows

where the date in the Create or Modified date fields equal SYSDATE-1,

meaning you’ve got all of yesterday’s records, but this process is horribly

unreliable. Time-based data selection loads duplicate rows when it is

restarted from mid-process failures. This means that manual intervention

and data cleanup is required if the process fails for any reason.

18

Meanwhile, if the nightly load process fails to run and misses a day, a risk

exists that the missed data will never make it into the data warehouse.

 Full database “diff compare”: A full diff compare keeps a full snapshot

of yesterday’s database, and compares it, record by record against today’s

database to find what changed. It’s good that you are guaranteed to find

every change in this technique, but this technique is very resource

intensive.

3.4.4 Data Transformation

Data transformation is converting data from a source data format into

destination data format. The data transformation process typically consists of

multiple steps and each step may perform schema and instance-related

transformations (mappings). Importantly, transformation codes are generated to

reduce the amount of self-programming. Thus, it is necessary to specify the

required transformations in an appropriate language, e.g., supported by a

graphical user interface. Various ETL tools offer this functionality by supporting

proprietary rule languages. A more general and flexible approach is the use of the

standard query language SQL to perform the data transformations. Moreover you

can utilize the possibility of application specific language extensions, in particular

user-defined functions (UDFs) supported in SQL: 99 [27].

The functionality of data transformation includes [9]:

 Removing unwanted data

 Converting to common data names and definitions

 Calculating summaries and derived data

 Establishing defaults for missing data

 Accommodating to source data definition changes.

3.4.5 Data Loading

After data has been extracted, it is time to be load into a data warehouse. The

data which is cleansed and transformed to comply with the data warehouse

standards is moved into the appropriate data warehouse entities. In this step, data

may be summarized and reformatted as part of this process. This depends on the

extraction and cleansing specifications and the performance requirements of the

data warehouse. After the data has been loaded, metadata information is updated

to reflect the activity that has just been completed [9].

19

3.4.6 Data Staging

To simplify the cleansing and transformation process, it may be practice

creating and defining a staging area. This is a simple concept and allows

maximizing up-time of a data warehouse while extracting and cleansing the data.

A staging area is simply a temporary work area that data from source systems is

copied and also it can be used to manage transactions that will be further

processed to develop data. A staging area is mainly required for timing reasons.

Briefly, in advance of data integration into the Data Warehouse, all required data

must be available [9] [28].

3.4.7 Operational Data Store

For the need for integrated tactical and operational reporting database, the

data warehouse was included a new database called the Operational Data Store
(ODS) [29].

An ODS is an environment where data from different operational databases is

integrated. It provides an integrated view of enterprise data to the users and

enables the user to address operational challenges that span over more than one

business function [30].

An ODS is subject to change much more frequently than a DW and stores, in

contrast to a DW, no histories over operational data. Thus, an ODS provides

support for activities such as collective operational decisions based on current

company-wide information.

3.4.8 Data Integration

A data warehouse is an integrated collection of subject-oriented data in the

support of decision making. Therefore, data integration is a core requirement of

any data warehouse. The integration of data sources is mainly accomplished by

the use of ETL processes. Hence, the appropriate designs of the ETL processes

are key factors in the success of data warehouse projects [31].

3.4.9 Comprehensive Database

A comprehensive database platform is needed for data warehousing and

business intelligence that combines scalability and performance, reliability,

security, deeply integrated analytics, and embedded integration and data-quality.

20

Also it may provide an integrated platform for analytics; by embedding OLAP,

Data Mining, and statistical capabilities directly into the database [32].

3.4.10 Metadata

Metadata is a kind of data that describes the data warehouse itself, in short

data about data and it is a vital area of data warehouse. Metadata within a data

warehouse describes and locates data components, their origins (which may be

either the operational systems or the data warehouse), and their movement

through the data warehouse process. The data access, data stores, and

processing information will have associated descriptions about the data and

processing documented in the metadata. This metadata should be managed from

the beginning of data warehouse project. Information in the metadata repository

includes [9]:

 The data model description

 Description of the layouts used in the database design

 Definition of the primary system managing the data items

 A data map, from the system of record to other locations in the data

warehouse, including the descriptions of transformation and aggregations

 Database design definitions

 Data element definitions, including rules for derivations and summaries.

3.4.11 Middleware Tools (enable access to the DW)

The main purpose of data warehousing is to provide information to business

users for strategic decision making and interaction with the data warehouse made

by using front-end tools. Although, main delivery tools for analysis in a data

warehouse are ad hoc requests, regular reports, and custom applications, many

development efforts of data warehousing projects are focusing on exceptional

reporting also know as alerts. The alerts warn a user when a certain event has

occurred. For example, if a data warehouse is designed to assess the risk of

stock decrease, an alert can be activated when a certain stock rate drops blow a

predefined threshold. When an alert is well synchronized with the key objectives

of business, it can provide warehouse users an enormous advantage. The front-

end user tools can be grouped as follows [9]:

 Data query and reporting tools

 Application development tools

21

 Executive information systems (EIS) tools

 Online analytical processing (OLAP) tools

 Data mining tools.

3.5 Data Warehouse Development Approaches

Data Warehouse development approaches are evolves in time and today

there are many approaches but two of them are very famous:

1. Inmon Model: Enterprise Data Warehouse (EDW) approach

2. Kimball Model: Data Mart approach

A comprehensive comparison summary of these models published by Breslin

[33].

Bill Inmon suggests a top-down development approach. This approach

adapts traditional relational database tools to develop needs of an enterprise wide

data warehouse. Individual departmental databases are developed to serve most

decision support needs from this enterprise data store [33].

Ralph Kimball, on the other hand, advocates a bottom-up development

approach. This approach uses dimensional modeling, a data modeling approach

unique to data warehousing. Kimball suggests creating one database (or data

mart) per major business process, rather than building a single enterprise wide

database. Enterprise wide cohesion is accomplished by using another Kimball

innovation, a data bus standard [33].

Here, one may be ask which model is the best. Indeed, there is no one-size-

fits-all strategy to data warehousing.

3.5.1 Inmon Model

Inmon's model is a top-down approach. Inmon’s model consists of all

information systems and their databases throughout a given organization and this

is called the Corporate Information Factory (CIF) [34]. Figure 5 shows Inmon's

Corporate Information Factory.

22

Figure 5: Corporate Information Factory [34]

In Inmon's CIF architecture; first there were applications, then online

applications, followed by extract processing. After that a spider’s web mess of

data and systems came, then data warehouse and the Corporate Information

Factory with its many architectural components [34]:

 The Operational Data Source

 The data marts environment

 Decision Support Systems

 Exploration/data mining warehouses

 Alternate storage, et al.

The overall database environment of the organization is divided into four

levels by Inmon. [33]:

1. Operational

2. Atomic data warehouse

3. Departmental

4. Individual

The first level contains data from other transaction processing and legacy

systems. The day-to-day operation of the organization is supported in this level; in

23

other words, the first level supports all transaction processing. Data from the

operational systems is extensively manipulated and then moved to the atomic

data warehouse. The last three levels comprise the data warehouse [35].

Inmon exemplifies the difference between operational data and data stored in

the atomic data warehouse. In the example, the entity is a customer, and the

attribute of most interest is the customer’s credit rating. The operational system’s

database contains the customer’s current credit rating and related information of

interest such as loan balances, address, in a single record. By contrast, the

atomic data warehouse contains the credit history for this customer, summarized

by year, with one record per year [35].

The data contained in the departmental level is small to a great extend

summarized. Each department’s database can hold data summarized according

to its information needs. In addition, Inmon’s architecture ensures data

consistency because all departmental data comes from the atomic data

warehouse [35].

The fourth and final level of the architected environment is created by

individual users. They create heuristic, ad hoc data sets as part of decision

support analyses. This fourth level is housed on the individual user’s personal

computer and temporary [35].

It is possible to query the atomic data warehouse, if the department’s

database has not retained the data at the level of detail needed. Inmon says that

the atomic data warehouse is worth the initial effort to construct because it allows

the creation of any number of departmental databases without risking creating

incompatible data between them [35]. A three-level data model is used for this.

3.5.1.1 The Three-Level Data Model

Inmon proposes three levels of data modeling.

1. ERD (Entity Relationship Diagram)

2. DIS (Data Item Set)

3. Physical

The first is just as in the development of operational databases. ERDs are

used to explore and refine entities, their attributes, and the relationships between

24

entities. A set of ERDs are created for each department. The sum of all

department ERDs is the corporate ERD [35].

The second data model consists of four constructs:

 A primary data grouping

 A secondary data grouping

 A connector, identifying the relationships of data between major subject

area

 “Type of ” data

The second data model creates the DIS for each department. The corporate

DIS is composed of the sum of the departmental DISs [35]. Figure 6 shows the

relationship between Levels One and Two of Inmon’s Data Model.

Figure 6: Relationship between Levels One and Two of Inmon’s Data Model [35]

25

The third and final level of Inmon’s data model is the physical. “The physical

model is created from the mid-level data model merely by extending the mid-level

data model to include keys and physical characteristics of the model” [35]. Inmon

explains various techniques (such as creating arrays of data, pre-formatting,

rejoining tables etc.) for optimizing the performance of the data warehouse. The

purpose is optimizing I/O performance that is the same as for operational

database systems. Most of these techniques involve de-normalization of tables

[33].

After the three-level data model is complete, the data warehouse development

has begun by using Inmon’s special adaptation of the spiral development

methodology, which he calls Meth2. (Meth1 is for developing operational systems;

Meth3 is for tuning an existing data warehouse). Inmon outlines ten steps, shown

in Figure 7 [35].

Figure 7: Inmon’s Meth2 [35]

Inmon sees the data warehouse as an integral part of the Corporate

Information Factory (CIF). This means that the data warehouse and operational

databases are all part of a larger whole. Therefore, Inmon’s data warehouse must

adhere to most of the same standards as operational systems [35] [33].

