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Abstract
In this research, we applied the variational homotopic perturbation method and q-homotopic analysis method to find a
solution of the advection partial differential equation featuring time-fractional Caputo derivative and time-fractional
Caputo–Fabrizio derivative. A detailed comparison of the obtained results was reported. All computations were done
using Mathematica.
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Introduction

In this research work, we have suggested the
q-homotopic analysis method (q:HAM) and the varia-
tional homotopic perturbation method (VHPIM) to
find a solution for the advection partial differential
equations (PDEs) with time-fractional derivatives. We
applied the methods based on Caputo–Fabrizio and
Caputo derivatives1,2 in order to compare the reported
results. This work at first has been conducted in order
to use the homotopic analysis method (HAM) by Liao3

and further to use it in order to solve PDEs featuring
time-fractional derivative. El-Tawil and Huseen4 pro-
posed a method called q:HAM which is considered a
more general method of HAM. There exists a suppor-
tive parameter n and h in q:HAM such that on conces-
sion that n= 1, the standard HAM can be obtained.
Otherwise, we consider the VHPIM.5 It should be
noted that there are no accurate analytical solutions for
most of the fractional differential equations.
Consequently, for such equations we have to employ
some direct and iterative methods. Researchers have
used variant methods to solve fractional differential
equations (FDEs) and fractional partial differential

equations (FPDEs) in recent years. These methods include
Abdomina’s decomposition method,6,7 variational itera-
tion method (VIM),8,9 HPM,10–12 and HAM.13–17

There are some books and papers related to applica-
tions of fractional calculus fitting real data for inter-
ested readers.18–22

This work is arranged as follows: in section
‘‘Preliminaries,’’ the preliminaries are introduced. In
section ‘‘Fundamental notion of the q.HAM,’’ the
description of the q:HAM is offered. The VHPIM in
section ‘‘Fundamental of VHPIM’’ is explained. In sec-
tion ‘‘Application and consequences,’’ the application
of q:HAM and VHPIM to the advection differential
equation featuring time-fractional derivative is
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illustrated and makes a comparison of q:HAM and
VHPIM featuring Caputo–Fabrizio and Caputo deri-
vative, respectively. Finally, in section ‘‘Conclusion,’’
some conclusions regarding the proposed method are
drawn.

Preliminaries

In this section, we introduced briefly Caputo’s frac-
tional derivative1 and Caputo–Fabrizio fractional deri-
vative.23–26

Definition 2.1. A function u(t) belongs to R, t.0, is
assumed to be in Cb (b 2 R), on the occasion that be
n 2 R(.b), that u(t)= tnu1(t), which u1(t) 2 C½0,‘),
which is considered to be in Cl

b iff u(l) 2 Cb, l 2 N.

Definition 2.2. The fractional integral of u(t), t.a, stated
below is named Niemann-Knoxville fractional integral
operator featuring n.0, of a u(t) 2 Cb, b � �1, will be
stated in the form below

In
a u(t)=

1

G(n)

ðt
a

(t � r)n�1u(r)dr

Inu(t)= In
0 u(t), I0u(t)= u(t)

Definition 2.3. The fractional derivative of u(t) stated
below is named Caputo’s fractional derivative

Dnu(t)=
1

G(l � n)

ðt
a

(t � r)l�n�1u(l)(r)dr

for u(t) 2 Cl
�1, l � 1\n� l, t.a, and l 2 N.1

Remark 2.4. The property below convinces1

In
a Dn

au(t)= u(t)�
Xl�1

k = 0

u(k)(a+)
(t � a)k

k!
ð1Þ

where u 2 Cl
b, l 2 N, b � �1, l � 1\n� l, and t.a.

Definition 2.5. The fractional derivative of u(t) stated
below is named Caputo–Fabrizio’s fractional
derivative23

D
n
t u(t)=

T (n)

1� n

ðt
a

u0(r) exp � n(t � r)

1� n

� �
dr ð2Þ

in which t.a, 0\n� 1, and T (n) is called the normali-
zation function and it satisfies T (0)= T (1)= 1.

