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Abstract
We consider a micropolar thermoelastic body occupying a prismatic cylinder that is
free of loads on lateral surface (no body force, no body couple, and no heat supply).
On the base of the cylinder are prescribed a time-dependent displacement,
a microrotation, and a thermal displacement, which are harmonic in time, and
collaborate to induce the motion of the considered body. With the help of a measure
associated with the corresponding steady-state vibration and by assuming that the
exciting frequency is lower than a certain critical frequency, we will obtain a spatial
decay estimate.
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1 Introduction
The theory of thermoelastic material behavior without energy dissipation possesses the
following properties: the heat flow, in contrast to that in classical thermoelasticity char-
acterized by the Fourier law, does not involve energy dissipation; a constitutive equation
for an entropy flux vector is determined by the same potential function as also determines
the stress, and it permits the transmission of heat as thermal waves at finite speed.

It is well known that in a micropolar continuum the deformation is described not only by
the displacement vector but also by an independent rotation vector. This rotation vector
specifies the orientation of a triad of director vectors attached to each material particle.
A material point can experience a microrotation without undergoing a macrodisplace-
ment. An infinitesimal surface element transmits a force and a couple vector, which give
rise to nonsymmetric stress and couple-stress tensors. The former is related to a non-
symmetric strain tensor and the latter to a nonsymmetric curvature tensor, defined as the
gradient of the rotation vector.

It is believed that this type of the continuum mechanics was originally introduced by
Voigt since  and the brothers Cosserat since . There is a simplified variant of the
theory of micropolar bodies, the so-called couple-stress theory, and in this theory the ro-
tation vector is not independent of the displacement vector, but related to it in the same
way as in classical continuum mechanics. The motivation for the extension of the classi-
cal to micropolar and couple-stress theory was that the classical theory was not able to
predict the size effect experimentally observed in problems which had a geometric length
scale comparable to the material’s microstructural length, such as the grain size in a poly-
crystalline or granular aggregate. For example, the apparent strength of some materials
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with stress concentrators such as holes and notches is higher for smaller grain size; for a
given volume fraction of dispersed hard particles, the strengthening of metals is greater
for smaller particles; the bending and torsional strengths are higher for very thin beams
and wires.

There are several hyperbolic theories for describing the heat conduction which are also
called theories of second sound. In these theories the flow of heat is modeled with finite
propagation speed, in contrast to the classical model based on the Fourier law, leading to
infinite propagation speed of heat signals. A review of these theories is presented in the
paper [] by Chandrasekharaiah.

First results in the thermoelastic theory without energy dissipation were obtained by
Green and Naghdi []. This thermomechanical theory of deformable media introduces
the so-called thermal displacement related to the common temperature. and uses a gen-
eral entropy balance as postulated in Green and Naghdi []. By the procedure of Green and
Naghdi, the reduced energy equation is regarded as an identity for all thermodynamical
processes and places some restrictions on the functional forms of the dependent consti-
tutive variables. The theory is illustrated in detail in the context of the flow of heat in a
rigid solid, with particular reference to the propagation of s thermal waves at finite speed.
The linear theory of thermoelasticity without energy dissipation for homogeneous and
isotropic materials was employed by Nappa [] to obtain spatial energy bounds and decay
estimates for the transient solutions in connection with the problem in which a thermoe-
lastic body is deformed subject to boundary and initial data and body supplies having a
compact support, provided positive definiteness assumptions are made upon the consti-
tutive coefficients. Also, in the linear theory of thermoelasticity without energy dissipa-
tion Chandrasekharaiah [] proves the uniqueness of the solutions, Iesan [] establishes
continuous dependence results, while Quintanilla [] studies the question of existence.
In [–] we find some results regarding vibrations for magneto-thermoelastic bodies.
Other results regarding thermoelasticity of dipolar bodies and of microstretch bodies are
presented in [–]. Some concrete and practical issues related to porous media can be
found in [] and [].

Our present study is dedicated to the spatial behavior of the harmonic in time vibrations
within the model of the linear thermoelasticity theory without dissipation energy for mi-
cropolar bodies. We prove a priori estimates for the amplitude of a harmonic vibration by
means of some auxiliary identities. It provides some estimates describing how the ampli-
tude evolves with respect to the distance to the excited base, provided the frequency of
vibration is greater than a certain critical value.

The spatial behavior of the harmonic in time vibrations has been studied by Chirita []
in the theory of classical linear thermoelasticity. Here the author uses a technique devel-
oped by Flavin and Knops [] in the low frequency range. Some differential inequalities
are established for the appropriate selected measures which after integration provide ex-
ponential estimates for the spatial evolution of the amplitude of vibration, provided the
positive definiteness of the constitutive coefficients is assumed.

In [] Ciarletta proposed a theory of micropolar thermoelasticity, which, because it is a
theory without energy dissipation, allows propagation of thermal waves at a finite speed.

The plan of the paper is the following. We first write down the mixed initial boundary
value problem within context of micropolar bodies in thermoelasticity without energy
dissipation. Then we prove some differential relations for certain cross-sectional integrals.
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Based on these relations we obtain estimates describing how the amplitude evolves with
respect to the distance to the excited base. This requires the frequency of vibrations to be
greater than a certain critical value.

2 Basic equations
Let B be an open set domain of a three-dimensional Euclidian space occupied by the ref-
erence configuration of a homogeneous micropolar body. We assume that B is regular and
a finite region with boundary ∂B and we denote the closure of B by B̄. We use a fixed sys-
tem of rectangular Cartesian axes and adopt Cartesian tensor notation. Points in B are
denoted by xj and t ∈ [,∞) is the temporal variable. Also, the spatial argument and the
time argument of a function will be omitted when there is no likelihood of confusion. A su-
perposed dot denotes the differentiation with respect to time t, and a subscript preceded
by a comma denotes the differentiation with respect to the corresponding spatial variable.

