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Abstract: Using the generalized Erdélyi-Kober fractional integrals, an attempt is made to establish certain new
fractional integral inequalities, related to the weighted version of the Chebyshev functional. The results given earlier
by Purohit and Raina (2013) and Dahmani et al. (2011) are special cases of results obtained in present paper.
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1 Introduction

Fractional integral inequalities have many applications in numerical quadrature, transform theory, probability, and
statistical problems, but the most useful ones are in establishing uniqueness of solutions in fractional boundary
value problems. Moreover, they also provide upper and lower bounds to the solutions of the above equations.
Therefore, a significant development in the classical and fractional integral inequalities, particularly in analysis,
has been witnessed; see, for instance, the papers [1]-[5] and the references cited therein. Moreover, these inequalities
are also playing an important role to interpret the stability of a class of fractional oscillators (see [6]).

The following inequality is well known in the literature as Chebyshev inequality [7]:

If f.g:[a,b] — RT are absolutely continuous functions, whose first derivatives are bounded and
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where ||.|| 5 denotes the norm in Lo[a, b].

Under suitable assumptions (Chebyshev inequality, Griiss inequality, Minkowski inequality, Hermite-Hadamard
inequality, Ostrowski inequality etc.), inequalities are playing a significant role in the field of mathematical
sciences, particularly, in the theory of approximations. Therefore, in the literature we found several extensions and
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generalizations of these classical integral inequalities, including fractional calculus and g-calculus operators also
(see [8]-[26]).
Further, a weighted version of the Chebyshev functional (see [7]) is defined as:
b b b b
rite.0 = [ 0t [ s0¢wpwar- [ ropoar [gopoar @
a a a a
where f and g are integrable functions on [a, b] and p(¢) is a positive and integrable function on [a, b]. In 2000,
Dragomir [27] derived the following inequality, related to the weighted Chebyshev functional (2):

b b

27 < 171, €], [/|x—y|p(x>p(y>dxdy , 3)

a a

where f, g are differentiable functions and f’ € L,(a,b),g’ € Ls(a,b),r > 1,r~! + 571 = 1. The several
extensions of inequality (3) are studied by many authors. Recently, Dahmani et al. [28], Purohit and Raina [29],
Baleanu et al. [30] and Ntouyas ef al. [31] obtained certain generalized Chebyshev type integral inequalities
involving various type of fractional integral operators.

In present paper, we add one more dimension to this study by establishing certain integral inequalities for
the functional (2) associated with the differentiable functions whose derivatives belong to the space L, ([0, c0)),
involving the generalized Erdélyi-Kober fractional integrals. Further, we also derive certain known and new integral
inequalities for the fractional integrals by suitably choosing the special cases of our main results.

2 Fractional calculus

Authors mention the preliminaries and notations of some well-known operators of fractional calculus, which shall
be used in the sequel.
The generalized Erdélyi-Kober fractional integral operator / g ** of order « for a real-valued continuous function
f(¢) is defined as (see [32, p. 14, eqn. (1.1.17)]):
! t

—B(n+a) —Bn+a)
! /rﬁﬂ(zﬁ — B f(0)d(P) = pr /Tﬁ(n+1)_l(tﬁ — A f(v)dr,

0 =5 )
0

“
where o > 0,8 > 0and n € R.
Following Kiryakova [32], the generalized Erdélyi-Kober fractional integral operators (4), possess the advantage
that a number of generalized integration and differentiation operators happen to be the particular cases of this
operator. Some important special cases of the integral operator / g *% are mentioned below:

(1) Forn =0,a = n (integer > 0) and B = 1, the operator (4) yields the following ordinary n-fold integrations:

t
PO =10} = o= = o, )
0

(i) If we set n = 0 and B = 1, the operator (4) reduces to the Riemann-Liouville fractional integral operators with
the following relationship:

t
R (/1)) = 1919% {£(1)) = ﬁ / (t —0* ! f(0)dr. ©)
(0]

(iii) Again, forn = 0, « = 1 and B = 1, the operator (4) leads to the Hardy-Littlewood (Cesaro) integration
operator:

1
Lot/ = 10" sy = [ s )
0
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and its generalization for integers n > m — 1 (when n = n, @ = 1 and 8 = 1), we have

t

L @O} =" 0y = [ f(ode ®)
0
(iv) When 8 = 1, operator (4) reduces to the fractional integral operator, which was originally considered by Kober

[33] and Erdélyi [34]:

_0171

1MW) = 1O = s

/a—ﬂal'v@mr (@ > 0,7 €R). )

(v) Also for B = 2, the operator (4) yields the Erdélyi-Kober fractional integral operator [ o (Sneddon [35]):

1

_ n.a _ 220t 2n+1,,2  _2ya—1

Ina = 130} = =5 [ &7H@ =) o (10)
0

(vi) Further, if we set n = — 2 , B = 2 and « is replaced by « + , the Uspensky integral transform ([36]) can easily
be obtained as under:

1
o l 1
P“{f(t)}— L ey = ——— [ =Y fenar. an
F(a+3) of

For a detailed information about fractional integral operator (4) and its more special cases one may refer the book
[32, pp. 15-17].