3.5.2 Kimball Model

Kimball's model is a bottom-up approach. Kimball’s model differs from a

traditional relational database approach. One significant difference is that data

26

warehouses built with the Kimball model use a data modeling method which is

called “Dimensional Data Modeling” [33].

The overall architecture features multiple databases that are expected to be

highly interoperable. The data bus is the main design feature that makes this

possible. This is another difference, "The Data Bus and Conformed
Dimensions” [33]. The Data Bus and Conformed Dimensions is explained in

section 3.5.2.1.

Dimensional modeling begins with tables. The tables are called either fact or

dimension. Fact tables contain metrics, while dimension tables contain attributes

of the metrics in the fact tables. Dimension tables routinely contain repeating

groups; this violates normalization rules in order to achieve a high level of

performance in the data warehouse [33]. Dimensional modeling is explained in

section 3.6 en detail.

3.5.2.1 The Data Bus and Conformed Dimensions

In Kimball’s model, data is copied from operational source systems to a

staging area. The data is made consistent and suitable for end-user queries.

From the staging area, data is loaded into data marts. The source of data for user

queries are data marts [13].

Each data mart is based on a single business process such as point of sale,

inventory, procurement, and order management. More than one department may

be interested in a given business process. There is no one department that is

perceived as the sole owner of a given data mart [13].

The bus architecture allows the sum of the data marts to be an integrated

whole. That is, all data marts must use standardized conformed dimensions.

Keys, column names, attribute definitions, and attribute values are consistent

across business processes. This is the basic requirements of conformed

dimensions. In other words, two dimensions are conformed “when they are

exactly the same, or one is a perfect subset of the other. Most important, the row

headers produced in answer sets from two different conformed dimensions must

be able to be matched perfectly” [13]. This may seem an impossible set of

requirements, but a knowledge of dimensional data modeling and adherence to

the four-step dimensional design process help keep the requirements

manageable [33].

27

A product dimension that spans multiple business processes may be an

example. An artificial key assigned to the primary key for the product during the

ETL process. The first data mart development defines the product key, and all

subsequently developed data marts must use the key. Therefore, queries can be

made across data marts without conflicting results [33].

3.5.2.2 The Four-Step Dimesional Design Process

Kimball suggests a development methodology that involves a bottom-up

approach, which in the case of data warehouses means to build one data mart at

a time. The four steps of the dimensional design process are:

1. Select the business process

2. Declare the grain

3. Choose the dimensions

4. Identify the facts

The first step is "select the business process" that has “the most impact—it

should answer the most pressing business questions and be readily accessible

for data extraction” [13].

The second step is declaring the grain that is the process of deciding what

level of detail the data warehouse will contain. The lowest level of granularity is

called atomic, that is, it cannot be further subdivided. Choosing a grain at the

atomic level is highly important. If you choose a more summarized level, queries

below that level cannot be fulfilled by the data warehouse [13].

The third step is to choose dimensions. Each of the dimension tables has a

large number of attributes. The date dimension table includes many attributes

such as Day, Week, Month so on [13].

The final step is to identify facts which to include in the fact tables. Kimball

chooses to include some computed values in the fact table as well as truly atomic

values. Therefore, this makes queries easy for the end user and provides

acceptable data warehouse performance [13]. The result of the four-step process

is shown in Figure 8.

28

Figure 8: Sample Kimball Fact and Dimension Tables [13]

3.6 Dimensional Modeling

3.6.1 Entities within a Data Warehouse

A dimensional model such as star schema contains three types of logical

entities: (1) a measure, (2) dimension, and (3) category detail. It is a logical

structure which has measure entity at the center containing factual data, and this

is surrounded by dimension entities containing reference data [9].

Figure 9: Sample Dimensional Model (Star Schema)

29

A dimensional model is shown in Figure 9. Sales table in the figure is a fact

table; quantity and amount are measures of this fact table.

3.6.1.1 Measure Entities

Within a dimensional model (i.e. star schema), the center of the model – and

often the focus of the users’ query activity – is measure entity (or fact table). The

data contained in a measure entity is factual information from which users derive

business intelligence. The measurement data provides users with quantitative

data about business [9].

3.6.1.2 Dimension Entities

Dimension entities are much smaller entities than measure entities. The

dimension and their associated data allow users of data warehouse to browse

measurement data with ease of use and familiarity. These entities assist users in

minimizing the rows of data within a measure entity, and aggregating key

measurements data. In this sense, these entities filter data, or force the server to

aggregate data, so that fewer rows are returned from the measure entities [9].

3.6.1.3 Category Detail Entities

Each element in a dimension is a category, and represents an isolated level

within a dimension that might be require more detailed information to fulfill a

user’s requirement. These categories that require more detailed data are

managed within category detail entities. These entities have textual information

that supports the measurement data and provides more detailed or qualitative

information to assist in decision making process [9].

3.6.2 Star Schema

The star schema is the simplest data warehouse schema. It is called a star

schema because the entity-relationship diagram of this schema resembles a star,

with points radiating from a central table. The center of the star consists of a large

fact table and the points of the star are the dimension tables [36].

A star query is a join between a fact table and a number of dimension tables.

Each dimension table is joined to the fact table using a primary key to foreign key

join, but the dimension tables are not joined to each other. The optimizer

recognizes star queries and generates efficient execution plans for them. It is not

30

mandatory to have any foreign keys on the fact table for star transformation to

take effect [36].

A typical fact table contains keys and measures. For example, in the Figure 9

sample schema, the fact table, sales, contain the measures quantity and amount,

and the keys product_id, customer_id, supplier_id and time_id. The dimension

tables are customers, times, products and suppliers. The products dimension

table, for example, contains information about each product number that appears

in the fact table.

A star join is a primary key to foreign key join of the dimension tables to a fact

table.

The main advantages of star schemas are [36]:

 Provide a direct and intuitive mapping between the business entities being

analyzed by end users and the schema design.

 Provide highly optimized performance for typical star queries.

 Are widely supported by a large number of business intelligence tools,

which may anticipate or even require that the data warehouse schema

contain dimension tables.

Star schemas are used for both simple data marts and very large data

warehouses. Figure 10 presents a graphical representation of a star schema.

Figure 10: Star Schema

31

3.6.3 Snowflake Schema

The snowflake schema is a more complex data warehouse model than a star

schema, and is a type of star schema. It is called a snowflake schema because

the diagram of the schema resembles a snowflake [36].

Snowflake schemas normalize dimensions to eliminate redundancy. That is,

the dimension data has been grouped into multiple tables instead of one large

table. For example, a product dimension table in a star schema might be

normalized into a products table, a product_type table, and a

product_manufacturer table in a snowflake schema. While this saves space, it

increases the number of dimension tables and requires more foreign key joins.

The result is more complex queries and reduced query performance. Figure 11

presents a graphical representation of a snowflake schema.

Figure 11: Snowflake Schema

3.6.4 Slowly Changing Dimensions

Entities such as customer demographics, product characteristics, classification

rules, status of customers change over time. In a transaction system, many times

the change is overwritten and track of change is lost.

32

For example a source system may have only the latest customer PIN Code, as

it is needed to send the marketing and billing statements. However, a data

warehouse needs to maintain all the previous PIN Codes as well, because we

need to track on how many customers move to new locations over what

frequency.

A key benefit for Data Warehouse is to provide historical information, which is

typically over-written (and thus lost) in the transaction systems. How to handle

slowly changing dimensions in a Dimensional Model is a key determinant to that

benefit [37].

Dimension is a term that refers to logical groupings of data such as

geographical location, customer information, or product information. Slowly

Changing Dimensions (SCDs) are dimensions that have data that changes

slowly, rather than changing on a time-based, regular schedule [13].

The SCD technique is used to preserve history in the Data Warehouse

environment. The most common slowly changing dimensions are Types 1, 2, and

3.

3.6.4.1 Type 1

SCD Type 1 methodology overwrites old data with new data, and therefore

does not track historical data at all. It is a simple overwrite of the existing

dimension record. This means that no history will be preserved. This is most

appropriate when correcting certain types of data errors, such as the spelling of a

name [38].

For example, a database table that keeps supplier information. In this

example, Supplier_Code is the “natural key” and Supplier_Key is a “surrogate

key”. Technically, the surrogate key is not necessary, since the table will be

unique by the natural key (Supplier_Code). However, the joins will perform better

on an integer than on a character string.

Now imagine that this supplier moves their headquarters to İstanbul. The

updated table would simply overwrite this record:

33

Before Update:

Supplier_Key Supplier_Code Supplier_Name Supplier_City

345 ASC ABC Supply Co Ankara

After Update:

Supplier_Key Supplier_Code Supplier_Name Supplier_City

345 ASC ABC Supply Co İstanbul

The obvious disadvantage to this method of managing SCDs is that there is

no historical record kept in the data warehouse. You can't tell if your suppliers

are tending to move to the Midwest, for example. But an advantage to Type 1

SCDs is that they are very easy to maintain.

If you have calculated an aggregate table summarizing facts by city, it will

need to be recalculated when the Supplier_City is changed.

3.6.4.2 Type 2

SCD Type 2 method tracks historical data by creating multiple records for a

given natural key in the dimensional tables with separate surrogate keys and/or

different version numbers. With Type 2, we have unlimited history preservation as

a new record is inserted each time a change is made.

In the same example, if the supplier moves to İstanbul, the table could look

like this, with incremented version numbers to indicate the sequence of changes:

Before Update:

Supplier_Key Supplier_Code Supplier_Name Supplier_City Version

345 ASC ABC Supply Co Ankara 0

34

After Update:

Supplier_Key Supplier_Code Supplier_Name Supplier_City Version

345 ASC ABC Supply Co Ankara 0

346 ASC ABC Supply Co İstanbul 1

Another popular method for tuple versioning is to add “effective date” columns.

