
iii

MATHEMATICAL MODELS AND HEURISTIC ALGORITHMS

FOR

A MULTI-PRODUCT LOT STREAMING PROBLEM

IN

A TWO-MACHINE FLOWSHOP

ŞAHİKA AKDOĞAN

FEBRUARY 2017

iv

MATHEMATICAL MODELS AND HEURISTIC ALGORITHMS

FOR

A MULTI-PRODUCT LOT STREAMING PROBLEM

IN

A TWO-MACHINE FLOWSHOP

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES

OF

ÇANKAYA UNIVERSITY

BY

ŞAHİKA AKDOĞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF

MATHEMATICS AND COMPUTER SCIENCE

v

Title of the Thesis: Mathematical Models and Heuristic Algorithms for a Multi-
Product Lot Streaming Problem in a Two Machine Flowshop

Submitted by Şahika AKDOĞAN

Approval of the Graduate School of Natural and Applied Sciences, Çankaya
University.

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

vi

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

vii

ABSTRACT

MATHEMATICAL MODELS AND HEURISTIC ALGORITHMS FOR A

MULTI-PRODUCT LOT STREAMING PROBLEM IN A TWO MACHINE

FLOWSHOP

AKDOĞAN, Şahika

M.Sc., Department of Mathematics and Computer Science

Supervisor: Assoc. Prof. Dr. Ferda Can ÇETİNKAYA

February 2017, 100 pages

In this study, we consider a multi-product lot streaming problem to

minimize the makespan on a two-machine flowshop environment in which all

product lots are processed by Machine 1 and then by Machine 2. Most of the

current studies in the literature of the multi-product lot streaming problem assume

that the number of sublots for each product is known in advance, and determines

the size for each sublot of every product and the sequence of sublots of all products.

However, in our study we assume that the total number of sublots for all products is

known advance, although the number of sublots for each product is not known in

advance. Our problem is to determine the number of sublots for each product, the

size of each sublot and the sequence of sublots that gives the minimum makespan.

We investigate this multi-product lot streaming problem for two cases in which

sublots of each product are equal sized in the first case while sublots of each

product are unequal sized in the second case. We develop mixed integer linear

mathematical models and heuristic algorithms for solving each case. We compare

these solutions of mathematical models and heuristic algorithm. We design

viii

computational experiments to evaluate the performance of our solutions approaches

in terms of makespan time. The results show that the mixed integer programming

models do not seem to be a useful alternative, especially for large scale problem

instances. However, our proposed heuristic algorithms find optimal or near-optimal

solutions in very short time.

Keywords: Lot Streaming, Equal Sublots, Unequal Sublots, Makespan

ix

ÖZ

İKİ MAKİNALI AKIŞ TİPİ ATÖLYEDE

ÇOK ÜRÜNLÜ KAFİLE BÖLME VE KAYDIRMA PROBLEMİ İÇİN

MATEMATİKSEL MODELLER

VE

SEZGİSEL ALGORİTMALAR

AKDOĞAN, Şahika

Yüksek Lisans, Matematik-Bilgisayar Bölümü

Tez Yöneticisi: Doç. Dr. Ferda Can ÇETİNKAYA

Şubat 2017, 100 sayfa

Bu çalışmada, tüm ürünlerin önce birinci ve daha sonra ikinci makinede

işlem gördüğü iki makinalı bir akış tipi üretim sisteminde tüm ürün kafilelerinin

bitirilme süresini en küçükleyen çok ürünlü kafile bölme ve kaydırma problemi ele

alınmıştır. Çok ürünlü kafile bölme ve kaydırma problemi literatüründe yer alan

çalışmaların çoğu, her ürün kafilesinde yer alan alt kafilelerin sayısının önceden

bilindiğini varsayar ve her ürüne ait alt kafilelerin büyüklüğü ile tüm kafilelere ait

alt kafilelerin kendi aralarındaki işlem sırasını belirler. Oysa ki, yaptığımız

çalışmada, her ürün kafilesinde yer alan alt kafilelerin sayısının önceden

bilinmemesine karşın tüm ürün kafilelerinde yer alan alt kafilelerin toplam sayısının

önceden bilindiğini varsaymaktayız. Sorunumuz, her ürün kafilesinde yer alacak alt

kafilelerin sayısını, bu alt kafilelerin büyüklüğünü ve tüm ürün kafilerinin bitirilme

süresini en küçükleyecek şekilde tüm kafilelere ait alt kafilelerin kendi aralarındaki

işlem sırasını belirlemektir. Bu çok ürünlü kafile bölme ve kaydırma problemini iki

x

farklı durum için irdeledik. Birinci durumda her ürün kafilesindeki alt kafileler eşit

büyüklükteyken, ikinci durumda her ürün kafilesindeki alt kafileler eşit olmayan

büyüklükte olabilmektedir. Çözüm yaklaşımlarımızın hem çözüm kalitesi hem de

süresi açısından performansını değerlendirmek için sayısal deneyler tasarladık.

Sonuçlar, karışık tam sayılı programlama modellerinin özellikle büyük ölçekli

problem örnekleri için yararlı bir alternatif olmadığını göstermiştir. Bununla

birlikte, önerdiğimiz sezgisel algoritmalar çok kısa sürede optimum veya optimuma

yakın çözümler bulmaktadır.

Anahtar Kelimeler: Kafile Bölme ve Kaydırma, Eşit Alt Kafileler, Eşit Olmayan

Alt Kafileler, Tüm Ürünlerin Bitirilme Süresi

xi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assoc. Prof. Dr. Ferda Can

ÇETİNKAYA for his supervision, special guidance, suggestions, encouragement,

and patience through the development of this thesis.

It is a pleasure to express my special thanks to my family and my friends for

their priceless support.

xii

TABLE OF CONTENTS

ABSTRACT .. .iv

ÖZ ... v

DEDICATION ... vi

ACKNOWLEDGMENTS .. vii

TABLE OF CONTENTS..viii

LIST OF TABLESx

LIST OF FIGURES ... xi

LIST OF ABBREVATIONS……………………………………………...xiii

1 INTRODUCTION ... 1

2 LOT STREAMING: BASICS AND LITERATURE REVIEW............ 5

2.1 Basics of Lot Streaming ... 5

2.2 Evolution of Lot Streaming ...10

2.3 Single-Product Lot Streaming..12

2.4 Multi-Product Lot Streaming ...15

3 PROBLEM DEFINITION AND MATHEMATICAL MODELS19

3.1 Problem Statement ..19

3.2 Mathematical Model for the Case with Unequal Sized Sublots ..20

3.3 Mathematical Model for the Case with Equal Sized Sublots22

4 HEURISTIC ALGORITHMS...25

4.1 Heuristic Algorithm for the Case with Unequal Sized Sublots ...25

4.1.1 Numerical Example ...30

4.2 Heuristic Algorithm for the Case with Equal Sized Sublots44

xiii

4.2.1 Numerical Example ...50

5 A SOFTWARE PACKAGE FOR SOLVING THE PROBLEMS56

5.1 Brief Details of the Software Implementation56

5.2 Software Usage ...60

6 COMPUTATIONAL EXPERIMENTS ..68

6.1 Comparative Computational Results of the Mathematical Model

and the Heuristic Algorithm for the Case with Equal Sized

Sublots ..70

6.2 Comparative Computational Results of the Mathematical Model

and the Heuristic Algorithm for the Case with Unequal Sized

Sublots ..85

7 CONCLUSION ..96

xiv

LIST OF TABLES

Table 2-1 Components of Lot Streaming Problems 6

Table 4-1 Process Times on M1 and M2 ... 30

Table 4-2 Total Sublot Process Times of Jobs on M1 and M2 32

Table 4-3 Size and Process Times of Integer Sized Sublots 43

Table 4-4 Process Times on M1 and M2 ... 51

Table 4-5 Sublot Sizes and Process Times Obtained in Step 1 52

Table 4-6 Sublot Sizes and Process Times Obtained in Step 2 55

Table 6-1 Number of Jobs is 5 and Number of Sublots is 10 71

Table 6-2 Number of Jobs is 5 and Number of Sublots is 15 71

Table 6-3 Number of Jobs is 5 and Number of Sublots is 20 72

Table 6-4 Makespan values for 5 Number of Jobs for Scenario 1 73

Table 6-5 Makespan values for 10 Number of Jobs for Scenario 1 74

Table 6-6 Makespan values for 15 Number of Jobs for Scenario 1 74

Table 6-7 Makespan values for 20 Number of Jobs for Scenario 1 74

Table 6-8 Makespan values for 25 Number of Jobs for Scenario 1 75

Table 6-9 The Deviation of Heuristic Approaches from Mathematical Model

Solved by GAMS with respect to Changing Number of Jobs and Total Lot Sizes for

the First Scenario ... 76

Table 6-10 Makespan values for 5 Number of Jobs for Scenario 2 78

Table 6-11 Makespan values for 10 Number of Jobs for Scenario 2 78

Table 6-12 Makespan values for 15 Number of Jobs for Scenario 2 79

Table 6-13 Makespan values for 20 Number of Jobs for Scenario 2 79

Table 6-14 Makespan values for 25 Number of Jobs for Scenario 2 79

xv

Table 6-15 The Deviation of Heuristic Approaches from Mathematical

Model Solved by GAMS with respect to Changing Number of Jobs and Total Lot

Sizes for the Second Scenario .. 81

Table 6-16 Makespan values for 5 Number of Jobs for Scenario 3 83

Table 6-17 Makespan values for 10 Number of Jobs for Scenario 3 83

Table 6-18 Makespan values for 15 Number of Jobs for Scenario 3 83

Table 6-19 Makespan values for 20 Number of Jobs for Scenario 3 83

Table 6-20 Makespan values for 25 Number of Jobs for Scenario 3 84

Table 6-21 The Deviation of Heuristic Approaches from Mathematical

Model Solved by GAMS with respect to Changing Number of Jobs and Total Lot

Sizes for the Third Scenario ... 85

Table 6-22 Scenario 1’s Makespan Values for MPLS Problem with Unequal

Sublot .. 88

Table 6-23 Scenario 2’s Makespan Values for MPLS Problem with Unequal

Sublot .. 90

Table 6-24 Scenario3’s Makespan Values for MPLS Problem with Unequal

Sublot .. 93

xvi

LIST OF FIGURES

Figure 1.1 Processing without Lot Streaming .. 2

Figure 1.2 Processing with Lot Streaming... 2

Figure 5.1 Package Diagram for Software... 57

Figure 5.2 Class Diagram of Package “common”...................................... 57

