

ÇANKAYA UNIVERSITY
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

MASTER THESIS

A CLIENT-SERVER ARCHITECTURE FOR LIVE VIDEO STREAMING USING
OBJECT RELATIONAL DATABASE

SERKAN ÖZDEMİR

JUNE 2013

iii

iv

ABSTRACT

A CLIENT-SERVER ARCHITECTURE FOR LIVE VIDEO STREAMING USING

OBJECT RELATIONAL DATABASE

ÖZDEMİR, Serkan

M.S.c., Department of Computer Engineering

Supervisor: Assist .Prof. Dr. Murat SARAN

June 2013, 99 Pages

This thesis focuses on live video streaming and offers a new approach based on

client-server architecture using relational database. The thesis also analyzes the

traditional live video streaming concepts and challenges such as performance

problems. On the other hand, this study aims to implement client-server architecture

in order to gain performance and provides a faster retrieval and storing time, better

download time with minimum metadata by using relational database. This

architecture also provides multiple accesses on different domains like embedded

devices, Internet based smart TVs etc. The study also covers a Windows desktop

application which consists of two live video streaming approaches. Implementation

tries to compare traditional video streaming using TCP sockets and client-server

model using relational database. MySQL and Apache web server were used to

support the thesis proposal. Implementation was tested with various amounts of

clients and parameters such as frame rate, buffer size and picture quality. Test

results and conditions were also included in the thesis text. Briefly, this thesis tries to

provide a better client-server live video streaming solution using the abilities of web

and database servers.

Keywords: Streaming, Live Video, Broadcast, Relational Database, Client-Server

v

ÖZ

NESNE TABANLI VERİTABANI KULLANILARAK CANLI VIDEO AKIŞI İÇİN BİR

İSTEMCİ-SUNUCU MİMARİSİ

ÖZDEMİR, Serkan

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Assist. Prof. Dr. Murat SARAN

Haziran 2013, 99 Sayfa

Bu tez canlı video akışı üstüne yoğunlaşarak ve ilişkisel veritabanı aracılığı ile bir

istemci-sunucu mimarisi önermekte ve aynı zamanda klasik canlı video akış

yaklaşımlarını inceleyerek, bu yaklaşımların performans, kalite gibi sorunlarını

incelemektedir. Tezin diğer bir amacı ise ilişkisel veritabanını kullanarak verinin

daha hızlı depolanması ve çekilmesi, daha iyi veri indirme süresi sunması ve

gereksiz veri başlıklarını engellemesi noktasında bir istemci-sunucu mimarisi

oluşturmaktır. Bu mimari sayesinde gömülü sistemler ve İnternet tabanlı akıllı TV

uygulamaları gibi farklı konumlardan veriye erişim mümkün olmaktadır. Bu çalışma,

iki farklı canlı video akış yaklaşımını test eden bir Windows masaüstü uygulaması

da içermektedir. Uygulama, TCP soketleri kullanılarak gerçekleştirilen klasik canlı

video akışı ile ilişkisel veritabanı kullanarak yapılan istemci-sunucu tabanlı canlı

video akışını karşılaştırmaktadır. İlişkisel veritabanı kullanılan yaklaşımda MySQL

veritabanı yönetim sistemi ve Apache web sunucusu kullanılmıştır. Tez uygulaması

farklı sayıdaki kullanıcılarla ve çerçeve oranı, depolama boyutu, resim kalitesi gibi

çeşitli parametrelerle test edilmiştir. Test sonuçları, test ortam verileri ile birlikte

sunulmuştur. Özetle bu tez, web ve veritabanı sunucusunu kullanarak daha iyi bir

istemci-sunucu canlı video akış çalışması üretmeyi amaçlamaktadır.

Anahtar Kelimeler: Video, Canlı Akış, İlişkisel Veritabanı, İstemci-Sunucu

vi

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM Error! Bookmark not defined.

ABSTRACT.. iv

ÖZGGGGG.. ...v

TABLE OF CONTENTS ... vi

LIST OF TABLES..x

LIST OF FIGURES .. xi

CHAPTERS:

INTRODUCTION ... 1

1 VIDEO STREAMING .. 3

1.1 Background ... 3

1.2 Historical Development .. 4

1.3 Protocols ... 4

1.3.1 User Datagram Protocol ... 4

1.3.2 Real-time Transport Protocol.. 6

1.3.3 Real Time Streaming Protocol .. 8

1.3.4 Real Time Control Protocol .. 11

1.3.5 Stream Control Transmission Protocol ... 12

1.3.6 Transmission Control Protocol ... 14

1.3.7 Peer to peer ... 16

1.4 Delivery Methods ... 19

1.4.1 Unicasting .. 19

1.4.2 Splitting .. 20

vii

1.4.3 Multicasting .. 20

1.5 Streaming Codec ... 22

1.5.1 H.264/MPEG-4 AVC .. 23

1.5.2 DivX 6.0 ... 24

1.5.3 Real Video ... 25

1.5.4 Windows Media Video .. 25

2 CLIENT-SERVER ARCHITECTURE ... 27

3 RELATIONAL DATABASE .. 29

4 PREVIOUS ACADEMIC WORKS ON LIVE VIDEO STREAMING....................... 31

4.1 Multicasting ... 31

4.2 Unicasting .. 32

5 PROPOSED SOLUTION .. 35

5.1 Goals ... 36

5.2 Challenges .. 38

5.2.1 Bandwidth .. 38

5.2.2 Hardware cost .. 39

5.2.3 Processing cost .. 40

5.3 Application Flow .. 40

5.3.1 Capture rate ... 41

5.3.2 Buffer size .. 41

5.3.3 Compression level .. 41

5.3.4 Current user number .. 42

5.3.5 Maximum allowed user number .. 42

5.3.6 Maximum loss frame rate ... 43

5.3.7 Web server ... 44

viii

5.3.8 Client-server streamer of desktop application 45

5.3.9 TCP based streamer of desktop application ... 46

6 THE APPLICATION .. 48

6.1 Architecture and Requirements ... 48

6.2 Motion JPEG ... 49

6.3 MySQL Configuration and Database Structure .. 50

6.4 Desktop Application ... 52

6.4.1 MySQL connector .. 52

6.4.2 Touchless SDK .. 53

6.4.3 Components ... 53

6.4.4 Common section .. 54

6.4.4.1 Software manifest ... 54

6.4.4.2 Libraries .. 54

6.4.4.3 Constants ... 56

6.4.4.4 Namespaces .. 57

6.4.4.5 Camera settings and initialization ... 58

6.4.4.6 Stream settings ... 61

6.4.5 Video sampler .. 61

6.4.5.1 Function of “functiondb” .. 63

6.4.6 TCP socket solution ... 64

6.4.6.1 Function of “functiontcp” ... 65

6.4.6.2 Function of “OnRequestReceive” .. 65

6.5 Web Server Application ... 66

6.6 Screenshots and Manual ... 67

7 TEST RESULTS ... 70

ix

7.1 Response Time ... 71

7.2 Average Delay ... 71

7.3 Average Frame Rate ... 72

7.4 Buffer ... 72

7.5 Test Results of Database Model .. 73

7.6 Test Results for TCP Model ... 75

8 CONCLUSIONS AND DISCUSSIONS .. 78

8.1 Recommendations For Future Works .. 79

REFERENCES .. 81

CURRICULUM VITAE ... 86

x

LIST OF TABLES

Table 1 Test Results where DB Buffer Size is 1 ... 73

Table 2 Test Results where DB Buffer Size is 5 ... 74

Table 3 Test Results where DB Buffer Size is 20 ... 75

Table 4 Test Results Based on TCP Sockets ... 76

xi

LIST OF FIGURES

Figure 1 Typical Delivery of a Live Video Source ... 3

Figure 2 User Datagram Header Format .. 5

Figure 3 Jitter Frame Ratio is Higher in UDP.. 6

Figure 4 RTP Packet Header ... 7

Figure 5 A Typical RTSP Client-Server Communication ... 9

Figure 6 Feedback Architecture in RTCP ... 12

Figure 7 Typical Multihoming in SCTP ... 13

Figure 8 Packet Structure of SCTP .. 14

Figure 9 TCP Header ... 14

Figure 10 Termination of a Connection .. 16

Figure 11 Centralized and Decentralized P2P Systems ... 17

Figure 12 Distribution Hash Tables .. 18

Figure 13 Unicast Network Topology ... 19

Figure 14 Unicast Protocols and Structure ... 20

Figure 15 Splitting Topology ... 20

Figure 16 Multicasting Topology... 21

Figure 17 Difference Between Unicasting and Multicasting 22

Figure 18 Quality Scores of Video Codecs ... 23

Figure 19 Average Mean Opinion Score for Codecs .. 23

Figure 20 Client-Server Architecture .. 27

Figure 21 Market Share of Relational Database Management Systems 30

Figure 22 Flow Diagram of Proposed Solution ... 36

Figure 23 MJPEG Delivery ... 39

xii

Figure 24 A Screenshot of Test Platform Showing Common Variables 41

Figure 25 Compression Levels of JPEG ... 42

Figure 26 Abstract Design of Desktop Application .. 43

Figure 27 WampServer Panel in System Tray .. 48

Figure 28 Tables of Database “stream” .. 50

Figure 29 Installation of MySQL Component .. 53

Figure 30 Administration Privilege was Granted in Manifest File 54

Figure 30. Solution Tree of the Desktop Application ... 55

Figure 32 Constants of Desktop Application ... 56

Figure 33 Namespaces of the Desktop Application .. 57

Figure 34 Settings and Initialization of Camera .. 58

Figure 35 Querying Available Cameras .. 58

Figure 36 “startCapturing” Function for Initialization ... 59

Figure 37 “drawLatestImage” Function ... 60

Figure 38 Stream Settings on GUI ... 61

Figure 39 Creation of Thread ... 62

Figure 40 MySQL Database Connection .. 62

Figure 41 MySQL Command to Delete Frames .. 63

Figure 42 Flowchart of Video Sampler Loop .. 63

Figure 43 Delivery of Frames to Database ... 64

Figure 44 Function of “functiontcp” ... 65

Figure 45 Headers of TCP Streaming .. 65

Figure 46. Delivery of Data in TCP Approach ... 66

Figure 47 Streaming Implementation of “Stream.php” .. 67

Figure 48 Printing Frames in PHP .. 67

Figure 49 User Interface of Desktop Application .. 68

Figure 50 User Interface of Web Application .. 69

xiii

Figure 51 Response Time .. 71

Figure 52 Average Delay Metric ... 72

Figure 53 Determination of “Average FPS” .. 72

 1

INTRODUCTION

Live video streaming simply refers to delivery of multimedia that is received by an

end user from a provider [1]. This transfer is achieved constantly in this manner.

Live video streaming is the most important topic in telecommunication systems

(radio, television, etc.) since the need of video-based broadcasts is increasing

rapidly. The first “streaming” was used by IP Networks for video on demand (VoD)

in 1990s [2] [3].

Live video streaming needs a source (such as a camera), an encoder to make data

recognizable, a publisher and a distribution network to deliver the content.

Traditional live video streaming is based on this architecture to send single resource

to multiple clients.

However, there are some challenges to overcome such as performance, download

time and metadata problems in order to access data from the side of client. Because

traditional live video streaming is mainly accomplished by point-to-point connections

and requires buffering, compression and decompression of data in a traditional

streaming approach.

User Datagram Protocol (UDP) is very popular to deliver video and audio in real

time because of its lower latency and faster delivery. In spite of this trend, HTTP

based live video streaming is being considered by many researchers and content

providers. Transmission Control Protocol (TCP) based solutions reuses the network

infrastructures. So, amount of outbound traffic is reduced via widely deployed

caches [4]. This also prevents scalability problems of servers. Real-time Transport

Protocol (RTP) and UDP based solutions have problems with firewalls and NATs

when the data traverse. HTTP streaming is easier than UDP in this manner, since

the HTTP based solutions can easily use the abilities of typical web servers to deal

with various media files.

Video on demand offers an approach called progressive download, which does not

download the whole video at once, but downloads it in small parts and plays it

immediately.

 2

Peer to Peer (P2P) streaming is a new paradigm to deliver content to a large

number of clients at the same time with low cost. There are many applications that

offer this solution. But the key point is to analyze its performance with various

parameters to provide a good solution from the client’s point of view [5]. But,

generally, P2P solution is better if the number of clients is extremely large. Another

increasing demand for P2P is hybrid P2P which focuses on Internet Protocol

Television (IPTV) channels. Hybrid peer to peer approach deals with the cost of

peer to peer solutions while the content is hosted.

This study aims to implement a client-server architecture to gain performance and

provide a faster retrieval and storing time, better download time with minimum

metadata by using relational database. This architecture also provides a multiple

access on different domains like embedded devices, Internet based smart TVs etc.

Relational database for streaming which allows querying in a semantic way will

provide a solution to data access problems.

Implementation uses relational database in server side to store and retrieve video in

a fragmented format to share stream with multiple client at the same time without

any loss. As a result, we expect a more reliable, secure, and faster live video

streaming via relational database.

 3

CHAPTER 1

VIDEO STREAMING

1.1 Background

Delivery of user generated and live videos are very popular topics nowadays with

the increase of bandwidth capacities and interest in video sharing communities.

Digital contents such as mp3 music and videos became popular in the early 1990s

and the need for sharing these kinds of content increased rapidly and video player

devices replaced with digital media players by the increase of hardware capacities.

Live video streaming began to play a significant role with the increase in bandwidth

capacities in Internet. Now, live video streaming consists of various elements like

video source, receiver and a transmitter. Currently live video streaming is used in

wide range of categories. Most popular concepts are e-learning, IPTV, radio, video

sharing sites like Ustream [6] and areas such as security, and medical. The most

common video streaming architecture is shown in Figure 1 below. Basically, it

consists of a video source, destination, media publisher and transmission line.

Figure 1. Typical Delivery of a Live Video Source

Live video streaming was supported with many standards, and researchers focused

on the best video experience for the users. The most common protocols are listed

below [7]. Each of the protocols below has both advantages and disadvantages

depending on the usage, amount of clients and transmission line.