The governing equations of the theory of anisotropic and homogeneous micropolar
thermoelasticity without energy dissipation, as we can find in [], consist of the equa-
tions of motion

tij,j + �Fi = �üi,

mij,j + εijktjk + �Mi = Iijϕ̈j;
()

and the equation of energy

�η̇ =
�

θ
r – qi,i. ()

Equations () and () are defined for (x, t) ∈ B × (,∞).
When the reference solid has a center of symmetry at each point but is otherwise non-

isotropic, the constitutive equations, defined for (x, t) ∈ B̄ × [,∞), are

tij = Aijmnεmn + Bijmnγmn – Dijθ ,

mij = Bmnijεmn + Cijmnγmn – Eijθ ,

�η = Dijεij + Eijγij +
c
θ

θ ,

qi = –

θ

Kijβj.

()

The deformation tensors εij and γij used in equations () are defined, in B̄ × [,∞), by
means of the geometric equations

εij = uj,i + εjikϕk , γij = ϕj,i. ()

The system of equations is complete if we add the law of heat flow

β̇i = θ,i ()

for all (x, t) ∈ B̄ × [,∞).
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In the equations above we have used the following notation: ui for the components of
displacement vector, ϕi for the components of microrotatia vector, tij for the components
of stress tensor, mij for the components of couple-stress tensor, qi for the components of
the heat conduction vector, η for the specific entropy per unit mass, � for the constant
reference density mass, θ for the constant reference temperature, Iij for the components
of inertia, βi for the components of the thermal displacement gradient vector, Fi for the
components of the external body force vector, Mi for the components of the external body
couple vector, r for the external rate of supply of heat per unit mass, and εijk is the alter-
nating symbol.

The coefficients from (), that is, Aijmn, Bijmn, Cijmn, Dij, Eij, c, and Kij are constant con-
stitutive coefficients subject to the following symmetry conditions:

Aijmn = Amnij, Cijmn = Cmnij, Iij = Iji, Kij = Kji. ()

The free energy 
 , used to obtain the constitutive equations, is given by

�
 =



Aijmnεijεmn + Bijmnεijγmn +



Cijmnγijγmn

– Dijεijθ – Eijγijθ –
c

θ
θ +

c
θ

Kijτ,iτ,j. ()

Here we denote by τ the thermal displacement related to the temperature variation. The
relationship between τ and θ is given by

τ̇ = θ . ()

Introducing the constitutive equations () and the geometric equations () in the equa-
tions of motion () and the equation of energy (), we obtain a system of equations in terms
of displacements ui, microrotations ϕi, and thermal displacements τ as

[
Aijmn(un,m + εmnkϕk) + Bijmnϕn,m – Dijτ̇

]
,j + �Fi = �üi,

[
Bmnij(un,m + εmnkϕk) + Cijmnϕn,m – Eijτ̇

]
,j

+ εijk
[
Ajkmn(un,m + εmnkϕk) + Bjkmnϕn,m – Djk τ̇

]
+ �Mi = Iijϕ̈j,


θ

(Kijτ,j),i – Dij(u̇j,i + εjikϕ̇k) – Eijϕ̇j,i +
�

θ
r =

c
θ

τ̈ ,

()

for any (x, t) ∈ B × (,∞).

3 Preliminary results
Consider a cross-section D of a prismatic cylinder and the boundary of the section, ∂D,
assumed to be piecewise continuously differentiable. We choose the system of Cartesian
rectangular axis so that its origin is in the center of the cylinder base and the positive x-
axis is directed along the cylinder. If we denote by L the length of the cylinder, then the
lateral boundary of the cylinder is S = ∂D × [, L]. The contents of the prismatic cylinder
is a micropolar thermoelastic body which is homogeneous and anisotropic.
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The cylinder is free of load on the lateral boundary surface, that is, we have a zero body
force, couple force and heat supply and zero displacement, microrotations, and thermal
displacements. But over the base of cylinder are specified the displacements, microrota-
tions, and thermal displacement, all of which are assumed to be harmonic in time. There-
fore, besides the system of equations () we can adjoin the following lateral boundary
conditions:

ui(x, t) = , ϕi(x, t) = , τ (x, t) = , (x, t) ∈ S × (,∞), ()

and the base boundary conditions

ui(x, x, , t) = ũi(x, x)eιωt , ϕi(x, x, , t) = ϕ̃i(x, x)eιωt ,

τ (x, x, , t) = t̃(x, x)eιωt , (x, x) ∈ D(), t > ,
()

where ũi(x, x), ϕ̃i(x, x), and t̃(x, x) are prescribed smooth functions, ι is the complex
unit, and ω is a prescribed positive constant.

Loads from () induce inside the cylinder some vibrations harmonic in time, having the
form

ui(x, x, x, t) = Ui(x, x, x)eιωt , ϕi(x, x, x, t) = �i(x, x, x)eιωt ,

τ (x, x, x, t) = T(x, x, x)eιωt , (x, x, x, t) ∈ B × (,∞).
()

The amplitude (Ui,�i, T) of the vibrations satisfies the following system of differential
equations:

[
Aijmn(Un,m + εmnk�k) + Bijmn�n,m – ιωDijT

]
,j + �ωUi = ,

[
Bmnij(Un,m + εmnk�k) + Cijmn�n,m – ιωEijT

]
,j

+ εijk
[
Ajkmn(Un,m + εmnk�k) + Bjkmn�n,m – ιωDjkT

]
+ Iijω

�j = ,
(


θ

KijT,j

)

,i
– ιωDij(Uj,i + εjik�k) – ιωEij�j,i +

c
θ

ωT = .

()

The lateral boundary conditions get the form

Ui(x) = , �i(x) = , T(x) = , x ∈ S , ()

and the base boundary conditions become

Ui(x, x, ) = Ũi(x, x), �i(x, x, ) = �̃i(x, x),

T(x, x, ) = T̃(x, x), (x, x) ∈ D().
()

In the case of a finite cylinder we will have to prescribe a boundary condition on the supe-
rior base of the cylinder, D(L). For a forced oscillation the spatial behavior of the amplitude
was studied by Chirita [] and Ciarletta [], in the case of a rhombic thermoelastic mate-
rial, provided the exciting frequency is less than a certain critical frequency. The main goal



Marin and Baleanu Boundary Value Problems  (2016) 2016:111 Page 6 of 19

of our study is to estimate how the amplitude evolves with respect to the axial distance to
the excited and.