Definition 2.6. The fractional integral of u(t) stated
below is named Caputo–Fabrizio fractional integral

J
n
t u(t)=

1� n

T (n)
u(t)+

n

T (n)

ðt
a

u(r)dr, 0\n� 1 ð3Þ

Remark 2.7. When 0\n� 1, the property below
convinces

J
n
aD

n
au(t)= u(t)� u(a) ð4Þ

Fundamental notion of the q.HAM

To explain the essential notions of the q:HAM for
time-fractional PDEs, we consider

N (u(x, t))= f (x, t) ð5Þ

in which u(x, t) is an unfamiliar function, N is an oper-
ator nonlinear and linear, t and x denote the indepen-
dent variables, and Dn denotes that Caputo fractional
derivative or Caputo–Fabrizio fractional derivative fea-
turing 0\n� 1. First, we construct the zero-order
modified equation as

(1� nq)L½c(x, t; q)� u0(x, t)�= qhW (x, t)3

(N ½c(x, t; q)� � f (x, t))
ð6Þ

here n.1, q 2 ½0, 1=n� is the embedded parameter,
h 6¼ 0 is a supportive parameter, W (x, t) 6¼ 0 is a sup-
portive function, L is a supportive linear operator, and
u0(x, t) is primary speculation. Clearly, since q= 0 and
q= 1=n, equation (6) turns out to be

c(x, t; 0)= u0(x, t), c x, t;
1

n

� �
= u(x, t) ð7Þ

in the state order. Therefore, q goes up from 0 to 1=n,
the answer c(x, t; q) changes to the primary speculation
u0(x, t) to u(x, t). If u0(x, t), L, h, and W (x, t) are selected
suitably, answer of equation (7) exists for q 2 ½0, 1=n�.

Here, we consider the Taylor series expression of
c(x, t; q) with respect to q in

f x, t; qð Þ=
X‘

m= 0

um(x, t)qm ð8Þ

where

fm(x, t)=
1

m!

dm

dqm
um(x, t ; q)jq= 0 ð9Þ

It is supposed that the supportive linear operator,
the primary speculation, the supportive parameter h,
and the supportive function W (x, t) are opted so,
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equation (8) is convergent when q! 1=n. Following
that the rough answer (8) can be represented as

u(x, t)=f x, t;
1

n

� �
=
X‘

m= 0

um(x, t)
1

n

� �m

ð10Þ

Then, we can express the vector

~un(x, t)= u0(x, t), u1(x, t), u2(x, t), . . . , un(x, t)f g ð11Þ

After mth-order derivation of equation (6) by atten-
tion to q, next with q= 0, the mth-order modified equa-
tion is given as

L um(x, t)� xmum�1u(x, t)½ �= hW (x, t)Rm(~um�1(x, t))

ð12Þ

with primary concessions

u(n)
m (x, t)= 0, n= 0, 1, 2, 3, . . . ,m� 1 ð13Þ

where

Rm(~um�1(x, t))= � f (x, t)� xm

n
f (x, t)

� �
+

1

(m� 1)!

dm�1

d qm�1
N (x, t ; q)jq= 0

ð14Þ

and

xm =
n, m.1

0, m� 1

�
ð15Þ

Operating the Niemann-Knoxville integral operator
In on both sides of equation (12)

um(x, t)= xmum�1(x, t)� xm um�1(x, 0
+)

	 

+ hW (x, t)InRm(~um�1(x, t))

ð16Þ

With regard to the fact that um(x, t), m � 1 is con-
trolled by equation (12) featuring linear boundary con-
cessions that are resultant from the initial problem.

As a result of the existence of the factor (1=n)m, there
will be more chance for the occurrence of convergence
or even we can achieve faster convergence in compari-
son with the standard HAM.

Fundamental of VHPIM

In this part, we assume VHPIM in two stages for equa-
tion (5), featuring

N (u(x, t))=Dn
t u(x, t)� Ku(x, t) ð17Þ

in which 0\n� 1 and K in which derivatives concern-
ing t and x, is an operator in t, and x. Now, VHPIM is
introduced in the following two stages.