Next, we recall a composition formula of fractional integral (4) with a power function (see also as special case
of image formula [32, p. 29, eqn. (1.2.26)]).

I”'“{t*}: rd+n+%) A

A>— 1). 12
T tatntd) (A > =B +1)) (12)

3 Fractional integral inequalities

In this section, we obtain certain integral inequality which gives an estimation for the fractional integral of a product
in terms of the product of the individual function fractional integrals, involving generalized Erdélyi-Kober fractioal
integral operators. We give our results related to the Chebyshev’s functional (2) in the case of differentiable mappings
whose derivatives belong to the space L, ([0, 00)) and satisfy the Holder’s inequality.

Theorem 3.1. Suppose that p be a positive function, f and g be differentiable functions on [0,00), f' €
L-([0,00)),g" € Lg([0, 00)) such that ¥ + s~V = L withr > 1. Then forallt > 0,0 >0, 8 > 0,1 € R and
n>—l:

2|15 {pY 15 {p() f(Dg(M)} — I {p() f(O)} 15% {p()g()}

t 1
B2 2Pt 17|, g/ - - - -
< - r s BOTD=1 BOHD=1 (1B Bya—l B _ Bya—1ly

(@) (13)

00
xp(t)p(p) |t —p| drdp

< 111, 118/l (15 tp3)”
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Proof. Let us define
H(z, p) = (f(x) = f(p) (&(x) — g(p)). (14)

and
B t—B+a)  Bn+1)—1

')
Under the conditions stated in the theorem, we observed that the function F(¢,t) > 0, for all T € (0,¢) (¢ > 0).
Upon multiplying (14) by F(¢, t) p(t) and integrating with respect to t from 0 to ¢, we get

F(t,7) = (B =% =1 re(0.1), t>0. (15)

1

—Bn+a) a—
pr / OO (18 o B) T pey(e p)d e = 17 (p(0) D8}
0

(o) (16)
—f) g% {p)g@)} — g5 {p() f(O)} + f(L)g(P) I3 {p(0)}.

Next, on multiplying above relation (16) by F(z, p) p(p), and then integrating with respect to p from 0 to z, we obtain

i Bu+D—1 B+D—1 (6 _ B\ V(8 _ g\
7//r " p”t (t —r) (t —p) p(0)p(p)H(z, p)dtdp
0O 0

I'2(a)
)
=2 (I O I (p() FO) — 17 {p@) f O} 1] {p(Dg(0)}).
Now, in view of (14), we have
o o
Hen = [ [ rmgearez,
T T
On making use of the Holder’s inequality, namely
o o o o oo s~
[ [ros@avaz| < |[ [1ror vz |[ [le@rava) o ¢ es =1,
T T T T T T
we obtain
oo ' oo s~
o= | [ [lrofad ([ [lgef dd| . (18)
T T T T
Since
) ! o rt
—1
[ [1ronas| =ie-p™ | [Irol o
T T T
and
o 0 s~ 0 s
—1
[/|g’(z)’s dydz =|t—p|° /|g/(z)’s dz ,
T T T
therefore, inequality (18) reduces to
0 o s~
el <ie=ol | [ 110l @] |[lgef | (19)
T T
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It follows from (17) that

2 ~2B(n+a) o -
Bt e // B+ D=1 ,Bn+1)— 1( fﬁ) (tB_pB) 2O p(p) (. )| drdp

/32 —2B(n+a) tt Byl b1 (.5 8 a—1 8 8 a—l1
=7 2@ //f ! P (f —f) (l —p) p@p(p) [t —plx (20
00