Figure 5.3 Class Diagram of Package “controller” 58

Figure 5.4 Class Diagram of Package “fileCreator” 58

Figure 5.5 Class Diagram of Package “parser” .. 59

Figure 5.6 Class Diagram of Package “solver” .. 59

Figure 5.7 Class Diagram of Package “ui” .. 60

Figure 5.8 Class Diagram of Package “util” .. 60

Figure 5.9 Welcome Window ... 61

Figure 5.10 Multi Run Window .. 62

Figure 5.11 Multi Run Form after Solution is Generated 64

Figure 5.12 Gantt Chart Created by the Heuristic Algorithm 64

Figure 5.13 Reloaded Results Form .. 65

Figure 5.14 Reloaded Results Form after Dat Files are Reloaded 66

Figure 5.15 Reload Result Form after Lst File is Reloaded 66

Figure 5.16 Gantt Charts Obtained by the Heuristic Algorithm and the

Mathematical Model Solved by GAMS.. 67

Figure 6.1 Data Group and Data Group Set Representations for Unequal

Sized Sublots Case ... 69

Figure 6.2 Data Group and Data Group Set Representations for Equal Sized

Sublots Case .. 69

xvii

Figure 6.3 Average Percentage Deviations for Changing Number of Jobs for

Scenario 1 .. 77

Figure 6.4 Average Percentage Deviations for Changing Number of Jobs for

Scenario 2 .. 82

Figure 6.5 Makespan Deviation’s Average Percentage for each Total

Number of Jobs for Scenario 1 ... 86

Figure 6.6 Average Percentage Deviation for Increasing Total Number of

Sublots when Total Number of Jobs is 5 .. 91

Figure 6.7 Makespan Deviation’s Average Percentage for each Total

Number of Jobs for Scenario 2 ... 91

Figure 6.8 Makespan Deviation’s average Percentage for each Total

Number of Jobs for Scenario 3 ... 92

Figure 6.9 Makespan Deviation’s Average Percentage when Total Number

of Jobs Increases and Total Number of Sublots is Two Fold of Total Number of

Jobs ... 94

Figure 6.10 Makespan Deviation’s Average Percentage when Total Number

of Jobs Increases and Total Number of Sublots is Three Fold of Total Number of

Jobs ... 95

Figure 6.11 Makespan Deviation’s Average Percentage when Total Number

of Jobs Increases and Total Number of Sublots is Four Fold of Total Number of

Jobs ... 95

xviii

LIST OF ABBREVATIONS

CONWIP

JIT

MILP

MPLS

Constant Work-in-Process

Just-in-Time

Mixed-integer linear programming

Multi-Product Lot Streaming

MFT Mean Flow Time

MRP Material Requirements Planning

MRPII Manufacturing Resource Planning

OPT Optimized Production Technology

UI

WIP

User Interface

Work-in-Process

1

CHAPTER 1

1 INTRODUCTION

Nowadays, to stay competitive in the industrial world market, manufacturing

companies have to run an efficient operation for changing market needs. Thus,

accelerated but effective methodologies of production scheduling become a key

issue. Due to the batch production nature of such an environment, the use of

appropriate production lot size/sizes on the shop floor is central to achieving this

objective. One technique that can effectively influence the flow of a lot of jobs over

the machines by appropriately determining the size of production lots, also called

sublots, is lot streaming.

Literately, the term lot streaming shall be introduced as follows [1]:

“Lot streaming denotes the techniques of splitting given jobs, each consisting of

identical items, into sublots to allow overlapping of successive operations in multi-

stage manufacturing systems, to reduce production makespan. More specifically,

The goal of lot streaming is to determine the number of sublots for each product,

the size of each sublot and the sequence for processing the sublots to minimize

production makespan with all required constraints satisfied.”

To make definition clear, we consider the scenario that discrete and identical

products (called lot) are to be processed on several machines as a flow shop. Instead

of transferring the entire lot, it is considered to transferring the items of the lot in

smaller batches (called sublots). This technique of splitting lots in to sublots and

processing different sublots simultaneously over different machines is called lot

2

streaming. Briefly, lot streaming is a technique to accelerate the processing of the

product when reducing the process time.

As an illustration of the lot streaming problem, suppose a lot consist of 100

items and it is processed on two machines Machine 1 (M1) and Machine 2 (M2).

Suppose, the processing times per item of the lot on M1 and M2 are 2 and 1 time

units, respectively. If the lot is not to be split into sublots, the distribution of the lot

for processing over the machines will be as shown in Figure 1.1.

Figure 1.1 Processing without Lot Streaming

On the other hand, if the lot is split into four sublots with sizes 40, 20, 10 and 30

items and these sublots were processed in an overlapping fashion, the distribution of

the lot for processing over the machines will be as shown in Figure 1.2.

Figure 1.2 Processing with Lot Streaming

In industry, the quality and success of operations are evaluated basically three

commonly used performance measures [2]. These are Makespan (maxC), Mean Flow

Time (MFT) and Average Work in Progress Levels (WIP Levels).

3

Makespan is defined as completion time of the last sublot on the last machine.

As shown in Figure 1.1 and Figure 1.2, the reduction in makespan is obvious.

However this advantage may not be that obvious if setup and/or transfer times are

considered [3]:

“One apparent advantage of lot streaming is reduction in the makespan

value. However, this advantage may not be that obvious if set up and/or transfer

times are encountered during the handling of individual sublots. The problem get

even more interesting depending on whether it can be performed a priori, i.e., before

the arrival of a sublot on a machine. Also, if more than one lot is to be processed on

the machines, the makespan value will depend on whether or not the sublots from

different lots are intermingled. The sequence in which the lots themselves are

processed can impact the makespan value as well.”

Optimal production management aims to eliminate the waste created by the

manufacturing system. Reducing WIP and mean flow time of the production batches

are the core concepts of lean manufacturing [4]. Keeping unnecessary inventory

causes a capital expense. This waste of capital is reduced to a large extend by

employing the concept of lot streaming. Also waste of time is decreased by the lot

streaming concept, since the main drive to apply lot streaming is to lower the

makespan and MFT.

In this study, we consider a multi-product lot streaming problem on a two-

machine flowshop environment in which all products (lots) are processed by

Machine 1 and then by Machine 2. That is, the first and second operations of the

products are performed by Machine 1 and Machine 2, respectively. Current studies in

the literature assumes that the total number of sublots for each product is known in

advance and the sizes of sublots of each product is to be optimally determined within

the limit of the total number of sublots of the product. Our main difference from the

current studies is that we assume that the total number of sublots for all products is

known advance and our problem is to determine the number of sublots for each

4

product, the size of each sublot and the sequence of sublots that gives the minimum

makespan. We investigate the multi-product lot streaming problem for both equal

and unequal sized sublots cases. For this purpose, we develop mixed integer linear

mathematical models and heuristic algorithms for solving each case and compare

these mathematical models with heuristic algorithms.

The remainder of this report is as follows. Chapter 2 provides detailed

background information and review the related literature about the lot streaming

problems. We briefly define our problem along with assumptions for its two cases

and provide details of mathematical models in Chapter 3. The details of our proposed

heuristic algorithms are explained in Chapter 4. We also provide numerical examples

for our heuristic algorithms in this chapter. Chapter 5 explains the software

implementation details of the proposed heuristic algorithms and provides a software

usage manual. In Chapter 6, we discuss the results of our computational experiments

done for determining the performance of the heuristic algorithms by comparing them

with the mathematical programming models providing the optimal solution. Finally,

a brief summary and conclusion of our research and future research directions are

given in Chapter 7.

5

CHAPTER 2

2 LOT STREAMING: BASICS AND LITERATURE REVIEW

In this chapter, we first prove the basics of the lot streaming problem and then

provide a review of recent studies on lot streaming in scheduling problems. We will

discuss the related literature in two categories: single-product lot streaming and

multi-product lot streaming.

2.1 Basics of Lot Streaming

In the last sixty years, thousands of papers were released about flowshop

scheduling and its several variations. Especially, at the end of last century, researches

were focused on a scenario where the lots are split into sublots, that is called lot

streaming. In these studies related to the lot streaming problem, generally the goal is

to determine the number of sublots for each product lot, the size of each sublot and

the processing sequence of the sublots and product lots.

To understand these studies, the components of lot streaming problem must

be clearly identified. The components which are derived from Chang and Chui and

Feldman and Biskup are summarized in Table 2-1. [5]

6

Table 2-1 Components of Lot Streaming Problems

Below, we give briefly explains the terms in Table 2-1.

Product Type

 Single-product/Multiple Products: This approach considers either a

single-product or a multiple products.

7

Production Type

 Flow Shop: In this production type, jobs are processed according to a

sequence. If all the jobs follow the same route, this manufacturing system

called flow shop.

 Job Shop: In this production type, jobs may follow different routes. They

may visit the same machine once or more. This manufacturing system is

called job shop.

 Open Shop: The open shop scheduling problem is a scheduling problem

in which a given set of jobs must each be processed for given amounts of

time at each of a given set of workstations, in an arbitrary order, and the

goal is to determine the time at which each job is to be processed at each

workstation. [6]

 Arborescent Shop: The arborescent shop is an m-stage production

system, in which each stage has at least one immediate successor except

for the last stage (i.e. the finished goods stage), and has only one

immediate predecessor except for the first stage (i.e. the raw materials or

purchased parts stage). [7]

Sublot Type

 Fixed Sublot: A fixed sublot means all products have identical number of

items on all stages. [8]

 Equal Sublots: Equal sublots means that sublot sizes of each product are

fixed.

 Consistent Sublot: A sublot is called consistent if it doesn’t alter its size

over the stages of processing. [9]

 Variable Sublots: In variable sublot (unequal sublot) case, the sublot

sizes between the stages i and i+1 are not equal to those between stages

i+1 and i+2, given the same number of sublots. [9]

8

Divisibility of the Sublot Size

 Discrete Sublots: For discrete sublots, the number of items of a sublot

has to be an integer.

 Continuous Sublots: For continuous case, no such restriction exists.[8]

Sequence of the Sublots

 Intermingling Sublots: In the multi-product case, if intermingling sublots

are allowed, the processing of sublots of a product may be interrupted by

sublot of other product. In this case, each sublot is treated as an

independent product. [8]

 Non-Intermingling Sublots: For non-intermingling sublots case, no

interruption in the processing of sublots of a product is allowed, which is

obviously always given in one-product settings and can be forced in

multi-product settings.[8]

Operation Continuity

 No Idling: In no idling case, when the sublots start their operation on the

same stage, they must finish their operation without interruption.

 Idling: The idling case allows idle times.

As known, under the same sublot type, the makespan with idle times generate

better results than no idling case. Idling and no-idling cases are illustrated

Figures 2.1 and 2.2, respectively. [10]

9

Figure 2.1 Idling Case

Figure 2.2 No Idling Case

Transfer Timing

 No-wait: In no-wait schedules, each sublot has to be transferred to and

processed on the next stage immediately after it has been finished on the

preceding stage.

 Wait: In a wait schedule, sublot may wait for processing between

consecutive stages.[8]

Performance Measures

 Time Models: As shown in Table 2-1, the performance of a model

depends on minimizing makespan, mean flow time, total flow time, mean

tardiness, number of tardy jobs and total deviation from due date.

 Cost Models: The performance of a model depends on minimizing the

total cost.

10

Activities Involved

 Setup: If attached setups are required the setup cannot start until the

sublot is available at the particular stage. In a detached setup the setup is

independent from the availability of the sublot. Sometimes setup times

are neglected or do not occur.

 Production: Even for the time model, production time is important; for

the cost model the inventory type must be considered.

 Transportation: Transportation activity includes the movement of a

sublot between stages and the return of an empty transponder. For cost

models, the transportation cost per trip is the only important component.

For time models, the load and unload times, transportation time, return

time of transporter, and the number of capacitated transporters should be

considered. Sublot size dependent transfer times can also be considered.

Note that the extent to which the transportation activity affects the

makespan depends on the number of capacitated transporters [5].

2.2 Evolution of Lot Streaming

Lot streaming problem is originally identified by Reiter [11] in 1966 and

rediscovered in the late 1980s to early 1990s. If we get back in the history, in 1964,

as a response to the Toyota Manufacturing Program, Joseph Orlicky developed

material requirements planning (MRP) [12]. MRP serves as a center organizer that

translates the overall production plan into a series of specific steps for achieving the

planned production. But MRP has the following weaknesses:

 MRP system is not able to get rid of the uncertainties of production

parameters. It assumes that production parameters such as lot sizes

and lead times could be determined a priori, external to the system and

kept fixed.

11

 It ignores the finite capacity constraints and focus on material flow.

 All the operations of a lot are processed on a machine before

transferring the lot to the other machine.