Stage 1

Conforming to VIM, we construct the rectification
functional for formula (5)

uj+ 1(x, t)= uj(x, t)+ In½u(t)(Dnuj(x, t)�
K(u

^

j, (u
^

j)x
, (u

^

j)xx
)� f (x, t))�

= uj(x, t)

+
1

G(n)

ðt
0

(t � r)n�1u(r)(Dnuj(x, r)

� K(u
^

j, (u
^

j)x
, (u

^

j)xx
)� f (x, r))dr

ð18Þ

Here, In implies the Niemann-Knoxville fractional
integral, and u is a Lagrange coefficient, that can be
recognized as optimal by variational approach. The
function u

^

k is supposed as a limited variation. In other
words, du

^

k = 0.

Stage 2

By utilizing the HPM and VIM, we obtain the below
formula

X‘

j= 0

pnuj(x, t)= u0(x, t)+ p
X‘

j= 1

p juj(x, t)+

(

In(u(t)(
X‘

j= 0

p jDnuj(x, t)�

X‘

j= 0

p jK(u
^

j, (u
^

j)x
, (u

^

j)xx
)�

f (x, t)))g

ð19Þ

In equation (19), p 2 ½0, 1� is a secured parameter and
u0 is a primary estimate of formula (5).

Balancing the sentences featuring the same powers
of p in two sides of the formula (18), we may obtain
uj ( j= 0, 1, 2, . . . ).

Eventually, conforming to HPM, when p tends to be
1, we can gain the answer with approximation

u(x, t)=
X‘

j= 0

uj(x, t) ð20Þ

Differently, conforming to VIM, the rectification
functional (19) that may be uttered by approximation
is stated as

uj+ 1(x, t)= uj(x, t)+

ðt
0

u(r)(
d

dt
u(x, r)�

K(u
^

j, (u
^

n)x
, (u

^

j)xx
)� f (x, r))dr

ð21Þ
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where u
^

j is a rectification functional; however, u
^

j is
assumed as a surrounded variation, that is, du

^

j(x, t)= 0.
Afterward, by creating functional stationary

duj+ 1(x, t)= duj(x, t)+

d

ðt
0

u(r)
dm

dtm
u(x, r)� f (x, r)

� �
dr

the Lagrange multiplier will be equal to u= � 1. Thus,
the following repetition rule to be earned

uj+ 1(x, t)= uj(x, t)�
In(Dnuj(x, t)� K uj(x, t)� f (x, t))

ð22Þ

Applying equation (19), we can create the repetition
rule as follows

X‘

j= 0

p juj(x, t)= u0(x, t)+ pf
X‘

j= 1

p juj(x, t)+

In(
X‘

j= 0

p jDnuj(x, t)�
X‘

j= 0

p j
K(u

^

j, (u
^

j)x
, (u

^

j)xx
)

� f (x, t))g

ð23Þ

Balanced with the coefficient of some power of p in
two hands of equation (23), we can get ui(x, t),
(i= 0, 1, 2, . . . ). As a consequence HPM, we can gain
an answer of equation (5)

u(x, t)=
X‘

j= 0

uj(x, t)

Application and consequences

In this portion, we utilize q:HAM and VHPIM to solve
time-fractional advection PDE

Dn
t u(x, t)+ ux(x, t) u(x, t)= x(1+ t2) ð24Þ

where 0\n� 1, t.0, and x 2 R is chosen featuring the
primary status

u(x, 0)= 0 ð25Þ

With the replacement of the primary status u(x, 0)
in the recurrent formula (16), the consequence with
q:HAM featuring Caputo derivative is stated as

u0(x, t)= 0

u1(x, t)= � hxtn n2 + 3n + 2+ 2t2ð Þ
G(n + 3)

u2(x, t)= � hnxtn n2 + 3n+ 2+ t2ð Þ
G(n+ 3)

+

h4 t3n x2 n+ 2 �16 t4 2n+ 3 2(n+ 3)(2n+ 5)t2ðð
3G(n+ 3)2G(3n+ 3)G(3n+ 7)

+

3(n+ 2)(3n+ 5)(n2 + 3n+ 3)G(2n+ 2)G(3n+ 4)

3G(n+ 3)2G(3n + 3)G(3n+ 7)
�

3(n+ 1)2G(2n+ 1)G(3n + 7) 9n2(n+ 3)+ 20nð Þ



3G(n+ 3)2G(3n+ 3)G(3n+ 7)
+

2(2n+ 1)(n(n+ 3)+ 6)t2 + 4

3G(n+ 3)2G(3n+ 3)G(3n+ 7)