-1 1
r 0 Ky

x / sl o) |[lg@r ] d

Again using Holder’s inequality on the right-hand side of (20), we get

/32 —2B8(n+a) t ot et et (s ) - ) ) .
R f[r ! P (’ _’) (’ —P) p(0)p(p) | H(z. p)|ddp
0 0
pr =B ol o .
=  TT(a) //fﬁ(n+l)_lpﬁ(n+l)_l (lﬁ—rﬁ) (z‘g_pf’) X
0 0

r—1

el
xp@p@ =l |[ 110 dy|dedp|

1
—sB(n+a) _ _
,36 sB(n+a /[15(’7+1)_1pﬂ("+1)_1 (l‘B—rB>a 1(tB—pB)a 1 y
- TS
00

s—1

0
xp(@)p(p) It — pl / 1€/ dz| dedp

Using the fact that
0
/If(y)l”dy <Nf112 .
T

we get

132 —2B8(n+a)

t 1
B+D=1 B8+ D=1 (18 _ 1B el g g\*!
C DP@ 0/ 0/ ! (P =) (P=0") p@p(o) MG Pl drdp

t ot
lgr —rB(n+ta) ||f’||r

a—1 a—1
< o r //Tﬁ(n—i-l)—lpﬁm—i-l)—l (,B _ TB) (,B B TB) o

0 0

xp(t)p(p) |t — pldrdp]”  x

t 1
B 1= P g

a—1 a—1
y s //rﬁ(n+1)—1pf3(n+l)—1 (t/ﬁ B rg) (tﬁ B rﬁ) y
s ()

0 0

xp(t)p(p) |t — pldrdp]® @1
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From (21), we arrived at

ng —2B(n+o)

t 1
Bt D=1 B+ D=1 (1B B a=l g p\@Tl
- P //r ( t ) (’ p ) p(@)p(p) [H(z. p)| dTdp
0 0

tt
2 ,—2B8(n+a) / ’ - -
_ BTN 118 s A= B 1(5 TB)“ I(ZB_IB)O‘ b
- I'2(a)
00

xp(T)p(p) |t — pldrdp]” x

s

t 1
a—1 a—1
x //TB(VH—I)—IPB(?H-I)—I ([B _ ‘L’B) ([B _ ‘L’ﬂ) p(0)p(p) |t — pldtdp ) (22)
00

Using the relation r ! + s~ = 1, the above inequality yields to

/32 —2B8(n+ow)

t t
Bn+1)—1 ﬁ(n-H) L(B_ B a—1 s B a—1
- P O/ 0/ ! ( ‘ ) (’ P ) p(@)p(p) [H(z, p)| drdp

ot
- 132 t—2B8(n+) ||f/||r ||g/||s //fﬂ(n—i-l)—lp[ﬁ(n-i-l)—l ([ﬁ 3 Tﬁ)a—l (tﬂ B 7:‘3>Ot—1 »
B I'2(a)

0 0

xp(0)p(p) |t — pldzdp. (23)
On the other hand (17) gives

2| 17 @) 17 00 fOg 0} — 15 () FO} 11 {p0)g)}]

1

t
p> 2P0t BU+1D=1 ,r+1=1 (16 _ 5 a=l g pg\*! (24)
=TT //T (=) (=) x
0 0
xp(r)p(p) [H(z. p)| dTdp.

On making use of (23) and (24), one can easily arrive at the left-hand side of the inequality (13).
Now, to derive the right-hand side of the inequality (13), we have 0 < t <¢, 0 < p < t, and therefore,

0<|t—p|<t.
Evidently, from (23), we obtain

t t
/32 —2B8(n+oa) 1 vl
1—,2(“) //Tﬁ(n+1) 1 ﬁ(77+1) 1 ( ﬁ ‘[‘3> (zﬁ _p[5> X P(T)p(p) |H(T, p)|d1:dp
0 0

1

B2 0250 gy [ [ gt ottt (5 8\ (!
5 ol /f DB D=L (18 o B) (18— o) po)po)d edy

00

2
= (17711, 1"l r (25 tp)})
This leads to the proof of Theorem 3.1. O

Next, we establish a further generalization of Theorem 3.1.
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Theorem 3.2. Suppose that p is a positive function, | and g are differentiable functions on [0,00) and f’ €
L,([0,00)),g" € Ls([0,00)) such thatr > 1 and r~' + s~ = 1. Then for all t > 0 the following inequality holds:

IF @)y IV {p() f()g}y + 157 {p@)} 17 {p() f(D)g(1)}

— 1P p fO)} IEY {p)g®)} =I5V {p() fO} T {p()g(t)}

t
B 8r— AUt =8EH | 17|, 118/l

t
Bn+1)—1 _8&+1)—1..8 Bya—1,.6 Syy—1
< : p (tF =P (15— pP) 7l x
F@T() 0/ Of

xp(t)p(p) |t — p| dzdp
<7, &'yt 12 tp @)} 157 {p()}.
where a, B,y,6 > 0, n,¢ € Rsuch thatn > —1 and { > —1.