After Update:

Supplier_Key Supplier_Code Supplier_Name Supplier_City Start_Date End_Date

345 ASC ABC Supply Co Ankara 01.01.2008 21.12.2011

346 ASC ABC Supply Co İstanbul 22.12.2011 null

The null End_Date in row two indicates the current tuple version. In some

cases, a standardized surrogate high date (e.g. 31.12.9999) may be used as an

end date, so that the field can be included in an index, and so that null-value

substitution is not required when querying.

Transactions that reference a particular surrogate key (Supplier_Key) are then

permanently bound to the time slices defined by that row of the slowly changing

dimension table. An aggregate table summarizing facts by state continues to

reflect the historical state, i.e. the state the supplier was in at the time of the

transaction; no update is needed.

If there are retrospective changes made to the contents of the dimension, or if

new attributes are added to the dimension (for example a Sales_Rep column)

which have different effective dates from those already defined, then this can

result in the existing transactions needing to be updated to reflect the new

situation. This can be an expensive database operation, so Type 2 SCDs are not

a good choice if the dimensional model is subject to change.

35

3.6.4.3 Type 3

SCD Type 3 method tracks changes using separate columns. Whereas Type

2 had unlimited history preservation, Type 3 has limited history preservation, as

it's limited to the number of columns designated for storing historical data. Where

the original table structure in Type 1 and Type 2 was very similar, Type 3 adds

additional columns to the tables. In the following example, an additional column

has been added to the table so as to record the supplier's original city: (only the

previous history is stored)

After Update:

Supplier_Key Supplier_Code Supplier_Name
Original_Sup
plier_City

Effective_
Date

Current_S
upplier_Ci
ty

345 ASC ABC Supply Co Ankara 22.12.2011 İstanbul

Note that this record--having only a column for the original city and a column

for the current city--can not track all historical changes, such as when a supplier

moves a second time.

One variation of this type is to create the field Previous_Supplier_State

instead of Original_Supplier_State which would then track only the most recent

historical change.

3.6.5 OLAP Cube

Cubes are the logical storage structures that define a set of related

dimensions. Each cell in the cube holds one value which is an intersection of the

dimensions.

A cube view shown in Figure 12. The cube has three dimensions which are

time, region and product. From the cube in figure, one can get the value(s) of

cell(s). For example, in the figure, we gets the value of the cell which is the

intersection of dimension values "City 1", "Product 4" and "January".

On a cube, each dimension enables you to perform specific OLAP operations.

The basic OLAP operations are Roll up, Drill down, Slice, Dice, Pivot [14] [1].

36

Figure 12: A 3D Cube View

37

CHAPTER 4

REAL TIME DATA WAREHOUSE

4 REAL TIME DATA WAREHOUSE

4.1 Introduction

Today's business environment is quickly changing and business decision

makers need for a historical picture of what happened and a picture of what was

happening today. Engineers strongly defended the notion that the data

warehouse needed to provide a reliable information floor upon which to stand,

providing an unwavering set of data to business decision makers. Because of the

twinkling database, business users were directed to the production applications

that run the business for up-to-the-moment reporting. Therefore, users had to go

to the data warehouse for a historical picture of what happened in the business as

of yesterday and had to look across many OLTP systems for a picture of what

was happening today. This division never fully accepted by business users. They

want to go to one place to get the business information that they needed [19].

Fresh data in data warehouses is a strong feature from the part of the users.

Traditionally, loading data into warehouses has been performed in an off-line

period. In such a data warehouse setting, data are extracted from the sources,

transformed, cleaned, and loaded to the warehouse. To avoid overloading the

source production systems, data warehouse activities takes place during a

loading window, usually during the night. In most cases, a data warehouse is

typically updated every day (24 hours period) [39].

The delay between a business transaction and its appearance in the data

warehouse is too much for many organizations in fast-moving vertical industries.

Additionally the data warehouse has become mission critical. That is, feeding

enriched information back to operational systems that is then used to process

38

transactions; personalize offers, and present up-sell promotions. The push for

ever-fresher information is needed [19].

The issues facing managers and government officials in today’s business

environment is rapidly making historical systems less valuable. Decisions in the

business world become more real-time and the systems that support those

decisions need to keep up to date. It is solely natural that Data Warehouse,

Business Intelligence, Decision Support, and OLAP systems quickly begin to

include real time data. “Morning sales on the east coast will affect how stores are

stocked on the west coast. Airlines and government agencies need to be able to

analyze the most current information when trying to detect suspicious groups of

passengers or potentially illegal activity. Fast-paced changes in the financial

markets may make the personalized suggestions on a stockbroker's website

obsolete by the time they are viewed” [40] [41].

During the last five years business users are requesting more freshness. To

give an example, a case study for mobile network traffic data, involving around 30

data flows, 10 sources, and around 2TB of data, with 3 billion rows [42]. In that

case study, it is reported that user requests indicated a need for data with

freshness at most 2 hours. However, business user requirements are getting

more pressing as the time passes [39].

Today, there are new types of sources. The Web is considered as a source in

many applications. In such a case, the notion of transaction at source side

becomes more flexible and the data that appear at a source web site are not

always available later; therefore, if reaction to a change is not taken instantly,

important information, possibly, will not be gathered later, by the off-line

refreshment of the warehouse. At the same time, business necessities - e.g.,

increasing competition, need for bigger sales, better monitoring of a customer or a

goal, precise monitoring of the stock market, and so on - result in a demand for

accurate reports and results based on current data and not on their status as of

yesterday [39].

Another important issue that questions the conventional way of thinking about

ETL is the globalization of the economy and the commodity trading business. The

usual process of ETL-ing the data during the night in order to have updated

reports in the morning is getting more complicated if we consider that an

organization’s branches may be spread in places with totally different time-zones.

39

Based on such facts, data warehouses are evolving to “active” or “live” data

producers for their users, as they are starting to resemble, operate, and react as

independent operational systems. In this setting, different and advanced

functionality that was previously unavailable (for example, on-demand requests

for information) can be accessible to the end users. For now on, the freshness is

determined on a scale of minutes of delay and not of hours or a whole day. As a

result, the traditional ETL processes are changing and the notion of “real time” or

“near real time” is getting into the game. Less data are moving from the source

towards the data warehouse, more frequently, and at a faster rate [39].

The traditional data warehouses are implemented using batch driven

approach and mainly according to the pull technology principle. The data loading

from source systems to data warehouses is generally performed on a nightly

basis or even in some cases on a weekly basis; therefore typical data

warehouses normally do not have the most current data [39]. Furthermore the

operational systems may have to be go offline during the data extraction process.

It is an unacceptable situation which generates delays in businesses especially

that require instantaneous access to up-to-date information [44].

 The way in which the data is brought into the data warehouse is extremely

important and keeping the data in the warehouse closely synchronized with data

from source databases is the most effective approach [45].

A real time data warehouse eliminates the data availability gap and enables

organizations to concentrate on processing their valuable data. Furthermore,

continuous data processing without delay opens up significant new opportunities

[46].

The zero-latency enterprise is ideal for a business. This ideal urges the

benefits of speed and a single version of the truth. In a real time, generally mean,

information is delivered to the right place at the right time for maximum business

value. We may call these right-time systems. At present, true zero latency is an

unattainable ideal—it takes some time to synchronize information across several

production systems and data warehouse—but there is a pressure on many

modern data warehouses to provide a low-latency view of the business [19].

In summary, we may list three major reasons why we need a Real Time in a

Data Warehouse:

40

 Faster reaction time

 Reduced decision time

 New process capabilities.

4.2 Real Time Data Warehouse Requirements

Real Time Data Warehouse architecture consists of a lot of views,

approaches. Therefore, before building RTDW we have to analyze our

requirements clearly from a real time needs perspective. Here, we will present

some of these requirements [19]:

4.2.1 Data Freshness and Historical Needs

The developmental costs and complexity for reducing latency between

operational databases (OLTPs) and the data warehouse obey the law of

diminishing returns, lowering latency increases complexity and cost in a nonlinear

fashion. Therefore, realistic goals and expectations about the freshness of the

data warehouse are needed to set. So, for the needs of real time data warehouse

it will be good to care the following considerations [19]:

 Less than five minutes of latency. This low latency cannot be reliably

met through mainstream real time data warehousing. It always takes

some nontrivial amount of processing and time to move, transform, and

load information from the OLTP systems to the real time partition.

 Single data source requirements demanding little or no history. The

reports that require none of the integrated and historical data features

provided by the data warehouse are best addressed through the

operational system itself. In fact, they should present a very small

reporting overhead on the operational systems and should not degrade

transactional performance significantly.

 Reports with an entirely different audience from that of the existing
data warehouse. These types of reports might demand new reporting

vocabularies and mechanisms for dissemination, and also factors that can

overly complicate an already complex real time data warehousing

development effort. Therefore the real time architect should be consider

that business vocabularies and metrics.

41

 No real need for ad-hoc analysis. For ad-hoc analysis of the low-latency

part of data, if there is little need, there may be no need a full-blown

streaming ETL system redesign.

4.2.2 Reporting Only or Integration Also

This is about the need of the organization that if need of the organization are

a one-way solution for moving operational data into the data warehouse for

reporting purposes only, or are there also requirements for closing the loop by

moving conformed dimension data between operational applications themselves

and/or the data warehouse.

In fact, as an example, any strategic CRM initiative is wants the timeliest and

most complete customer information available, which includes both operational

customer data (information about recent sales or complaints, for example) and

data-warehouse or data mining-derived customer marketing information such as

customer segmentation, profiling, and lifetime value. This can be called True CRM

[19].