1. UDP, User Datagram Protocol

2. RTP, Real-time Transport Protocol

3. RTSP, Real-time Streaming Protocol

 4

4. RTCP, Real-time Transport Control Protocol

5. SCTP, Stream Control Transmission Protocol

6. TCP, Transmission Control Protocol

7. P2P, Peer to Peer

P2P based live video streaming became very popular since the ability of P2P is very

strong. If the number of receiver clients is too large, P2P based solutions should be

considered. We will focus on these protocols deeply on the next topics.

There are also 3 most common delivery methods. These methods are listed below:

1. Unicasting

2. Multicasting

3. Splitting

1.2 Historical Development

First transmission of signals was granted in the early 1920s by George SQUIER

over electrical lines [8]. This invention was the basic of live streaming which

provides continuous music and video to clients. But Real Networks [9] is the first

company which delivered a live video on 1995. They streamed a baseball match

over the Internet. After 1995, many companies started to use live streaming actively

in the streaming media market.

1.3 Protocols

1.3.1 User Datagram Protocol

User Datagram Protocol (UDP) is the famous member of streaming protocol suite.

UDP was designed by David Reed and defined in RFC 768 [10]. UDP send

messages called datagrams. It does not verify the message if it is sent or not. In this

manner, it uses a simple architecture with minimum mechanism. So there is no

guarantee of delivery and the stream between source and destination is extremely

unreliable.

If error checking and quality of service does not have a priority, UDP would be a

better solution. Otherwise TCP, Transfer Control Protocol which provides

handshaking facilities, is suitable for the design.

Here are the most common advantages of UDP:

 5

1. Transfer is straight forward.

2. Datagrams are open to development in order to model other protocols.

3. It provides simple implementation and suitable scalability.

4. It is ideal for real time transmission.

5. It is free of retransmission and it makes it suitable for VoIP and online

gaming.

Figure 2. User Datagram Header Format

Datagram sockets are used to grant delivery streaming. As seen in Figure 2 above,

socket needs to start from a source port and a destination port. Port field in the

“Datagram Header Format” is 16 bits. So, port value must be between 0 and 65535.

Ports between 49152 and 65535 can be used for any purpose since the ports

between 0 and 49151 are occupied by various services and standards.

UDP messages are carried on IP and header contains 4 fields. Each field is 16 bits

and source port field is optional in IPv6 version.

Here are the details of UDP fields [10]:

1. Source Port: It refers to sender’s port and must be null if it is not used.

2. Destination Port: It is a required field and refers to receiver’s port.

3. Length: This should be the total byte of header and datagram. It should be at

least 8 bytes since the header is 8 bytes. IPv4 limits the maximum size of

datagram to 65535 bytes + header. But IPv6 offers a better size of space for

datagram.

4. Checksum: It is used to detect problems and optional in IPv4. Checksum is

computed via summing all 16 bits using one’s complement.

Official RFC 768 declares IP interface as follows:

 6

“The UDP module must be able to determine the source and destination
Internet addresses and the protocol field from the Internet header. One
possible UDP/IP interface would return the whole Internet datagram
including all of the Internet header in response to a receive operation.
Such an interface would also allow the UDP to pass a full Internet
datagram complete with header to the IP to send. The IP would verify
certain fields for consistency and compute the Internet header
checksum.” [10]

UDP uses a simple structure and may be a good solution if the confirmation is not

required by the sender. For example, a VoIP user may receive the sound with a

small delay or jitter. But the client does not need to verify the message if the

problem is tolerable by the receiver.

UDP does not have any timeout, retransmission or acknowledgment mechanism.

UDP is completely unreliable in this manner. So, if the streaming design is based on

security feature, TCP should be preferred for the streaming design. Figure 3 shows

the jitter frame in UDP due to lack of acknowledgement mechanism.

Figure 3. Jitter Frame Ratio is Higher in UDP [11]

UDP send messages one by one and it is possible for one message to reach to

destination after its successor. UDP does not have any mechanism to control order

problem. UDP is extremely lightweight because of not having control mechanism for

error checking or retransmission etc. So it is carried on top of IP easily.

1.3.2 Real-time Transport Protocol

Real-time Transport Protocol (RTP) is an application layer protocol and especially

used for streaming audio and video. It transmits real time data over packets and it

has header and information sections that include retransmission and reordering

control for any frames that are out of order. It also has identification section for

encoding of media [12].

 7

In Real-time Transfer Protocol, TCP and UDP can be used. Handshaking is optional

and this feature is an advantage for RTP. RTP is usually combined with RTCP

which includes the information about quality of service and statistics. If they will run

together, RTP port should be an even number. RTP usually uses 1024 and 65535

ports.

RTP is designed for multimedia data to be streamed from one peer to end peer in

real time and has capabilities to prevent jitter and adjust the problems. It support

multicast functions like transferring media to multiple destinations. RTP is not

efficient on audio delivery since the correction of lost packets consumes intolerable

time. So, correction of one packet usually results in new packet lost. For this reason,

RTP is usually based on UDP.

RTP has two sub-protocols:

1. Data Transfer Protocol

2. Control Protocol

Besides the protocols above, there are two more optional components:

1. Signaling Protocol

2. Media Description Protocol

RTP has a session mechanism and it grants a separate session for each multimedia

stream. RTP handles different sessions for audio and video where each session has

IP address and port numbers for RTP.

Figure 4. RTP Packet Header [13]

 8

RTP is based on application layer and suitable for integration to new formats such

as H.264, MJPEG. RTP allows it in packet header and encoding information can be

placed within RTP profile. RTP header has many optional fields after size of 12

bytes. In Figure 4, all fields are shown with offset values. Below are the fields of

RTP header:

1. Version: It refers to protocol version.

2. P: Padding.

3. X: Extension.

4. CC: Contributing source count. It contains the identifiers.

5. M: Marker.

6. PT: Payload Type.

7. Sequence Number.

8. Timestamp.

9. SSRC: Identifier of synchronization source.

10. CSRC: Identifier of contributing source.

11. Extension Header. This field is optional.

RTP was initially designed for multimedia conferences for the multi-participants. But

it also provides other functions like storing continuous data, distributed simulation

and control applications [13].

RTP has not any control activity to make sure that delivery is successful or not.

RTP itself does not guarantee the delivery and out of order problems. So, RTCP is

used to monitor the quality of service and prevent the out of order problems [13].

RTP offers a new generation of application level protocol to be integrated with any

kind of encoder and protocol.

1.3.3 Real Time Streaming Protocol

Real Time Streaming Protocol (RTSP) is a control protocol to deal with networking

applications. It is widely used in TV media and communication systems. Protocol

manages the transfer between end peers. It offers new generation actions such as

pause, seek etc [17]. Once the stream is delivered to client, both server and client

 9

have ability to obtain resource description, session link and control play via

switching RTSP message [17].

There are two types of messages in the protocol. Request and response messages

usually include state messages and responses to related requests. There are

several types of request messages in RTSP. Figure 5 includes an example of client-

server communication:

Figure 5. A Typical RTSP Client-Server Communication [17]

1. SETUP: Initiates the session and queries the server for any available stream

resource.

2. PLAY: Simply delivers the media.

3. PAUSE: Stops stream but it does not break the session.

4. TEARDOWN: Breaks the session.

5. SET_PARAMETER: Sets parameters for the session.

6. GET_PARAMETER: Gets parameters from the session.

 10

After the link of session, RTSP itself does not operate the control of streaming

media. Most of the RTSP media servers use the Real-time Transport Protocol and

Real-time Control Protocol to deliver the stream. On the other hand, some custom

protocols can be used instead of RTP. For example, Real Network uses Real Data

Transport (RDP) [18]. However it is not widely used in streaming market.

RTSP allows custom directions to manage streams. RTSP has ability to deal with

concurrent sessions and control on state identifier. RTSP operates with TCP to

establish connection between end points.

RTSP uses 554 as port number in transport layer and has OPTIONS feature like in

HTTP requests. RTSP control messages are bidirectional. They can be sent from

client to the server and from server to the client. For the available request types,

OPTIONS request is sent from client to server.

Client to server:

Response from server to client:

All other requests must start with “rtsp://” and client should be able to understand

the response format. RTSP is being widely used by many companies and

applications. From the server side, there is a number of implementations. Some of

them are:

1. FFmpeg [19]

2. Quicktime Streaming Server

3. VideoLAN

4. Windows Media Server

5. Youtube

Client side implementations are also being widely used. Some of them are:

 11

1. cURL

2. Quicktime

3. RealPlayer

4. Skype

5. VLC Media Player

Real time Streaming Protocol is very popular in daily life and it is being used for

streaming in set up boxes and media players as de facto standard.

1.3.4 Real Time Control Protocol

Real Time Control Protocol (RTCP) is designed for a service for RTP. RTP itself is

not a reliable delivery protocol. For this reason, RTCP monitors the quality of service

for RTP.

It has four components [14]:

1. Feedback mechanism for data distribution quality.

2. Granting an ID for each participant.

3. Scaling the control packet mechanism.

4. Session control information.

RTCP has ability to deal with multicast and unicast designs. Unicast designs provide

many abilities including media delivery control and rate control for synchronization.

RTCP uses the same address with the RTP, and packets are delivered via single

session to all clients.

There are several types of RTCP packets [15]:

1. Source description

2. Sender report

3. Receiver report

4. BYE packets

RTCP also provides additional packets, application specific RTCP packets. For a

particular RTP session, if the number of client grows, then RTCP traffic increases

linearly. In this manner, bandwidth of RTCP is considerable. As seen in Figure 6

 12

below, RTCP feedback messages are sent to each connected node separately. In

this manner, if the number of receivers is too large, RTCP report delays can occur

up to several minutes.

Figure 6. Feedback Architecture in RTCP [16]

1.3.5 Stream Control Transmission Protocol

Stream Control Transmission Protocol (SCTP) is a transport layer protocol and it

offers advanced features unlike TCP over the IP based designs. It has some

common features of UDP and TCP. For example, SCTP uses messages like UDP.

However it provides some reliability features like TCP.

SCTP is a young protocol. However it was handled by RFC and standardized

properly with the aid of IETF [20] [21]. SCTP offers reliable delivery service and it

makes sure that packets are sent to end points without an error. SCTP provides

session based delivery like TCP and the session is kept until the whole transmission

is completed successfully. SCTP also provides advanced features for audio delivery

and audio signaling.

Here are the main features of the protocol [21]:

1. Unicast: SCTP is oriented toward Unicast protocol. It supports the relation

between two peers.

2. Reliable: SCTP can easily detect and correct the problems such as

corruption, out of order sequence and duplication.

3. Message oriented: SCTP is designed message oriented like UDP. However

it grants an implicit structure.

4. Rate adaptive: Similar to TCP, it controls the bandwidth and check the

scalability of transfer.

 13

5. Multi-stream: This feature divides the stream into small sub-streams to

prevent data loss.

6. Multihoming: If the client has more than one IP address, it enables the

transparent paths to the network. Figure 7 shows the typical structure of

SCTP.

Figure 7. Typical Multihoming in SCTP [20]

SCTP is being used in almost all Linux distributions. The protocol is being used for

signaling the networks and IP based signaling for UMTS networks. SCTP delivers

the data to transport layer via messages and divides the messages into small

chunks. Each chunk is identified by a header. Then each chunk is bundled to SCTP

packets in order to submit them to Internet Protocol.

SCTP provides a simple packet structure. Each packet has two sections. Figure 8

includes the packet structure with offset bits:

1. Common header

2. Data chunks

 14

Figure 8. Packet Structure of SCTP

1.3.6 Transmission Control Protocol

Transmission Control Protocol (TCP) is a core protocol for Internet Protocol. Unlike

SCTP, it supports byte stream and handles the delivery control with byte numbers.

For this reason, it is called TCP/IP. It provides error checking mechanisms and

consumes more time than UDP.

TCP has a reliable delivery mechanism and it guarantees the delivery of stream to

the end point. It uses positive acknowledgements to deal with the retransmission of

lost data over the network. As seen on the Figure 9, TCP contains two sections:

Header and data where header itself consists of 10 fields.

Figure 9. TCP Header [22]

Source and destination ports are 16 bits which identify the sender and receiver

ports. Sequence number is 32 bits. This field controls the order of packets and helps

to fix out of order problems. Acknowledgement number is 32 bits which controls the

reliability between receiver and sender. Data offset is 4 bits and reserved section is

3 bits. This field is planned to be used for the future. There are 9 flags and each flag

is 1 bit. Window size, urgent pointer and checksum are 16 bits.

TCP has three types of operations [22]:

 15

1. Establish a connection: Protocol uses handshake operation to establish a

connection. Before a connection request, a server must listen to a port. After

that, client can make a request. First, client sends SYN to the server. Server

responses with SYN-ACK with a sequence identifier. Finally, client sends

ACK message to the server including the sequence identifier that is received

via SYN-ACK.

2. Terminate a connection: TCP uses 4 way handshaking to close the

connection. FIN message is sent to terminate the connection. Then the other

side responses with ACK and FIN messages. Finally, client sends ACK

message to the other side and terminates the connection. Figure 10 shows

the communication of termination between peers.

3. Protocol operations: TCP operations are handled by operating systems and it

uses states to manage the operations [22]:

a. LISTEN: Server listens to a particular port for connection request.

b. SYN-SENT: Refers to a waiting state, after the connection request.

c. SYN-RECEIVED: Refers to a confirmation state after the connection

request.

d. ESTABLISHED: Server or client is ready to send data.

e. FIN-WAIT-1: Termination request for client and server.

f. FIN-WAIT-2: Termination request without acknowledgement.

g. CLOSE-WAIT: Waiting for termination.

h. CLOSING: Waiting for an acknowledgement for termination.

i. LAST-ACK: Waiting for the last approval for termination.

j. TIME-WAIT: Refers to time in order to make sure that request is

received.

k. CLOSED: No connection exists.