In the following we want to prove some estimates on a solution of the system of equa-
tions (), with the lateral boundary conditions () and the base boundary conditions
(). We will use the notation Uj,i = Uj,i + εjik�k .

In the following theorem we will state and prove four auxiliary identities on which will
be based the main result.

Theorem  Let (Ui,�i, T) be a solution of the boundary value problem consisting of equa-
tions ()-(). Then the following equalities are satisfied:


∫

D(x)

{
AijmnUj,iŪn,m + Cijmn�n,m�̄j,i

+ Bijmn[Uj,i�̄n,m + Ūj,i�n,m] – �ωUiŪi – Iijω
�i�̄j

}
dA

+
∫

D(x)

{
ιωDij(T̄Uj,i – TŪj,i) + ιωEij(T̄�i,j – T�̄i,j)

}
dA

=
d

dx

∫

D(x)

{
[AjmnUn,m + Bjmn�n,m – ιωDjT]Ūj

}
dA

+
d

dx

∫

D(x)

{
[AjmnŪn,m + Bjmn�̄n,m + ιωDjT̄]Uj

}
dA

+
d

dx

∫

D(x)

{
[BjmnUn,m + Cjmn�n,m – ιωEjT]�̄j

}
dA

+
d

dx

∫

D(x)

{
[BjmnŪn,m + Cjmn�̄n,m + ιωEjT̄]�j

}
dA, ()

∫

D(x)

[
ιωDij(T̄Uj,i + TŪj,i) + ιωEij(T̄�i,j + T�̄i,j)

]
dA

=
d

dx

∫

D(x)

{
[AjmnŪn,m + Bjmn�̄n,m + ιωDjT̄]Uj

}
dA

–
d

dx

∫

D(x)

{
[AjmnUn,m + Bjmn�n,m – ιωDjT]Ūj

}
dA

+
d

dx

∫

D(x)

{
[BjmnŪn,m + Cjmn�̄n,m + ιωEjT̄]�j

}
dA

–
d

dx

∫

D(x)

{
[BjmnUn,m + Cjmn�n,m – ιωEjT]�̄j

}
dA, ()


∫

D(x)


θ

(
KijT,iT̄,j – cωTT̄

)
dA +

∫

D(x)
ιωEij(�j,iT̄ – �̄j,iT) dA

+
∫

D(x)
ιωDij(Uj,iT̄ – Ūj,iT) dA =

d
dx

∫

D(x)


θ

K(T̄T, + TT̄,) dA, ()

∫

D(x)
ιωDij(Uj,iT̄ + Uj,iT) dA

+
∫

D(x)
ιωEij(�̄j,iT + �j,iT̄) dA =

d
dx

∫

D(x)


θ

Kj(T̄T,j – TT̄,j) dA, ()

where z̄ is the notation for the complex conjugate of z.



Marin and Baleanu Boundary Value Problems  (2016) 2016:111 Page 7 of 19

Proof Considering equations () and () we can prove the following equality:

{
[AijmnUn,m + Bijmn�n,m – ιωDijT],j + �ωUi

}
Ūi

+
{

[AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄],j + �ωŪi
}

Ui

+ [BmnijUn,m + Cijmn�n,m – ιωEijT],j�̄i

+ εijk[AjkmnUn,m + Bjkmn�n,m – ιωDjkT]�̄i + Iijω
�i�̄j

+ [BmnijŪn,m + Cijmn�̄n,m + ιωEijT̄],j�i

+ εijk[AjkmnŪn,m + Bjkmn�̄n,m + ιωDjkT̄]�i + Iijω
�i�̄j = . ()

With some calculations, equality () can be written in the form


{

AijmnUj,iŪn,m + Cijmn�n,m�̄n,m

+ Bijmn[Uj,i�̄n,m + Ūj,i�n,m] – �ωUiŪi – Iijω
�i�̄j

}

+ ιωDij(T̄Uj,i – TŪj,i) + ιωEij(T̄�i,j – T�̄i,j)

=
{

[AijmnUn,m + Bijmn�n,m – ιωDijT]Ūi
}

,j

+
{

[AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄]Ui
}

,j

+
{

[BmnijUn,m + Cijmn�n,m – ιωEijT]�̄i
}

,j

+
{

[BmnijŪn,m + Cijmn�̄n,m + ιωEijT̄]�i
}

,j. ()

Integrate equality () over D(x), apply the divergence theorem, and use the lateral con-
ditions (); we get the equality ().

Now, if we again consider equations () and () then it is easy to prove the following
equality:

{
[AijmnUn,m + Bijmn�n,m – ιωDijT],j + �ωUi

}
Ūi

–
{

[AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄],j + �ωŪi
}

Ui

+ [BmnijUn,m + Cijmn�n,m – ιωEijT],j�̄i

+ εijk[AjkmnUn,m + Bjkmn�n,m – ιωDjkT]�̄i + Iijω
�i�̄j

– [BmnijŪn,m + Cijmn�̄n,m + ιωEijT̄],j�i

– εijk[AjkmnŪn,m + Bjkmn�̄n,m + ιωDjkT̄]�i – Iijω
�i�̄j = . ()

With some calculations, equality () can be written in the form

ιωDij(T̄Uj,i + TŪj,i) + ιωEij(T̄�i,j + T�̄i,j)

= +
{

[AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄]Ui
}

,j

–
{

[AijmnUn,m + Bijmn�n,m – ιωDijT]Ūi
}

,j

+
{

[BmnijŪn,m + Cijmn�̄n,m + ιωEijT̄]�i
}

,j

–
{

[BmnijUn,m + Cijmn�n,m – ιωEijT]�̄i
}

,j. ()
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Integrate equality () over D(x), apply the divergence theorem; if we use the lateral con-
ditions () we get the equality ().