4.2.3 Just the Facts or Dimension Changes Also

Facts and dimensions are important by the view of business people and

dimensional data warehouse architects, but OLTP systems do not make such

sharp distinctions. So that must be understood and categorized the OLTP

business transactions of interest and designed appropriately. Are the real time

report requirements focused exclusively on fresh facts or are they also concerned

with fresh dimension transactions? If real time dimensional changes are needed

for reporting, are they slowly or rapidly changing? [19].

4.2.4 Alerts, Continuous Polling, or Nonevents

An ETL system usually has a well-defined boundary where dimensionally

prepared data is handed to the front room. A real time system cannot have this

boundary in many cases. Also, the architecture of front-end tools is affected.

There are three data-delivery paradigms that require an end-to-end perspective

reaching all the way from the original source to the end user’s screen [19]:

 Alerts: “A data condition at the source forces an update to occur at the

user’s screen in real time.”

42

 Continuous polling: “The end user’s application continuously probes the

source data in order to update the screen in real time.”

 Nonevent notification: “The end user is notified if a specific event does

not occur within a certain time interval or as the result of a specific

condition.”

In each of these cases, the real time ETL system is communicate with the

end user’s application, either by sending a notification or by receiving a direct

request.

4.2.5 Data Integration or Application Integration

You need to categorize your requirement as either data integration or

application integration. In general, data integration that can be satisfied by

simply moving data between databases. However, application integration

(sometimes also called functional integration) can be described as assembling

applications together through the use of some common middleware [19].

4.2.6 Point-to-Point versus Hub-and-Spoke

An important factor in selecting architecture is the number of publishing and

subscribing systems that supports in the foreseeable future. If real time data

warehouse is also supporting some degree of application (or functional)

integration, this number can help to decide if a relatively simple point-to-point

solution will suffice or if a more robust hub-and-spoke architecture will be required

[19].

Figure 13: Point-to-Point Application Integration

43

Figure 13 shows a point-to-point application integration example. In this

example, a small number of applications are exchanging data but point-to-point

solutions can demand a very large number of data-exchange interfaces. Each of

the interfaces requires maintenance whenever its source or target applications

change.

In contrast to point-to-point architectures, a hub-and-spoke integration

approach can be minimizing the number of customer interfaces and cross-system

dependencies as seen on Figure 14.

Figure 14: Hub and Spoke Application Integration

4.2.7 Data Cleanup Considerations

If the organization needs real time cleanup and synchronization of data, some

additional factors in selecting an approach need to be considered. This often falls

upon the data warehouse customer dimension manager to provide that ensures

that no redundant data are created for the enterprise. It may be appropriate for

the real time dimension manager to assume responsibility for matching (de-

duplicating) records [19].

4.3 How Real Time Data Requirements Change Data
Warehouse Environment

Most real time need will be driven by operational decision making, not

strategic decisions [47].

44

Figure 15: Strategy, Decisions and Data Latency [47]

Madsen (2008) briefly lists as follows (Table 2) which decisions benefit:

Table 2: Which Decisions Benifit

 Strategic Operational

Decision Time Flexible, Long Cycle Constrained, Short Cycle

Decision Scope Broad, Organizational
Narrow, Departmental or

Process

Decision Model Complex Simple

Decision Latency
High, History is the Core

to Decisions

Low, Recent Data is Core to

Decisions

Data Scope
Many Sources, Many

Types, Aggregated

Few Sources, Structured,

Detailed

In a Data Warehouse we mostly handle big data. Definitions of big data focus

on the size of data in storage but there are other important attributes of big data,

namely data variety and data velocity. As seen in Figure 16, the three Vs of big

data (volume, variety, and velocity) constitute a comprehensive definition and

each of the three Vs has its own ramifications for analytics [48].

45

Figure 16: Three Vs of Big Data [47]

A number of unique challenges and opportunities come with real time data

warehousing. These can be describing in two points of view: One is from a

technical architecture perspective, and other is a data architecture perspective.

First one has the potential to change the big-bang approach. Big-bang

approach needed during the nightly batch ETL load windows to a continuous ETL-

like flow throughout the day. System-availability requirements may intensify the

business comes to rely on low-latency availability of business transactions in the

data warehouse.

The latter is that real time data warehousing challenges the posture of the

data warehouse as system of discrete periodic measurements—a provider of

business snapshots—advocating instead a system of more comprehensive and

continuous temporal information. If the frequency of fact loading increases from

once per day to every 15 minutes, but more dramatically if the loading of facts and

dimension records occurs continuously. The data warehouse might then capture

the business transactions and their dimensional context at all points in time.

Slowly changing dimensions become rapidly changing dimensions. The data

warehouse becomes more operational in nature [19].

46

Figure 17: Options for Big Data Analytics Plotted by Potential Growth and
Commitment [48]

4.4 Real Time ETL

Real time ETL is a miscall for a category of data warehousing services that is

neither true real time nor, in many cases, but this term is mostly used in this area

and so we used here. Instead, the term refers to that data moves asynchronously

into a data warehouse with some urgency—within minutes of the execution of the

business transaction. In many cases, real time data warehousing approaches are

quite different from the ETL methods used in batch-oriented data warehousing.

Basically, executing traditional ETL batches on an ever-more frequent schedule

throughout the day might not be practical, either to the OLTP systems or to the

data warehouse. Conversely, including the data warehouse in the OLTP system’s

47

transaction commit logic cannot work either. The OLTP system does not have the

luxury of waiting for the data warehouse loading transaction to commit before it

proceeds with its next transaction, nor is any locking or two-phase commit logic

practical across systems with different structures and different levels of

granularity. Instead, you aim simply to move the new transactions into a special

real time partition of the data warehouse within some timeframe acceptable to

the business, providing analytic support for day-to-day operational decisions [19].

4.5 Real Time ETL Approaches

Addressing real time data warehousing requirements, a number of

technologies are available. Here, we will discuss some of these technologies.

4.5.1 Microbatch ETL

 A data warehouse can only be considered real-time, or near real-time, when

all or part of the data is updated, loaded or refreshed on an intra-day basis,

without interrupting user access to the system. Traditional ETL is useful for

addressing daily, weekly, and monthly batch reporting requirements. Micro batch

ETL designed for real-time data acquisition from an operational data source.

Figure 18 and Figure 19 give a representation of the system. All of the new or

changed transactions are captured as point-in-time snapshots for each load and

moved to the data warehouse. Thus, changes to dimensions that occur between

batch processes are lost in the warehouse. Therefore, we may say that ETL is not

a suitable technique for data or application integration for organizations needing

low latency reporting or for organizations that need more detailed dimensional

change capture. But traditional ETL is a simple, direct, and tried-and-true method

for organizations that have more casual latency requirements and complex

integration challenges. Figure 18 shows the traditional ETL process [19] [48].

48

Figure 18: Traditional ETL Diagram [19]

Micro-batch ETL is similar to traditional ETL. The frequency of batches is

increased in micro-batch ETL. These frequent micro batches are run through

another ETL process and directly feed the real time partitions of the data marts.

The real time partitions are moved to the static data marts and are emptied, once

each day. Figure 19 shows a diagram of micro-batch ETL [19].

Figure 19: Micro-Batch ETL Diagram [19]

49

Slowly changing dimensions may become rapidly changing and grow deep

due to the increased run frequency. Micro-batch ETL also demands a

comprehensive job control, scheduling, dependency, error-mitigation method,

metadata management and capable of executing data warehouse publication

strategies in the face of most common data-loading issues. Additionally, micro-

batch ETL demands more frequent detection of new and updated transactional

records on the OLTP systems [19].

4.5.2 Enterprise Application Integration

Enterprise Application Integration (EAI) is an integration framework and it is

composed of a collection of technologies and services that support true

application integration, allowing individual operational systems to interoperate in

new and potentially different ways than they were originally designed EAI form

a middleware to enable integration of systems and applications across the

enterprise, and sometimes called functional integration [19] [50].

EAI typically composed of a set of adapter and broker components that move

business transactions. Communication across the various systems in the

integration network is in the form of messages. Application specific adapters are

responsible for dealing with all of the logic which includes create and execute

messages. Brokers are responsible for routing the messages appropriately, based

on publication and subscription rules [19].

Figure 20: Convensional EAI Diagram [19]

EAI technologies can be strong enabling vehicles for the real time data

warehouse. They support the ability to synchronize important data across

applications and provide an effective means for distributing data-warehouse-

derived information assets, such as new customer segmentation values, across

the enterprise [19].

50

There are two fundamental components of EAI [49]:

 Adapters: The purpose of this component is to hide heterogeneity

and present a uniform view. In other words, it map heterogeneous

data formats, interfaces and protocols into a common model and

format.

 Message Broker: This component facilitates interaction among

adapters and, therefore, among the back-end systems that need to be

integrated.

The real time EAI data warehouse architecture changes the monolithic ETL

block. The dimension manager system(s) pulled out as separate architectural

components, each with its own adapters, and placing responsibility for most of the

transformation and loading chores of the data mart real time partitions on the data

mart adapters. Any data-change transaction would be captured from the OLTP

application by an adapter. After that adapter sent data as a non-conformed

dimension message to the broker, which then routes it to whichever systems

subscribe to non-conformed dimension messages. The dimensional record is

conformed by the dimension manager. Then dimension manager adapter sends it

back as a conformed dimension message to the broker, which then forwards it to

all systems that subscribe to conformed dimension data, typically the OLTP

systems and data marts [19]. Figure 21: Real Time DW/EAI Example Figure 21 is

a diagram of a real time EAI data warehouse.

Figure 21: Real Time DW/EAI Example [19]

51

4.5.3 Capture, Transform, and Flow

Capture, Transform, and Flow (CTF) is a relatively new category of data

integration tools. The aim is simplifying the movement of real time data across

heterogeneous database technologies. The application layer of the transactional

applications is bypassed and direct database-to-database exchanges are

executed. Transactions, both new facts and dimension changes, can be

transferred directly from the operational systems to the data warehouse staging

tables with low latency, typically a few seconds. The transformation functionality

of CTF tools is typically basic in comparison with today’s mature ETL tools. Once

data is staged, additional transformations beyond the capabilities of the CTF tool

can be applied either by microbatch ETL or via triggers that fire on INSERT in the

staging area. In either transformation scenario, records are then written directly

into the real time partition tables. CTF can offer a compelling blend of the some of

the benefits of EAI, while avoiding much its complexity [19]. Figure 22 diagrams

CTF.