 16

Figure 10. Termination of a Connection

TCP has many advantages compared with the UDP:

1. Sequence is kept ordered.

2. Retransmission is possible.

3. Congestion control.

4. Delivery control.

TCP identifies the byte data with a particular number. For example, bytes are

labeled with 10, 11, 12, 13, 14 and 15. Once the 10 is sent, receiver responses ACK

including byte number 10. After the delivery of 10, same procedure is followed by

11, 12, 13, 14 and 15. This mechanism provides error free data transfer.

1.3.7 Peer to peer

Peer to Peer (P2P) video streaming offers many new abilities for traditional

protocols such as UDP and TCP. If scalability is an important issue for the stream,

then P2P would be the best solution. In P2P streaming environment, each node can

act as a stream source. So, a node can be both receiver and sender. In this manner,

no dedicated infrastructure is required [23].

Even though it has many advantages, there are numerous challenges also. For

example, packets are delivered to long haul of distance on an unreliable path

between pairs. This causes delays and decrease in video quality.

In P2P systems, each node is equal and has their own tasks. So each node can

deter the resources by itself. It can adjust the bandwidth, disk storage or processing

power to other nodes. P2P systems are usually used at application layer and with an

abstract overlay network. Indexing and searching peers are handled at this network.

 17

P2P transfers and network are not defined with the terms of traditional client-server

architecture. In client-server mode, client makes a request and server responses

due to the request. P2P nodes are equal and they act as both client and server.

Each node is linked to each other. If a node knows the location of other node, then it

creates a direct link to it.

Figure 11. Centralized (right) and Decentralized (left) P2P Systems

There are two different networks based on linking two nodes [24]. Figure 11 includes

the centralized and decentralized P2P systems in topological format:

1. Structured P2P Networks: Peers are linked with a particular algorithm and

criteria. Distribution hash table is used for indexing. Structured networks

provide high scalability and performance.

2. Unstructured P2P Networks: Simply, it does not have any central node and

rule for linking. Nodes are connected via ad-hoc based network. There are

three types of unstructured P2P networks:

a. Pure P2P: Consists of one delivery layer and there is no any

infrastructure network.

b. Centralized P2P: A central node is used to index and it functions to

bootstrap.

c. Hybrid P2P: There are super nodes to handle infrastructure within closer

nodes.

In decentralized P2P systems, distribution hash tables are used like a lookup

service. Hash table includes key and hash value of key. Figure 12 illustrates the

hashing table over distributed network:

 18

Figure 12. Distribution Hash Tables [26]

If a node looks for “Fox”, it gets the key for data “Fox”. Each node is responsible for

mapping table. This feature provides more scalability and prevents the new node

arrivals and fails.

Video streaming which is based on P2P system generally requires server, controller

and peers. If a user wants to join a network, it sends a JOIN message to controller.

Controller responses with an ACK message including network ID and connection is

closed. After a successful log on, a node looks around for the object index. If it

cannot find any index, it submits an UPDATE message to controller. Then, controller

updates its index and sends an ACK response to the peer. The connection is closed

[27].

There are numerous advantages of Peer-to-peer systems over classical client-

server architecture:

1. Configuration and participation of nodes are easy to implement.

2. Each node shares its own resources. In client-server model, only server

shares the data.

3. Reliable: If one node fails, system continues to work.

4. Each node is responsible for its system maintenance and a system

administrator is not required for the system.

5. Cost of network is affordable.

There are also disadvantages as well as advantages:

1. Administration is difficult. Because the system is decentralized and peers

cannot be controlled directly.

2. Security problems. Unwanted data can be transmitted over this network.

 19

3. Data recovery is difficult since each node is responsible for its own computer

and sharing.

4. Legal problems. Copyrighted files can be transmitted through the network.

P2P is extremely used in our daily life and especially content distribution is handled

via P2P networks.

Here are some examples of P2P networks:

1. File sharing: Bittorent, G2, eDonkey.

2. P2P CDN: Peer-to-peer content delivery networks are iraffic, Kontiki etc.

3. Software distribution: Linux and some games uses software distribution.

4. Video streaming: P2PTV, PPLive, LiveStation and TVUPlayer.

5. Peercasting: Peercast, FreeCast, Rawflow and IceShare.

6. Communication: Skype uses P2P networks.

P2P Internet traffic occupies the 60% of current Internet traffic [23]. For this reason,

some of ISPs limit the usage of P2P due to high bandwidth usage.

1.4 Delivery Methods

1.4.1 Unicasting

Unicasting transfers the data and stream to only single direction addressed with a

unique one [28]. Figure 13 shows the network topology of unicasting:

Figure 13. Unicast Network Topology

The most of the client-server traffic in Internet is based on unicasting. Simply, a

client makes a request to a particular server via TCP/IP connection and server

responses to client address. The path between the client and server is single and

data is transmitted through one direction.

 20

Unicasting is not efficient on video streaming applications since the delivery of data

is one directional. If the number of receiver client is too large, then unicasting is not

a better solution. Because video stream has to be duplicated for each client and it

will consume the server’s computing resources. Moreover, it consumes the

bandwidth and decreases the video quality and performance.

As seen in Figure 14, unicasting uses session based protocols such as

Transmission Control Protocol and User Datagram Protocol to deliver stream. Once

a user connected to server, it establishes a direct communication with the server.

Each client consumes its own dedicated bandwidth. For example, if a client

consumes 20 KB per second, then 20 clients consumes 400 KB per second [29].

Figure 14. Unicast Protocols and Structure [30]

1.4.2 Splitting

Splitting is a hybrid model of unicasting and multicasting. Simply, stream source

makes a connection to a media server and it does not communicate with clients

directly. Relation between source and media server is based on unicasting.

A media server shares the stream with multicasting. Stream is delivered to multiple

users at the same time. Relation between media server and clients is multicasting.

Figure 15 shows the splitting topology which consists of a centralized media server:

Figure 15. Splitting Topology [30]

1.4.3 Multicasting

Multicasting is a delivery method which is able to carry one message to multiple

destinations at the same time within a single transmission line. As seen in Figure 16,

a single copy is created from source and other copies are duplicated through

network elements like routers and hubs [31].

 21

Figure 16. Multicasting Topology

Multicasting usually implemented in Internet Protocol (IP) for Internet TV streaming

and media streaming. IP based multicasting is based on IP routing at router level on

Data Link Layer. In IP broadcasting, messages are sent to all clients on the network

including the clients who do not want to get message. This method is useful for

satellite or similar wireless networks.

Routers are the basic players in multicasting since they are responsible for the route

and the copy of the messages to clients. For this reason, ISPs must enable

multicast features of the routers. Otherwise a multicast delivery is not possible. If a

multicast network is planned over Internet or long haul distance, then VPN tunnels

must be used to connect two multicast enabled routers.

Multicasting can be used on any kind of network that includes TCP/IP, ATM,

Ethernet, frame relay and satellite [31].

Multicasting operates on User Datagram Protocol to deliver the messages. Clients

do not send ACK messages to the sender since the nature of UDP is unreliable. So,

there is not any handshaking protocol and delivery is not secure. Sender is not able

to verify the delivery. At this point, UDP reduces the network traffic and gains the

performance of overall data delivery to end points. Moreover, it provides more

scalability to the network and stream can reach to more users.

 22

Figure 17. Difference between Unicasting and Multicasting [31]

As seen in Figure 17 above, stream is duplicated for each user in the source of data

and delivered on the same transmission line. This method is not efficient if the

number of client is too large due to lack of bandwidth.

However, in multicasting, stream is created once and delivered to the clients on the

same transmission line. Copies are created on the network elements such as

routers. This method is more efficient when compared with unicasting method if the

number of receiver clients is increasing. Besides significant advantages of

multicasting, there are some challenges at installation point.

Multicast is usually supported by many protocols such as User Datagram Protocol

and applications. But in complex networks, maintaining a reliable, lossless delivery

line is a serious problem. For example; constant data streams, reliable delivery, and

managing the general communication require complicated configurations. However,

there are still unsolved questions and they are waiting for researchers.

1.5 Streaming Codec

Codec part of the application is critical due to bandwidth problems while transferring

stream to multiple clients. Another major problem with live video streaming is the

quality of service. Frame rates and screen resolution of streaming video directly

affect the satisfaction of the client and cause server to consume less system

resources.

 23

According to a research [41], H.264 codec was provided the best performance

compared to H.263, XviD and Real Video. Figure 18 shows the results of research:

Figure 18. Quality Scores of Video Codecs [41]

According to another research [42], H.264 gives the best mean opinion score

compared to Divx 6.0, XviD 1.1.0 and WMV 9.0. Figure 19 includes the scores of

this research based on mean opinion:

Figure 19. Average Mean Opinion Score for Codecs [42]

Due to performance results of two separate tests, H.264, DivX, WMV, XviD and

Real Video codecs are reasonable for integrating live video streaming. Especially

H.264 provides some additional quality of service advantages over live video

streaming as well as bandwidth performance.

1.5.1 H.264/MPEG-4 AVC

H.264/MPEG-4 Advanced Video Coding also refers to H.264/MPEG-4 Part 10. This

compression standard is being used widely for delivering high quality video and it is

available since 2003 [43].

H.264 is a block oriented codec and widely used by many popular Internet sources

such as Vimeo, YouTube. This codec is also being used in satellite based HDTVs

and Blu-ray discs.

Here are some basic features of H.264 [44]:

 24

1. Picture prediction based on block sizes 16x16, 8x8 and 4x4 with the aid of

variable block-size motion compensation (VBSMC).

2. Prediction of edges between blocks.

3. Lossless coding.

4. Interlaced-scan video coding.

5. Transform design features within multiple block sizes.

6. Quantization design with step size control.

7. In-loop deblocking filter.

8. Entropy coding with CABAC and CAVLC.

9. Loss resilience features with network abstraction layer, flexible macroblock

ordering, data partitioning, redundant slices and frame numbering.

Based on the features above, H.264 provides different profiles for application level

purpose. Each profile activates the different features of H.264 due to purpose of

application. Beside profiles, H.264 also uses levels to determine the performance of

decoder for a profile. A level consists of following features:

1. Maximum decoding speed.

2. Maximum frame size.

3. Maximum bit rate.

4. Video resolution.

Maximum resolution is 4096x2304 with 56.3 frame rate.

1.5.2 DivX 6.0

DivX 6.0 is formerly known as MPEG-4 Part 2 and developed by MPEG. Similar to

H.264, it provides some features such as profiles and levels. Each profile is created

for different purposes and domains.

“MPEG-4 part 2” offers three basic profiles [45]:

1. Simple Profile: This profile is used where the resolution and bit rate is not

prior to applications. VoIP is a typical example of Simple Profile.

 25

2. Advanced Simple Profile: It provides more advanced features similar to

H.263 including quantization, interlaced support, B-frames support, Qpel

motion compensation and global motion compensation (GMC).

3. Simple Studio Profile: It consists of six levels. Each level includes separate

bit depth, resolution, frame rate and data rate.

Despite the significant advantages, this codec is being criticized by many authorities

including Michael NIEDERMAYER, who is a maintainer of FFmpeg [46].

1.5.3 Real Video

Real Video is a compression codec developed by Real Networks. They usually

combine this codec with Real Audio and pack them as Real Media (.rm) container.

Real Networks was the pioneer of the streaming market with the first live video

streaming using Real Media format.

Real Media can be streamed over Internet via Real Time Streaming Protocol

(RTSP). However, they control the sessions with RTSP and actual delivery is based

on Real Data Transport (RDT). This caused integration problems by video players.

For example, a user has to install Real Player to play Real Media [47].

Almost each Real Video releases use different compression formats. Here are the

versions and compression formats [47]:

1. rv10 and rv13: H.263.

2. rv20: Real Video G2 based on H.263.

3. rv30: Real Video 8.

4. rv40: Real Video 9

5. rv40: Real Video 10.

1.5.4 Windows Media Video

Windows Media Video (WMV) is a codec developed by Microsoft. This codec was

designed to stream video over Internet as competitor to Real Video. Currently,

Windows Media Video released the 9th version [73].

Microsoft packed WMV as Advanced Systems Format (ASF) container to define

streaming properties [48]. ASF consists of some properties related to media file

such as copyright management and cryptography keys.

 26

Older versions such as WMV 7 and WMV 8 codecs are competitors of MPEG-4

ASP. However, WMV 9 raised new properties and can be compared with H.264.

WMV 9 has non-square integer transform feature that H.264 has not. Nevertheless,

H.264 has additional advantages over WMV 9, such as low bit rates, reference B-

frames, and in-loop filtering.

WMV codes are playable on almost all players. WMV codec became native in

Windows operating systems since the Windows has a platform advantage.

However, WMV can be played on all kind of platforms using third party encoders.

 27

CHAPTER 2

CLIENT-SERVER ARCHITECTURE

Client-server architecture is a network topology that arranges the relation between

nodes. It has been developed during 1970s and now it is one of the prominent

member of computer networks [33].

Most of the services on the Internet are based on client-server architecture. For

example, email services, web sites, game servers etc. are based on client-server

architecture. Client-server model offers two types of nodes:

1. Server: A computer system that shares resources.

2. Client: An application or computer that requests a particular data from.

Figure 20. Client-Server Architecture

A server can share all resources such as data, storage, CPU and others. Figure 20

illustrates the usage capacity of client-server architecture. Client-server architecture

is usually based on time sharing which allows multiple accesses to a single server at

the same time. Server must serve to clients equally. Actually, servers can response

to a single request at the same time. Time sharing makes it possible to handle

clients.

Client-server architecture is designed in application layer and various protocols are

used to maintain a valid communication between client and server. These protocols

also refer to common language.

 28

Both client and server can exist in a single computer. Since the client-server

architecture requires application layer, they can exist and communicate within a

computer. Moreover, a computer can consist of more than one server such as web

server and database server. When compared to P2P networks, client-server

architecture provides some additional advantages:

1. Accessibility: A server in client-server architecture is always ready to serve

resources to client. In P2P, peers must be online to obtain particular data.

Otherwise data is not accessible.

2. Cooperative: In client-server architecture, multiple users can access to a

single copy of data within a central, common platform. Update and support

control is easier.

3. Centralized: Server facilities such as backup and maintenance are easier

and cheaper in terms of cost.

4. Security: Client-server architecture provides more security opportunities

compared to P2P. Since the configuration and permissions are single within

a server, it is not as complicated as P2P systems.