To get rid of these disadvantages, as an extension of MRP, manufacturing

resource planning (MRPII) is developed. MRP II is an integrated method of

operational and financial planning for manufacturing companies. Hence, MRPII [13]

systems provide better control of inventories and quality improved scheduling,

quality control and design control, reduction of working capital of inventory.

By the time, in the 1980s, just-in-time (JIT) manufacturing approach and

optimized production technology (OPT) are appeared. JIT is a methodology aimed

primarily at reducing flow times within production as well as response times from

suppliers and to customers [14]. However, in spite of allowing overlapping of

operations, JIT fails to optimality of using unit-size sublots given that these might be

suboptimal in a majority of production environments where significant amounts of

transfer times and setup times are incurred. OPT aims to reduce the waste in

manufacturing system when paying more attention to critical resources than JIT

does. OPT uses large process batches to eliminate setup costs and small transfer

batches to reduce inventory carrying costs. So it maximizes throughput while

eliminating the overall cost. But long setup times of machines, process variability

and unbalanced workload cast a suspicion on the success of OPT.

At the end of 1980s, a new technique called constant work-in-process

(CONWIP) was introduced to get rid of the weaknesses of JIT. CONWIP allows the

simultaneous processing of different types of lots and it makes CONWIP more

flexible than JIT. But, it doesn’t solve the sublot sizing or lot sequencing issues.

12

2.3 Single-Product Lot Streaming

As described in the previous section, processing through the use of transfer

lots on several machines were introduced by JIT and OPT approaches in 1980s.

Szendrovits [15] published his study that is one of the first papers that introduces the

lot streaming approach for minimizing cost for the single-product, multi-stage lot

streaming problem with continuous and equal sublots with no-idling case. Even this

study doesn’t include transportation activities, many other researches and studies are

referenced Szendrovits’s work. In 1976, Goyal [16] extended Szendrovits’s work by

developing an algorithm to obtain the optimal sublot sizes. He added transportation

cost to Szendrovits’s work and created a new algorithm to determine the production

lot size and number of sublots for the single-product multi-stage productions. Again

in the same year, Szendrovits extended Goyal’s study and present a simpler and

faster model to minimize the total cost.

Truscott [17] introduced a model for the single-product, multi-stage lot

streaming problem with variable sublot in 1986. This model includes setup,

operations and load movements between operations. The first objective of this model

is to minimize the total production time for the lot. The second aim is to minimize

the number of load movements. This approach develops a branch-and-bound

algorithm to solve sub problems of scheduling transportation activities. But solving

sub problems as zero-one mixed integer programs makes this approach too complex

especially for small problems.

In 1989, Potts and Baker [18] created a model for the single-product lot

streaming problem up to three machines for minimizing makespan when lot

streaming is invoked. They show that they can always find the optimal scheduling

policy with consistent sublots when the number of the machines are less than or

equal to three.

13

In 1990, Kropp and Smunt [19] released a paper for the single-product, multi-

stage lot streaming problem with equal and consistent sublots. The main propose of

the algorithm to minimize the makespan or mean flow time. The makespan problem

was modeled as linear programming model while the mean flow time model as a

quadratic programming model. They determined the optimal way of splitting a job

into sublots under various setup times to run time ratios, number of machines in the

flow shop, and number of allowed sublots by using quadratic programming approach

to the mean flow time problem. At the same year, Baker and Pyke [20] presented a

model for single-product multi-machine flow shops. They used only two sublots to

minimize cycle time. Later on, their study was used as base to create the concept of

bottleneck machine.

In 1993, Trietsch and Baker [10] studied the single-product two-machine

flowshop problem for continuous and discrete sublots. They created a model for

more than one transporter to minimize the makespan. Also the same year Baker and

Jia [21] were created a model for single-product lot streaming problems for product

lines with three machines. They researched effects of different constraints, i.e. no

idling time, using of equal and consistent sublots, on the makespan value.

Glass, Gupta and Potts [22] developed an algorithm to minimize the

makespan for a single job in three-stage production processes. They considered the

continuous and consistent sublots on each machine. This algorithm characterized a

critical path structure for optimal solution and showed that for the open shop, to

minimize makespan, constant time is required. In 1998, Chen and Steiner [23]

extended the study of Glass et al. with no setup time to the case of attached setups in

a multi-machine flow shops. They showed that no-wait schedules are more

convenient in some specific conditions. Again in I998, Sen, Topaloglu and Benli [24]

studied single-product lot streaming problems with equal, consistent and variable

sublots. Their study justified that equal sublots give more effective results in their

conditions.

14

In 1999, Sriskandarajah and Wagneur [25] considered the problem of

minimizing makespan in two-machine no-wait flowshops with multiple products

requiring lot streaming. They considered the number of sublots for each product was

fixed. They reached the solution that when the flowshop produces only a single

product; they obtained optimal continuous-sized sublots. It means that these sublot

sizes were also optimal for the problem of simultaneous lot streaming and scheduling

of multiple products.

In 2000, Kumar, Bagchi and Sriskandarajah [26] extended the heuristic of

Sriskandarajah and Wagneur for the multiple machine case. They showed that, using

linear programming approach for one type product, usage of continuous sized sublots

gives optimal result. Again at the same year, Ramasesh et al. [27] presented an

economic production lot size model for the single item multi-stage manufacturing

system with equal sublots and no idling case using lot streaming. This heuristic

minimizes the total relevant cost including the cost of setup, transportation and

finished goods.

In 2001, Kalir and Sarin [28] developed a heuristic for single-product

flowshop manufacturing systems to split a lot into sublots to optimize different

performance measures especially the objective function of makespan. In the same

year, Bogaschewsky et al. [29] presented a deterministic model for single-product

multi-stage lot streaming problem including transportation activities and cost

objective. For equal sublots, they generated an algorithm to find optimal number of

sublots. For variable sublots, they suggested two algorithms, one is an heuristic, ant

the other is an optimal seeking.

In 2003, Kalir and Sarin also released an optimal solution algorithm for the

single-batch problem with sublot attached setups [30]. This heuristic guarantees the

near-optimal solution in a fast and efficient way. In the same year Chen and Steiner

[31] showed that the addition of the no-wait constraint in a regular flowshop doesn’t

affect the minimum makespan for the single-product lot streaming problem in no-

15

wait flowshops. Van Nieuwenhuyse and Vandaele [32] created a cost minimization

model for a single-product deterministic flowshop lot streaming problem. In their

approach, they assumed that sublot sizes are discrete and equal-sized to minimize the

sum of inventory holding, transportation costs and gap costs. As a result, they

reached that adding gap cost to the total cost function gives the same results as a no

lot splitting case.

In 2004, Chiu et al. [33] developed a binary mixed integer programming for a

single-product, multi-stage lot streaming problem to minimize total cost including

the transportation and makespan costs. They proposed two heuristics. The first one

extended the two-stage method of Trietsch and Baker (1993). The second heuristic

was built to relax the transporter capacity constraints.

In 2005, Chiu and Chang [7] released two models for a multi-stage flowshop

lot streaming problems. In their models, the sublot sizes are assumed to be equal, the

number of transporters and the capacity of them are assumed to be infinite. They

carried out an experimental design for the cost factors and analyze a number of

different levels.

2.4 Multi-Product Lot Streaming

In the literature, studies mainly focuses on simple lot streaming problems.

Because when the scale of problem is expanded, its complexity increases. To get rid

of this complexity, researchers partition the multi-product lot streaming problem into

a sub problem, propose different heuristic approaches to them and solve these

partitions individually. In this section, we explain the heuristic approaches of

different kinds of multi-product lot streaming problems’ solutions.

In 1985, Truscott was first studied single job, equal sized sublots lot

streaming problem on multiple machines by considering the setup times [34]. In

1992, Vickson and Alfredsson modified the Johnson’s rule to obtain optimal solution

16

for unit sized and equal sized sublots by ignoring transfer and setup times for

multiple jobs on two and three machines flowshops system [35]. They created the

non-intermingled solution which is among many optimal solutions there exists an

optimal solution where sublots of the same products are processed continuously on

each machine [4]. Again in 1992, Cetinkaya and Kayaligil extended the study of

Vickson and Alfredsson by considering detached setups [36]. Their heuristic was

very similar to Johnson’s rule and showed that splitting jobs into sublots and

sequencing them could be done independently. In 1994, Cetinkaya studied on lot

scheduling problem to minimize the maximum makespan for two-stage flow shops in

which the movement of transfer batches (sublots) from the first stage to the next

were allowed when set-up, processing and removal times were considered as

separable and independent of the order in which jobs were processed at any of two

stages [37]. In 2001, Kalir and Sarin released a bottleneck minimal idleness heuristic,

for the multi-product lot streaming problem [28]. This heuristic minimizes the idle

time between sublots of each product and gives very close solution to optimal. Again

in 2001, Kalir and Sarin extended their heuristic for multiple jobs by excluding setup

times. In 2009, Laha and Sarin [38] and in 2011, Glass and Possani [39] referred to

this heuristic in their studies.

In 1993, Trietsch and Baker presented linear and integer programming

formulation for a single job using continuous and discrete values of consistent

sublots on a three machine flowshop systems [10]. In 2001, Wagneur added the no-

wait condition to Trietsch and Baker’s formula [40]. In 1997 and 1998, Chen and

Steiner extended this case by detached [41] and attached setup times [23]. In 2000,

Kumar, Bagchi and Sriskandarajah extended the two-staged approach of

Sriskandarajah et al.[25] for the case of multi-product, multi-stage, no-wait flowshop

environment with non-intermingled and discrete sublots using three-staged approach

[26]. In 2002, Buckhin, Tzur and Jaffe presented single machine bottleneck

procedure [42] which guarantees very close solution to optimal solution and optimal

17

solution for some special cases for two-machine, sublot-attached flowshop lot

streaming problems. In 2003, Hall et al. studied on Sriskandarajah and Wagneur’s

problem [25] by attaching setup times to it [43]. They reached an efficient solution

for the multi-stage, no-wait multi-product lot streaming problem with consistent non-

intermingled integer sublot sizes. In 2005, they modified their heuristic for no-wait

two-machine open shops with consistent non-intermingled sublots [43]. With this

heuristic, they reached good results for two-machine flowshops with up to 50

products.

In 2002, Yoon and Venture developed a linear programming for no-wait lot

streaming flowshops to find the optimal sequence that minimize the absolute

deviation [44]. In order to accelerate production, a job was allowed to overlap its

operations between successive machines and by splitting it into a number of smaller

sublots and moving the completed potion of the sublots to downstream

machines[45]. They also developed a hybrid generic algorithm for buffers between

successive machines having infinite capacities and sublots are equal sized and

buffers between successive machines having finite capacities and sublots are

consistent [46].

In 2004, Hug, Cutright and Martin developed an integer programming model

to obtain optimum sublot sizes while enumerating the number of sublots for multi-

product lot streaming problem using discrete sublots [47]. In 2007, 2008 and 2009

Marimuthu, Ponnambalam and Jawahar released a tabu search, a simulated

annealing, hybrid generic algorithm, ant colony optimization and threshold

accepting algorithms which include setup times [48], [49, 50].

In 2005, Zhang, Yin, Liu and Linn proposed two heuristics to minimize the

mean completion time for multi-job lot streaming problem in two-stage hybrid

flowshops with m identical machines at the first stage and a single machine at the

second stage [51].

18

In 2009, Martin presented a hybrid genetic algorithm/mathematical

programming heuristic for the n-job, m-machine flowshop problem with lot

streaming. The number of sublots for each job and the size of sublots were directly

addressed by the heuristic and setups may be sequence-dependent. A new aspect of

this problem, the interleaving of sublots from different jobs in the processing

sequence, were developed and addressed [52].

In 2011, Buscher and Shen proposed an integer programming formulation to

solve multi-product lot streaming problem in a job shop environment where setup

times are involved. They optimally solved this problem for consistent sublots [53].