� � �

Then, we consider the first three sentences with
n= 1 as estimates of answer for formula (24)

u(x, t)’ � hxtn n2 + 3n+ 2+ 2t2ð Þ
G(n+ 3)

�

hnxtn n2 + 3n+ 2+ 2t2ð Þ
G(n+ 3)

+

h4 t3n x2 n+ 2 �16 t4 2n + 3 2(n+ 3)(2n+ 5)t2ðð
3G(n+ 3)2G(3n+ 3)G(3n+ 7)

+

3(n+ 2)(3n+ 5)(n(n+ 3)+ 3))G(2n+ 2)G(3n+ 4)

3G(n+ 3)2G(3n+ 3)G(3n+ 7)
�

3(n+ 1)2G(2n+ 1)G(3n+ 7) 9n2(n+ 3)+ 20nð Þ



3G(n+ 3)2G(3n + 3)G(3n+ 7)
+

2(2n+ 1)(n(n+ 3)+ 6)t2 + 4

3G(n + 3)2G(3n+ 3)G(3n+ 7)

ð26Þ

Now, when the incipient value u(x, 0) is substituted
into the recursive equation (16), with q:HAM featuring
Caputo–Fabrizio derivative, we can obtain

u0(x, t)= 0

u1(x, t)= � 1

3
hx(� 3n+ t(n(t2 � 3t + 3)+ 3t)+ 3)

u2(x, t)=
1

315
hx(� 105ht(n(t2 � 3t+ 3)+ 3t)�

h2 �315(n � 1)3 +
	

n(n(15n � 26)+ 13)t5 +

945(n � 1)2nt � 70(n � 1)n2t6 + 5n3t7�
630(n � 1)(2(n � 1)n+ 1)t2�
21105n(n(11n � 20)+ 10)t3




+

105(n � 1)(n(7n � 6)+ 3)t4 +

105nt(n((t � 3)t+ 3)+ 3t)

� � �

The first three statements for approximate answer
for equation (24) will be stated as
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u(x, t)’ � 1

3
hx(� 3n+ t(n(t2 � 3t + 3)+ 3t)+ 3)+

1

315
hx(� 105ht(n(t2 � 3t+ 3)+ 3t)�

105nt(n((t � 3)t + 3)+ 3t)+

h2 �315(n � 1)3 + 945(n � 1)2nt�
	

70(n � 1)n2t6 + 5n3t7�
630(n � 1)(2(n � 1)n+ 1)t2�
105(n � 1)(n(7n � 6)+ 3)t4 +

105n(n(11n � 20)+ 10)t3 +

21n(n(15n � 26)+ 13)t5




ð27Þ

Substituting the incipient value u(x, 0) within the
recurrent formula (16), the consequence with VHPIM
featuring Caputo derivative will be

u0(x, t)= 0

u1(x, t)=
xtn n2 + 3n+ 2t2 + 2ð Þ

n n2 + 3n+ 2ð ÞG(n)

u2(x, t)=
xtn n2 + 3n+ 2t2 + 2ð Þ

n n2 + 3n+ 2ð ÞG(n) �

tnx

G(n)2
(

p csc (pn)G(n) G(n+ 3)+ 2t2G(n+ 1)ð Þ
G(1� n)G(n+ 1)G(n+ 3)

+

t2n 4t4G(2n+ 5)G(3n+ 1)G(3n+ 3)+
		

n2 + 3n+ 2 4t2G(2n+ 3)G(3n+ 1)+
	

n2 + 3n+ 2
	 


G(2n+ 1)G(3n+ 3)


G(3n+ 5)




=

n2 n2 + 3n
	 
2

G(3n + 1)G(3n+ 3)G(3n+ 5))

� � �

Then, consider the first three sentences with n= 1 as
estimates of answer for formula (24) are

u(x, t)’
xtn n2 + 3n+ 2t2 + 2ð Þ

n n2 + 3n+ 2ð ÞG(n) +

xtn n2 + 3n+ 2t2 + 2ð Þ
n n2 + 3n+ 2ð ÞG(n) �

tnx

G(n)2
(

p csc (pn)G(n) G(n+ 3)+ 2t2G(n+ 1)ð Þ
G(1� n)G(n+ 1)G(n+ 3)