5. Performance: Path between client and server is single. So, the transmission

between server and client is straight forward. Messages do not have to

traverse around routers and nodes.

6. Reliability: There are no third party nodes between server and client. So the

data is more secure.

In this thesis, client-server architecture was preferred for accessibility, centralized

features and performance features to provide a better live video streaming

experience to the clients. Because quality of service and performance are the most

important keys for media streaming that satisfy the client’s video experience.

 29

CHAPTER 3

RELATIONAL DATABASE

Relational database is a set of data organized in a predefined structure. Relational

model is used to create a relational database. The most popular database

management systems are based on relational database [34]. A relational database

consists of tables and a table contains records called “tuple”. Tables also have

attribute that refers to column.

MySQL is a popular relational database management system and has some terms

which have equivalent in relational database terminology. In relational database,

each row has the same attributes and the relation is defined within a table that

consists of rows and columns. Relation is provided via operation commands. Insert,

delete and update commands modify the relation. A primary key is defined within a

table to distinguish all of the rows. Each primary key must be unique [35].

A foreign key is the primary key of another table that is used in an attribute of the

table. Foreign keys do not need to be unique value. Foreign keys are essential for

querying multiple tables [35].

Relational database systems come with data redundancy problems. Briefly, data

redundancy occurs if a field appears more than once in a database. In this case,

different values of redundant data can be fetched through multiple database

operations. For instance, different names of a customer can be obtained for the

multiple orders of customer. However, programmers are able to overcome this

problem using foreign keys properly.

Indexes are the major players of relational database. They provide a faster search

within high number of rows. Indexes use B+ trees and decrease the lookup in table.

It gains the performance dramatically. There are four mathematical set operations to

query relational database using relational calculus and algebra [35]:

1. UNION: Combines rows and removes duplicates.

2. INTERSECTION: Produces the differences of two relations.

 30

3. DIFFERENCE: Produces the tuples that exist in first relation but not exist in

second relation.

4. CARTESIAN PRODUCT: Combines all elements of first relation with the

elements of second relation.

According to Techtarget.com [36], Oracle is the leading company that uses

commercial relational database. On the other hand, MySQL is the leading DBMS in

open source league. According to another market share report, Oracle is deployed

%70 and SQL server is deployed %68. Figure 21 shows the market share of

relational database management systems [37].

Figure 21. Market Share of Relational Database Management Systems [37]

In this study, MySQL is used to handle relational database queries since it provides

free, fast and quick solution.

 31

CHAPTER 4

PREVIOUS ACADEMIC WORKS ON LIVE VIDEO STREAMING

There are many active research topics on live video streaming since the live

streaming and IP based TVs are popular and commercial nowadays.

The idea of streaming live video over database itself is a new topic in live video

streaming market. However, multicasting based solutions are the major topics in

research areas since they are more commercial due to scope of streaming. Unicast

streams are extremely limited with the processing resources of server such as CPU

and RAM. In other words, hardware limits the service capacity of the server. On the

other hand, bandwidth between video source and client also limits the stream since

the transmission line is single because of the nature of client-server architecture.

Approach of delivering video over database is a typical unicasting streaming. For

this reason, this study can be compared with only unicast based streaming

approaches such as TCP socket oriented streaming. Researches on live video

streaming focuses on two different delivery concepts: Unicasting and multicasting.

4.1 Multicasting

Multicast solutions are the most popular topic of video streaming market because of

new generation IPTVs and sharing applications. Although they have many

advantages, they usually need to have a special configuration on network or a client

application to handle P2P stream.

The latest active researches are listed below:

1. “Feature Research on Unstructured P2P Multicast Video Streaming” by Yang

YUEXIANG, Liu CHAOBIN, Huang GAOPING [52].

This article defines the security problems and offers four solutions to

distinguish P2P multicast video streaming from P2P file streaming. As a

result, they provide detection and identification of P2P multicast video

streaming with %87 accuracy rate.

 32

2. “Optimized Channel Rate Allocation for H.264/AVC Scalable Video Multicast

Streaming over Heterogeneous Networks” by Bin ZHANG, Xiang LI, M.

WIEN, J. OHM [53].

This study offers an allocation for bitrate to different kind of network

abstraction level based on H.264/AVC. As a result, paper offers a new and

fast algorithm that provides a suitable protection approach on the network

abstraction level.

3. “P2P Multicasting Network Design Problem — Heuristic approach” by

Krzysztof WALKOWIAK [50].

The paper focuses on P2P multicasting design problems due to rapid

deployment and low costs. This study aims to reduce overlay network cost

via a heuristic algorithm. Therefore, tests were done for various amounts of

nodes and results were not computed in larger networks. Nevertheless, cost

of a network can be determined through the experiments.

4. “Survivability of P2P Multicasting” by Krzysztof WALKOWIAK [51].

This paper was published in 2009 and it describes the key points on

guaranteeing the delivery to end point. In some cases such as delivering

stock data, security updates, etc., content of delivery material is very

important. For this reason, paper offers particular solutions to overcome this

problem.

This study is not directly comparable with multicasting solutions since it is based on

unicasting. For this reason, challenges of multicasting solutions are not the

problems of this study. The reason is related to three key topics of video streaming:

First, this study offers a simple network topology while P2P needs a complicated

and well-structured network design. So, a P2P network must be designed carefully

to provide a fast and reliable delivery. Second, P2P solutions are not able to provide

a reasonable delay compared with unicast solutions. Because, video frames

traverse through multiple nodes over complicated network. The last problem is

security. This study provides a full control over the stream. Each step of the stream

can be programmable and controllable.

4.2 Unicasting

Unicasting solutions offer small video streaming scope compared with multicasting

solutions. However, unicast based streaming solutions are more suitable for

 33

businesses and individuals if they offer a low scope video streaming due to rapid

deployment and compatibility.

Unicast based video streams can be fetched in any kind of network topology without

an additional network configuration. Moreover, unicast video streams can be

controlled and specialized for any unique video streaming design. For these

reasons, if the scope of video streaming is limited, then unicasting would be a better

solution to provide a fast, reliable and stable delivery.

Here are the most recent works on unicasting:

1. “Maximizing Video Quality for Several Unicast Streams in a Multipath

Overlay Network” by S. BOUDKO, W. LEISTER, C. GRIWODZ, P.

HALVORSEN [54].

Video streams that are based on overlay networks for multipath need to

manage available bandwidth for all clients. At this point some decisions are

required. This study offers a scenario with a benchmarking system to

determine the optimal solution for each delivery path.

2. “Adaptive Unicast Video Streaming With Rateless Codes and Feedback” by

S. AHMAD, R. HAMZAOUI, M. AL-AKAIDI [55].

This paper offers an adaptive error correction to keep video stream

undamaged. According to paper, channel code rate is determined in

advance with an estimated pocket loss rate. However, health of the network

is not stable and predictable.

3. “Advanced Rate Adaption for Unicast Streaming of Scalable Video” by C.

LIU, I. BOUAZIZI, M. GABBOUJ [56].

A paper from 2010 provides a mechanism called “Multiple Virtual Client

Buffer Feedback”. It includes various information about sub-streams in

scalable media streaming. This mechanism is proposed as an alternative to

Packet-Switched Streaming Service (PSS).

4. “Real Time Video Streaming over Heterogeneous Networks” by M.

QADEER, R. AHMAD, M. KHAN, T. AHMAD [57].

Article defines the key features of delivering video stream over

heterogeneous networks. Bluetooth, Wi-Fi and GPRS-EDGE networks are

 34

used with MP4 simple profile and IETF protocols RTSP, RTP, and RTCP to

overcome problems such as error correction, bit rate and bandwidth.

Live video streaming that is based on unicasting provides fast and reliable solution.

However, service capacity of unicasting is extremely limited. Because video source

is only available in server, and stream must be duplicated for each additional stream

request. On the other hand, bandwidth limits quality of video due to single

transmission line. This study offers a new approach to reach more clients compared

with traditional unicasting solutions using relational database and web server.

 35

CHAPTER 5

PROPOSED SOLUTION

Live video streaming is a prominent topic of data delivery in computer networks.

Especially, IPTV and digital media streaming are the popular topics in the world

since the traditional TV replaced with digital streaming. Moreover, live video

streaming is being used in wide range of categories from military to medical

projects.

High bandwidth capacities enabled streaming to be used in many areas and will be

the hot topic of communication systems. Besides the growing need of live video

streaming, there are serious challenges:

1. Performance: If a single stream has to arrive to thousands of people, there

exists delay and quality of service problems. For this reason, a client may

receive the video or TV broadcast after a minute with a low resolution. On

the other hand, lost frames or packets are occurred due to the distance

between source and destination.

2. Download time: If the stream is on a limited bandwidth capacity, then users

have to wait for frames to be loaded. A better download time satisfies the

user experiences. So, stream source must interact with the end user and

adjust the resolution to fill the bandwidth of transmission line between video

stream source and destination.

3. Response time and delay: Delay and response time increase proportional to

number of connected clients. In other words, stream must buffer the stream

for all kinds of network types. For this reason, response time is one of the

challenging problems.

In this manner, desktop application implements two unicast streaming architectures

to make a proper comparison. Here are the architectures that are implemented

within the desktop application part of the study:

 36

1. Live video streaming based on database and client-server architecture: It

consists of two tiers. First one is implemented via desktop application and

other one is via PHP to handle stream over database and web server.

2. Streaming via TCP sockets: This approach was implemented in Microsoft

Visual Studio 2008 with C# programming language and it listens to a

particular port within the server.

Streaming is usually operated under P2P or multicast based connections. In spite of

reasonable features of P2P and multicast, there still exist problems that are waiting

for researchers [38].

This study aims to provide client-server architecture to solve performance problems

with a location aware approach. Location awareness allows this structure to be

accessed from multiple domains like embedded devices and Internet based TVs. In

other words, stream can be accessible over web server where the Internet

connection is available.

Desktop and web application use relational database management system to store

and retrieve stream in a fragmented format to share it to multiple users. Relational

database allows querying in a semantic way to solve data access problem.

As a result, we expect a more reliable, secure, and faster live video streaming using

relational database.

5.1 Goals

In this section, advantages of the study are going to be discussed. Besides

significant advantages of P2P streaming and multicast, they have still problems on

several issues. These problems occur usually in gaining the number of connected

client or delay and security problems.

Figure 22. Flow Diagram of Proposed Solution

 37

As seen in Figure 22 above, video is fragmented by desktop application and each

fragment is delivered to relational database and it is stored in a separate row. Then

it is served to clients over “Web Server”. Architecture offers an easy installation and

access to data over the Internet.

Here are the goals of “A Client-Server Architecture for Live Video Streaming Using

Object Relational Database”:

1. Client-server architecture: Client-server approach provides more security and

reliability options to streaming design. Moreover, transmission line can be

under control and streaming parameters can be tweaked easily. For

example, if the bandwidth of transmission line is not sufficient, video

resolution can be decreased easily. Compared with other approaches, it is

more reliable and secure especially for military and medical streaming

designs.

2. Download time: P2P and multicast based solutions are lack of download time

due to number of subscribers and bandwidth capacity. This study aims to

minimize the download time via setting buffers in relational database.

3. Response time: Using the abilities of client-server architecture, a better

response time may be obtained even the number of clients is too large.

While video streaming deals with multiple clients, web and database server

can handle the link between source and destination.

4. Scalability: Scalability of live video streaming design depends on the

scalability of web server. With today’s technology, client-server based

solutions can be easily scaled.

5. Location aware: In client-server based live video streaming architecture,

stream is reachable where the Internet connection exists. Moreover, stream

is delivered via a single URL. It is easily fetched by embedded devices or

within a software flow. On the other hand, stream can be queried via

database server and delivered in a custom form.

6. Easy data access: In client-server streaming design, stream is always ready

to go with a single SQL command. Stream is available on multiple domains

at the same time.

7. Lossless delivery: Client-server based streaming allows a full control over the

delivery. Tolerance depends on the tweak settings of streamer application.

 38

For this reason, if there is no bandwidth problem between source and

destination, delivery goes lossless.

8. Secure and reliable: This study offers streaming over HTTP connection.

Thus, stream is delivered via single URL. If a secure connection is

maintained via SSL certificate, a secure and reliable communication will exist

between source and destination.

9. Web and DB server support: Web servers and database servers are

specialized for the best delivery experience between client and server. So,

an integrated solution gains streaming and provides some additional

advantages. For example, web server has a great ability to host multiple

clients at the same time. It opens slots for new connections and waits for the

best performance. This feature provides faster response and minimum delay.

Similarly, database server makes it possible to deliver data on the fly.

5.2 Challenges

Client-server based live video streaming design has some challenges even though it

has many advantages.

There are three basic challenges as follows:

5.2.1 Bandwidth

Video delivery consumes more bandwidth resources compared with MPEG based

delivery since MJPEG was used as video codec in the study. Especially MP4 is very

bandwidth friendly.

“International Cablemakers Federation” publishes in a bandwidth requirement report

as follows:

“The currently low penetration figures for IPTV and HDTV do not mean
that these technologies have failed in the market. Rather, they mean
that the growth is yet to come, and the bandwidth requirements for
digital video may encounter a strong surge as more households adopt
these technologies in three to five years. Transmission speeds needed
to support HDTV depend on the compression technology. With MPEG-2
compression, an HDTV signal will require 15 Mbps to 20 Mbps. As of
early 2007, MPEG-4 was not generally available, but estimates for
streaming HDTV over digital channels ranged from 5 Mbps to 10 Mbps –
about five times more than standard-definition TV.” [39]

 39

Figure 23. MJPEG Delivery

MP4 is a bandwidth friendly codec since it uses a special algorithm in video

decoding [40]. In MP4 decoding, each frame contains the difference of previous

frame. For example, if the video streams white frames within a time interval,

bandwidth requirement dramatically decreases. Because the difference is almost

zero. MP4 is ideal for IPTV solutions.

As seen on the Figure 23, MJPEG deliver the stream as compressed JPEG images

one by one to client. It does not connect frames with a kind of relation. For this

reason, MJPEG needs more bandwidth resources compared with MP4 solutions.