F.M. Defersha and M. Chen developed a hybrid genetic algorithm for a model that

appeared in recent literature for one -job m -machine lot streaming problems with

variable sublots and setup and showed that the performance of the proposed genetic

algorithm is encouraging in the same year [54].

In 2012, M. Karimi and Nasab presented a mathematical modeling of joint lot

sizing and scheduling problem in job shop environment under a set of working

conditions. They deal with process compressibility and their further experiences on

random test data confirmed that the performance of the proposed method with less

than 5.02% optimality gap while solving the problems in very shorter times than

CPLEX [55].

In 2013, N. Mortezaei and N. Zulkifli developed a mathematical model for

the integration of lot sizing and flow shop scheduling with lot streaming. They

developed a mixed-integer linear model for multiple products lot sizing and lot

streaming which enabled the operator to find optimal production quantities, optimal

inventory levels, optimal sublot sizes, and optimal sequence simultaneously

[56]. With this research they showed that the best makespan shall be achieved

through the consistent sublots with intermingling case.

.

19

CHAPTER 3

3 PROBLEM DEFINITION AND MATHEMATICAL MODELS

In this chapter we first define our problem under consideration for both equal

and unequal sublots cases and then propose mathematical models for solving these

problems.

3.1 Problem Statement

There is a set of N jobs (product lots) to be processed on a two-machine

flowshop in which both machines M1 and M2 operate independently and ready at

time zero for processing jobs. All jobs are available at time zero and processed first

on M1 and then on M2. That is, the first and second operations of the jobs are

performed by machines M1 and M2, respectively. The setup times required before

processing each job and the transfer time from machine M1 to machine M2 are

assumed to be zero, and ignored.

In our study, we assume that the total number of allowed sublots for all jobs

is S (where S > N) and known in advance. Moreover, only one job can be processed

on a machine at a time and preemption is not allowed, i.e. the processing of any

sublot cannot be interrupted on any machine at any time and resumed at a later time.

Our problem is to determine the number of sublots for each job, the size of

the each sublot and the processing sequence of all sublots that gives the minimum

makespan. We investigate the problem for two cases: unequal sized sublots and equal

sized sublots. Details of these approaches will be explained at the following sections.

20

3.2 Mathematical Model for the Case with Unequal Sized Sublots

Based on the problem characteristics and assumptions given in Section 3.1,

we developed a mixed integer linear programming (MILP) model for solving

optimally the lot streaming problem with unequal sized sublots. This model aims to

determine the sublot sizes for each product and the processing sequence of the

sublots of all products for the case with unequal sized sublots. Below, we present

parameters, indices and variables are used in this model.

Parameters and Indices:
N Number of jobs

S Total number of sublots allowed for all jobs (where NS )

j Index for jobs (Nj ,...,2,1)

t Position index for sublots in the sequence (St ,...,2,1)

m Index for machines (2,1m)

jQ Lot size of job j

mjp , Unit processing time of job j on machine m

L Sufficiently large positive number

Decision Variables:

sequence in the position toassigned is job ofsublot a
0
1

,

tj
otherwise

if
Z tj







 tjX , Size of the sublot which belongs to job j assigned to position t

 mtC , Completion time of the sublot assigned to position t on machine m

 maxC Makespan (completion time of all jobs on Machine 2)

21

MILP:

Minimize:

 2,max SCC  (1)

Subject to:

 



N

j
tjZ

1
, 1 for St ,...,2,1 (2)

 tjtj ZLX ,,  for Nj ,...,2,1 ; St ,...,2,1 (3)

 j

S

t
tj QX 

1
, for Nj ,...,2,1 (4)

 0,0 mC for 2,1m (5)

 00, tC for St ,...,2,1 (6)

 


 
N

j
tjmjmtmt XpCC

1
,,,1, for St ,...,2,1 ; 2,1m (7)

 


 
N

j
tjmjmtmt XpCC

1
,,1,, for St ,...,2,1 ; 2,1m (8)

  1 ,0, tjZ for tj, (9)

 0, tjX for tj,

 0, mtC for mt,

In the above presented MILP model, the objective function maxC in (1) is to

minimize the makespan, which is the completion time of the last sublot in the

processing sequence of the products. The Constraint Set (2) ensures that each

position in the sequence is occupied by a sublot of a job. The Constraint Set (3)

guarantees that size of a sublot becomes positive if this sublot is assigned to a

22

position in the sequence. Constraint Set (4) ensures that the sum of all sublot sizes of

a job equals to the lot size of this job. Constraint Sets (5) and (6) are initialization

constraints for completion times of sublots on each machine. Constraint Set (7)

guarantees that the completion time of a sublot on a machine should be greater than

or equal to the sum of completion time of the sublot in the previous position and the

processing time of this sublot on the same machine. Constraint Set (8) ensures that

the completion time of a sublot on a machine should be greater than or equal to the

sum of the completion time of this sublot on the previous machine and the processing

time of this sublot on the current machine. Constraint Set (9) imposes binary and

non-negativity restrictions on the decision variables, respectively.

In this MILP model, two sets of the decision variables are continuous

variables, and the number of this type of decision variables is)2( NS . However,

there is only one set of decision variables, which has NS  binary. This means that

there are totally)1(2  NS decision variables. On the other hand, the MILP model

has 2)1(6  SNS constraints.

3.3 Mathematical Model for the Case with Equal Sized Sublots

The second model aims to determine sublot sizes for each product and the

processing sequence of the sublots of all products for the case with equal sized

sublots. Additional parameters, indices and variables for our model to solve the case

with equal sized sublots are given below:

Additional Parameters and Indices:

1 NS Maximum number of sublots allowed for a job

k Index for sublots (1,...,2,1  NSk)

23

Additional Decision Variables:

 sublots intosplit is job
0
1

,

kj
otherwise

if
Y kj







tkjX ,, Non-negative continuous variable

MILP:

Minimize:

 2,max SCC  (10)

Subject to:

 





1

1
, 1

NS

k
kjY for Nj ,...,2,1 (11)

  







N

j

NS

k
kj SYk

1

1

1
, (12)

 



N

j
tjZ

1
, 1 for St ,...,2,1 (13)

  







S

t

NS

k
kjtj YkZ

1

1

1
,, for Nj ,...,2,1 ; 1,...,2,1  NSk (14)

 1,,,,  tjkjtkj ZYX for Nj ,...,2,1 ; 1,...,2,1  NSk ;

 St ,...,2,1 (15)

 0,0 mC for 2,1m (16)

 00, tC for St ,...,2,1 (17)

  





 

N

j

NS

k
tkjmj

j
mtmt Xp

k
Q

CC
1

1

1
,,,,1, for St ,...,2,1 ; 2,1m (18)

  





 

N

j

NS

k
tkjmj

j
mtmt Xp

k
Q

CC
1

1

1
,,,1,, for St ,...,2,1 ; 2,1m (19)

  1 ,0, kjY for kj, (20)

24

  1 ,0, tjZ for tj,

 0,, tkjX for tkj ,,

 0, mtC for mt,

In the above MILP model, the objective function maxC in (10) is to minimize

the makespan, which is the completion time of the last sublot in the sequence.

Constraint Set (11) ensures that a job is split into at most 1 NS sublots.

Constraint Set (12) guarantees that the sum of sublots of all jobs is equal to the total

number of sublots for all jobs. Constraint Set (13) ensures that each position in the

sequence is occupied by a sublot of a job. Constraint Set (14) guarantees that total

number of positions occupied by a job is equal to the total number of sublots of this

job. Constraint Set (15) determines the values of the continuous variables tkjX ,, ’s.

Constraint Set (16) and (17) are initialization constraints for completion times.

Constraint Set (18) guarantees that the completion time of a sublot on a machine

should be greater than or equal to the completion time of the sublot in the previous

position plus the processing time of this sublot on the same machine. Constraint Set

(19) ensures that the completion time of a sublot on a machine should be greater than

or equal to the completion time of this sublot on the previous machine plus the

processing time of this sublot on the current machine. Constraint Set (20) imposes

binary and non-negativity restrictions on the decision variables, respectively.

In this MILP model, two sets of the decision variables are continuous

variables, and the number of this type of decision variables is)2( NS . However,

there are two sets of binary decision variables, which have totally)12( NSN

binary variables. This means that there are totally)1(2  NS decision variables.

On the other hand, the MILP model has   362)2( SNNSSNx

constraints.

25

CHAPTER 4

4 HEURISTIC ALGORITHMS

The size of the the MILP models increases drastically with the increase in the

number of jobs and the total number of sublots allowed. Therefore, the optimal

solutions to the large-scale problems are not likely to be obtained within reasonable

computational times. Moreover, the existence of a polynomial-time algorithm to

solve the problem optimally is unlikely since we have an NP-hard problem. This

motivated us to develop fast algorithms that provide near-optimal solutions.

In this chapter we present our proposed heuristic algorithms for solving the

two cases, unequal sized and equal sized sublots, of the lot streaming problem under

consideration.

4.1 Heuristic Algorithm for the Case with Unequal Sized Sublots

By this heuristic, we aim to determine the number of the sublots for each

product, the size of each sublot on each machine and the processing sequence of the

sublots for minimizing the makespan for multi-product lot streaming problem with

unequal sublots. To address this problem, we extend the heuristic algorithm of

Cetinkaya [37]. Below, we present the notation and formulation of our heuristic for

the multi-product flowshop lot streaming problem with unequal sublots:

26

Parameters:

M Number of machines (2M)
N Number of jobs
S Total number of sublots

nQ Lot size of job n

mn,P Processing time for one unit of job n on machine m

mn,TP Total processing time for one unit of job n on machine m

nK Number of sublots of job n

ns,x Size of the sublot s of job n

ns,k Total process time for sublot s of job n

nZ Idle time for job n

ns,f Fraction factor for sublot s of job n

ms,,n,TSP Total processing time for sublot s of job n on machine m

Indices:

m Machine index where ,...,Mm 1
n Job index where ,...,Nn 1

s Sublot index where n,...,Ks 1

Heuristic Algorithm for Unequal Sized Sublots Case:

Step 1:

Identify the maximum process time on 1M and 2M , that is:

mn, ,  mn,TP max where nmn,mn, .QPTP 

27

The job with the highest mn,TP value will be the primary job to calculate

sublot sizes.

Step 2:

Identify number of sublot used by job with the highest mn,TP value

).(n,mJHTP We assume that each job except mn,JHTP value has only one

sublot and the rest of the sublots belong to mn,JHTP . That is,








 otherwise)1(
 not is job if 1

NS
JHTPn

K n,m
n

Step 3:

Identify the size of each sublot of mn,JHTP using the following algorithm:


























n1
1-s

n

nK
n

n

ns,

Ks1 wheres ,.x

 .Q
1-

x
n






1

where

1,

2,

n

n
n P

P
 and n is the index of mn,JHTP .

The jobs except mn,JHTP aren’t split. For these jobs sublot size equals to lot

size, i.e.

nn1, Qx  where n is NOT the mn,JHTP .

Step 4:

If, at least, one of the sublot size calculated at Step 3, is non-integer sized go

to Step 4.1 to recalculate the integer sized ones. Otherwise, go to Step 5.

28

Step 4.1 (Converting non-integer sized sublot to integer-sized sublot)

For all jobs,

Step 4.1.1 :

Calculate the idle time nZ as









 




1

1
,2,

1
,1,

1
..max

u

s
nsn

u

s
nsn

Ku
n xPxPZ

n

 where   N ,1 n 

Step 4.1.2 :

For each sublot s, calculate the integer sized sublot

 
















































 
 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

Step 4.1.3 :

If 



nK

1i
nni, Qx , then the calculated sublot sizes, that are ns,x , are not

integer sublot sizes go to Step 2 using following nZ .

 nsnnn fPZZ ,1, 1min 

where

  nsn

s

m
nmnnnns, xPxPPZf ,1,

1

1
,2,1, 







 





.