+

t2n 4t4G(2n+ 5)G(3n+ 1)G(3n+ 3)+
		

n2 + 3n+ 2 4t2G(2n+ 3)G(3n+ 1)+
	

n2 + 3n+ 2
	 


G(2n+ 1)G(3n+ 3)


G(3n+ 5)




=

n2 n2 + 3n+ 2
	 
2

G(3n+ 1)G(3n+ 3)G(3n+ 5))

Now, when the initial amount u(x, 0) is substituted
into the iteration (16), with VHPIM featuring Caputo–
Fabrizio derivative

u0(x, t)= 0

u1(x, t)=
1

3
nt3x� nt2x+ t2x+ ntx� nx+ x

u2(x, t)= (n � 2)(n � 1)nx� 3(n � 1)2ntx+

2

9
(n � 1)n2t6x� 1

3
(n � 1)(n(7n � 6)+ 3)t4x

1

63
n3t7x+ 2(n � 1)(2(n � 1)n + 1)t2x�

1

3
n(n(11n � 20)+ 10)t3x�

1

15
n(n(15n � 26)+ 13)t5x

� � �

Following that, the third sequence term approximate
answer for formula (24) is stated as

u(x, t)’
1

3
nt3x� nt2x+ t2x+ ntx� nx+ x+

(n � 2)(n � 1)nx� 3(n � 1)2ntx+

2

9
(n � 1)n2t6x� 1

3
(n � 1)(n(7n � 6)+ 3)t4x+

1

63
n3t7x+ 2(n � 1)(2(n � 1)n+ 1)t2x�

1

3
n(n(11n � 20)+ 10)t3x�

1

15
n(n(15n � 26)+ 13)t5x

ð28Þ

In Tables 1 and 2, we may observe the rough answers
for n= 1:0, that is taken for several values of x and t
using q:HAM and VHPIM with two fractional deriva-
tives, involving singular differential operator which is
named Caputo and involving nonsingular differential
operator which is named Caputo–Fabrizio.

We can see the accrue and estimate answers with
q:HAM toward n= 1, in Figure 1 with VHPIM.

In Figure 2, we can see the accrue and estimate
answers toward h= � 1, n= 1, and n= 1 with
q:HAM.

In Table 3, the list of the times in seconds for every
iteration in two methods used by CPU has been shown.

Conclusion

In this work, we have prosperously applied q:HAM
and VHPIM to compare between Caputo and Caputo–
Fabrizio derivatives for the time-fractional advection
partial differential equation. The results indicate that
rough answers for both derivatives for both methods
are similar. And the Caputo–Fabrizio derivative is
faster than the Caputo derivative in terms of CPU
speed in calculation in Mathematica.

Baleanu et al. 5



Table 1. Estimate values with VHPIM when n= 1 for
equation (24).

Approximate answer

t x uExact Caputo Caputo–Fabrizio

0.3 0.50 0.15 0.149836 0.149836
0.75 0.225 0.224754 0.224754
1.00 0.30 0.299673 0.299673

0.5 0.50 0.25 0.247855 0.247855
0.75 0.375 0.371782 0.371782
1.00 0.50 0.495709 0.495709

0.7 0.50 0.35 0.338142 0.338142
0.75 0.525 0.507213 0.507213
1.00 0.70 0.676283 0.676283

Table 2. Estimate values with q:HAM when n= 1, h= � 1,
and n= 1 for equation (24).

Approximate answer

t x uExact Caputo Caputo–Fabrizio

0.3 0.50 0.15 0.150334 0.150334
0.75 0.225 0.225500 0.225500
1.00 0.30 0.299673 0.299673

0.5 0.50 0.25 0.248333 0.248333
0.75 0.375 0.372499 0.372499
1.00 0.50 0.496666 0.496666

0.7 0.50 0.35 0.348534 0.348534
0.75 0.525 0.507832 0.507832
1.00 0.70 0.677110 0.677110

Figure 1. (a) The estimate answer, (b) approximate answer featuring Caputo-Fabrizio derivative with VHPIM, and (c) approximate
answer featuring Caputo derivative with VHPIM.
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