However MJPEG provides easy installation for web scripting languages like PHP.

The relation of frames in MP4 makes it harder to decode within a live video

streaming since the header part of MP4 like metadata, relation variables and

overheads occupies a serious space in MP4 codec.

5.2.2 Hardware cost

Client-server based architecture with relational database needs some extra services

and system resources. In addition to streaming costs such as bandwidth;

maintenance of web server and database server are required.

Scalability is another key for cost. If the number of clients increases either new

hardware or new server must be added to current network. Unlike P2P and multicast

streaming design, server costs are prominent problem of client-server architecture

since the stream source server.

 40

5.2.3 Processing cost

Beside hardware costs, web server and database server need more processing

resources such as RAM and CPUs. Because, there are more overhead that are

transmitted within server. Each movement of data requires an additional processing

cost. For this reason, client-server architecture with services requires more

processing power. But each additional client can compensate the processing

resources due to efficiency of web and database server.

5.3 Application Flow

There are three parallel flows in desktop and web application:

1. Web application: A starter PHP file initiates the client-server live video

streaming over relational database.

2. Desktop application, client-server streamer: This section fetches video

samples from the input and stores them in database.

3. Desktop application, TCP based streamer: This section listens to a particular

port of host based on TCP sockets.

During the streaming, some common variables such as capture rate and buffer size

coordinate the whole system. Here are the global, project wide variables that are

operated by whole system. Figure 24 includes the screenshot of test platform which

consists of common variables.

 41

Figure 24. A Screenshot of Test Platform Showing Common Variables

5.3.1 Capture rate

Capture rate is the time between two frames. Usually it is defined as total

frames/second. Default value is set to 15 frames per second. This value is almost

equal to 66 milliseconds between two frames. Since there are two tiers in the study,

coordination must be granted between tiers. For example, desktop application

produces the samples using video input with predefined capture rate. However, web

server must know the same capture rate of the stream to show a proper video.

5.3.2 Buffer size

Simply, buffer size is equal to row number of a table in relational database. It holds

the frames which are sampled via desktop application. Simply, it provides efficiency

to streaming even though it increases the delay and response time. More buffer size

provides more clients due to flexibility of time.

It is a “First In, Last Out” buffer. In other words, when a frame stored to table, oldest

one is removed from the table.

5.3.3 Compression level

Compression level refers to JPEG compression rate. When a sample was grabbed

from video input source, it is converted to JPEG, compressed and delivered to buffer

 42

in database. Figure 25 shows the screen with different compression levels. Quality

of picture goes worse while compression level decreases.

Compression level is an integer value between 0 and 100. If the value takes 100, it

means there is no compression. If it takes 0, it provides maximum compression.

Compression is required to minimize the storage requirements of each frame. For

example, leaving compression level at 100 will decrease the bandwidth

performance. Default value is assigned to 10 where it satisfies the quality of service.

Figure 25. Compression Levels of JPEG

5.3.4 Current user number

Current user number keeps the amount of active users within streaming system.

This parameter is used to control the maximum user amount in order to measure

test metrics between TCP and database oriented live streaming application.

If the user number is equal or more then maximum user number, requests of new

clients are refused and dropped. Otherwise, it is accepted and user number is

incremented. At the end of the session, user number is decremented.

5.3.5 Maximum allowed user number

Maximum user number is a variable of test phase. It keeps the user number under

maximum user number. Thus, it makes testing easier if the test is oriented around

user number. For example, keeping all the parameters constant, a test scenario is

handled by changing the user number.

 43

5.3.6 Maximum loss frame rate

Maximum loss frame rate is a parameter to allow streamer in web server to skip

frames. This parameter is the exact value of maximum failed frame number as a

block. In other words, if the rate is 20, streamer must skip 20 frames at once to raise

the flag and stream stops for a particular client.

Client-server architecture over HTTP does not have a built-in tolerance for non-

existent content. For example, if a HTML file does not exist in a web server, a server

response with “404” message is returned and connection is terminated. This

situation is not an appropriate state for a video streaming design since the

connection between server and client must be alive and active; so it must not be

terminated. This parameter provides a continuous stream over HTTP.

Figure 26. Abstract Design of Desktop Application

 44

5.3.7 Web Server

If a client requests a stream, it should send it through an URL. Following address is

a typical address to obtain stream. Port number 80 must be forwarded to local

computer properly: http://78.162.239.45/stream.mjpeg. Once the request arrives to

web server, “stream.php” initiates the stream with the steps below:

1. Constants are defined to prevent corruptions in the streaming time. PHP

requires setting memory limit and error reporting manually. Moreover, a

timeout must be set manually to deal with unexpected termination of

connection between client and server.

2. Database connection is defined in a separate file and the file is included in

stream.php.

3. Parameters are gathered from database. These parameters are current user

number, maximum allowed user number, capture rate, buffer size,

compression rate, maximum frame loss rate.

4. Header parameters are created. Each header text is included with header ()

function of PHP. Following header values are set respectively:

a. Connection: close

b. Cache-Control: no-store, no-cache, must-revalidate, pre-check=0,

post-check=0, max-age=0

c. Cache-Control: private

d. Pragma: no-cache

e. Expires: -1

f. Content-type: multipart/x-mixed-replace; boundary=$myboundary

Value of “$myboundary” is a delimiter between frames of MJPEG. In this

manner, it can be any unique text value.

5. New generation browsers usually support output compression. In other

words, server sends the content such as images, HTML files in a

compressed format. For this reason GZIP compression is disabled and

output is flushed to client immediately.

 45

6. In a while loop, frames are scanned through a SQL command with the aid of

micro time variable. Micro time consists of a set of time variables: Minute,

second, and millisecond respectively. For example, 1514215 is extracted as

15 as minute, 14 as seconds and 215 as milliseconds.

a. If the flag of “Maximum frame rate loss” rises, session is terminated

and connection is closed.

b. Frame is captured from database as raw data and decoded with

base64 function.

c. JPEG data and boundary value are printed to client respectively.

d. Statistic values are updated. Response time, delay and frame rate

are recorded for test environment.

7. At the end of the video stream, user number is decremented and connection

is terminated.

5.3.8 Client-server streamer of desktop application

In order to get stream via web server, another application must sample the video

source and store frames in database. This part handles this phase of the

application. Initial parameters are set through the desktop application. Without

stream sampler, web server does not deliver the stream to the clients since there

will be no rows in the database. Once the camera source selected and started,

stream can be started via a button called “Start DB”.

Here are the steps of client-server streamer:

1. Common parameters are gathered. These are capture rate, db buffer size,

compression rate, frame loss rate and maximum allowed users. These

parameters are set on the GUI of desktop application.

2. Public IP address of the server is obtained using dyndns.org [49]. Simply,

web page including IP address of dyndns.org is scrapped and IP address is

extracted from the HTML.

3. Common parameters in Step 1 are stored in database for the use of web

server. Thus, web server can obtain settings through database.

4. A new thread is created for the rest of the job. A thread is required to deal

with sleep problem in C# programming language. In C#, sleep function

 46

makes the whole GUI frozen until the end of the sleep period. Sleep

functions are used to grab video samples in time interval. Due to interval,

sampler part of the application must sleep in terms of capture rate to provide

a seamless video stream.

5. Redundant data rows are removed.

6. While loop initiates the sampling of video source;

a. A video sample is grabbed and encoded with base64.

b. Micro time is assigned as “mmssfff” where “mm” is minute, “ss” is

second and “fff” is millisecond.

c. Raw data is inserted to database with micro time.

d. If database buffer exceeds the limit, then old rows are deleted from

database.

5.3.9 TCP based streamer of desktop application

TCP works with sockets and must seed a particular port on the server. Similar to

client-server based solution, frames are sampled and delivered to TCP socket. This

phase of the application was implemented for comparison to client-server based

solution. Since the both solutions are unicast, it is easier to compare two

approaches.

Following steps define the key processes of TCP based solution:

1. Common variables are gathered from GUI of desktop application.

2. Public IP address is fetched from dyndns.org.

3. Common parameters are stored in database.

4. A thread is created for sampler. As discussed in client-server streamer,

thread is required to prevent lock of GUI.

5. An “HttpListener” is created for a particular IP address and port such as

http://192.168.2.105:8080. Thus, listener waits for a request on this port

number. For each request a new callback function is called to initiate the

video stream over TCP socket.

a. When a TCP request is received, another procedure begins.

 47

b. All common variables such as capture rate and maximum user

number are fetched.

c. Stopwatch parameters are set to obtain statistics values.

d. A new listener is set for a new possible client over particular IP and

port number.

e. User number is incremented.

f. If the maximum user number is not exceeded, stream starts with a

while loop.

g. Sample image is converted to byte data.

h. Image data is sent to client with MJPEG encoding.

 48

CHAPTER 6

THE APPLICATION

The applications were developed with C# programming language, Microsoft Visual

Studio 2008, PHP, MySQL with the aid of MJPEG codec and Apache Web Server.

All the files of desktop and web application can be downloaded directly from

http://www.serkanozdemir.com/ms-thesis.zip.

6.1 Architecture and Requirements

Web server part of the application is based on PHP 5.3.13, Apache 2.2.22 and

MySQL 5.5.24. All required modules above were installed with WampServer 2.2 as

well as phpMyAdmin [58]. WampServer is a Windows based development

environment that allows creating applications with PHP, MySQL and Apache. As

seen in Figure 27 below, WampServer provides a system tray toolbar that allows

configuring PHP, Apache and MySQL in an easy way.

Figure 27. WampServer Panel in System Tray

In default mode, PHP uses output buffering. This feature prevents video streaming

since the video is not able to be transmitted instantly. For this reason, output

buffering feature must be disabled and implicit flush feature must be turned on by

editing php.ini configuration file. On the other hand, “memory_limit” is set to 128 MB

to be able to deal with various amounts of video frames on the fly without any

corruption.

 49

Desktop part of the application is responsible for video sampling and TCP based live

video streaming. Application was developed on “Microsoft Visual Studio 2008

Version 9.0.21022.8 RTM” with “Microsoft .NET Framework Version 3.5 SP1”.

MJPEG was chosen as video delivery codec due to easy implementation and built-in

support by major Internet browsers such as Firefox and Google Chrome.

All test cases were executed with Google Chrome since it has native support for

MJPEG video codec. In other words, when using Google Chrome, an additional

codec installation is not required.

Apache needs a module called “rewrite_module” that is essential for URL rewriting.

For example, clients request stream with “127.0.0.1/stream.mjpeg” which is actually

“127.0.0.1/stream.php”. This module is not a must. But it provides a better and user

friendly interface for the clients.

6.2 Motion JPEG

Motion JPEG (MJPEG) is a video codec which compresses each video frame with

JPG compression algorithm. So, each frame is sent one by one as JPG image

individually. MJPEG is being used widely by digital cameras, IP cameras and non-

linear video systems since the implementation is easy.

MJPEG is supported natively by major Internet browsers such as Safari, Firefox and

Google Chrome. For this reason, MJPEG is suitable for a proper test among

different approaches. MJPEG was chosen as a video delivery codec for the

following reasons:

1. It has many built-in libraries on multiple platforms such as Microsoft Visual

Studio and PHP. These platforms allow programmers to deal with JPG

easily. For this reason, implementation is easier compared with modern

codecs such as H.264/MPEG-4 AVC.

2. If the video content changes rapidly, clients can meet with quality problems

due to high compression rate. Transition between frames can cause a

significant quality loss. MJPEG is able to overcome this issue since it

delivers the frames individually to clients.

3. Due to light structure and maturity of MJPEG, it has a common support by

many platforms. For example, most Internet browsers support the MJPEG as

a native delivery codec.

 50

Although it has many advantages, it has disadvantages too. At this point, the most

important topic is efficiency. MJPEG sends video frames individually without any

advanced prediction algorithms. Modern competitors of MJPEG are extremely

skilled on bandwidth problem since they have a prediction algorithm and better

compression rate.

6.3 MySQL Configuration and Database Structure

This study offers a new live video streaming approach using relational database. For

this reason, MySQL part is a basic but a simpler part of the study.

All tables of the database use MyISAM as a storage engine since it is more powerful

when the amount of records is not decent. MyISAM keeps the records in order as

they come. For this reason, fetching data is faster than InnoDB [59].

On the other hand, database must be still readable while other process is trying to

insert new row. MySQL defines the ability of MyISAM in its official site.

“MyISAM supports concurrent inserts: If a table has no free blocks in the
middle of the data file, you can INSERT new rows into it at the same
time that other threads are reading from the table. A free block can occur
as a result of deleting rows or an update of a dynamic length row with
more data than its current contents. When all free blocks are used up
(filled in), future inserts become concurrent again.” [59]

Figure 28. Tables of Database “stream”

The name of the application’s database is “stream” and it has 3 tables. Figure 28

shows the tables and fields of them. “Settings” table is used to store basic settings

 51

prior to beginning of the live video streaming. Video sampler gets all values from its

GUI and stores it in database for the use of web server. Here are the definitions of

fields:

1. id (int): Primary key of the table. Default record id is 1 which keeps the

current configuration.

2. capturerate (int): It keeps the value of capture rate in terms of milliseconds

between two video frames.

3. buffersize (int): Buffer size stores the amount of rows that hold the video

frames.

4. compression (int): It is the JPEG compression rate out of 100. Higher value

means less compression.

5. maxframe (int): This value is the maximum amount of lost frames at once. If

the frame loss does not occur at once, it does not trigger the video streaming

system.

6. serverip (varchar): Public IP address of the Internet gateway. It provides

easier navigation on client side.

7. users (int): It holds the current number of connected and active users.

8. maxusers (int): Maximum allowed users at the same time.

“Stats” table is used for statistics, only to provide a proper test environment. Stats

table is updated during the streaming by one of clients. In other words, only one

client updates this table due to performance problems. Here are the fields of table:

1. id (int): Primary key. Default value is 1 similar to “Settings” table.

2. response (int): Keeps the response time in terms of milliseconds.

3. delay (int): Average delay in terms of milliseconds.

4. fps (int): Average frame per second.