Otherwise,

1. If there are no zero sized sublots, go to Step 5.

2. If there exist zero sized sublots, transfer them to the next job

with greatest mn,TP after the current job.

29

Step 5:

Calculate the total process time of each sublot (ms,,n,TSP) on both machine and

group them as Set 1 and Set 2.

Set 1 is a set of sublots that are processed on 1M at most in the time that are

processed on 2M . In other words; each sublot of Set 1 is processed on 1M in

less or equal time on 2M .

Set 2 is a set of sublots that are processed on 1M longer than that are

processed on 2M .

Set 1 and Set 2 are mathematically expressed as

 2,,sns,1n,n TSPTSP:k 1Set 

 2,,sns,1n,n TSPTSP:k 2Set 

where mnnsms,,n, PxTSP ,., ,  Nn ,1 ,  nn Kk ,1 and  2,1m .

Step 6:

Optimize Set 1 and Set 2 by rearranging their entities. While Set 1 is

optimized by sorting sublots according to their increasing process time on 1M

; Set 2 is optimized by sorting sublots according to their decreasing process

time on 2M . If we call optimized Set 1 as OSet 1 and optimized Set 2 as

OSet2, the mathematical representation of OSet 1 and OSet 2 are as follows:

 1,,1 sns,1n,n TSPTSP: 1 Set k 1 OSet 

 2,,1 sns,2n,n TSPTSP: 2 Set k 2 OSet  where  Nn ,1 ,  nn Kk ,1 .

Step 7:

To minimize the makespan, sublot sequence is needed to be optimized.

Optimized sublot sequence, OS, is a combination of Set 1 and Set 2 as all

30

elements of Set 1 is followed by all elements of Set 2. OS is represented

mathematically as follows:

m

S

m
n

S

n
kkOS

21

11 
 

where, 1 Setkn  , 2 Setkm  , 1S and 2S are the sizes of Set 1 and Set 2,

 respectively.

4.1.1 Numerical Example

In this section, we provide a numerical example for illustrating the heuristic

algorithm for solving the unequal sized sublot case. Consider a simple instance of the

problem in which there are 5 jobs and the total number of sublots is 20. Unit

processing times on the machines and the lot sizes for all jobs are given in Table 4-1.

Table 4-1 Process Times on M1 and M2

First we will find the job with the maximum process time. As seen on Table

4-1, the job with the maximum process time is Job 4. So, Job 4 will have the

maximum number of sublots when other jobs have only one sublot, which is equal to

the lot. It means that

164204 K and 15321  KKKK .

31

Now, we shall find the sizes of sublots for each job. Here it is obvious that for

Jobs 1, 2, 3 and 5, the sublot equals to the total lot size of the job since these jobs are

not split into sublots and have only one sublot. But Job 4 is split in to 16 sublots. Our

sublot factor 4 is

9
1
9

1,4

2,4
4 

P
P

 .

When we calculate the size of each sublot in Job 4 using 4 , we obtain:

141063.820.
1169

19
4,1















 xx

131077.74,1.4,2

 xxx 

121099.64,1.2
4,3

 xxx 

111029.64,1.3
4,4

 xxx 

101066.54,1.4
4,5

 xxx 

91009.54,1.5
4,6

 xxx 

81058.44,1.6
4,7

 xxx 

71012.44,1.7

4,8
 xxx 

61071.34,1.8
4,9

 xxx 

51034.34,1.9

4,10
 xxx 

41001.34,1.10
4,11

 xxx 

31070.24,1.11
4,12

 xxx 

02.04,1.12
4,13  xx 

21.04,1.13

4,14  xx 

97.14,1.12
4,15  xx 

7.174,1.12

4,16  xx 

After calculating the size of each sublot, we shall categorize these sublots as

Set 1 and Set 2. As shown in Table 4-2, each sublot’s process time on M1 is less than

its process time on M2. Thus, it is obvious that all sublots belong to Set 1.














4164154144134124114104948474645

4443424151312111

,,k,,k,,k,,k,,k,,k,,k,,k,,k,,k,,k,k

,,,k,,k,,k,,k,,k,,k,,k,k
1 Set

2 Set is empty.

32

Now, to find the sequence of sublots that provides the optimal makespan, we

will find 1 OSet and 2 OSet . While 2 Set is empty, 2 OSet is empty too. But to

obtain 1 OSet , we rearrange 1 Set as










1,11,51,21,3 kkkkkkkkkk

kkkkkkkkkk
1 OSet

,,,,,,,,,
,,,,,,,,,,

4,164,154,144,134,124,11

4,104,94,84,74,64,54,44,34,24,1
.

Table 4-2 Total Sublot Process Times of Jobs on M1 and M2

33

As seen on Table 4-2, almost all sublots are non-integer sized. So we need to

recalculate integer sized sublots. To do this, first we calculate the idle time nZ where

  N ,1 n  . Our first idle time is -148.63x10 . Now by using this idle time we

calculate non-integer sized sublots of Job 4 using the following formula.

 
















































 
 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

Now, when we recalculate integer sized sublots, we will see all of them are

zero. That is,

      0020,1063.8min020,1
0.911063.8min 14

14














  



xxx1,4

       0020,1063.8min020,1
0.911063.8min 14

14














  



xxx2,4

      0020,1063.8min020,1
0.911063.8min 14

14














  



xxx3,4

 0 16,415,414,413,412,411,410,49,48,47,46,45,44,43,4 xxxxxxxxxxxxxx
.

Here, it is obvious that 



4K

1i
i,4 Qx 4 since 




4K

1i
i,4x 0 and 200  . So we need

to use the fraction factor s,4f to recalculate the new idle time 4Z as

   14
14

1063.801
0.911063.8 









  xxf1,4

   14

14
1063.801

0.911063.8 








  xxf2,4

141063.8  xffffffffffffff 16,415,414,413,412,411,410,49,48,47,46,45,44,43,4

Our new idle time 4Z is

    11063.811063.81min 1414
4,1,44   xxfPZZ s4 .

34

Now, when we recalculate the new sublot sizes using the new idle time

14Z , we obtain:

     120,1min020,1
0.911min 













 1,4x

     919,9min120,1
1.911min 













 2,4x

     1010,81min1020,1
10.911min 













 3,4x

    02020,1
20.911min 













 4,4x

    02020,1
20.911min 













 5,4x

 0 16,415,414,413,412,411,410,49,48,47,46,45,44,4 xxxxxxxxxxxxx

Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that





4K

1i
i,4 Qx 4201091 .

When we analyze the sublot sizes, we see that sublot sizes are zero for 13

sublots. It means that 13 of the sublots out of 16 are useless for Job 4. So they will be

transferred to Job 2, which is the job with the second maximum process time. Thus,

the total number of sublots for Job 2 becomes 13+1=14. Now, we need to find

integer sized sublots for Job 2. First, we need to calculate our sublot factor 2 which

is

7
1
7

1,2

2,2
2 

P

P
 .

35

If we calculate the sizes of each sublot for Job 2 using 2 , we obtain:

10
142,1 105.117.

17
17 










 xx

9
2,12,2 1005.1.  xxx 

9
2,1

2
4,3 1036.7.  xxx 

8

2,1
3

2,4 1015.5.  xxx 

7

2,1
4

2,5 1061.3.  xxx 

6

2,1
5

2,6 1052.2.  xxx 
5

2,1
6

2,7 1076.1.  xxx 

4
2,1

7
2,8 1023.1.  xxx 

4

2,1
8

2,9 1066.8.  xxx 

3

2,1
9

2,10 1006.6.  xxx 

04.0. 2,1
10

2,11  xx 

29.0. 2,1
11

2,12  xx 

08.2. 2,1
12

4,13  xx 

5.14. 2,1

13
2,14  xx 

But it is obvious that sublot sizes are not integer sized and we need integer

sized sublots. To do this, we need to calculate the idle time for Job 2 which is

10
1

1
2,2,2

1
2,1,2

1
105.1..max

2















  xxPxPZ
u

s
s

u

s
s

Ku
2

Now by using this idle time 2Z we calculate non-integer sized sublots of Job

2 using the following formula.

 













































 
 

 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

Now, when we recalculate integer sized sublots, we will see all of them are

zero. That is,

      017,105.1min017,1
0.6105.1min 10

10














  



xxx1,2

36

      017,105.1min017,1
0.6105.1min 10

10














  



xxx 2,2

0 14,213,212,211,210,29,28,27,26,25,24,23,2 xxxxxxxxxxxx

Here it is obvious that 



2K

1i
i,2 Qx 2 since 




2K

1i
i,2x 0 and 170  . Thus, we

need to use the fraction factor s,2f to recalculate the new idle time 2Z as

    1105.11105.11min 1010
2,1,22   xxfPZZ s2 .

Now, when we recalculate the new sublot sizes using the new idle time

12Z , we obtain:

     117,1min017,1
0.711min 













 1,2x

     716,7min117,1
1.711min 







 



 2,2x

     99,79min817,1
8.711min 







 



 3,2x

    01717,1
17.711min 







 



 4,2x

0 14,213,212,211,210,29,28,27,26,25,24,2 xxxxxxxxxxx

Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that





2K

1i
i,2 Qx 217971 .

37

When we analyze the sublot sizes, we see that 3 sublots are enough for Job 2.

So the remaining 11 sublots will be transferred to Job 1, which is the job with the

maximum process time after Job 2. Thus, the total number of sublots for Job 1

becomes 11+1=12. Now, we need to find integer sized sublots for Job 1. First, we

need to calculate our sublot factor 1 which is

2
3
6

1,2

2,1
1 

P
P

 .

When we calculate the sizes of each sublot for Job 1 using 1 , we obtain:

3
121,1 1093.1212.

12
12 










 xx

3
1,11,2 1086.5.  xxx 

0117.0. 1,1
2

1,3  xx 

023.0. 1,1
3

1,4  xx 

046.0. 1,1
4

1,5  xx 

093.0. 1,1

5
1,6  xx 

187.0. 1,1
6

1,7  xx 

375.0. 1,1
7

1,8  xx 

75.0. 1,1
8

1,9  xx 

5.1. 1,1
9

1,10  xx 

3. 1,1
10

1,11  xx 

6. 1,1
11

1,12  xx 

But it is obvious that sublot sizes are not integer sized and we need integer

sized sublots. To do this, we need to calculate the idle time for Job 1 which is

0087.0..max
1

1
1,1,2

1
1,1,1

1 1










 




u

s
s

u

s
s

Ku
1 xPxPZ

Now by using this idle time 1Z we calculate the non-integer sized sublots of

Job 1 using the following formula

38

 
















































 
 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

.

Now, when we recalculate the integer sized sublots, we see all of them are

zero. That is,

      012,109.2min012,3
0.630087.0min 3 







 



  xx1,1

      012,0087.0min012,3

0.30087.0min 






 



 2,1x

0 12,111,110,19,18,17,16,15,14,13,1 xxxxxxxxxx

Here it is obvious that 



1K

1i
i,1 Qx 1 since 




1

0
K

1i
i,1x and 120  . Thus, we

need to use the fraction factor s,1f to recalculate the new idle time 1Z as

  30087.099.21min 2,11,11  fPZZ 1 .
Now, when we recalculate the new sublot sizes using the new idle time

31Z , we obtain:

  212,2min012,3
0).63(3min 







 



 1,1x

     310,3min212,3

2.633min 






 



 2,1x

   6512,3
5.31min 







 



 3,1x

    11112,3
11.33min 







 



 4,1x

   01212,3

15.33min 






 



 5,1x

0 12,111,110,19,18,17,16,15,1 xxxxxxxx
Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that





1K

1i
i,1 Qx 1121632 .