With the help of equation (), we can deduce immediately the equality

T̄
[(


θ

KijT,j

)

,i
– ιωDijUj,i – ιωEij�j,i +

c
θ

ωT
]

+ T
[(


θ

KijT̄,j

)

,i
+ ιωDijUj,i + ιωEij�̄j,i +

c
θ

ωT̄
]

= . ()

With some calculations, equality () can be written in the form


θ

(
KijT,iT̄,j – cωTT̄

)
+ ιωDij(Uj,iT̄ – Uj,iT) + ιωEij(�j,iT̄ – �̄j,iT)

=
[


θ

Kij(T̄T,j + TT̄,j)
]

,i
. ()

Integrate equality () over D(x), apply the divergence theorem, and if we use the lateral
conditions () we get the equality ().

Finally, we use again equation () thus we will obtain, in a trivial way, the equality

T̄
[(


θ

KijT,j

)

,i
– ιωDijUj,i – ιωEij�j,i +

c
θ

ωT
]

– T
[(


θ

KijT̄,j

)

,i
+ ιωDijUj,i + ιωEij�̄j,i +

c
θ

ωT̄
]

= . ()

With some calculations, equality () can be written in the form

ιωDij(Uj,iT̄ + Uj,iT) + ιωEij(�̄j,iT + �j,iT̄) =
[


θ

Kij(T̄T,j – TT̄,j)
]

,i
. ()

Integrate equality () over D(x), apply the divergence theorem; if we use the lateral con-
ditions () we get the equality () and the proof of Theorem  is completed. �

The next theorem is also dedicated to a proof of two auxiliary identities on which will
be based the main result.

Theorem  Let (Ui,�i, T) be a solution of the boundary value problem consisting of equa-
tions ()-(). Then we have the identities

∫

D(x)
[AijmnUn,mŪj,i + Cijmn�i,j�̄n,m] dA

+
∫

D(x)

{
Bijmn[Un,m�̄i,j + Ūn,m�i,j] – ω(�UiŪi + Iij�i�̄j)

}
dA

– ιω

∫

D(x)

{
Dij(TŪj,i – T̄Uj,i) + Eij(T�̄j,i – T̄�j,i)

}
dA

– ιω

∫

D(x)

{
Dijxp(T,pŪj,i – T̄,pUj,i) + Eijxp(T,p�̄j,i – T̄,p�j,i)

}
dA
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= –
d

dx

∫

D(x)

{
[AjmnUn,m + Bjmn�n,m – ιωDjT]xpŪj,p

}
dA

–
d

dx

∫

D(x)

{
[AjmnŪn,m + Bjmn�̄n,m + ιωDjT̄]xpUj,p

}
dA

–
d

dx

∫

D(x)

{
[BjmnUn,m + Cjmn�n,m – ιωEjT]xp�̄j,p

}
dA

–
d

dx

∫

D(x)

{
[BjmnŪn,m + Cjmn�̄n,m + ιωEjT̄]xp�j,p

}
dA

+
d

dx

∫

D(x)
x[AijmnŪn,mŪj,i + Cijmn�i,j�̄n,m] dA

+
d

dx

∫

D(x)
x

{
Bijmn[Un,m�̄i,j + Ūn,m�i,j] – �ωUiŪi

}
dA

–
d

dx

∫

D(x)

{
ιωxDij(TŪj,i – T̄Uj,i)

}
dA

–
d

dx

∫

D(x)

{
ιωxEij(T�̄j,i – T̄�j,i) – xIijω

�i�̄j
}

dA

+
∫

∂D(x)
xpnp

(
Aiαmβnαnβ

∂Ui

∂n
∂Ūm

∂n
+ Biαmβnαnβ

∂Ui

∂n
∂�̄m

∂n

+ Ciαmβnαnβ

∂�i

∂n
∂�̄m

∂n

)
ds, ()

∫

D(x)


θ

(
KijT,iT̄,j – cωTT̄

)
dA

+
∫

D(x)
ιωEij(�̄j,iT,p – �j,iT̄,p) dA

+
∫

D(x)
ιωDijxp(Uj,iT,p – Uj,iT̄,p) dA

+
∫

∂D(x)


θ

xpnpKαβnαnβ

∂T
∂n

∂T̄
∂n

ds

= –
d

dx

∫

D(x)


θ

[
xαKβ (T̄,αT,β + T,αT̄,β ) + xαK(T,T̄,α + T̄T,α)

]
dA

–
d

dx

∫

D(x)

x

θ

(
KT,T̄ – KαβT,αT̄,β + cωTT̄

)
dA. ()

Proof Considering equations () and () it is easy to prove the following equality:

{
[AijmnUn,m + Bijmn�n,m – ιωDijT],j + �ωUi

}
xpŪi,p

+ [BmnijUn,m + Cijmn�n,m – ιωEijT],jxp�̄i,p

+ εijk[AjkmnUn,m + Bjkmn�n,m – ιωDjkT]xp�̄i,p + Iijω
xp�̄i,p�j

+
{

[AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄],j + �ωŪi
}

xpUi,p

+ [BmnijŪn,m + Cijmn�̄n,m + ιωEijT̄],jxp�i,p

+ εijk[AjkmnŪn,m + Bjkmn�̄n,m + ιωDjkT̄]xp�i,p + Iijω
xp�i,p�̄j = . ()
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With simple calculations, equality () can be written in the form