“Stream” is the backbone of the video streaming design. But its structure is quite

simple. It has two fields:

1. microtime (big int 16): It stores the exact time of frame inserted to row. This

field is not a primary key but used as a key. For example, “4257304” is

extracted as follows:

 52

a. Minute: 42

b. Second: 57

c. Millisecond: 304

2. data (text): This field stores the decoded and compressed JPG image.

6.4 Desktop Application

Desktop application is implemented with C# programming language to deal with

camera source. In other words, it grabs video input and stores the samples in the

database. Beside this, it also includes a TCP socket based streaming solution to

make a proper test.

However, Microsoft Visual Studio 2008 is not sufficient with its built-in functions. For

this reason, some additional references and libraries are required. These are

MySQL Connector and Touchless SDK.

6.4.1 MySQL connector

Microsoft Visual Studio 2008 does not have a built-in support for MySQL database

management system. MySQL offers a connector for ADO.NET to fix this problem

[60]. Latest available version “Connector/Net 6.7.2” was installed to server.

 53

Figure 29. Installation of MySQL Component

As seen on the Figure 29, “MySql.Data” component must be added to application

via solution explorer.

6.4.2 Touchless SDK

Touchless SDK is a project to deal with web cameras in an easy way [61]. SDK is

open source and can be downloaded from its site for free. Touchless SDK uses

DirectShow to query web camera and return the results back to caller function.

Touchless SDK also offers library for C# programming language. Therefore, it

makes easier to query web cameras.

6.4.3 Components

Basically, desktop application can be considered as three sections:

1. Common Section: It consists of GUI, constants and program manifest. These

components work for both live video sampler and TCP socket based video

stream.

2. Video Sampler: This part is responsible for video sampling. It deals with

video source and generates samples within a particular interval. Then

samples are compressed and delivered to database.

 54

3. TCP Socket Solution: TCP based solution is implemented for test purposes.

Simply, it listens to a given port and IP address. If a request is made, it

initiates the video stream.

6.4.4 Common section

Common section includes many features used by both video sampler and TCP

based solutions.

6.4.4.1 Software manifest

Software manifest includes meta information for the software itself. For example,

software version, checking new versions and running as administrator features can

be set through application manifest [62]. Manifest file must be in XML format. Thus,

only allowed tags must be used to describe settings.

In our case, we need to run software as administrator. To achieve this, a simple

code snippet is added to manifest. As seen in Figure 30, administration right is

obtained via a statement in “requestedPrivileges”.

Figure 30. Administration Privilege was Granted in Manifest File

6.4.4.2 Libraries

Application was built with additional libraries even though C# programming language

has a built-in support. C# is extremely complicated for dealing with web camera and

sampling it. For this reason, we preferred a more programmer friendly solution with

Touchless SDK.

Touchless SDK offers an agent library to communicate with camera. This library is

called as “WebCamLib”. It comes with a “cpp” and header file. When the streaming

system needs to interact with camera, functions of this agent library must be used.

Figure 31 includes the references and external libraries as well as application files:

 55

Figure 31. Solution Tree of the Desktop Application

“WebCamLib” offers following functionalities:

1. Initiates a callback mechanism with DirectShow.

2. Grabs all the information about cameras installed to computer.

3. Obtains data about a particular camera selected before.

4. Runs or stops a camera.

5. Displays the properties box of selected camera.

 56

6.4.4.3 Constants

Constant values are required to access some common variables from anywhere.

Due to the scope problem in object oriented programming, a variable can be

accessed within its scope [63].

Software starts with constant values. As described before, particular variables such

as current user number must be defined as a constant to access anywhere of the

software. Moreover, these variables are updated during video streaming and stored

in database for the use of web server.

Figure 32. Constants of Desktop Application

The class “stream”, which is shown in Figure 32, is defined in “Program.cs” and

accessible anywhere in the software. Here are the brief definitions of constants:

1. stop: In GUI of software, a button triggers the stop event which stops the

sampling. Simply, “Stop” button changes “stop” variable to 1.

2. comlev: It refers to compression level. Default value is set to 10 out of 100 in

terms of JPG quality.

3. videowidth and videoheight: They define the width and height of video

output.

4. maxusers: It keeps the value of maximum allowed users connected to video

streaming system.

5. usernum: Current user number. If a new request occurs, it is incremented.

6. pic: It holds the image data in byte format. Since the software is

multithreaded, sampled image must be accessible anywhere in the software.

7. jpegCodec: It includes the codec information of JPG. It is required for JPG

compression.

 57

6.4.4.4 Namespaces

Namespaces are used in C# programming language to make programming easier

for programmers. Most used functions are declared with a directive on the top of file

[64].

Following namespaces are used in desktop application:

Figure 33. Namespaces of the Desktop Application

As seen in Figure 33, some of the directives are essential for C# programming

language. Following directives are specific to this application:

1. System.Net.Sockets: This namespace allows developers to manage

Windows Sockets [65]. So, it is an essential namespace to deal with TCP

sockets and TCP based streaming.

2. System.Threading: It provides classes for multi-threaded programming as

well as data access classes such as Interlocked and Mutex. Multi-threaded is

required to put “sleep” gaps between video frames. In single thread mode,

sleep commands could be used, but it leads the freeze of GUI. For this

reason, each stream must be forwarded to a new thread [66].

3. Mysql.Data.MySqlClient: This namespace must be installed separately to the

project. Because it is not a built-in namespace in Microsoft Visual Studio

2008. Simply, it provides connection to MySQL server and query within

Mysql.Data classes.

 58

4. Touchless.Vision.Camera: This is an open source library that is outsourced

from Touchless SDK. It provides ready to go classes to play with camera

easily. This library is based on DirectShow [61].

5. System.Diagnostics: It provides classes to implement performance counters.

These classes are used in test cases to measure metrics such as average

delay and response time.

6.4.4.5 Camera settings and initialization

Camera settings and initialization is a totally common phase of the desktop

application. Because, both our approach and TCP socket based streaming use the

same video source.

Figure 34. Settings and Initialization of Camera

Once the GUI form is loaded, cameras on the operating system are enumerated

with Touchless SDK. Figure 34 show the user interface part of camera settings and

initialization.

Figure 35. Querying Available Cameras

As seen in Figure 35, available cameras are inserted to a combo box via “foreach”

function. Available cameras are obtained from operating system. For this reason,

camera must be installed properly to the operating system in order to operate

Touchless SDK and streaming system.

Initialization starts with “Start” button. “Onclick” event leads to “thrashOldCamera”

and “startCapturing” functions respectively. “thrashOldCamera” function trashes the

old camera resources and dispose all camera links that were created before.

 59

Once the “thrashOldCamera” is completed, “startCapturing” function begins for

initialization. Simply, it gets various parameters to initiate camera such as capture

width and height.

Figure 36. “startCapturing” Function for Initialization

To be more specific on the procedure in Figure 36, capture width and height are

given with integer values. Note that capture width and height is completely different

than video output. Nevertheless, output and input resolutions should be the same to

avoid video quality problems. Frame per second value for capturing is given as 30.

But this assignment does not mean that actual FPS will be 30. Probably, camera

produces less than 30 frames in a second due to poor light and hardware

conditions.

After assignments of constants, an event handler is defined to print captured image

to GUI immediately. If all the processes above fail, then an exception will be thrown

with “Select A Camera” message. “Stop” button initiates the release of video

camera. Simply, it calls the “thrashOldCamera” function and terminates the video

stream if exists.

Another key function is “drawLatestImage”. This function deals with the video frames

on the fly. It captures the latest frame from video source and writes it to a variable

on the memory.

 60

Figure 37. “drawLatestImage” Function

Figure 37 shows that “_latestFrame” is assigned to “stream.pic” via

“MemoryStream”. Obviously, “_latestFrame” includes the latest frame of video

source that was grabbed via Touchless SDK. For this reason, we are not interested

deeply on how the frames are grabbed from video source.

“MemoryStream” class is defined in “System.IO” and it creates streams in memory

instead of disk. It keeps the data as “unsigned byte array” [67]. For this reason,

variable of “fs” is converted to byte array in order to keep in “MemoryStream” format.

“SaveJpeg” function is responsible for the conversion of frame to JPG and keeping

the data in memory stream. In this function, “stream.comlev” and

“stream.jpegCodec” constants are used. As described before, constant of

“stream.comlev” includes the compression rate of JPEG within a scale of 0 and 100.

Similarly, “stream.jpegCodec” keeps the codec information of JPEG to make a

proper compression.

Therefore, the frame is processed to be ready to deliver. “stream.pic” is a global

variable that holds the latest frame. In both TCP socket based streaming and DB

based streaming, “stream.pic” is the single reference for the video source. In other

words, streamer part of the software only deals with “stream.pic”. Otherwise,

especially for TCP based streaming, all active clients had to receive the frame

directly from video source. This causes to performance loss as well as

implementation problems. On the other hand, “DrawImage” does not allow to

multiple access at the same time. So, that is why “stream.pic” is essential for the

video streaming.

 61

6.4.4.6 Stream settings

Stream starts with some essential parameters. Simply, these parameters can be

determined via GUI of the software.

Figure 38. Stream Settings on GUI

As seen in Figure 38, there are five edit boxes and three buttons on the form. As

described before, capture rate, compression level, frame skip rate, DB buffer size

and maximum users are determined via edit boxes. These parameters are usable

for both DB oriented streaming and TCP socket based streaming.

On the other hand, there are three buttons on the form which are going to be

described later. Briefly, “Start DB” initiates the video stream based on relational

database and “Start TCP” initiates the TCP socket based video streaming.

“Stop Sampling” button terminates the video stream regardless of the type of video

streaming.

6.4.5 Video sampler

Video sampler is the starting point of live video streaming via relational database.

Before starting to video sampling, we have to make sure that camera is initiated and

web, database server must be running. If these conditions are met, then video

sampler is ready to go. Video sampler starts with “Start DB” button in GUI. Initially,

constant parameters are fetched from GUI. These parameters are listed below:

1. Capture rate.

2. DB buffer size.

3. Compression rate.

4. Maximum loss frame.

5. Maximum users.

 62

As described before, these constants are common variables and they are also used

in web server to manage client side tweaks and test cases. Once the parameters

are stored to related variables, public IP address is determined by scrapping the

data on dyndns.org [49]. To do this, “WebRequest” and “WebResponse” classes,

which are defined in “System.Net”, are used.

Finally, a thread is created for the rest of the work. Since the sampling process

needs sleep actions and GUI is frozen due to sleep actions, threading is a must

implementation for the desktop application. Briefly, threading supports concurrent

execution in C# programming language. In other words, threads do not affect each

other unless they do not try to access to same resource [68]. For this reason,

threading fixes the problem generated by sleep actions.

Figure 39. Creation of Thread

The code in Figure 39 shows a typical creation of a thread. “ThreadStart” function

takes another function named “functiondb” as a parameter. This means that thread

is going to continue its life with “functiondb” function. In other words, “functiondb”

function is going to handle the rest of video sampling job.

Meanwhile, all the parameters, which are gathered at the top of the function, are

stored to database. MySql provides many classes to manage a database. In our

case, following classes are used [69];

1. MySqlConnectionStringBuilder: It creates connection strings.

2. MySqlConnection: It links MySQL connection to a valid database.

3. MySqlCommand: It creates MySQL command string.

Figure 40. MySQL Database Connection

As seen on the code in Figure 40, a connection to a relational database is

established via “MySql.Data” classes.

 63

6.4.5.1 Function of “functiondb”

After the successful creation of thread, function of “functiondb” will be executed in

the thread. First job of the function is to check stream tables and delete recorded

frames if exist. To do this, a MySQL command is adequate. Figure 41 includes the

commands of MySQL delete:

Figure 41. MySQL Command to Delete Frames

While loop starts after the removal of old frames. Loop progresses while the

“stream.stop” is not 1. In other words, if the stop button is not clicked, stream keeps

running since the stop button triggers the assignment of “stream.stop” to 1. Figure

42 shows the flow chart of loop section:

Figure 42. Flowchart of Video Sampler Loop

Sampler must use sleep actions between frames. For example, if the FPS rate is

determined as 15 FPS, then sleeping duration must be 66 milliseconds in order to

 64

achieve this rate. Simply, thread is sent to sleep with a threading class with the aid

of capture rate which is obtained from GUI.

Next step is submitting of data and “microtime” to be sent to database. As described

before, “stream.pic” includes the latest frame that is grabbed from video camera. For

this reason, it is used for the latest video reference.

“stream.pic” holds the data as byte arrays. Since the text fields in MySQL are not

able to store byte arrays, it is decoded by Base64. One more advantage of Base64

is wide range of support by multiple platforms. For example, both Microsoft Visual

Studio 2008 and PHP have built-in support for Base64 [70].

Figure 43. Delivery of Frames to Database

Micro time is directly fetched via built-in date function. As seen in the Figure 43

above, micro time value comes with a string input: “mmssfff”. “mm” refers to current

minute as two digits, “ss” refers to current second as two digits and “fff” refers to

current milliseconds as three digits.

Once the data and date are ready to go, they are submitted to database with a

MySQL query. Meanwhile, preview frame in GUI is updated with the latest frame.

After that, buffer size is checked in database if any overflow is exists. If there are

more frames then buffer size, first inserted frame will be deleted from buffer.

6.4.6 TCP socket solution

TCP based solution is implemented to compare two unicast approaches. For this

reason, same procedures and features are used. For example, MJPEG was chosen

as delivery codec to make a proper comparison between TCP socket based

streaming and relational DB based streaming.

Similar to database approach, this implementation gets the parameters like capture

rate and compression rate. All setting parameters are gathered via GUI. Initialization

of TCP based solution starts with gathering parameters. Finally these parameters

are stored in database and a thread is created for the rest of the job.

New thread takes the name of “functiontcp” function as a parameter. In other words,

new thread is going to start with the process of “functiontcp”.

 65

6.4.6.1 Function of “functiontcp”

Function only sets a listener for port number 8080 using local IP that uses

“HttpListener”. Simply, “HttpListener” listens to the port number for a possible

request. If a new request comes, it is forwarded to callback function [71].