Figure 22: CTF Diagram [19]

4.5.4 Enterprise Information Integration

Enterprise Information Integration (EII) is another relatively new category of

software. The aim is quickly adding real time reporting capabilities to business-

intelligence systems. In this architecture, the logical view of the current data in the

OLTP systems are presented to the business user in a structure appropriate for

52

analysis, and delivered on the fly via inline ETL transformation. It can be sensed a

virtual real time data warehouse [19].

EII operates in somewhat similar conventional data warehouse mechanisms,

except that instead of a data warehouse, the target might be a report,

spreadsheet, or OLE DB or XML object. The EII system actually generates a

series of queries, typically via SQL, at the moment requested, and then applies all

specified transformations to the resultant data, and delivers the results to the

business user. EII can be used as an effective data warehouse prototyping device

and may be a compelling choice for organizations that need real time integrated

operational reporting as quickly as possible [19].

4.5.5 The Real Time Dimension Manager

The real time dimension manager is used on converting incoming customer

records into conformed customer records. This data may be incomplete,

inaccurate, or redundant. Conformed means that dimensional records are turn

into the best form that the organization is capable of achieving. A general diagram

of the real time dimension manager is presented in Figure 23 [19].

Figure 23: Real Time Dimesion Authority Diagram [19]

4.5.6 Microbatch Processing

There is a common dilemma when designing real time data mart partition or

dimensional systems. Should the solution comprise straight through processing or

utilize more frequent microbatches? One answer to the conflicting demands may

53

be frequent microbatches that give near real time performance within constraints

imposed by batch-oriented toolsets. As opposed to using straight-through

processing, they can be developed independently, have individually tunable

batch-sizing specifications, and be replaced and/or upgraded independently as

new toolsets with more features. Additionally, new processes such as specialized

address verification or creditworthiness scoring can be more easily inserted into

the job stream, and jobs that require selective processing are more easily

accommodated. But this flexibility comes at a cost such as each process have

defined and persistent interfaces, additional I/O [19].

4.6 Choosing an Approach

Selecting an appropriate architecture and approach is a very difficult task.

Because, there are so many technologies to choose from, surrounded by so

much vendor and analyst hype, and with so few successful case studies from

which to draw best practices. The following table attempt to cut through some of

this uncertainty by distilling some of the information into guidelines to narrow

options. Table 3 is a comparison matrix of the presented approaches for real time

reporting [19].

54

Table 3: Real Time Reporting Decision Guide Matrix [19]

EII ONLY EII + STATIC DW ETL CTF CTF-MB-ETL EAI

ENTERPRISE
INFORMATION
INTEGRATION
IN PACE OF
REAL TIME DW

ENTERPRISE
INFORMATION
INTEGRATION IN
CONCERT WITH
CONVENTIONAL
NON REAL TIME
DW

STANDART
ETL
PROCESSING

CAPTURE
TRANSFORM
FLOW WITH
ETL FEEDING
REAL TIME DW

MICRO-BATCH
ETL FEEDING
REAL TIME DW

ENTERPRISE
APPLICATION
FEEDING
INTEGRATION
REAL TIME DW

Historical Data Supported

Reporting Data
Integration
Complexity

Low

Moderate

High

Data Freshness
/ Maximum
Latency

1 Minute

15 Minutes

1 Hour

1 Day

55

CHAPTER 5

WEB SERVICES BASED REAL TIME DATA WAREHOUSE

5 WEB SERVICES AREHOUSE

5.1 Web Services and its Architecture

Web Services is standard set of open technical specifications and developed

by the W3C. It has self-contained, self-describing and modular features. It can be

used web publishing, search and call. Once Web Services configured, the other

applications and Web Services can be discovered and invoked the service directly

[51].

Web Services architecture composed of three roles, that is, service providers,

service registry and service consumer. Web Services architecture based on the

interaction between these three roles. Service provider defines the service

description, and publishes it to the service registry. Service consumers (or service

lookup operation from the local registry) search service description, then use the

service description to bind with the service provider, and call the appropriate Web

Services. Figure 24 shows these operations, these operations provide the

components and their interaction [52].

56

Figure 24: Web Services Architecture Model [52]

5.2 Web Services Based Real Time Data Warehouse
Architecture

In this thesis study, we developed web services based real time data

warehouse architecture, as shown in Figure 25. Components of this architecture

as follows:

 Web Service Client

 Web Service Provider

 Metadata

 ETL

 Real Time Partition

 Data Warehouse

 Real Time Data Integration

57

Figure 25: Web Services Based Real Time Data Warehouse Architecture

58

5.2.1 Web Service Client

This component is used for getting data changes (known as Change Data

Capture - CDC) from OLTP systems and send data to the Web Service Provider

by calling related web service. The real time data is captured through the trigger

which inserts data an auxiliary table in the database. Our RTDW Web Service

Client continuously polls the logs data and then pushes the data to the RTDW

Web Service. Any data inserted, updated or deleted in an OLTP system sent to

the RTDW Web Service component.

For determining tables which data is captured, RTDW Web Service Client

uses OLTP metadata that is prepared for this purpose. The client uses an SQL-

Generator to capture log data. The client calls the SQL-Generator with

parameters system name, table owner and table name, then SQL-Generator

returns the required SQL statement to capture log data. The client executes

generated SQL statement and fetches data, and transfers data via Data Transfer

Object which is a general object for structured table data. This object holds data

and metadata about data which it contains.

In OLTP metadata, we also track the last-change-ids of data in the table.

After getting data via RTDW Web Service Client, the data in the log table is

deleted. The structure of this metadata table which holds data about tables and

last log id is shown Table 4.

Table 4: Metadata Table Structure

Table Name: OLTP_TABLES

Column Name Data Type Size

ID NUMBER

OWNER VARCHAR2 30

TABLE_NAME VARCHAR2 30

LOG_TABLE_NAME VARCHAR2 30

LAST_LOG_ID NUMBER

PK_COLUMNS VARCHAR2 255

59

5.2.1.1 Capturing the Data

Data that is required to data warehouse is collected from the operational

systems and other external sources. Data capturing techniques in use mainly

include; source data extraction, log capture, triggered capture, application-

assisted capture, timestamp-based capture, and file comparison capture.

Source Data Extraction: This technique provides a static snapshot of source

data at a specific point in time. Once the data warehouse database is constructed,

all the data at this time have to be transferred from operational systems to DW.

This operation is generally called initial load, and after that starts capturing new

changes.

Log Capture: Log capture is mainly used technique for collecting changes in

source systems, but logging has to be supported and turned on the source

system. The formats of the log records are also so important that it is clearly and

easily understandable. Today, many commercial database systems have software

solutions for log capture.

Triggered Capture: Database trigger is a code block that is executed when

the predefined events (such as inserting, deleting or updating a row of a table) are

occurred in the database. Many database management systems support triggers.

Application-assisted capture: The technique is writing programs to collect

the data from the operational sources and completely under the control of

programmer involving testing and maintenance responsibility.

Timestamp-based Capture: In this technique, timestamp values are used in

the records. Timestamp values are used as a flag that indicates if the record has

changed after the last capture or not.

File Comparison: At a specific point in time, a snapshot of the data source is

taken and saved in a file and then it is compared with the previous snapshot file.

In our real time data warehouse architecture, we used triggered capture

technique, since it can be implemented easily. Log capture might be chosen

because of that its minimal overhead on source database system, but we have to

use additional software and need additional configuration issues. Therefore, we

used a log table for each table in our OLTP system and a log trigger on each

source tables. Figure 26 shows this architecture.

60

Figure 26: Log Capture Architecture on Source Tables

5.2.2 Web Service Provider

Web Service Provider is basically a web service which gets data sent by

RTDW Web Service Client and adds to Real Time Partition.

This component gets Data Transfer Object which is sent by RTDW Web

Service Client, decompose into two parts: data and metadata. RTDW Web

Service uses metadata to generate SQL via SQL-Generator for inserting data to

RTDW log tables then executes this generated SQL on RTDW database and

inserts data.

5.2.3 Metadata

Metadata in this architecture is used for two purposes; first is defining and

tracking OLTP tables from which changed data is captured, the second is defining

warehouse tables and real time partition log tables. In this architecture, no

database specific metadata is used. Therefore in this model, any database server

can be used as an OLTP system and a data warehouse system.

5.2.4 ETL

ETL has extremely important role in data warehouse's establishment and the

maintenance process. In this architecture, we used ETL in the warehouse part for

transforming log data into aggregated data such as summations and counts.

5.2.5 Real Time Partition

Instant data changes (mostly daily) are put into this component first, then

later merged into data warehouse. In this architecture, we used a novel structure

61

that is different from traditional real time partition implementations. In this

structure we used three steps:

1. Put CDC data into related warehouse log table: In the warehouse part

of the architecture we create log tables for each OLTP table from which

data is captured. RTDW Web Service puts all the data sent by client into

this log tables.

2. Clean CDC log data on demand: This step is firstly determines the latest

state of the data in the log table and we use only latest data at this time

for aggregations. We call this clean delta. For example, a data is first

INSERTED and DELETED within the day, and at this moment, the latest

status of data is DELETED and this step eliminates this data. After that,

this step uses clean delta records to clean and format CDC data. Clean

delta log type conversions are shown in Table 5.