{
[AijmnUn,m + Bijmn�n,m – ιωDijT]xpŪi,p

}
,j

– [AijmnUn,m + Bijmn�n,m – ιωDijT]xpŪi,pj + �ωxpUiŪi,p

+
{

[BmnijUn,m + Cijmn�n,m – ιωEijT]xp�̄i,p
}

,j

– [BmnijUn,m + Cijmn�n,m – ιωEijT]xp�̄i,pj

+ εijk[AjkmnUn,m + Bjkmn�n,m – ιωDjkT]xp�̄i,p + Iijω
xp�̄i,p�j

+
{

[AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄]xpUi,p
}

,j

– [AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄]xpUi,pj + �ωxpŪiUi,p

+
{

[BmnijŪn,m + Cijmn�̄n,m + ιωEijT̄]xp�i,p
}

,j

– [BmnijŪn,m + Cijmn�̄n,m + ιωEijT̄]xp�i,pj

+ εijk[AjkmnŪn,m + Bjkmn�̄n,m + ιωDjkT̄]xp�i,p + Iijω
xp�i,p�̄j = . ()

This equality leads to

AijmnUn,mŪj,i + Cijmn�i,j�̄n,m

+ Bijmn(Un,m�̄i,j + Ūn,m�i,j) – ω(�UiŪi + Iij�i�̄j)

– ιωDij(TŪj,i – T̄Uj,i) – ιωEij(T�̄j,i – T̄�j,i)

– ιωDijxp(T,pŪj,i – T̄,pUj,i) – ιωEijxp(T,p�̄j,i – T̄,p�j,i)

= –
{

[AijmnUn,m + Bijmn�n,m – ιωDijT]xpŪi,p
}

,j

–
{

[AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄]xpUi,p
}

,j

–
{

[BmnijUn,m + Cijmn�n,m – ιωEijT]xp�̄i,p
}

,j

–
{

[BmnijŪn,m + Cijmn�̄n,m + ιωEijT̄]xp�i,p
}

,j

+ [xkAijmnUn,mŪj,i + xpCijmn�i,j�̄n,m],p

+
{

xpBijmn[Un,m�̄i,j + Ūn,m�i,j] – xp�ωUiŪi
}

,p

–
{
ιωxpDij(TŪj,i – T̄Uj,i)

}
,p

–
{
ιωxpEij(T�̄j,i – T̄�j,i) – xpIijω

�i�̄j
}

,p. ()

We integrate equality () and use the lateral boundary condition (); then we are led to
the equality

∫

D(x)
[AijmnŪn,mŪj,i + Cijmn�i,j�̄n,m] dA

+
∫

D(x)

{
Bijmn[Un,m�̄i,j + Ūn,m�i,j] – ω(�UiŪi + Iij�i�̄j)

}
dA

– ιω

∫

D(x)

{
Dij(TŪj,i – T̄Uj,i) + Eij(T�̄j,i – T̄�j,i)

}
dA
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– ιω

∫

D(x)

{
Dijxp(T,pŪj,i – T̄,pUj,i) + Eijxp(T,p�̄j,i – T̄,p�j,i)

}
dA

= –
d

dx

∫

D(x)

{
[AjmnUn,m + Bjmn�n,m – ιωDjT]xpŪj,p

}
dA

–
d

dx

∫

D(x)

{
[AjmnŪn,m + Bjmn�̄n,m + ιωDjT̄]xpUj,p

}
dA

–
d

dx

∫

D(x)

{
[BjmnUn,m + Cjmn�n,m – ιωEjT]xp�̄j,p

}
dA

–
d

dx

∫

D(x)

{
[BjmnŪn,m + Cjmn�̄n,m + ιωEjT̄]xp�j,p

}
dA

+
d

dx

∫

D(x)
x[AijmnŪn,mŪj,i + Cijmn�i,j�̄n,m] dA

+
d

dx

∫

D(x)
x

{
Bijmn[Un,m�̄i,j + Ūn,m�i,j] – �ωUiŪi

}
dA

–
d

dx

∫

D(x)

{
ιωxDij(TŪj,i – T̄Uj,i)

}
dA

–
d

dx

∫

D(x)

{
ιωxEij(T�̄j,i – T̄�j,i) – xIijω

�i�̄j
}

dA

–
∫

∂D(x)
[xpŪs,pApsmnŪn,m + xpUs,pApsmnŪs,p]np ds

–
∫

∂D(x)
[xp�̄s,pBpsmnUn,m + xp�s,pBpsmnŪn,m]np ds

–
∫

∂D(x)
[xp�̄s,pCpsmn�n,m + xp�s,pCpsmn�̄n,m]np ds

+
∫

∂D(x)
xpnp

{
AijmnŪn,mUj,i + Cijmn�j,i�̄n,m

+ Bijmn[Uj,i�̄n,m + Ūj,i�n,m]
}

ds. ()

If we take into account the lateral boundary condition () we conclude that

Ui, =  on ∂D(x). ()

On the curve ∂D we have

Ui,α = nα

∂Ui

∂n
+ τα

∂Ui

∂τ
,

where τα are components of the unit vector tangent to ∂D and ∂/∂τ is the tangential
derivative. According to the lateral boundary condition () we deduce ∂Ui/∂τ =  on
the curve ∂D and hence we obtain

Ui,α = nα

∂Ui

∂n
on the curve ∂D. ()

Using equations () and (), the last integral in () becomes
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∫

∂D(x)
xpnp(AijmnUj,iŪn,m + BijmnUj,i�̄n,m + Cijmn�j,i�̄n,m) ds

=
∫

∂D(x)
xpnp

(
Aiαmβnαnβ

∂Ui

∂n
∂Ūm

∂n
+ Biαmβnαnβ

∂Ui

∂n
∂�̄m

∂n

+ Ciαmβnαnβ

∂�i

∂n
∂�̄m

∂n

)
ds. ()

For the other integrals in () we obtain

∫

∂D(x)
[xpŪs,pApsmnUn,m + xpUs,pApsmnŪn,m]np ds

= 
∫

∂D(x)
xpnpAiαmβnαnβ

∂Ui

∂n
∂Ūm

∂n
ds,

∫

∂D(x)
[xpŪs,pBpsmn�n,m + xpUs,pCpsmn�̄n,m]np ds

= 
∫

∂D(x)
xpnpBiαmβnαnβ

∂Ui

∂n
∂�̄m

∂n
ds,

∫

∂D(x)
[xp�̄s,pCpsmn�n,m + xp�s,pCpsmn�̄n,m]np ds

= 
∫

∂D(x)
xpnpCiαmβnαnβ

∂�i

∂n
∂�̄m

∂n
ds.