Figure 44. Function of “functiontcp”

Figure 44 above shows the code of “functiontcp”. It listens to 8080 and forwards new

clients to “OnRequestReceive” callback function. On the other hand, “HttpListener”

is able to host only one client. If another client makes a request, delivery is going to

fail. To deal with this problem, a new “HttpListener” code is placed to

“OnRequestReceive”. As a result, for each new client, “OnRequestReceive” is going

to be called in a recursive manner.

6.4.6.2 Function of “OnRequestReceive”

Unlike database approach, this function is fully responsible for the delivery of stream

and test operations. So, it has more codes inside compared with function of

“functiondb”. Initially, current user number is incremented. This means that, for each

client, a global variable of “stream.usernum” is incremented to be able to track the

user activity.

Common parameters are gathered from GUI and variables are defined at the top of

the function. For the test cases, a “Stopwatch” variable is defined. “Stopwatch” class

is defined in “System.Diagnostics”. As described before, “Stopwatch” is essential to

measure processing metrics such as response time and delay.

Meanwhile, another “HttpListener” is set for a new client. If a new request arrives,

this function is called one more time. Just before streaming, headers and separators

are sent to client.

Figure 45. Headers of TCP Streaming

 66

As seen in Figure 45, success code of 200 is sent to client as well as header

information. In header data, boundary refers to delimiter that will be used between

two frames. In this case, we must sent “--myboundary” message after each frame.

Otherwise, stream would not be meaningful to client.

Similar to database approach, streaming is implemented within a while loop. Loop

checks “stream.stop”. If it is 1, then loop is terminated. As implemented in database

model, we must use sleep actions between frames to have proper FPS rate. For this

reason, thread sleeps as capture rate.

Figure 46. Delivery of Data in TCP Approach

Frame is directly sent to client as byte data where “--myboundary” is the delimiter of

frames. Since the frame is sent as byte data, browsers can easily identify the JPEG

media type. Figure 46 shows the delivery of frames to clients in TCP socket

approach.

TCP socket based streaming is efficient if several clients are targeted. Otherwise,

performance of streaming dramatically decreases due to lack of processing

resources of server.

6.5 Web Server Application

In relational database model, clients make request over web server. For this reason

and due to high processing ability, a PHP script welcomes the clients. This agent file

in the web application is “stream.php”.

A PHP script must be modified carefully to be able to deliver a video stream. The

basic modifications are listed below:

1. Memory limit: It must be at least 128 MB.

2. Error reporting must be turned off.

3. Header information must be proper; including no-cache, no-store.

4. GZIP and output compression must be turned off.

 67

5. Implicit flush feature is essential for video streaming. Because, printed data

should be sent to client immediately [72].

All modifications above can be implemented in PHP easily. As a result, “stream.php”

file starts with the modifications above. All parameters sent by video sampler are

gathered from database settings table such as capture rate, buffer size and

compression rate.

Streaming is implemented within a while loop. At the beginning of the loop, a

MySQL query searches for available frames on the database.

Figure 47. Streaming Implementation of “Stream.php”

As seen in Figure 47, loop checks the database continuously for available frames.

This way is extremely efficient if the buffer size is over a hundred. Because, a single

MySQL query can obtain a hundred frames at once. However, performance of delay

and response time dramatically decrease.

Figure 48. Printing Frames in PHP

Micro time and frame data are extracted from database. Since the data was

encoded in video sampler, this script must decode back. Figure 48 includes the PHP

codes which print frames to clients. Unlike Microsoft Visual Studio 2008, PHP

provides an efficient and easier sleep function with “usleep”.

6.6 Screenshots and Manual

Applications are designed as user friendly and capable to make multiple tests. Most

common parameters are placed into GUI.

 68

Figure 49. User Interface of Desktop Application

Application has two preview frames as seen in Figure 49. First frame on the left

displays the video resource regardless of capture rate and compression level.

Frame on the right displays the sampled video which is affected from capture rate

and compression level. Webcam Configuration button opens a new window and

allows making advanced settings of video camera.

 69

Figure 50. User Interface of Web Application

Client can access to web interface at http://127.0.0.1 or via public IP address. In case

of public IP usage, port forwarding may be required. Port 80 and 8080 must be

forwarded to local ports.

Figure 50 shows the user interface of web application and it offers two preview

pages. “Streaming via DB” includes streaming window with statistics which is

proposed by this study. Other link, “Streaming via TCP”, provides a traditional

approach based on TCP sockets.

Simply, “Start” link initiates the streaming process. Stream does not stop unless stop

button of browser is clicked or browser is closed. Web interface provides settings

information and statistics output as well as video streaming frames. Capture rate,

buffer size, compression level and public IP address are displayed above the video

frame.

Video stats are updated continuously and displayed under video frame using Ajax

technology of PHP.

 70

CHAPTER 7

TEST RESULTS

Testing phase took place within a single server. Server has Intel Core i5 2,67 GHz

processor, 4 GB RAM and 32 bit Windows 7 operating system.

Streaming test cases were tested in local server. For this reason, time between

departure and arrival to remote computer is ignored. In other words, test cases

include the results of processing and efficiency performance of streaming

approaches. Bandwidth of network is assumed as unlimited since the local server is

used for test phase.

Each test case examined 5 times and average values were gathered to make final

decision on values. Compression rate for test cases is 10. This value is out of 100 in

terms of JPEG image quality. Frame size is 320x240 pixels. For this reason,

required bandwidth for a single video stream session is around 35 KB/s. If 10 users

are connected to server, then 350 KB/s required to deliver stream without any

corruption.

Frame rate for test cases is 14 FPS and maximum lost frame rate is 30. Thus, a

client is able to be connected to server even it skips 30 frames at once. In other

words, video stream will be considered successful even it skips frames less than 30

at once. This feature fills the gap of client-server connectivity problem.

In client-server model, there are five different metrics: DB buffer size, users,

response time, average delay and average frame rate. In TCP model, all metrics of

client-server model, except DB buffer size, are used.

Stopwatches were used in C# programming language to calculate execution and

delivery time. In PHP, it was easier to calculate the delivery time since the frames in

database has a column includes micro time in format “mmssfff” where “mm” is

minute, “ss” is second and “fff” is millisecond.

As seen on Table 1, Table 2, Table 3 and Table 4, some test results were marked

as “n/a” which is expanded as “not available”. Briefly, if the application did not

respond or client could not get more than five frames per second, we marked the

 71

case as “n/a”. The main reason for the performance loss is the lack of either

processing power or bandwidth. For example, this term was used for the insufficient

processing power for the client-server streaming model. Since the client-server

approach has more overheads due to traverse of frames between services, CPU is

extremely busy to process frames. When we watch the CPU load and memory

usage during the examination of test cases, we can observe the high load of CPU

even though the memory usage is low.

On the other hand, the term of “n/a” refers to processing power and transport layer

insufficiency in TCP socket based streaming. In TCP model, CPU is busy to

duplicate the video source for each new client. Additionally, TCP model sends the

stream over the same TCP socket. For this reason, it gains high load at transport

layer. As a result, TCP model requires more processing power within a low internal

bandwidth. In other words, stream traverses between video source and transport

layer. This situation is better for a single client. However, the solution is not suitable

if you serve to multiple clients due to duplication of the stream.

7.1 Response Time

Response time is the duration between first creation of stream and the arrival of first

frame to client. Response time is a similar metric to delay. However it consists of

additional initialization time. Figure 51 illustrates the calculation of response time:

Figure 51. Response Time

7.2 Average Delay

Delay is a similar metric to response time. But it does not include the initialization

time. For this reason, it is expected that delay must be shorter than response time

for a single client. If the number of client increases, delay increases too.

Delay is obtained via micro time variable. Since the frames in database come with

micro time value which is the creation time, time interval is calculated at the arrival

 72

of frame and added to sum of delay. Sum of delay is divided by the number of total

frame and average delay is obtained. As seen in Figure 52, average delay is derived

from the delay values and frame numbers.

Figure 52. Average Delay Metric

7.3 Average Frame Rate

As seen in Figure 53, frames per second (FPS) is determined by counting the

frames for each second. Then average frame rate is obtained by overall frame rate

of each second. For example, if 100 frames are received within 5 seconds, then

average frame rate would be 20 FPS. On the other hand, frames that are not

received are not counted, and average frame rate only consists of received frames.

Figure 53. Determination of “Average FPS”

7.4 Buffer

Buffer is used for database model to keep system more stable. If the number of

clients increases, more buffer rows are required to provide a seamless video

 73

stream. On the other hand, buffer leads to delay increases due to temporary hold of

frames.

Each element of buffer is a row of database table. In other words, table rows are

used as LIFO queue. Rows are fetched from database via SQL commands with the

aid of micro time. Rows are ordered by the time they are inserted.

7.5 Test Results of Database Model

Here are the test results based on buffer size. “n/a” shows that stream was

unsuccessful due to limited resources of server. In other words, unsuccessful

metrics in test results are limited with the processing capacity of the computer. For

example, maximum users in buffer size 1 may be 20 instead of 10 within a more

powerful computer.

Table 1. Test Results where DB Buffer Size is 1

Users Response Time Average Delay Average FPS

1 120 ms 115 ms 14 FPS

5 145 ms 120 ms 13 FPS

10 n/a n/a n/a

DB buffer size has a key role if the stream will be served to more clients. As seen in

Table 1, stream is corrupted once the user number is 10 or more. In this case,

system deals with overheads more than actual data delivery since the buffer size is

1. Web server and database server are extremely busy in order to keep the buffer

updated and deliver frames in buffer to multiple clients.

As a result, buffer size 1 will be suitable if the number of clients is around 5. In this

case, clients receive the live video stream with a better response time and minimum

average delay.

 74

Table 2. Test Results where DB Buffer Size is 5

Users Response Time Average Delay Average FPS

1 357 ms 430 ms 14 FPS

5 378 ms 432 ms 13 FPS

10 401 ms 435 ms 13 FPS

20 447 ms 550 ms 9 FPS

50 n/a n/a n/a

If the “DB Buffer” is set to 5, then live video streaming is able to reach more clients

at the same time. In this mode, web and database server deal with less overhead

compared with previous test. In other words, video streamer puts frames to

database and clients receive the frames in bulk.

As seen in Table 2, stream begins to loose frames after reaching user number to 20.

For user number 50, streaming does not work properly. In this case, maximum rate

for loss frames is 30. Test shows that DB oriented streaming design is not able to

server 30 frames at once.

Delay and response time increase proportional to DB buffer size. For example, 20

clients see the frames after 550 ms of creation at the same time. Compared with

TCP based solution, delay rate is not competitive. This mode will be successful if the

number of targeted clients is less than 20. Otherwise frames are not received by

clients properly.

 75

Table 3. Test Results where DB Buffer Size is 20

Users Response Time Average Delay Average FPS

1 1435 ms 1515 ms 13 FPS

5 1440 ms 1530 ms 13 FPS

10 1442 ms 1545 ms 13 FPS

20 1642 ms 1782 ms 11 FPS

50 3796 ms 5457 ms 6 FPS

Test case above uses 20 as DB buffer size. As claimed in earlier sections of the

thesis, more buffer size provides more users, but limited to processing resources of

the server computer.

This mode uses overheads in minimum in order to serve video stream frames to

maximum number of clients.

As seen in Table 3 above, this configuration is capable to host maximum 50 users at

the same time due to lack of processing resources. Moreover, average FPS

decreases to 6 FPS even though the frames are ready to go in database rows. For

this reason, a more powerful computer can host more users with a better FPS value.

This mode is more suitable to gain maximum benefit from the server’s processing

resources.

Although it is able to host more clients at the same time, delay and response time

increase extremely. For user number 50, delay is around 5 seconds. In other words,

frames arrive to client after 5 seconds of creation.

7.6 Test Results for TCP Model

TCP test cases are handled within desktop application. During the delivery of video

stream, statistics variables are also stored.

 76

TCP model uses all the parameters of DB model except buffer size. As explained in

previous pages, buffer is implemented on relational database to deliver video stream

over buffer itself to clients.

Test cases are based on user number. For each user amount, response time,

average delay and average FPS variables are determined.

Table 4. Test Results Based on TCP Sockets

Users Response Time Average Delay Average FPS

1 72 ms 69 ms 14 FPS

5 78 ms 71 ms 13 FPS

10 80 ms 75 ms 13 FPS

15 85 ms 82 ms 7 FPS

20 n/a n/a n/a

Table 4 includes the test results of TCP model which are slightly different compared

with DB model. TCP model is more successful on delay and response time values.

TCP model is not able to serve video stream to 20 users at the same time. TCP

model was implemented in multithreaded mode and based on TCP socket listeners.

For this reason, each additional user triggers the listener and creates a new thread.

In this point of view, 20 users run 20 separate threads at the same time. Each

thread makes a copy of video stream and delivers to the client. So, capacity of TCP

model is limited by the processing capability of the server.

However, TCP model provides a better response time and average delay regardless

of number of the users.

Database model uses redundant services such as web and database server. These

two services will produce huge amount of overhead if the buffer size is closed to 1.

On the other hand, TCP model directly deals with client and deliver the video stream

to the clients without any agent services. For this reason, TCP model prevents the

additional traverse of data within server.

 77

Although TCP model has significant advantages on delay and response time, it is

not able to gain all the processing resources of the server. TCP multiplies the video

source and lock the transfer of video data on a narrow road.

 78

CHAPTER 8

CONCLUSIONS AND DISCUSSIONS

This study offers an alternative and cheap solution since the live streaming is

essential for some markets such as security, military and medicine.

In this study, a new unicast, live video streaming approach offered due to

performance and data access problems in traditional unicast solutions. Therefore, a

client-server architecture for live video streaming using object relational database

was implemented.

A TCP socket based video streaming was also implemented to make proper and fair

tests between these two approaches. As mentioned before, TCP socket based

streaming needs more processing power if the number of clients is too large.

Although it provides a direct path between video source and transport layer, each

new client requires the duplication of the stream which makes the stream inefficient.

Simply, we placed “n/a” value, which is “not available”, when we did not get respond

or we received less than 5 frames per second. This way provides a better view for

proper comparison between these two approaches.