Table 5: Clean Delta Log Type Conversions

First Record
Log Type

Last Record
Log Type Result

INSERT DELETE ELEMINATE

INSERT UPDATE INSERT LAST RECORD

UPDATE INSERT UPDATE LAST RECORD

UPDATE DELETE DELETE LAST RECORD

DELETE INSERT UPDATE LAST RECORD

DELETE UPDATE UPDATE LAST RECORD

3. Aggregate clean CDC data on demand: In this architecture, also, the

real time aggregations calculated on demand. If there is no request for

real time data the aggregation does not calculated throughout the day.

When data is requested from real time partition, only the related

aggregations are calculated on demand. We call this On Demand
Aggregation.

62

5.2.6 Data Warehouse

This component, as explained above chapters, not only holds the historical

aggregated data but also today data via real time partition. Real time partition

data puts into the data warehouse daily basis. When a new day begins,

aggregation are calculated for yesterday data in the real time partition and put into

data warehouse.

5.2.7 Real Time Data Integration

This component is used for integrating the data both in Real Time Partition

and Data Warehouse. When a user sends a query to this component; if query

only wants historical data then this component send the query to Data

Warehouse, if query wants both historical and instant data then this component

rewrites the query to get and integrate data.

In our case study, query rewriting is done by using views. First, we get the

SQL from user and determine the date predicate. Then if date predicate is consist

of today then we replace the fact table with our view which merges fact table and

real time partition table as shown in Figure 27.

Figure 27: Query Rewrite Flow

5.3 Alternative Technologies

In this thesis study, before using web services, we tried another two different

technologies which are Hazelcast (In memory data grid.) and Client Server.

63

Hazelcast is an open source clustering and data distribution platform for

Java, which is:

 Lightning-fast; thousands of operations/sec.

 Fail-safe; no losing data after crashes.

 Dynamically scales as new servers added.

 Super-easy to use; include a single jar.

Hazelcast is in-memory data grid solution with its various distributed data

structures, distributed caching capabilities, elastic nature, memcache support,

integration with Spring and Hibernate. Hazelcast is released under Apache

License and the project is hosted at Github. It can be freely used in commercial or

non-commercial applications [53].

The client/server model is a distributed application model which partitions

tasks or workloads between servers and clients. Clients and servers communicate

over a computer network. A server machine is a host that is running one or more

server programs. Server programs share their resources with clients. A client

requests a server's content or service function. Therefore Clients initiate

communication sessions with servers which await incoming requests [54].

In this study, first we tried Hazelcast. Since it’s a grid solution, it sends data

which is captured from one client to all machines (clients and servers). We tried to

direct to the Data Warehouse machine, but it did not allowed this. Solutions to this

problem is against to Hazelcast architecture and not easy to use, because it has

developed for a grid solution.

In addition, we tried Client-Server solutions that we implemented a client-

server program by using sockets. However, this solution is good for transferring

text data, but it needs too many controls and also a data transfer protocol for

transferring objects. There are some solutions to transfer objects but they are not

easily usable.

As a result, we have chosen to use web services to transfer data from source

machines to target server machine. Web services are easy to implement and we

could develop a solution very fast.

64

A basic comparison of these technologies is shown in Table 6. From the table

we say that the web services based architecture can be chosen for RTDW

implementations.

Table 6: A Basic Comparision of Technologies

Properties

Hazelcast
Based

Client-
Server
Based

Web
Services
Based

Use of http protocol No No Yes

Dynamically scales Yes
Development

Specific
Yes

Redundant Yes No No

Targetted to one server No Yes Yes

Object transfer is easily implemented Yes No Yes

Grid solution Yes No No

Easy to implement Yes No Yes

Raw data transfer Yes No No

5.4 Similar Solutions

In this section, we briefly described some today’s solutions proposed some of

the companies. The solutions are new in the market and there are not many case

studies about them.

5.4.1 Oracle Data Integrator and GoldenGate

Conventional ETL tools closely intermix data transformation rules with

integration process procedures, requiring the development of both data

transformations and data flow. Oracle Data Integrator (ODI) takes a different

approach to integration by clearly separating the declarative rules (the “what”)

from the actual implementation (the “how”). This approach for declarative design

has also been applied to ODI's framework for Changed Data Capture. ODI’s CDC

moves only changed data to the target systems and can be integrated with Oracle

65

GoldenGate, thereby enabling the kind of real time integration that businesses

require [55].

In order to provide no to low latency loads, ODI has alternative solutions for

real-time data warehousing through the use of CDC mechanism, including the

integration with Oracle GoldenGate. This integration also provides seamless

operational reporting. Data federation and data service use cases are covered by

Oracle Data Service Integrator (ODSI) [55].

5.4.1.1 Methods for Tracking Changes using CDC

Oracle generally uses three different techniques for capturing CDC data [55].

 Trigger Based

 Streams Based

 GoldenGate Based

In the first technique, database triggers are defined that are executed inside

the source database when a table change occurs as shown in Figure 28.

Figure 28: ODI Trigger Based Capture [55]

Some databases provide APIs and utilities to process table changes

programmatically. Oracle database provides the Streams interface to process log

entries and store them in separate tables. ODI also supports log-based CDC. This

is shown on Figure 29.

66

Figure 29: Streams Based CDC [55]

Oracle GoldenGate provides a CDC mechanism that can process source

changes by processing log files of completed transactions and storing these

captured changes into external Trail Files independent of the database. Changes

are then transferred to a staging database. These changes will be loaded into the

target data warehouse using ODI’s declarative transformation mappings. This

architecture enables separate real-time reporting on the normalized staging area

tables in addition to loading and transforming the data into the analytical data

warehouse tables. This is shown in Figure 30.

Figure 30: GoldenGate Based CDC [55]

ODI processes datastore changes in two ways [55]:

 Regularly in batches (pull mode): For example, processes new

orders from the Web site every five minutes and loads them into the

operational datastore (ODS).

 In real time (push mode) as the changes occur: For example,

when a product is changed in the enterprise resource planning (ERP)

system, immediately updates the on-line catalog.

In practice, for Oracle, there is one approach that satisfies the majority of

real-time data warehousing use cases: The micro-batch approach using

67

GoldenGate-based CDC with ODI. This is shown in Figure 31. In this approach,

one or more tables from operational databases are used as sources for

GoldenGate CDC into a staging area database. This staging area provides a real-

time copy of the transactional data for real-time reporting using BI tools and

dashboards. The separate staging area handles operational BI queries without

adding load to the transactional system. ODI performs a load of the changed

records to the real-time data warehouse in frequent periods of 15 minutes or more

[55].

Figure 31: Micro-Batch Architecture using ODI and GoldenGate [55]

5.4.2 SQLStream

SQLstream enables multiple sources of heterogeneous data to be

aggregated, correlated and filtered in real-time. Change Data Capture adapters

provide the real-time ‘Extract’ function, delivering a stream of relational data from

the source systems. SQLstream processes the relational data streams, providing

both the ‘Transform’ and ‘Aggregation’ functions in a single platform. Most

importantly, the data is aggregated in SQLstream, in real-time, before the ‘Load’

operation takes place. Aggregate and raw data are pushed from SQLstream into

the data warehouse in real-time [56].

5.4.3 iWay Data Integration

iWay Software data integration solution allow for direct access to data. iWay

supports extract, transform, and load; enterprise information integration

initiatives; and web services deployments [57]. The iWay CDC solution is shown

in Figure 32.

68

Figure 32: iWay CDC Solution [57]

Service Manager provides real-time event listening capabilities for sources

including applications, databases, cloud, and legacy systems. Each event can

trigger a variety of business processes while feeding the data warehouse in real-

time [57].

DataMigrator Change Data Capture provides a real-time capability using

database logs to read only the changes (inserts, updates, and deletions) made to

tables in any of the major relational databases and delivers those changes to

DataMigrator. DataMigrator CDC makes database logs from disparate databases

available in a common format so that they can be used as a data source.

Processing the changes as they occur lets a data warehouse provide near real-

time access to operational data. A polling interval (how often to check for

changes) can be specified as often as once a minute. A timeout interval (how long

to keep checking) can also be specified. Once a CDC source is configured, it can

be read using SQL and used like other data sources [57].

5.4.4 Microsoft StreamInsight

Microsoft StreamInsight is a platform to build low-latency event-driven

analytics applications. StreamInsight is available as part of Microsoft SQL Server

since Microsoft SQL Server 2008 R2 in April 2010. StreamInsight complements

SQL Server with new capabilities to build event-driven solutions and to inject time-

based analytics into the event processing pipeline. This enables organizations to

be event-driven: analytical results are available for human consumption right

away, or systems can react to events independently based on automated

69

workflows [58]. Figure 33 depicts the developer and runtime experience of a

StreamInsight application and introduces some of the key concepts.

Figure 33: StreamInsight Application Development and Runtime

Standing Queries

Query
Logic

Event sources Event targets

Devices, Sensors

Web servers

Event stores & Databases

Stock ticker, news feeds Event stores & Databases

Pagers &
Monitoring devices

KPI Dashboards,
SharePoint UI

Trading stations

Input
Adapters

Output
AdaptersStreamInsight Engine

Query
Logic

Query
Logic

StreamInsight
Application Development

StreamInsight Application at Runtime

70

CHAPTER 6

A CASE STUDY

6 A CASE STUDY

This section describes a case study of implementing a RTDW for an

Inventory Control System. Inventory control systems are used for managing the

stocks of companies and big distribution organizations. Therefore, it's valuable to

build a RTDW for decisions which needs historical and current status.

 In this study, we designed a database for simulating an OLTP application.

The aim of this case study is to build a RTDW to enable analysis of the data in the

OLTP database. The conceptual design is modeled using Kimball model. And

finally this case study illustrates an implementation of a real time data

warehousing solution covering all phases of design. We have chosen Oracle 11g

R2 as database server for OLTP and RTDW systems, since it's widely used

database in the world.