When we analyze the sublot sizes, we see that 4 sublots are enough for Job 1.

So the remaining 8 sublots will be transferred to Job 3, which is the job with the

39

maximum process time after Job 1. Thus, the total number of sublots for Job 3

becomes 8+1=9. Now, we need to find integer sized sublots for Job 1. First, we need

to calculate our sublot factor 3 which is

4
1
4

1,3

2,3
3 

P
P

 .

When we calculate the sizes of each sublot for Job 3 using 3 , we obtain:

4
93,1 1083.116.

14
14 










 xx

4
3,13,2 1032.7.  xxx 

3
3,1

2
3,3 1092.02.  xxx 

011.0. 3,1

3
3,4  xx 

046.0. 3,1

4
3,5  xx 

187.0. 3,1
5

3,6  xx 
75.0. 3,1

6
3,7  xx 

3. 3,1

7
3,8  xx 

12. 3,1

8
3,9  xx 

But it is obvious that sublot sizes are not integer sized and we need integer

sized sublots. To do this, we need to calculate idle time for Job 3 which is

4
1

1
3,2,3

1
3,1,3

1
1083.1..max

3















  xxPxPZ
u

s
s

u

s
s

Ku
3

Now by using this idle time 3Z we calculate the non-integer sized sublots of

Job 3 using the following formula.

 













































 
 

 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

Now, when we recalculate integer sized sublots, we see all of them are zero.

That is,

   0016,1
0.31083.1min

4








 



 

xx1,3

40

0 9,38,37,36,35,34,33,32,3 xxxxxxxx

Here it is obvious that 



3K

1i
i,3 Qx 3 since 




3

0
K

1i
i,3x and 160  . Thus, we

need to use the fraction factor s,3f to recalculate the new idle time 3Z as

  11083.111083.11min 44
3,11,33   xxfPZZ 3 .

Now, when we recalculate new sublot sizes using new idle time 13Z , we

obtain:

1016,1
0).3(1min 







 



 1,3x

   4116,1
1.31min 







 



 2,3x

   11516,1
5.31min 







 



 3,3x

   01616,1

16.31min 






 



 4,3x

0 9,38,37,36,35,34,3 xxxxxx
Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that





3K

1i
i,3 Qx 3161141 .

When we analyze the sublot sizes, we see that 3 sublots are enough for Job 3.

So the remaining 6 sublots will be transferred to Job 5, which is the job with the

maximum process time after Job 3. Thus, the total number of sublots for Job 5

becomes 6+1=7. Now, we need to find integer sized sublots for Job 5. First, we need

to calculate our sublot factor 5 which is

5.1
4
6

1,5

2,5
5 

P
P

 .

When we calculate the sizes of each sublot for Job 5 using 5 , we obtain:

41

155.05.
15.1

15.1
75,1 











x

233.0. 5,15,2  xx 

349.0. 5,1
2

5,3  xx 

52.0. 5,1
3

5,4  xx 

78.0. 5,1
4

5,5  xx 

18.1. 5,1
5

5,6  xx 
77.1. 5,1

6
5,7  xx 

But it is obvious that sublot sizes are not integer sized and we need integer

sized sublots. To do this, we need to calculate the idle time for Job 5 which is

621.0..
1

1
5,2,5

1
5,1,5

1
max

5










 




u

s
s

u

s
s

Ku
5 xPxPZ

Now by using this idle time 5Z we calculate the non-integer sized sublots of

Job 5 using the following formula

 
















































 
 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

.

Now, when we recalculate the integer sized sublots, we see all of them are

zero. That is,

   005,4
0.2621.0min 







 



 1,5x

0 7,56,55,54,53,52,5 xxxxxx

42

Here it is obvious that 



5K

1i
i,5 Qx 5 since 




5

0
K

1i
i,5x and 50  . Thus, we need

to use the fraction factor s,5f to recalculate the new idle time 5Z as

    49994.3378.3621.0)1554.01(4621.01min 5,11,55  xfPZZ 5 .

Now, when we recalculate the new sublot sizes using the new idle time

45Z , we obtain:

105,4
0).2(4min 







 



 1,5x

   115,4

1.24min 






 



 2,5x

   225,4

2.24min 






 



 3,5x

   055,4

5.24min 






 



 4,5x

Here, when we calculate the rest of sublots sizes, we will see that

0 7,56,55,5 xxx .

Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that





5K

1i
i,5 Qx 551211 .

When we analyze the sublot sizes, we see that 4 sublots are enough for Job 5.

Thus, the remaining 3 sublots are useless, and 17 sublots are enough as the total

number of sublots for all jobs.

Below, in Table 4-3, the sizes and process times of each integer sized sublot

is given.

43

Table 4-3 Size and Process Times of Integer Sized Sublots

As shown in Table 4-3, each sublot’s process time on M1 is less than its

process time on M2. So all sublots belongs to Set 1, and Set 2 is empty, obviously.

That is,










4,53,52,51,53,42,41,43,32,3

1,33,22,21,2

,,,,,,,,
,,,,,,,,
xxxxxxxxx

xxxxxxxx
1 Set 1,41,31,21,1 .

44

Now, to find the sequence of sublots that provides the optimal makespan, we

determine 1 OSet and 2 OSet . While 2 Set is empty, 2 OSet is empty, too. But to

obtain 1 OSet , we rearrange 1 Set as










4,13,13,33,42,43,23,52,22,1

4,52,51,52,3

,,,,,,,,
,,,,,,,,
xxxxxxxxx

xxxxxxxx
1 OSet 1,14,13,12,1 .

 Thus, we obtain the sizes and sequence of unequal sublots that provides

smallest makespan using our heuristic algorithm for the lot streaming problem under

consideration.

4.2 Heuristic Algorithm for the Case with Equal Sized Sublots

With this heuristic, we aim to reach the minimum makespan for the multi-

product lot streaming problem with equal sized sublots. To address this problem, we

develop two-parted heuristic that each part contains first heuristics basically. At the

first part of the heuristic, we consider each lots of job. Sequentially, we assign the

max number of sublots to each job and find the number of the sublots for each

product, the size of each sublot on each machine and the sequence for processing the

sublots. We pick the one with minimum makespan as a result. At the second part of

the heuristic; we work on the two jobs with the highest processing times and again

we find the number of the sublots for each product, the size of each sublot on each

machine and the sequence for processing the sublots according to our heuristic. At

the end, heuristic returns the solution of part that has the minimum makespan time.

Below, we present the notation and formulation of the two-stepped heuristic

algorithm:

45

Parameters:

M Number of machines (2M)
N Number of jobs
S Total number of sublots

nQ Lot size of job n

mn,P Processing time for one unit of job n on machine m

mn,TP Total processing time for one unit of job n on machine m

nK Number of sublots of job n

ns,x Size of the sublot s of job n

OS Optimal sublot sequence

LOS List of optimal sublot sequence

ms,,n,TSP Total processing time for sublot s of job n on machine m

Indices:

m Machine index where ,...,Mm 1
n Job index where ,...,Nn 1

s Sublot index where n,...,Ks 1

Heuristic Algorithm for Equal Sized Sublots Case:

Step 1: (Sequentially, Split All Lots of Jobs Equally)

Step 1.1:

For each job nJ ,

46

Step 1.1.1:

Identify number of sublot used by each job. We assume that nJ is the

job with the highest mn,TP value. We assume that each job except nJ

value has only one sublot and the rest of the sublots belong to nJ .






otherwise 1)-(N-S

J otn is n job if 1
K n

n

Step 1.1.2:

Find the size of each equal-sized sublot of nJ as

n

n
ns, K

Q
x  .

The jobs except nJ aren’t split. For these jobs sublot size equals to lot

size, i.e.

nn1, Qx  where n is NOT the nJ .

Step 1.1.3:

Calculate the total process time of each sublot (ms,,n,TSP) on both

machine and group them as Set 1 and Set 2.

Set 1 and Set 2 are mathematically expressed as

 2,,sns,1n,n TSPTSP:k 1 Set 

 2,,sns,1n,n TSPTSP:k 2 Set 

where
mnnsms,,n, PxTSP ,., ,  Nn ,1 ,  nn Kk ,1 and  2,1m .

Step 1.1.4:

Optimize Set 1 and Set 2 by rearranging their entities. While Set 1 is

optimized by sorting sublots according to their increasing process time

47

on 1M ; Set 2 is optimized by sorting sublots according to decreasing

process time on 2M . If we call optimized Set 1 as OSet 1 and

optimized Set 2 as OSet 2, the mathematical representation of OSet 1

and OSet 2 are as follows:

 1,,1 sns,1n,n TSPTSP: Set1 k 1 OSet 

 2,,1 sns,2n,n TSPTSP: Set2 k 2 OSet  where  Nn ,1 ,  nn Kk ,1

Step 1.1.5:

To calculate makespan for nJ , optimized sublot sequence is needed.

Optimized sublot sequence for nJ , nOS , is a combination of Set 1 and

Set 2 as all elements of Set 1 is followed by all elements of Set 2. nOS

is represented mathematically as follows:

m

S

m
r

S

r
n kkOS

21

11 
 

where 1 Setkr  , 2 Setkm  , 1S and 2S are the sizes of Set 1 and Set

2 of nJ , respectively.

After calculating nOS , we add nOS to LOS .

Step 1.2:

After splitting all jobs into equal sublots and adding optimal sublot

sequence of each job to LOS , we find the sequence on LOS with the

smallest makespan. This sequence is the optimal sublot sequence obtained

in Step 1. That is,

 NnOSOS n  1;min .

48

Step 2: (Split Two Jobs with the First and Second Highest Processing

Times)

Step 2.1:

Identify the maximum process time on 1M and 2M , that is:

mn, ,  mn,TP max where nmn,mn, .QPTP 

The two of jobs with the highest mn,TP value will be the primary and the

secondary jobs to calculate sublot sizes. Let’s call the first job (primary

job) with highest mn,TP value 1JH ; and the second job (secondary job)

with highest mn,TP value 2JH .

Step 2.2:

Identify number of sublot used by each job. We assume that the jobs

except 1JH and 2JH have only one sublot; 2JH has two sublots and 1JH

has the rest of the sublots.










 ofindex theis job 1-1)-(N-S
 ofindex theis job 2

nor ofindex eneither th is job 1
K

1

2

21

n

JHnif
 JHnif

JHJHnif

Step 2.3:

Find the size of each equal-sized sublot of 1JH and 2JH as

n

n
ns, K

Q
x  .

Obviously, the jobs except 1JH and 2JH the sublot size of job equals to

lot size of job; because they are not split.

nn1, Qx  where n is NOT the nJ .

49

Step 2.4:

Calculate the total process time of each sublot (ms,,n,TSP) on both machine

and group them as Set 1 and Set 2.

Set 1 is a set of sublots that are processed on 1M at most in the time that

are processed on 2M . In other words; each sublot of Set 1 is processed on

1M in less or equal time on 2M .

Set 2 is a set of sublots that are processed on 1M longer than that are

processed on 2M .

Set 1 and Set 2 are mathematically expressed as

 2,,sns,1n,n TSPTSP:k 1 Set 

 2,,sns,1n,n TSPTSP:k 2 Set 

where
mnnsms,,n, PxTSP ,, ,  Nn ,1 ,  nn Kk ,1 and  2,1m .