()

If we substitute the results of equations () and () in the equality (), we obtain the
first relation of Theorem , namely equation ().

To prove equation () we start from the following equality, which is evident:

xpT̄p

[(

θ

KijT,j

)

,i
– ιωDijUj,i – ιωEij�j,i +

c
θ

ωT
]

+ xpTp

[(

θ

KijT̄,j

)

,i
+ ιωDijUj,i – ιωEij�̄j,i +

c
θ

ωT̄
]

= . ()

After some direct calculations, equality () acquires the form

ιωDijxp(Uj,iT,p – Uj,iT̄,p) + ιωEijxp(�̄j,iT,p – �j,iT̄,p)

= –xp

(
c
θ

ωTT̄
)

,p
+


θ

KijT,iT̄,j

–
[


θ

xpKij(T̄,pT,j + T,pT̄,j)
]

,i
+ xp

(

θ

KijT,iT̄,j

)

,p
. ()

This equality can be rewritten as follows:


θ

KijT,iT̄,j –
c
θ

ωTT̄ + ιωEij(�̄j,iT,p – �j,iT̄,p) + ιωDijxp(Uj,iT,p – Uj,iT̄,p)

= –
(

c
θ

ωTT̄
)

,p
–

[

θ

xpKij(T̄,pT,j + T,pT̄,j)
]

,i
+

(
xp

θ
KijT,iT̄,j

)

,p
. ()
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Now we integrate the equality () on D(x) and, after using the lateral boundary condition
(), we are led to

∫

D(x)


θ

(
KijT,iT̄,j – cωTT̄

)
dA +

∫

D(x)
ιωEij(�̄j,iT,p – �j,iT̄,p) dA

+
∫

D(x)
ιωDijxp(Uj,iT,p – Uj,iT̄,p) dA

= –
d

dx

∫

D(x)

[

θ

xpKj(T̄,pT,j + T,pT̄,j) –
x

θ
KijT,iT̄,j +

x

θ
cωTT̄

]
dA

+
∫

∂D(x)


θ

[
xpnpKijT,iT̄,j – xpKpj(T̄,pT,j + T,pT̄,j)np

]
ds. ()

As we have already shown in the proof of equality (), the lateral boundary condition
implies

T, = , T,α = nα

∂T
∂n

,

on the curve ∂D(x).
With these arguments, the equality () implies equation (), therefore the proof of

Theorem  is completed. �

The conservation laws which will be proved in the following theorem will be used to
derive a priori estimates for a solution of our mixed problem.

Theorem  Let (Ui,�i, T) be a solution of the boundary value problem consisting of equa-
tions ()-(). Then the following two conservation laws are satisfied:

d
dx

∫

D(x)
ω

(
�UjŪj + Iij�i�̄j +

c
θ

TT̄
)

dA

+
d

dx

∫

D(x)

c
θ

(
KT,T̄, – KαβT,αT̄,β

)
dA

+
d

dx

∫

D(x)

[
AimUi,Ūm, + Bim(Ui,�̄m, + Ūi,�m,) + Cim�i,�̄m,

]
dA

–
d

dx

∫

D(x)

[
AiαmβUi,αŪm,β + Biαm(Ui,α�̄m,β + Ūi,α�m,β )

+ Ciαmβ�i,α�̄m,β
]

dA

+
d

dx

∫

D(x)

[
ιωDiα(TŪi,α – T̄Ui,α) + ιωEiα(T�̄i,α – T̄�i,α)

]
dA = , ()

d
dx

∫

D(x)

{
[AjmnŪn,m + Bjmn�̄n,m + ιωDjT̄]Uj

}
dA

–
d

dx

∫

D(x)

{
[AjmnUn,m + Bjmn�n,m – ιωDjT]Ūj

}
dA

+
d

dx

∫

D(x)

{
[BjmnŪn,m + Cjmn�̄n,m + ιωEjT̄]�j

}
dA
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–
d

dx

∫

D(x)

{
[BjmnUn,m + Cjmn�n,m – ιωEjT]�̄j

}
dA

=
d

dx

∫

D(x)

[

θ

Kj(T̄T,j – TT̄,j)
]

dA. ()

Proof To prove equation () we start by using equations () and (); with the help of
these we obtain the following equality:

{
[AijmnUn,m + Bijmn�n,m – ιωDijT],i + �ωUj

}
Ūj,

+
{

[BijmnUn,m + Cijmn�n,m – ιωEijT],i

+ εjik[AikmnUn,m + Bikmn�n,m – ιωDikT] + Iijω
�i

}
�̄j,

+
{

[AijmnŪn,m + Bijmn�̄n,m + ιωDijT̄],i + �ωŪj
}

Uj,

+
{

[BijmnŪn,m + Cijmn�̄n,m + ιωEijT̄],i

+ εjik[AikmnŪn,m + Bikmn�̄n,m + ιωDikT̄] + Iijω
�̄i

}
�j, = . ()

Performing direct calculations on equality () we are led to

d
dx

[
�ωUjŪj + Iijω

�i�̄j + AimUi,Ūm, + Bim(Ui,�̄m, + Ūi,�m,)

+ Cim�i,�̄m, – AiαmβUi,αŪm,β – Biαm(Ui,α�̄m,β + Ūi,α�m,β )

– Ciαmβ�i,α�̄m,β + ιωDiα(TŪi,α – T̄Ui,α) + ιωEiα(T�̄i,α – T̄�i,α)
]

+
[
AiαmUm,Ūi,α + Biαm(Um,�̄i,α + Ūm,�i,α) + Ciαm�m,�̄i,α

]
,α

+
[
ιωDiα(T̄Ui, – TŪi,)