6.1 Modeling the Database

The first step of building (or creating) a database after getting business

requirements is to construct a data model, which represents the business

process, its attributes and relationships between them. In our case study we

constructed two models: one for OLTP and one for OLAP.

6.1.1 Entity Relation (E-R) Model

Entity-relationship (E-R) modeling is a high-level data modeling technique

that is originally developed by Professor Peter Chen to serve as a tool for

communication between designers and users. E-R models are best expressed

using graphical E-R diagrams.

71

An E-R data model is a high-level conceptual model that describes data as

entities, attributes, and relationships and pays particular attention to the

interactions among entities. In the development of databases, relationships are

the glue that holds information together and their realization in relational

databases is particularly important [59].

In our case study, we modeled a database for simulating an OLTP

application. Figure 34 shows the E-R model diagram of this OLTP database.

72

Figure 34: E-R Model Diagram of Sales Schema

R_SUPPLIER_PRODUCT

R_CUSTOMER_ORDERS

R_ORDERS_ORDERDETAILS
R_PRODUCTS_ORDERDETAILS

R_CATEGORY_PRODUCTS

R_SHIPPERS_ORDERS

R_STORE_PRODUCT

T_SUPPLIER
SUPPLIER_ID: NUMBER

SUPP_NAME: VARCHAR2(50)
SUPP_ADDRESS: VARCHAR2(100)
SUPP_CITY: VARCHAR2(30)
SUPP_PINCODE: VARCHAR2(20)
SUPP_STATUS: NUMBER(1)
SUPP_PHONE_1: VARCHAR2(20)
SUPP_PHONE_2: VARCHAR2(20)
SUPP_CONTACT_NAME: VARCHAR2(50)
SUPP_CONTACT_TITLE: VARCHAR2(30)
SUPP_WEB_PAGE: VARCHAR2(100)

T_CUSTOMER
CUSTOMER_ID: NUMBER

CUST_NAME: VARCHAR2(30)
CUST_ADDRESS: VARCHAR2(100)
CUST_CITY: VARCHAR2(30)
CUST_STATE: VARCHAR2(30)
CUST_PINCODE: VARCHAR2(20)
CUST_PHONE: VARCHAR2(20)

T_PRODUCTS
PRODUCT_ID: NUMBER

PRODUCT_NAME: VARCHAR2(30)
UNIT_PRICE: NUMBER(15)
QTY_IN_STOCK: NUMBER(10)
SUPPLIER_ID: NUMBER (FK)
STATUS: VARCHAR2(20)
CATEGORY_ID: NUMBER (FK)
STORE_ID: NUMBER (FK)

T_ORDERS
ORDER_ID: NUMBER

ORDER_DATE: DATE
SHIPPED_DATE: DATE
SHIP_VIA: VARCHAR2(30)
SHIP_ADDRESS: VARCHAR2(100)
SHIP_CITY: VARCHAR2(30)
SHIP_COUNTRY: VARCHAR2(30)
CUSTOMER_ID: NUMBER (FK)
SHIPPER_ID: NUMBER (FK)

T_ORDER_DETAILS
ORDER_ID: NUMBER (FK)
PRODUCT_ID: NUMBER (FK)

QUATITY: NUMBER(10)
UNIT_PRICE: NUMBER(15)
DISCOUNT: NUMBER(3)

T_CATEGORIES
CATEGORY_ID: NUMBER

CATEGORY_NAME: VARCHAR2(20)
CATEGORY_DESC: VARCHAR2(100)

T_SHIPPERS
SHIPPER_ID: NUMBER

COMPANY_NAME: VARCHAR2(30)
ADDRESS: VARCHAR2(100)
PHONE: VARCHAR2(20)T_STORES

STORE_ID: NUMBER

STORE_NAME: VARCHAR2(30)
STORE_ADDRESS: VARCHAR2(100)
STORE_CITY: VARCHAR2(30)

73

6.1.2 Dimensional Modeling

Dimensional modeling (DM) is a logical design technique that tries to present

the data model in an accessible and intuitive standard frame and favorite in data

warehousing. This data is visualized as a set of measures that are defined

according to the business. The purpose is optimizing decision support query

performance in relational databases, relative to a measurement or set of

measurements of the outcome(s) of the business process being modeled [60].

In our case study, we modeled a database for OLAP purposes. Figure 35

shows the dimensional model diagram of this OLAP database.

Figure 35: Dimensional Model Diagram of Sales Schema

6.2 Data Loading and Transformation

Design of the data loading and transformation strategy is another crucial

point. General data loading processes which we used in this study is shown in

Figure 36. In our case study, we examined and discussed the strategies which

we would decide to use.

SALES_FACT
PRODUCT_ID: NUMBER
CUSTOMER_ID: NUMBER
TIME_ID: NUMBER
STORE_ID: NUMBER

SALES_QTY: NUMBER
SALES_AMOUNT: NUMBER
DISCOUNT_AMOUNT: NUMBER

DIM_TIME
TIME_ID: NUMBER

YEAR: NUMBER(4)
MONTH: NUMBER(2)
DAY: NUMBER(2)

DIM_CUSTOMER
CUSTOMER_ID: NUMBER

CUST_NAME: VARCHAR2(30)
CUST_ADDRESS: VARCHAR2(100)
CUST_CITY: VARCHAR2(30)
CUST_STATE: VARCHAR2(30)
CUST_PINCODE: VARCHAR2(20)
CUST_PHONE: VARCHAR2(20)

T_PRODUCTS
PRODUCT_ID: NUMBER

PRODUCT_NAME: VARCHAR2(30)
UNIT_PRICE: NUMBER(15)
QTY_IN_STOCK: NUMBER(10)
SUPPLIER_ID: NUMBER
STATUS: VARCHAR2(20)
CATEGORY_ID: NUMBER

T_STORES
STORE_ID: NUMBER

STORE_NAME: VARCHAR2(30)
STORE_ADDRESS: VARCHAR2(100)
STORE_CITY: VARCHAR2(30)

74

Figure 36: General Data Loading Processes

6.2.1 Capturing the Data

In this study, we used trigger to capture changed data. For this purpose we

created log triggers and log tables for every table which we track changes in our

OLTP system. This technique can be implemented easily implemented since

many databases support this feature. Log capture might be chosen because of

that its minimal overhead on source database system, but we have to use

additional software and need additional configuration issues. Therefore, we

created a log table for each table in our OLTP system and a log trigger on each

source tables. The OLTP system begins to log changes immediately after log

tables and log triggers created.

6.2.2 Transforming the Data

The data transformation process is converting the captured data into a format

and structure suitable for loading into the data warehouse. Data transformations

are often the most complex part of the ETL process. They can range from simple

data conversions to extremely complex data scrubbing techniques. From an

architectural perspective, there are two ways to transform data: [61]

 Multistage Data Transformation

 Pipelined Data Transformation

75

The Multistage Data Transformation logic for most data warehouses consists

of multiple steps. For example, to insert new records into a sales table, there may

be separate logical transformation steps to validate each dimension key.

In Pipelined Data Transformation, the ETL process flow can be changed

dramatically and the database becomes an integral part of the ETL solution. The

new functionality shifts from serial transform-then-load process (with most of the

tasks done outside the database) or load-then-transform process, to an enhanced

transform-while-loading.

 The transformation process includes standardizing, integrating, cleansing,

augmenting, aggregating and creating the data sets for loading into the repository.

The main types of ETL transformations done in the data are as follows: [62]

 Creating common keys:

 Creating surrogate keys

 Standardizing the descriptions, textual attributes:

 Translation and standardization across organization standards &

structures

 Transformation for common dimension attributes

 Data Quality

 Data Relevance

 De-Duping, Merging and data cleansing

 Data Augmentation and enrichment

 Data Type conversion

 De-normalization

 Normalization

 Create Derived Attributes

 Calculation, Derivative, Allocation

 Aggregation

In our case study, we used PL/SQL for data transformation. For example,

aggregations such as sales quantity, sales amount, is calculated by using

PL/SQL. Figure 37 shows data transformation architecture that we used.

76

Figure 37: Data Transformation Architecture

6.3 Real Time Data Integration

Real Time Data Integration is used for integrating the data both in Real Time

Partition and Data Warehouse. When a user sends a query to this component; if

query only wants historical data then this component send the query to Data

Warehouse, if query wants both historical and instant data then this component

rewrites the query to get and integrate data.

In our case study, query rewriting is done by using views. First, we get the

SQL from user and determine the date predicate. Then if date predicate is consist

of today then we replace the fact table with our view which merges fact table and

real time partition table.

77

CHAPTER 7

CONCLUSION AND FUTURE WORK

7 CONCLUSION AND FUTURE WORK

Real time data warehouse is much more than a new feature. Moving to real

time delivery of data challenges every aspect of the data warehouse.

We designed, developed and built a web services based real time data

warehouse. Web services are important component as they communicate easily

to the servers which publish services. Because of easily adaptable and maintains

many of the communication problems, we think that web services are preferable

choice.

Capturing change data from source systems is also a major problem for data

warehouse constructions. Log capture and triggering is mostly used techniques in

this area. We think log capture may be preferred to triggering which gets come

overhead to the source system database. However, it’s easy to implement and

need nothing except source database. Since today, triggers are supported most

of the databases, it may be a good choice.

Real time partition is another important issue for building a real time data

warehouse. Because of the design purposed of the data warehouses, you could

not load instant data to your data warehouse immediately. You need a staging

table before aggregating data and load it to the data warehouse, because your

data is completed later (for example at the end of the day). Therefore, we use real

time partition. In addition to that, if user requests real time data for his analysis

then the data in the real time partition and data warehouse have to be merged.

For this purpose, we used query rewriting which decides to rewrite and replaces

the fact table with a view joined by real time partition.

78

7.1 Future Work

As a future work different change data capture methods can be applied to

data capturing process. Unstructured data issues in this area can also be

researched.