Step 2.5:

Optimize Set 1 and Set 2 by rearranging their entities. While Set 1 is

optimized by sorting sublots according to their increasing process time on

1M ; Set 2 is optimized by sorting sublots according to decreasing process

time on 2M . If we call optimized Set 1 as OSet 1 and optimized Set 2 as

OSet 2, the mathematical representation of OSet 1 and OSet 2 are as

follows:

 1,,1 sns,1n,n TSPTSP: Set1 k 1 OSet 

 2,,1 sns,2n,n TSPTSP: Set2 k 2 OSet  where  Nn ,1 ,  nn Kk ,1

50

Step 2.6:

To minimize makespan, sublot sequence is needed to be optimized.

Optimized sublot sequence, OS, is a combination of Set1 and Set2 as all

elements of Set1 is followed by all elements of Set2. OS is represented

mathematically as follows:

m

S

m
n

S

n
kkOS

21

11 
 

 where, 1 Setkn  , 2 Setkm  , 1S and 2S are the sizes of Set 1 and Set 2

of nJ , respectively.

Step 3:

If the makespan of the sequence obtained in Step 1 is smaller than that of the

one obtained in Step 1, then the solution obtained in Step 1 should be selected

for implementation. Otherwise; the solution obtained in Step 2 should be

selected.

4.2.1 Numerical Example

In this section, we provide a numerical example for illustrating the heuristic

algorithm for solving the equal sized sublot case. Consider the simple instance of the

problem given in Section 4.1.1 in which there are 5 jobs and the total number of

sublots is 20. Unit processing times on the machines and the lot sizes for all jobs are

given in Table 4-4.

51

Table 4-4 Process Times on M1 and M2

First we will find the job with the maximum process time. As seen on Table

4-1, the job with the maximum process time is Job 4. So, Job 4 will have the

maximum number of sublots when other jobs have only one sublot. It means that that

Job 4 will be split into 16 equal sized sublots while the other jobs will not split into

sublots. That is,

164204 K and 15321  KKKK .

Now, we shall find the sizes of sublots for each job. Here it is obvious that for

Jobs 1, 2, 3 and 5 the sublot size equals to the total lot size of the job since these jobs

are not split into sublots and have only one sublot, which is equal to the lot. But Job

4 is split in to 16 sublots. Size of each sublot in Job 4 is

25.1
16
20

4

4 
K
Qxs,4 where 161  s .

So by splitting only Job 4’s total lot, we obtain the sublots sizes in Table 4-5.

52

Table 4-5 Sublot Sizes and Process Times Obtained in Step 1

As seen on Table 4-5, all sublots belong to Set 1 since the total process time

on M1 is less than the total process time on M2 for all jobs. That is,










1,5

1,31,21,1

xxxxxxxxxx
xxxxxxxxxx

 Set
,,,,,,,,,
,,,,,,,,,,

1
4,164,154,144,134,124,114,104,94,8

4,74,64,54,44,34,24,1

To find the sequence of sublots that provides the optimal makespan, we

determine 1 OSet by rearranging it as










1,15,14,164,154,144,134,124,114,104,94,8

4,74,64,54,44,34,24,1

,,,,,,,,,,,,
,,,,,,,

xxxxxxxxxxxxx
xxxxxxx

1 OSet
1,21,3

53

Thus, the optimal sequence of sublots obtained by splitting Job 4 into 16 sublots is

equal to 1 OSet . That is,

 








1,15,14,164,154,144,134,124,114,104,94,8

4,74,64,54,44,34,24,1

,,,,,,,,,,,,
,,,,,,,

xxxxxxxxxxxxx
xxxxxxx

OS
1,21,3

4

If we apply the same procedure for Jobs 2, 3, 1 and 5, we obtain the following

optimal sequences of sublots obtained by splitting Jobs 2, 3, 1 and 5 into 16 sublots,

respectively. That is,










1,15,14,13,12,162,152,142,132,122,11

2,102,92,82,72,62,52,42,32,22,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx

OS2










1,15,14,12,13,163,153,143,133,123,11

2,102,93,83,73,63,53,43,33,23,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx

OS3










5,14,12,13,11,161,151,141,131,121,11

1,101,91,81,71,61,51,41,31,21,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx

OS1










1,14,12,13,15,165,155,145,135,125,11

5,105,95,85,75,65,55,45,35,25,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx

OS 5

Makespan values of the sequences obtained above are as follows:

4MOS 466.25

2MOS 466.0625

3MOS 498

1MOS 467.25

5MOS 466.25

It is obvious that 2MOS has the smallest makespan value. Thus, at the first

step of the heuristic algorithm we obtain the following sublot sequence with a

makespan value of 466.025 time units.










1,15,14,13,12,162,152,142,132,122,11

2,102,92,82,72,62,52,42,32,22,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx

OS2

54

Now we continue with second step of the heuristic algorithm in which two

jobs with the first and second highest processing times are only split into sublots. As

seen on Table 4-4, the job with the maximum process time is Job 4 and the job with

the second maximum process time is Job 2. According our heuristic approach, jobs

except Job 4 and Job 2 will have only one sublot, which is equal to the lot, Job 2 will

have 2 sublots, and Job 4 has the rest of the sublots. That is,

1531  KKK

22 K

155204 K

Now, we shall find the sizes of sublots for each job. Here it is obvious that for

Jobs 1, 3 and 5 the sublot size equals to the total lot size of the job since these jobs

are not split into sublots and have only one sublot, which is equal to the lot. But Job

2 is split in to 2 equal sized sublots. Size of each sublot in Job 2 is

5.8
2

17

2

2 
K
Qxs,2 where 21  s .

For Job 4, we shall use 15 equal sublots. Size of each sublot in Job 4 is

33.1
15
20

4

4 
K
Qxs,4 where 151  s .

Sublot sizes and process times of all jobs are as shown in Table 4-6.

55

Table 4-6 Sublot Sizes and Process Times Obtained in Step 2

As seen on Table 4-6, all sublots belong to Set 1. So Set 2 is empty. That is,










5,14,154,144,134,124,114,104,94,8

4,74,64,54,44,34,24,1

,,,,,,,,
,,,,,,,,,,,

xxxxxxxxx
xxxxxxxxxxx

1 Set 1,32,21,21,1

To find the sequence of sublots that provides the optimal makespan, we

determine 1 OSet by rearranging it as










1,12,22,15,13,14,154,144,134,124,11

4,104,94,84,74,64,54,44,34,24,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx

1 OSet .

56

CHAPTER 5

5 A SOFTWARE PACKAGE FOR SOLVING THE PROBLEMS

When we create heuristic method, we also create software for user to create

test scenarios and reloading them to compare the result with mathematical model’s

result. This software is able to create scenarios depending on your choice of total

number of sublots, total number of jobs, sublot division approach etc.; runs heuristic

approach according to your heuristic choice; gives results in tabular and documented

forms and create a reloading file for user to reloading obtained heuristic algorithm’s

result to compare mathematical model’s one.

In this chapter, we briefly explain the implementation of this software and

usage of it.

5.1 Brief Details of the Software Implementation

This software is created for users to run and see the results of heuristic

algorithms in more user friendly way. Because of this software request, we coded in

C# using .NET technologies.

When we created user interfaces, we used DevExpress library which is a gui

library that creates ASP.NET UI controls that coder can use this library in his

application to enhance UI.

57

When we coding the user interface for heuristic algorithms, we remain loyal

to object oriented programing basis. In Figure 5.1, you can see the package diagram

of this software.

Figure 5.1 Package Diagram for Software

Brief content explanations of these packages are as follows:

common: This package contains classes that are used by commonly all

packages. The class details of this package are given in Figure 5.2.

Figure 5.2 Class Diagram of Package “common”

58

controller: This package contains the classes to control sublot sizes according

to the selected heuristic approach. The details of this package are illustrated in

Figure 5.3.

Figure 5.3 Class Diagram of Package “controller”

fileCreator: This package is responsible for creating “*.dat” files and “*.doc”

files. “*.dat” files are used for reloading the heuristic results to the software to

compare the mathematical model’s results. “*.doc” files are detailed

documentation of results. The class content of this package is shown in Figure

5.4.

Figure 5.4 Class Diagram of Package “fileCreator”

59

parser: This package contains the classes that are used for parsing “*.dat”

files. By this way, user may reach previously run heuristic results again. The

classes of this package are illustrated in Figure 5.5.

Figure 5.5 Class Diagram of Package “parser”

solver: This package is responsible for running the heuristic algorithms and

generating results according to the user’s choices. The class detail of this

package is given in Figure 5.6.

Figure 5.6 Class Diagram of Package “solver”

ui: This package contains all the windows that are used by the user himself.

The classes of this package are shown in Figure 5.7.

60

Figure 5.7 Class Diagram of Package “ui”

util: This package is utility package as it is understood by its name. It contains

all utility functions. The class content of this package is shown in Figure 5.8.

Figure 5.8 Class Diagram of Package “util”

5.2 Software Usage

In this section, we briefly explain how the software is used. When the user

runs the software, the welcome window, shown in Figure 5.9, appears. This window

is for the user to make selection. If the user wants to create a scenario by entering the

total number of jobs, total number of sublots etc., Multi Run choice item is selected.

If the user wants to reload the multi run result, Reload Result item must be selected.

61

Figure 5.9 Welcome Window

If the user select Multi Run choice, the window in Figure 5.10, appears. This

window is created for the user to create a scenario data and run heuristic algorithm.

Using Sublot Sizer box, user chose how he want to split lots. If user wants to split

lots equally, Equal Sized Sublots choice should be clicked. On the other hand, if the

user wants to split lots unequally, Non-Equal Sized Sublots radio button has to be

clicked.

62

Figure 5.10 Multi Run Window

As you seen in Figure 5-10, multi run window is opened with default values.

If the user wants to change the total number of jobs; Total Number of Jobs text box

must be set. If the total number of sublots is wanted to be set, Total Number of

Sublots text box is updated. If the user wants the total number of sublots as multiple

of total number jobs, as we do at our scenarios, then it is enough to check Is

Multiple of Job Number check box. Otherwise, the user may enter the total number

of sublots by separating them with comma as 5, 10, 15 etc. In this case for each job-

sublot pair, the heuristic is rerun and create scenario as combination of this entire

pair. If user wants to set the total lot size, Lot Size text field must be used. User may

enter maximum and minimum values of the total lot size by separating them with

63

comma and code randomly generate the total lot size between these maximum and

minimum values. But again if the user wants the lot sizes as a multiple of the total

number of sublots, special notation may be used for this field. For example, if the

user wants the total lot size as threefold of the total number of sublots, it is enough to

set the lot size text field 3x. In the same way, if the user wants to test the heuristic

algorithm for each job-sublot pair with the lot sizes that are twofold and threefold of

the total number of sublots; it is enough to set this field 2x, 3x. For setting the

process time for each unit of a job on machines 1 and 2, Process Time on M1 and

Process Time on M2 values are set. In these fields, the user is allowed to set

minimum and maximum values of process times and, code randomly generate

process time for each unit of a job for each machine. Also, there exists a text box

called How Many Times Does the Program Run for Each job-Sublot

Combination. This value is used for generating different job-sublot pairs with newly

generated lot sizes and process times. Also there is a checkbox called Generate

GAMS Files that is used for automatically generating the GAMS code into user

desktop to run the mathematical model for each job-sublot pair. After completing all

these data entrance, Solution button is clicked to run the heuristic with these data.

As illustrated in Figure 5.11, for each job-sublot pair Gantt charts are created

after the solution button is clicked. The details of Gantt chart are given in Figure

5.12. In Figure 5.12, each sublot is represented with different color and big

rectangular boxes. The pop-up balloons on each sublot represent the sizes of

corresponding sublots. Also when the square small boxes on the left side of each

sublot represent the corresponding sublots’ processing start up time; the right hand

side one’s represent the corresponding sublots’ process completion time on that

machine. At this step if the user want to see or save the data details, performance

details, deviation comparisons of heuristic approach with mathematical model or

just makespan values in “*.doc” format, Show in *.doc format checkbox is clicked.