]
,α +

[
ιωEiα(T̄�i, – T�̄i,)

]
,α

+ ιωDij(T̄,Ui,j – T,Ūi,j) + ιωEij(T̄,�i,j – T,�̄i,j) = . ()

Now integrate equality () and use the lateral boundary condition (); we get

d
dx

∫

D(x)

[
�ωUjŪj + Iijω

�i�̄j + AimUi,Ūm, + Bim(Ui,�̄m, + Ūi,�m,)

+ Cim�i,�̄m, – AiαmβUi,αŪm,β – Biαm(Ui,α�̄m,β + Ūi,α�m,β )

– Ciαmβ�i,α�̄m,β + ιωDiα(TŪi,α – T̄Ui,α) + ιωEiα(T�̄i,α – T̄�i,α)
]

dA

+
∫

D(x)

[
ιωDij(T̄,Ui,j – T,Ūi,j) + ιωEij(T̄,�i,j – T,�̄i,j)

]
dA = . ()

Using equation (), it is clear that

T̄,

[

θ

KijT,ij – ιω(DijUi,j + Eij�i,j) +
c
θ

ωT
]

+ T,

[

θ

KijT̄,ij + ιω(DijŪi,j + Eij�̄i,j) +
c
θ

ωT̄
]

= . ()
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After doing some calculations, we can write equation () in the form

d
dx

(
c
θ

ωTT̄ +

θ

KT,T̄, –

θ

KαβT,αT̄,β

)

+
(


θ

KαT,T̄,

)

,α
+ ιωDij(T,Ūi,j – T̄,Ui,j)

+ ιωEij(T,�̄i,j – T̄,�i,j) = . ()

Now we integrate () on D(x) and use the lateral boundary condition (); we arrive at
the equality

d
dx

∫

D(x)

(
c
θ

ωTT̄ +

θ

KT,T̄, –

θ

KαβT,αT̄,β

)
dA

+
∫

D(x)

[
ιωDij(T,Ūi,j – T̄,Ui,j) + ιωEij(T,�̄i,j – T̄,�i,j)

]
dA = . ()

By using equations () and () we obtain the equality (). The conservation law ()
is obtained immediately equaling the right-side members of equality () and (). This
concludes the proof of Theorem . �

Combining equalities ()-() of Theorem  with equalities ()-() of Theorem 
and those of Theorem , namely ()-(), we obtain various measures associated with
the amplitude (Ui,�i, T). With the help of these measures, we will obtain suitable spatial
estimates to describe the spatial behavior of the respective amplitude.

The next result is a first estimate which describes the spatial behavior of the solution.

Theorem  Let (Ui,�i, T) be a solution of the boundary value problem consisting of equa-
tions ()-(). Then the following equality holds:

∫

D(x)

[
AijmnUj,iŪn,m + Bijmn(Uj,i�̄n,m + Ūj,i�n,m) + Cijmn�j,i�̄n,m

– ω
(

�UiŪi + Iij�i�̄j +
c
θ

TT̄
)

+
c
θ

KijT,iT̄,j

]
dA

+
∫

D(x)

[
ιωDij(T̄Uj,i – TŪj,i) + ιωEij(T̄�j,i – T�̄j,i)

]
dA

=
d

dx

∫

D(x)

{
[AjmnUn,m + Bjmn�n,m – ιωDjT]Ūj

}
dA

+
d

dx

∫

D(x)

{
[AjmnŪn,m + Bjmn�̄n,m + ιωDjT̄]Uj

}
dA

+
d

dx

∫

D(x)

{
[BjmnUn,m + Cjmn�n,m – ιωEjT]�̄j

}
dA

+
d

dx

∫

D(x)

{
[BjmnŪn,m + Cjmn�̄n,m + ιωEjT̄]�j

}
dA

+
d

dx

∫

D(x)


θ

K(TT̄, + T̄T,) dA. ()
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Proof By combining equations () and () we obtain immediately the above desired
identity (). �

Another a priori estimate will be proved in the next theorem.

Theorem  If (Ui,�i, T) is a solution of the boundary value problem consisting of equa-
tions ()-(), then we have

∫

D(x)

[
AijmnUj,iŪn,m + Bijmn(Uj,i�̄n,m + Ūj,i�n,m) + Cijmn�j,i�̄n,m

+

θ

KijT,iT̄,j + ω
(

�UiŪi + Iij�i�̄j +

θ

TT̄
)]

dA

–
∫

∂D(x)
xpnp

(
Aiαmβnαnβ

∂Ui

∂n
∂Ūm

∂n
+ Biαmβnαnβ

∂Ui

∂n
∂�̄m

∂n

+ Ciαmβnαnβ

∂�i

∂n
∂�̄m

∂n

)
ds –

∫

∂D(x)


θ

xpnpKαβnαnβ

∂T
∂n

∂T̄
∂n

ds

=
d

dx

∫

D(x)

[
(AjmnUn,m + Bjmn�n,m – ιωDjT)(Ūj + xpŪj,p)

+ (AjmnŪn,m + Bjmn�̄n,m + ιωDjT̄)(Uj + xpUj,p)
]

dA

+
d

dx

∫

D(x)

[
(BjmnUn,m + Cjmn�n,m – ιωEjT)(�̄j + xp�̄j,p)

+ (BjmnŪn,m + Cjmn�̄n,m + ιωEjT̄)(�j + xp�j,p)
]

dA

+
d

dx

∫

D(x)


θ

K(TT̄, + T̄T,) dA

+
d

dx

∫

D(x)

xα

θ

[
Kα(T̄,αT,β + T,αT̄,β ) + K(T̄,αT, + T,αT̄,)

]
dA

+
d

dx

∫

D(x)

{
x

[
AimUi,Ūm, + Bim(Ui,�̄m, + Ūi,�m,) + Cim�i,�̄m,

]

+ x
[
AiαmβUi,αŪm,β + Biαmβ (Ui,α�̄m,β + Ūi,α�m,β ) + Ciαmβ�i,α�̄m,β

]

+ xιω
[
Diα(TŪi,α – T̄Ui,α) + Eiα(T�̄i,α – T̄�i,α)

]

+
x

θ
(KT,T̄, – KαβT,αT̄,β ) + xω


(

�UiŪi + Iij�i�̄j +
c
θ

TT̄
)}

dA. ()

Proof We arrive at the equality () if we combine the results from equalities () and ()
of Theorem  with equation () of Theorem .