Although this study had claimed a better bandwidth and response time, test cases

showed more complicated results.

Conclusions of the study are listed below:

1. Bandwidth performance was dramatically decreased since the delivery codec

was MJPEG. Although MJPEG uses a compression algorithm, it has many

disadvantages compared with modern competitors such as MPEG-4. There

are two main disadvantages on MJPEG. JPEG has a decent compression

algorithm but it is not efficient. For example, H.264 video codec is more

successful on compression [44]. The other disadvantage is related to video

efficiency. New video encoders link frames to each other. In other words,

current frame is not sent out completely. Only different part from the previous

frame is delivered. In this way, new generation codecs use the bandwidth

with more efficiency. But, if a client does not care about bandwidth and does

 79

not have a tolerance to unstable, unacceptable quality loss, then MJPEG

would be a better solution.

2. This study offers a solution with database and web server. For this reason,

additional cost of installation and maintenance of these services are

required.

3. Test results showed that TCP socket based solution performed a better

response time and average delay. Response time values of TCP tests are

around 80 milliseconds while our approach offers 115 milliseconds. Main

reason of difference is related to overheads. In relational database model,

frames moves between multiple services such as web server and database

server. Thus, response time performance decreases compared with TCP

model.

4. Although TCP model has advantages on response time, it failed when the

user number was above 15 due to lack of processing power of server. DB

model was able to host 50 users with buffer size 20. Briefly, DB model is

able to access more people within the same processing environment.

5. DB model uses the abilities of web and database servers. To be more

specific, Apache and MySQL servers are extremely specialized on using the

all processing resources of computer. However, traditional unicast solutions

gain only network layer and video source.

6. DB model provides multiple access to frames. Requested frames are

obtained easily with a single SQL command. Since many programming

platforms allow SQL querying, video frames can be accessed from any

domain.

7. DB model provides a more secure delivery. Since the flow of data is fully

under control, frames can be reformed or reprocessed to provide a secure

delivery. It is also possible to deliver frames over secure HTTP.

8.1 Recommendations for Future Works

MJPEG is an old video delivery codec compared with modern siblings such as

H.264. For a better bandwidth performance, H.264 can be used instead of MJPEG.

However, H.264 requires additional programming skills on video processing. For this

reason, converting a live video stream to H.264 stream may be a topic of future

works. Bandwidth problems trigger many other problems such as quality loss, frame

 80

loss. If the network type and number of clients are not controllable, MJPEG would

not be a sufficient solution for delivery. For reference purposes, FFMPEG and

similar providers offer solutions to convert one media format to another format [19].

But dealing with video structure requires an additional proficiency on video

processing and programming. Another recommendation is to merge all services in

one. Microsoft Visual Studio allows many built-in complicated operations. In this

manner, web server and database server can be embedded into a single

application. This way provides a more commercial and profitable product on the

market.

 81

REFERENCES

[1] T. SILVA, J. M. ALMEIDA, D. GUEDES, Live streaming of user generated
videos: Workload characterization and content delivery architectures, 2011.

[2] GELMAN, A. D. BELLCORE, MORRISTOWN, On buffer requirements for store-
and-forward video on demand service circuits, 1991.

[3] Wikipedia, Streaming Media article, retrieved January 21, 2013, from
http://en.wikipedia.org/wiki/Streaming_media.

[4] Y. SANCHEZ, T. SCHIERL, C. HELLGE, T. WIEGAND, D. HONG, D.
DEVLEESCHAUWER, W. VANLEEKWIJCK, Y. LELOUEDEC, Efficient HTTP-
based streaming using Scalable Video Coding, 2011.

[5] N. RAMZAN, H. PARK, E. IZQUIERDO, Video streaming over P2P networks:
Challenges and opportunities, 2012.

[6] Ustream, retrieved January 28, 2013, from http://www.ustream.tv.

[7] CH. Z. PATRIKAKIS, N. PAPAOULAKIS, CH. STEFANOUDAKI, M. S. NUNES,
“Streaming content wars: Download and play strikes back” presented at the
Personalization in Media Delivery Platforms Workshop, [218 – 226], Venice, Italy,
2009.

[8] Patent by G. O. SQUIEX, retrieved February 11, 2013, from
http://www.google.com/patents?id=5pV5AAAAEBAJ&dq=1641608.

[9] Real Networks, retrieved February 11, 2013, from http://eu.real.com/.

[10] User Datagram Protocol, retrieved February 11, 2013, from
http://tools.ietf.org/html/rfc768.

[11] F. LEU, A novel network mobility handoff scheme using SIP and SCTP for
multimedia applications, 2009.

[12] J. AVESTRO, R. FERIA, Adaptive RTP-Compatible Audio Streaming for
Handheld Clients (ARCASH), 2006.

[13] Real-time Transport Protocol, retrieved February 12, 2013, from
http://tools.ietf.org/html/rfc3550.

[14] A. BASSO, G. L. CASH, M.R. CIVANLAR, Real-time MPEG-2 delivery based
on RTP: Implementation issues, 1999.

[15] H. SCHULZRINNE, S. CASNER, R. FREDERICK, V. JACOBSON, RTP: a
transport protocol for real-time applications, RFC 3550.

 82

[16] S. SHAHBAZI, K. JUMARI, M. ISMAIL, A new design for improvement of
scalable-RTCP, 2009.

[17] Y. LIU, The research of streaming media mutual digest authentication model
based on RTSP protocol, 2008.

[18] Real Network, RDP, retrieved February 19, 2013, from
http://service.real.com/help/library/guides/production/htmfiles/whatsnew.htm.

[19] FFMPEG, retrieved February 22, 2013, from http://ffmpeg.org/ffmpeg.html#rtsp.

[20] T. DREIBHOLZ, E. RATHGEB, Stream control transmission protocol: Past,
current, and future standardization activities, 2011.

[21] Stream Control Transport Protocol, retrieved February 22, 2013, from
http://tools.ietf.org/html/rfc3286.

[22] Transmission Control Protocol, retrieved March 11, 2013, from
http://tools.ietf.org/html/rfc793.

[23] E. SETTON, P. BACCICHET, B. GIROD, Peer-to-Peer Live Multicast: A Video
Perspective, 2008.

[24] X. SHEN, H. YU, J. BUFORD, M. AKON, Handbook of Peer-to-Peer
Networking (1st edition). New York: Springer. p. 118, 2009.

[25] B. YANG, H. MOLINA, Designing a super-peer network, Proceedings of the
19th International Conference on Data Engineering, 2003.

[26] Wikipedia, Peer-to-peer article, retrieved March 12, 2013, from
http://en.wikipedia.org/wiki/Peer-to-peer.

[27] M. YEUNG, C. CHUNG, F. HARTANTO, Peer-to-peer video distribution over
the Internet, 2003.

[28] A Unicast address, retrieved March 12, 2013, from
http://www.science.uva.nl/research/air/projects/old_projects/ipv6/IPv6_uni.htm.

[29] Differences Between Multicast and Unicast, retrieved March 15, 2013, from
http://support.microsoft.com/kb/291786/en-us.

[30] M. ARREGOCES, M. PORTOLANI, Data Center Fundamentals, 2003, pp. 962-
963.

[31] G. LAWTON, Multicasting: will it transform the Internet? 1998.

[32] IP Multicast Applications: Challenges and Solutions, retrieved March 15, 2013,
from http://tools.ietf.org/html/rfc3170.

[33] T. DUONG-BA, T. NGUYEN, Distributed client-server assignment, 2012.

[34] D. A. GRIER, The Relational Database and the Concept of the Information
System, 2012.

 83

[35] E. CODD, A Relational Model of Data for Large Shared Data Banks, 1970, pp.
377-387.

[36] Oracle the clear leader in $24 billion RDBMS market, retrieved March 18, 2013,
from http://itknowledgeexchange.techtarget.com/eye-on-oracle/oracle-the-clear-
leader-in-24-billion-rdbms-market/.

[37] Market Share, retrieved March 18, 2013, from http://www.mysql.com/why-
mysql/marketshare/.

[38] B. LI, H. YIN, Peer-to-peer live video streaming on the Internet: issues, existing
approaches, and challenges, 2007.

[39] International Cablemakers Federation, How much Bandwidth? retrieved March
21, 2013, from http://www.icf.at/en/6000/how_much_bandwidth.html.

[40] MPEG4 Visual, retrieved April 1, 2013, from
http://mpeg.chiariglione.org/standards/mpeg-4/video.

[41] S. PYKKÖ, J. HAEKKINEN, Evaluation of Subjective Video Quality of Mobile
Devices, 2005.

[42] D. VATOLIN, MSU Subjective Comparison of Modern Video Codecs, retrieved
April 1, 2013, from
http://compression.ru/video/codec_comparison/subjective_codecs_comparison_en.h
tml.

[43] S. WENGER, RTP Payload Format for H.264 Video, retrieved April 1, 2013,
from http://tools.ietf.org/html/rfc3984#page-2.

[44] G. SULLIVAN, P. TOPIWALA, A. LUTHRA, The H.264/AVC Advanced Video
Coding Standard: Overview and Introduction to the Fidelity Range Extensions, 2003.

[45] ISO, ISO/IEC 14496-2:2004 - Information technology -- Coding of audio-visual
objects -- Part 2: Visual.

[46] M. NIEDERMAYER, 15 reasons why MPEG4 sucks, retrieved April 5, 2013,
from http://guru.multimedia.cx/15-reasons-why-mpeg4-sucks/.

[47] Helix Media Delivery Platform, retrieved April 10, 2013, from
http://www.realnetworks.com/helix/streaming-media-products/.

[48] The Difference Between ASF and WMV/WMA Files, retrieved April 11, 2013,
from http://support.microsoft.com/kb/284094/en-us.

[49] Check IP address, retrieved April 11, 2013, from http://checkip.dyndns.org.

[50] K. WALKOWIAK, P2P multicasting network design problem — Heuristic
approach, 2010.

[51] K. WALKOWIAK, Survivability of P2P multicasting, 2009.

 84

[52] Y. YUEXIANG, L. CHAOBIN, H. GAOPING, Feature research on unstructured
P2P multicast video streaming, 2009.

[53] B. ZHANG, X. LI, M. WIEN, J. OHM, Optimized channel rate allocation for
H.264/AVC scalable video multicast streaming over heterogeneous networks, 2010.

[54] S. BOUDKO, W. LEISTER, C. GRIWODZ, P. HALVORSEN, Maximizing video
quality for several unicast streams in a multipath overlay network, 2010.

[55] S. AHMAD, R. HAMZAOUI, M. AL-AKAIDI, Adaptive Unicast Video Streaming
With Rateless Codes and Feedback, 2010.

[56] C. LIU, I. BOUAZIZI, M. GABBOUJ, Advanced Rate Adaption for Unicast
Streaming of Scalable Video, 2010.

[57] M. QADEER, R. AHMAD, M. KHAN, T. AHMAD, Real time video streaming
over heterogeneous networks, 2009.

[58] Wamp Server, retrieved April 18, 2013, from http://www.wampserver.com/en/.

[59] MyISAM Storage Engine, retrieved April 18, 2013, from
http://dev.mysql.com/doc/refman/5.1/en/myisam-storage-engine.html.

[60] MySQL Connector/Net, retrieved April 21, 2013, from
http://dev.mysql.com/downloads/connector/net/.

[61] Touchless SDK, retrieved May 5, 2013, from http://touchless.codeplex.com/.

[62] MSDN, Create and Embed an Application Manifest, retrieved May 5, 2013, from
http://msdn.microsoft.com/en-us/library/bb756929.aspx.

[63] MSDN, Constants (C# Programming Guide), retrieved May 6, 2013, from
http://msdn.microsoft.com/en-us/library/ms173119.aspx.

[64] MSDN, Using Namespaces, retrieved May 6, 2013, from
http://msdn.microsoft.com/en-us/library/dfb3cx8s.aspx.

[65] MSDN, System.Net.Sockets Namespace, retrieved May 7, 2013, from
http://msdn.microsoft.com/tr-tr/library/system.net.sockets(v=vs.71).aspx.

[66] MSDN, System.Threading Namespace, retrieved May 16, 2013, from
http://msdn.microsoft.com/en-us/library/system.threading.aspx.

[67] MSDN, MemoryStream Class, retrieved May 16, 2013, from
http://msdn.microsoft.com/en-us/library/system.io.memorystream(v=vs.71).aspx.

[68] A. SINGH, Threading in C# with Example, retrieved May 18, 2013, from
http://www.mindstick.com/Articles/13cd0056-e8ea-4637-b7c8-0146ea71fe4a/.

[69] Devart.Data.MySql Namespace, retrieved May 21, 2013, from
http://www.devart.com/dotconnect/mysql/docs/Devart.Data.MySql~Devart.Data.MyS
ql_namespace.html.

 85

[70] The Base16, Base32, and Base64 Data Encodings, retrieved May 21, 2013,
from https://tools.ietf.org/html/rfc4648.

[71] MSDN, HttpListener Class, retrieved May 21, 2013, from
http://msdn.microsoft.com/en-us/library/system.net.httplistener.aspx.

[72] PHP Manual, ob_implicit_flush, retrieved May 21, 2013, from
http://php.net/manual/en/function.ob-implicit-flush.php.

[73] MSDN, Working with Video, retrieved May 31, 2013, from
http://msdn.microsoft.com/en-us/library/windows/desktop/ff819519(v=vs.85).aspx.

 86

CURRICULUM VITAE

Personal Information

Surname, Name: ÖZDEMİR, Serkan

Nationality: Turkish (TC)

Date and Place of Birth: 20 August 1983, Kayseri

Marital Status: Married

Phone: 0505 620 53 35

Email: bilgi@serkanozdemir.com

Education

Degree Institution Year of Graduation

MS Çankaya Univ. Computer
Engineering

2013

BS Ankara Univ. Computer
Engineering

2009

High School Talas FKT Anatolian High
School

2002

Work Experience

Year Place Enrollment
 2007-2011 Elitek Ltd. Sti. Software Developer

Foreign Languages

Advanced English, Elementary German, Beginner Spanish

Hobbies

Playing musical instruments and traveling around the world.