Proof. To obtain the desired results, we multiply (16) by

§ 18+ psE+1—1
P p(p)(t‘s—r‘s)y_l,pe(o,t), t>0,
I'(y)

and make integration from O to ¢ (with respect to p), to obtain

r t
—Bn+a)—8(E+
B st Pnte)=8+y) Bn+1D—1 8&+1)—1B _  Bya—18 _
M@ () ! g o

= 129 0p()) 15 (p(0) FOgD} + 157 )} 1M {p() F(1)g (1)} =

0%~ x p(0) p(p)H(z, p) dTdp

—Ip) fO} IS {ip)g®)} — 157 {p0) f()} 17 {p()g(1)}.
On using (19), the (25) leads to

ﬂ(gt—ﬂ(n+a)—8(§+1/) L B(n+1)—1 3({-_;{_1) 1 Byoa—1 /.8 5\y—1
T(@)T(y) //f ! (@ =P = )
0

0
xp(t)p(p) [H(z, p)| drdp

B §i—Ba—s@+y) [ (26)
< //rﬂ(n-i-l) LSEHD=1 (B _ By (8 _ ,B)y—1,
- ')

()T (y) -

-1 —1
0 r K

xp@p@c=pl |[ 110 dy / @[ dz|  dedp.

Making use of the Holder’s inequality, we readily obtain

t t

—Bta)—8(c+)

B s Pinrter—s+y BOFD=1 SEFD=1 (B _ Byl (15 _ 5)y—1,
C(@)(y)

00
xp(t)p(p) |H(z, p)| drdp

@7
t
B 81— BH=8C || £/ 11g]l,

t
Bn+D—1 8¢&+1)—1..8 Byo—1 .68 syy—1
= T p (7 =7)* (@ = p°) %
L) (y) //

00
xp(r)p(p) |t — p| dzdp.
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Now, one can easily arrive at the left-sided inequality of Theorem 3.2, by taking relations (25) and (27) into account.
Further, for0 <t <¢, 0 < p <t, we have
0<|t—pl =t

Therefore, from (27), we get

B §t—B+a)—8(c+y)
C(e)T(y)

t t
[ [t Dt B = b @) pio) [HGe | dedp
00

t 1t
_B 8~ Pt O=SEHEN | 7)1, 11g B+1D—1 8@E+D—1;B _ Bya—18 _ 8 y—1
= T p ( )T = %) x
F(e)I'(y)
00
xp(r)p(p) |t — p| dzdp.

=AM gl r 15 tp @3 157 tp o)}
this leads to the proof of Theorem 3.2. O

Remark 3.3. For 8 = «, Theorem 3.2 immediately reduces to Theorem 3.1.

4 Special cases

Now, we briefly consider some implications of main results. To this end, if we consider § = 1 (additionally § = 1
for Theorem 3.2) and make use of the relation (9), the Theorems 3.1 and 3.2 provide the known fractional integral
inequalities involving the Erdélyi-Kober operators, due to Purohit and Raina [29]. Again, if we set 8 = 1,n = 0
(additionally 6 = 1 and ¢ = 0 for Theorem 3.2), and make use of the relation (6), the main results recover the known
results due to Dahmani et al. [28, pp. 39-42, Theorems 3.1 & 3.2].

Further, by setting n = —%, B = 2 and replacing « by o + % (additionally ¢ = % 6 = 2 and y replaced by
y+ % for Theorem 3.2), and make use of the relation (11), the main results provide the following integral inequalities
involving the Uspensky integral transform:

Corollary 4.1. Suppose that p is a positive function, | and g are differentiable functions on [0,00), f' €
L([0,00)), 8" € Ls([0,00)) such that r—' + s~ = 1 withr > 1. Then forallt > 0 and a > 0:

[P {p®)} PY {p(1) f(O)g()} = P* {p(1) f(1)} P {p(t)g()}]

—4a / ’ 1
: r|2|(j; H:Uf - //(t )73 (% = p?)* 72 p(0) plp) [t — pl ddp
2

17711, IIg’Ilsf(P"‘{p(t)}) :

IA

Corollary 4.2. Suppose that p is a positive function, f and g are differentiable functions on [0,00) and f' €
L;([0,00)), 8" € Lg([0,00)) such thatr > 1 and r ' +s~1 = 1. Then forall t > 0 the following inequality holds:

[P {p()} PV {p(0)f()g)} + PV {p(t)} P*{p(1)f(1)g(1)}
— P {p(0) f()} P” {p(Ng(0)} — PY {p(t) f()} P* {p(1)g(1)}]

IA

rt
202y / / 1 _1
l”f”’”glusf/(ﬁ—rz)“ 2%~ p?) 3 p(@p(p) |t — pl drdp
C(@+ )Ty +3) s

S]] 1€ gt P¥4p@} PY {p(®)},  wherea,y > 0.
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Moreover, by using relations (5) to (11) with suitable values of parameters 7, « and 8, the results established in this
paper can generate some interesting inequalities involving the various type of integral operator.