Additionally new approaches can be applied to manage the real time

partition. One approach may be using an in-memory database or a caching

mechanism to hold real partition time data, but at this time new data integration

issues arises, because of the using different databases.

Finally many query re-writing methods can be implemented to integrate real

time partition and data warehouse data.

79

REFERENCES

8 REFERENCES

[1] ELMASRI, R.A., NAVATHE S.B. (2010), Fundamentals of Database
Systems.

[2] ULLMAN, J., WIDOM, J., GARCIA-MOLINA, H. (2008), Database
Systems: The Complete Book.

[3] SIBERCHATZ, A., KORTH, H.F., SUDARSHAN, S. (2010) Database
System Concepts.

[4] NEBIKER, S., BLEISCH, S. (2010) Relational Database Design and
Implementation

[5] HARRINGTON, J. (2009) Database Systems:Concepts and Architectures,
Report, Geographic Information Technology Training Alliance (GITTA)

[6] WWW.DATAWAREHOUSE4U.INFO (2009), Internet:
http://datawarehouse4u.info/OLTP-vs-OLAP.html, [Nov., 18, 2011].

[7] ARIAS E. (2011) OLTP vs OLAP - Definition and Differences, Internet:
http://axwonders.blogspot.com/2011/12/oltp-vs-olap-definition-and-
differences.html, [May, 15, 2012].

[8] RAINMAKER, Rainmaker Data Warehousing, Internet:
http://www.rainmakerworks.com/whitepapers.html, [Nov., 18, 2011].

[9] WARD, P., DAFOULAS,G. (2006), Database Management Systems

80

[10] DYCHE, J. (2000), e-Data: Turning Data into Information with Data
Warehousing.

[11] WWW.DATAWAREHOUSE4U.INFO (2008), Internet:
http://datawarehouse4u.info/index_en.html, [June, 21, 2012].

 [12] INMON W.H. (2005), Building the Data Warehouse.

[13] KIMBALL R. (2002), The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling.

[14] HAN, J., KAMBER, M. (2011), Data Mining: Concepts and Techniques.

[15] JARKE, M. et. Al (2003), Fundamentals of Data Warehouses.

[16] GUANGQUAN. Z., YANG. X., TIANRUI, L. (2011), Knowledge-Based
Systems, A special issue on new trends in Intelligent Decision Support
Systems

[17] LIAUTAUD, B., HAMMOND, M. (2000), E-Business Intelligence: Turning
Information into Knowledge into Profit.

[18] UTLEY, C., (2009) Designing the Star Schema, Internet:
http://www.ciobriefings.com/Publications/WhitePapers/DesigningtheStarSch
emaDatabase/tabid/101/Default.aspx, [Jan. 05, 2012].

[19] KIMBALL, R., CACERTA, J. (2004), The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleaning, Conforming, and Delivering
Data.

[20] WWW.OLAP.COM, Internet: http://olap.com/w/index.php/Drill_Up, [Jan. 23,
2012].

[21] JORG, T., DESSLOCH, S. (2009), Formalizing ETL Jobs for Incremental
Loading of Data Warehouses,GI-Fachtagung fur Datenbanksysteme in
Business, Technologie und Web, Lecture Notes in Informatics.

81

[22] TECH TARGET: SEARCH SQL SERVER, Internet:
http://searchsqlserver.techtarget.com/definition/pivot-table, [Feb. 02, 2012].

[23] GEEKINTERVIEW, Internet:
http://www.geekinterview.com/question_details/27825, [Feb. 17, 2012].

[24] WAH, T.Y., PENG, N.H., HOK, C.S. (2007), Building Data Warehouse, 24th
South East Asia Regional Computer Conference

[25] KIMBALL, R. (2005), Internet:
http://www.kimballgroup.com/html/designtipsPDF/DesignTips2005/DTKU63
BuildingAChangeDataCaptureSystem.pdf, [Feb. 22, 2012].

[26] KIMBALL, R., ROSS M. (2010), The Kimball Group Reader: Relentlessly
Practical Tools for Data Warehousing and Business Intelligence.

[27] HAAS, L.M. et al. (1999), Transforming Heterogeneous Data with
Database Middleware: Beyond Integration, IEEE Data Eng. Bull.

[28] DATA-WAREHOUSES.NET, Internet: http://data-
warehouses.net/architecture/staging.html, [June 12, 2012].

[29] INMON, B., IMHORF, C., BATTAS, G. (1998), Building The Operational
Data Store.

[30] BARAGOIN, C. et al. (2001), Building the Operational Data Store on DB2
UDB.

[31] MUNOZ, L., MAZON, J.N., TRUJILO, J. (2011), ETL Process Modeling
Conceptual for Data Warehouses: A Systematic Mapping Study, IEEE Latin
America Transactions, Vol. 9, No. 3.

[32] LUMPKIN, G. (2009), Oracle Database 11g for Data Warehousing and
Business Intelligence.

[33] BRESLIN, M. (2004), Data Warehousing Battle of Giants: Comparing the

82

Basics of Kimball and Inmon Models, Business Intelligence Journal.

[34] INMON, W.H., IMHORFF, C. (2007) Internet:
http://www.inmoncif.com/library/cif/, [Mar. 11, 2012].

[35] INMON, W.H. (2002), Building the Data Warehouse.

[36] PAUL, L. (2007), Oracle Database Data Warehousing Guide 11g Release
1.

[37] EXECUTION-MIH (2012), Internet: http://www.executionmih.com/data-
warehouse/slowly-changing-dimension-SCD.php, [May 09, 2012].

[38] MUNDY, J. (2007), Kimball University: Handling Arbitrary Restatements of
History.

[39] VASSILIADIS, P., SIMITSIS, A. (2009), Near Real Time ETL: New Trends
in Data Warehousing and Data Analysis. Springer Science+Business
Mediapp.

[40] LANGSETH, J. (2008), Decision Support Systems Resources, Internet:
http://dssresources.com, [May 18, 2012].

[41] VUSOLUTIONS (2012), Internet: http://vusolutions.com/tag/vu-current-
solved-gdbs-bba/, [May 23, 2012].

[42] JOVANKA, A., VALTER, F. (2003), Design and Management of Data
Warehouses (DMDW), Data Warehouse Population Platform.

[43] CHAPPELL, D.A. (2004), Enterprise Service Bus.

[44] NAEEM, M.A., DOBBIE, G., WEBER, G. (2008), An Event-Based Near
Real-Time Data Integration Architecture, 2008 12th Enterprise Distributed
Object Computing Conference Workshops.

83

[45] GUERRA, J., ANDREWS, D.A. (2011), Creating a Real Time Data
Warehouse

[46] HAISTEN, M. (2000), Real-Time Data Warehouse: What is Real Time
about Real-Time Data?, DM Review.

[47] MADSEN M. (2008), How Real Time Data Requirements Change the Data
Warehouse Environment.

[48] RUSSOM, P. (2011), Big Data Analytics, TDWI best practices report.

[49] GATHIBANDHE H., DEOGIRIKAR S., GUPTA A.K. (2010), Information
Management, Internet: http://www.information-
management.com/infodirect/2009_152/real_time_business_intelligence-
10017057-1.html?zkPrintable=1&nopagination=1, [June 8, 2012].

[50] GABLE, JULIE (2002), Enterprise Application Integration.

[51] ZHONG L. (2004), Application of the Web Service Technology on the Data
Warehouse System, Jounal of WuHan University of Technology Vol.26
No.8.

[52] ANKORION, I. (2005), Change Data Capture-Efficient ETL for Real-Time
BI, DM Review Magazine.

[53] HAZEL (2011), The Art of Data Distribution, Internet: www.hazelcast.com,
[Feb. 02, 2012].

[54] REESE, G. (2000), Database Programming with JDBC & Java.

[55] ORACLE (2010), Best Practices for Real-time Data Warehousing.

[56] SQLSTREAM (2012), Transform Big Data into Real Time Value.

[57] INFORMATION BUILDERS (2012), Real-Time Data Warehousing,
Internet:http://www.informationbuilders.com/products/integration/data/realti

84

me, [July 28, 2012].

[58] TOPP, M., APOSTOKALIS, I., GRABS, T. (2012), Next Generation Energy
and Manufacturing Analytics.
Internet:http://www.informationbuilders.com/products/integration/data/realti
me, [July 28, 2012].

[59] RICHARDI, G. (2003), Database Management with Web Site Development
Applications.

[60] KIMBALL, R. (1997), A Dimensional Model Manifesto, Internet:
http://www.kimballgroup.com/html/articles_search/articles1997/9708d15.ht
ml, [Jun. 05, 2012].

[61] ORACLE (2005), Oracle® Database Data Warehousing Guide 10g
Release 2 (10.2) Internet:
http://docs.oracle.com/cd/B19306_01/server.102/b14223/transform.htm,
[May 28, 2012].

[62] EXECUTION-MIH (2012), Internet: http://www.executionmih.com/data-
warehouse/etl-transformation-design.php, [May 09, 2012].

A1

APPENDIX A

CIRRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Obalı, Murat

Nationality: Turkish (T.C.)

Date and Place of Birth: 10 March 1976, Konya

Marital Status: Married

Phone: +90 555 460 34 59

Email: muratobali@gmail.com

EDUCATION

Degree Institution
Year of
Graduation

MS Çankaya Univ. Computer Engineering 2012

MS Niğde Univ. Business Administration 2002

BS Ege Univ. Computer Engineering 1999

High School Fatih Anatolia High School 1994

WORK EXPERIENCE

Year Place Enrollment
2011 - Present TUBITAK Senior Researcher

A2

2004 - 2011 HAVELSAN A.Ş. Team Leader

2001 - 2003 UNDP Information Systems Consultant

2000 - 2003 METEKSAN SISTEM A.Ş. Project Manager

1999 - 2000 BILIŞIM LTD. Expert Programmer