The result of the spatial behavior will be based on equality (). For the result to be rig-
orous, we specify assumptions which are really common in continuum mechanics. Thus,
we assume that the tensors of the micropolar thermoelasticity satisfy the strong ellipticity
condition,

Aijmnxixmyjyn > ,
Bijmnxixmyjyn > , for all non-zero vectors (x, x, x), (y, y, y),
Cijmnxixmyjyn > .

()
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Also, the specific heat c and the conductivity tensor Kij satisfy the conditions

c > , Kijxixj > , for all non-zero vector (x, x, x). ()

It is clear that from () that we can deduce

Aimxixm > ,
Bimxixm > , for all non-zero vector (x, x, x),
Cimxixm > .

()

Since the curve ∂D was presumed regular, we deduce that there is h >  such that xpnp ≥
h > . Then we have the inequalities

 ≤
∫

∂D(x)
xpnp

(
Aiαmβnαnβ

∂Ui

∂n
∂Ūm

∂n
+ Biαmβnαnβ

∂Ui

∂n
∂�̄m

∂n

+ Ciαmβnαnβ

∂�i

∂n
∂�̄m

∂n

)
ds

≤ MC
∫

∂D(x)

(
∂Ui

∂n
∂Ūi

∂n
+

∂�i

∂n
∂�̄i

∂n

)
ds, ()

where we have used the notations

C = (AiαmβAiαmβ + BiαmβBiαmβ + CiαmβCiαmβ )/, ()

M = sup
(x,x)∈∂D

√(
x

 + x

)
. ()

Also, for the conductivity tensor Kij we have

 ≤
∫

∂D(x)


θ

xpnpKαβnαnβ

∂T
∂n

∂T̄
∂n

ds ≤ MK
θ

∫

∂D(x)

∂T
∂n

∂T̄
∂n

ds, ()

where M is defined in () and

K = (KαβKαβ )/. ()

Now we introduce the quantities m, m, ω∗
, and ω∗

 by

m = max
x∈[,L]

∫
∂D(x)(

∂Ui
∂n

∂Ūi
∂n + ∂�i

∂n
∂�̄i
∂n ) ds

∫
D(x)(UiŪi + �i�̄i) ds

, ω∗
 =


�

MCm, ()

m = max
x∈[,L]

∫
∂D(x)

∂T
∂n

∂T̄
∂n ds

∫
D(x) TT̄ ds

, ω∗
 =


c

MKm. ()

We can assume that

ω > ω∗ = max
{
ω∗

,ω∗

}

, ()

m ≤ m∗
, m ≤ m∗

 , ()
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where

m∗
 = max

∫
∂D(x)(

∂Ui
∂n

∂Ūi
∂n + ∂�i

∂n
∂�̄i
∂n ) ds

∫
D(x)(UiŪi + �i�̄i) ds

, ()

m∗
 = max

T∈H
(D)

∫
∂D(x)

∂T
∂n

∂T̄
∂n ds

∫
D(x) TT̄ ds

. ()

Here the maximum from m∗
 is calculated for Ui ∈ H

(D), �i ∈ H
(D), where H

(D) is the
usual Sobolev space. In this way we obtain an explicit critical value for the frequency of
the vibration, namely

ω∗ = max

{

�

MCm∗
,


c

MKm∗


}
.

Combining the results from equations (), (), (), and () we obtain the following
estimate of the spatial behavior of the amplitude (Ui,�i, T):

d
dx

∫

D(x)

[
(AjmnUn,m + Bjmn�n,m – ιωDjT)(Ūj + xpŪj,p)

+ (AjmnŪn,m + Bjmn�̄n,m + ιωDjT̄)(Uj + xpUj,p)
]

dA

+
d

dx

∫

D(x)

[
(BjmnUn,m + Cjmn�n,m – ιωEjT)(�̄j + xp�̄j,p)

+ (BjmnŪn,m + Cjmn�̄n,m + ιωEjT̄)(�j + xp�j,p)
]

dA

+
d

dx

∫

D(x)

xα

θ

[
Kα(T̄,αT,β + T,αT̄,β ) + K(T̄,αT, + T,αT̄,)

]
dA

+
d

dx

∫

D(x)


θ

[
K(TT̄, + T̄T,) + xω


(

�UiŪi + Iij�i�̄j +

θ

TT̄
)]

dA

+
d

dx

∫

D(x)

{
x

[
AimUi,Ūm, + Bim(Ui,�̄m, + Ūi,�m,) + Cim�i,�̄m,

]

– x
[
AiαmβUi,αŪm,β + Biαmβ (Ui,α�̄m,β + Ūi,α�m,β ) + Ciαmβ�i,α�̄m,β

]

– xιω
[
Diα(TŪi,α – T̄Ui,α) + Eiα(T�̄i,α – T̄�i,α)

]

+
x

θ
(KT,T̄, – KαβT,αT̄,β ) + xω


(

�UiŪi + Iij�i�̄j +
c
θ

TT̄
)}

dA

≥
∫

D(x)

[
AijmnUj,iŪn,m + Bijmn(Uj,i�̄n,m + Ūj,i�n,m)

+ Cijmn�j,i�̄n,m +

θ

KijT,iT̄,j

]
dA. ()

With this the proof of Theorem  is complete. �

Conclusion It is appropriate to note that the differential inequality () is different from
those used for a deduction of the estimates of Saint-Venant type.
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To deduce these estimates we used only the strong ellipticity assumptions for the ther-
moelastic coefficients.

Therefore, these results can be applied to a large scale of materials.
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