Now, by suitably choosing the function p(¢), we consider some examples of our main results. For example, let
us set p(t) = 11 (A € [0,00),1 € (0, 00)), then Theorems 3.1 and 3.2 yield the following results:

Example 4.3. Suppose that [ and g are two differentiable functions on [0,00) and if f’ € L,([0,00)),g" €
Ls([0,00),7r > 1,r 1 +571 = 1thenforallt >0, €[0,00), « >0, B >0, n € Rsuch that . > —p(n + 1):

T(1+n+%)
P(l+a+n+%)

A1 00} - 1 (R o) 13 fi g(,)}‘

_ B, 11g
- 2 (e)

1
//fﬂ(n—i-l)—i-)k—lpﬂ(n-i-l)—i-k—l(tﬁ — Y= @ B — pBYe=l e — | drdp
0.0

I2(14n+ %)

t1+2)t'
‘T2 +a+1+%)

=171l MMl
Example 4.4. Let [ and g be differentiable functions on [0,00) and if f’ € L,(]0,00)),g" € Ls([0,00)), r > 1,
—1 —1
r— 457 =1then

T(1+n+%)
P(l+a+n+%)

FAI+t+%)
FA+y+t+%)

2 IE N Foz0) + I f(0go)

— 1t ro) 15 Peo) - 15 [t fof 1 {Pe o]

t
_ B TPV ) 118l

t
B+ +A—1 $C+D+r—1B8 _ _Bya—18 _ §yr—1
= T 1Y (17 =7)" (% = p%) %
L)l (y) O/

0
x|t —p| dtdp

T ++ 501+ +%)

t1+ZA
STA+a+n+ HMA+y+1+%)

=[17711, 1l¢l

’

forallt >0,a,8,y,6 >0,n,¢ R, A €[0,00) such that A > min{—B(n + 1), —=6(¢ + 1)}.

Further, if we put A = 0 in Examples 4.3 and 4.4 (or set p(¢) = 1 in Theorems 3.1 and 3.2), we obtain the following
results:

Example 4.5. Suppose f and g are differentiable functions on [0, 00) and if ' € Ly([0,00)),g" € Ls(]0, o0)),
r>1,r"' 457V = 1thenforallt >0,a > 0,8 >0,neRsuchthatn > —1:

r'(+n)

Fitaty B W00 = I L) 1550

1

B2 724 1 gl [ [ prttmt g1 g pamt g8 pamt
< T p (7 =BT = p) [T —pl ddp
0

- I'2(a) )
21 +n)

4 4
<71 ety * ey -

Example 4.6. Let [ and g be two differentiable functions on [0, 00). If f’ € L([0,00)),g" € Ls([0,00)), r > 1,
r7 457 =1, then

r'a+n
rd4+oa+mn)

ra+ye

Igt’y fOg@)} + m

17 {f(0g (1)}

Brought to you by | Cankaya University
Authenticated
Download Date | 9/26/18 12:41 PM



98 = D.Baleanu etal. DE GRUYTER OPEN

— IPO) I g0} — I O3 15 g )}

_ BT POETIEE I, gl
- L(e)I(y)

1
[/ BOHD=1 SEHD=1 (B Bya—1 (15 _ 3\r=1 1 _ ol drdp
00

ra+nra+y¢)

<1711 1l ¢ e

forallt >0,a,B8,y,6 >0,n,¢ €R, suchthatn > —1 and { > —1.

The results established here are giving some contribution to the theory of integral inequalities and fractional calculus,
and may find some applications in the theory of fractional differential equations. Moreover, by virtue of the unified
nature of the generalized Erdélyi-Kober operator (4) and arbitray function p(¢), one can further deduce number of
new fractional integral inequalities involving various fractional calculus operators and special functions, from our
main results.

Acknowledgement: The authors would like to express their appreciation to the referees for their valuable
suggestions which helped to achieve better presentation of this paper.
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