64

Figure 5.11 Multi Run Form after Solution is Generated

Figure 5.12 Gantt Chart Created by the Heuristic Algorithm

65

If the user wants to compare the results of the heuristic algorithm with the

results of the mathematical model, Reload Results radio button in Figure 5.9 should

be selected and Reloaded Results Form appears as shown in Figure 5.13.

Figure 5.13 Reloaded Results Form

Reloaded Results Form is opened empty as seen on Figure 5.13 and waits

the user to select the heuristic results that are generated by the heuristic itself, “*.dat”

files. After the user clicks the Browse button and selects the dat files, the content of

dat file is parsed and reloaded this form as shown in Figure 5.14.

66

Figure 5.14 Reloaded Results Form after Dat Files are Reloaded

As seen in Figure 5.14, the user may load lst files. If the user load lst files,

both Gantt charts obtained by the heuristic algorithm and the mathematical model

solved by GAMS are shown and the user may see not only details of the heuristic

results, but also the details of mathematical model results. For example, if we reload

the results of the first set to this form, the lst file is parsed and the details are shown

as in Figure 5.15.

Figure 5.15 Reload Result Form after Lst File is Reloaded

67

Here, if the user clicks on Gantt Chart of Set1.1 checkbox, Gantt charts

obtained by the heuristic algorithm and the mathematical model solved by GAMS

are obtained as in Figure 5.16.Again when creating doc file at the Set1.1 section, the

details of the results obtained by the heuristic algorithm and the mathematical model

solved by GAMS are analyzed.

Figure 5.16 Gantt Charts Obtained by the Heuristic Algorithm and the

Mathematical Model Solved by GAMS

68

CHAPTER 6

6 COMPUTATIONAL EXPERIMENTS

In this chapter, we describe our computational experiments to evaluate the

effectiveness and efficiency of the MILP models and the proposed heuristic

algorithms in solving the MPLS problem under consideration.

The mathematical models are coded and solved in GAMS 23.7. All

computational experiments are conducted on laptop with Intel Core i5 with 2.30 GHz

CPU and 4GB RAM under 64-bit Windows Home 7 Premium operating system.

This chapter begins with the brief explanation of comparative computational

results of the mathematical model and the heuristic algorithm for equal sublot case.

Then we switch our focus on unequal sublot case and again we explain the

comparative results.

For analyzing the performance of the mathematical model and heuristic

algorithm, we created different MPLS problems on two machines. We use 5, 10, 15,

20 and 25 number of jobs and for each job we assume total number of sublots as

twofold, threefold and fourfold of total number of jobs. As represented in Figure 6.1

and Figure 6.2, for each job-sublot pair, we create five samples. In the following

sections, we call data group to these five-sampled MPLS problems. Also we called

data group set to three-itemed set of data groups which each data group has same

number of jobs but different total number of sublots.

69

Figure 6.1 Data Group and Data Group Set Representations for Unequal Sized

Sublots Case

Figure 6.2 Data Group and Data Group Set Representations for Equal Sized

Sublots Case

For qualifying the solution success, we compare the makespan values

obtained by the heuristic algorithm and the mathematical model with respect to

changing total lot size, sublot size etc., and we analyze the behavior of the heuristic

algorithm and the mathematical model for each data groups. We present makespan

values in tabular form as seen on Figure 6.1 and Figure 6.2 and, we will use color

code; green for normally completed mathematical model and yellow for the

70

mathematical model that throws time limit or resource limit exceeded error. So for

the green ones we except that makespan of mathematical model obtained by GAMS

satisfy the optimal solution and for the yellow ones makespan of mathematical model

obtained by GAMS is near optimal.

We create our problem instances in three different scenarios. For the first

scenario, for each job-sublot pair, we assume total lot size is 20 and by changing the

processing time for one unit of job for each pair, we create totally 75 different MPLS

problem instances. For the second scenario, we use the same parameters of first

scenario except the total lot size. We randomly generate the total lot size between 2

and 20 for each job-sublot pair and we compute the result of MPLS problem on 75

different problem instances. For the last scenario, we create problem instances that

for each job-sublot pair, the processing time of each job on first machine is less than

or equal to the processing time of each job on the second machine and we compute

the result of 75 different MPLS problem. Thus, totally, 225 problem instances are

used to measure the effectiveness of the mathematical models and the heuristic

algorithms.

6.1 Comparative Computational Results of the Mathematical Model

and the Heuristic Algorithm for the Case with Equal Sized

Sublots

In this section, we compare the makespan values obtained by the

mathematical model and the heuristic algorithm for MPLS problem with equal sized

sublots.

Below, we compare the makespan deviation of heuristic algorithm from

mathematical model with respect to changing total lot size, sublot size etc. When we

choose the final makespan value of heuristic algorithm, for each instance of data, we

71

pick the smallest average deviation from makespan of Step 1 and Step 2 of heuristic

approach’s solutions.

For example, assume we have the following makespan values: Table 6-1 for

Data Group 1; Table 6-2 for Data Group 2 and Table 6-3 for Data Group 3.

Table 6-1 Number of Jobs is 5 and Number of Sublots is 10

Table 6-2 Number of Jobs is 5 and Number of Sublots is 15

72

Table 6-3 Number of Jobs is 5 and Number of Sublots is 20

In order to analyze performance of heuristic algorithm and mathematical

model, we calculate the deviation of heuristic algorithm’s makespan from

mathematical model’s makespan. As shown in Table 6-1, Table 6-2 and Table 6-3,

the makespan value of algorithm and heuristic approach increase when number of

sublot is increased, as expected. But the average percentage deviations of heuristic

algorithm from mathematical model are not increased linearly when numbers of

sublots are increased. Also heuristic algorithm’s Step1 provides 33% smaller average

percentage makespan deviation than heuristic algorithm’s Step 2 does. Also, 46.6%

of these problem instances, heuristic algorithm’s makespan value equals to

mathematical model’s makespan value. It means that 46.6% of these three data

groups, heuristic algorithm provide optimal solution.

Now, as we demonstrated above, we analyze comparative computational

results of mathematical model and heuristic algorithm for our three different

scenarios.

73

For the first scenario, as expected, when number of jobs and number of

sublots are increased, the makespan of heuristic algorithm and mathematical model

are increased. The details of makespan values for changing total number of jobs are

given in Table 6-4, Table 6-5, Table 6-6, Table 6-7 and Table 6-8. As shown on

these tables, when number of jobs is increased, mathematical model throws time

limit or resource limit exceeded warn more often. When number of job is 5, two

problem instances provides near optimal solution ;but when number of job is 10 only

one problem instance provides near optimal solution and for 15, 20 and 25 numbers

of jobs all problem instances provides near optimal solution. That means when

number of jobs are increased, mathematical model provides the near optimal

solution, not optimal solution.

Table 6-4 Makespan values for 5 Number of Jobs for Scenario 1

74

Table 6-5 Makespan values for 10 Number of Jobs for Scenario 1

Table 6-6 Makespan values for 15 Number of Jobs for Scenario 1

Table 6-7 Makespan values for 20 Number of Jobs for Scenario 1

75

Table 6-8 Makespan values for 25 Number of Jobs for Scenario 1

We start first scenario’s analysis by analyzing the performance of heuristic

algorithm. If we look at Table 6-9, for only one data group, Step2 of heuristic

algorithm provides smaller average percentage makespan deviation than Step1

provides. So when we compare the average percentage makespan deviation of

heuristic algorithm from mathematical model, we often use makespan value of

heuristic algorithm’s Step2 as heuristic algorithm’s makespan value.

If we analyze the performance of heuristic algorithm with respect to

mathematical model, we have to compare their success to reach optimal makespan

values. Below in Table 6-9, a blue bannered makespan deviation highlights the

makespan values that heuristic algorithm provides smaller makespan than

mathematical model does.

76

Table 6-9 The Deviation of Heuristic Approaches from Mathematical

Model Solved by GAMS with respect to Changing Number of Jobs and Total

Lot Sizes for the First Scenario

As shown in Figure 6.3, when total number of jobs and total number of

sublots are increased, heuristic algorithm provides smaller makespan values than

mathematical model provides. If we look at Figure 6.3, when total number of jobs

increases, the average percentage makespan deviation of heuristic algorithm from

mathematical model decreases, even more it goes negative values. When total

number of jobs increases, mathematical model is unable to reach optimal makespan

even heuristic algorithm achieves it. If we analyze the average percentage makespan

deviation values, as seen on Figure 6.3, average percentage makespan deviation of

heuristic is 0.26% max; -1.23% min and -0.2% on average.

77

Figure 6.3 Average Percentage Deviations for Changing Number of Jobs

for Scenario 1

For the second scenario, as expected, when number of jobs and number of

sublots are increased, the makespan of heuristic algorithm and mathematical model

are increased. Also, it is important to point out when number of jobs is increased,

mathematical model throws time limit or resource limit exceeded warn more often.

The details of makespan values for changing total number of jobs are given in Table

6-10, Table 6-11, Table 6-12, Table 6-13 and Table 6-14.

 As shown in these tables, when number of job is 5, only one problem

instance provides near optimal solution; when job number is 10, 15, 20 and 25, all

sixty solutions are near optimal. That means when number of jobs are increased,

mathematical model provides the near optimal solution, not optimal solution.

0,26
0 -0,06 -0,13

-1,23
-1,5

-1

-0,5

0

0,5

5 10 15 20 25

A
ve

ra
ge

 P
er

ca
nt

ag
e

D
ev

ia
tio

n

Total Number of Jobs

AVG %…

78

Table 6-10 Makespan values for 5 Number of Jobs for Scenario 2

Table 6-11 Makespan values for 10 Number of Jobs for Scenario 2

79

Table 6-12 Makespan values for 15 Number of Jobs for Scenario 2

Table 6-13 Makespan values for 20 Number of Jobs for Scenario 2

Table 6-14 Makespan values for 25 Number of Jobs for Scenario 2

Also, it is important to point that, for

 Number of jobs 10; 2 problem instances on 40 number of sublots

 Number of sublots 15; 1 problem instances on 15 number of sublots and 2

problem instances on 60 number of sublots

80

 Number of sublots 20; 2 problem instances on 60 number of sublots and 5

problem instances on 80 number of sublots

 Number of sublots 25; 3 problem instances on 50 number of sublots; 5

problem instances on 75 number of sublots and 5 problem instances on

100 number of sublots

heuristic algorithm provides 0.1% average smaller makespan value than

mathematical model does. Table 6-15 presents the average percentage makespan

deviation of heuristic algorithm from mathematical model with respect to changing

number of jobs and total lot sizes. Blue bannered makespan deviations show that, on

average, heuristic algorithm provides smaller makespan than mathematical model

provides for that data group. According to results, it is obvious that when number of

sublots is increased, mathematical model is unable to reach optimal solution even

heuristic algorithm reaches it.

81

Table 6-15 The Deviation of Heuristic Approaches from Mathematical

Model Solved by GAMS with respect to Changing Number of Jobs and Total

Lot Sizes for the Second Scenario

If we analyze behavior of average percentage makespan deviation of heuristic

algorithm from mathematical model, Figure 6.4 shows that when number of jobs is 5,

average percentage makespan deviation is approximately 1.56% but when total

number of jobs is 25 average percentage makespan deviations is approximately -0,

66%. So it is obvious that when total number of jobs is increased, average percentage

makespan deviation of heuristic algorithm from mathematical model is decreased. It

means when total number of jobs is increased, heuristic algorithm provides better

makespan for this scenario. Moreover, if we analyze the performance of heuristic

algorithm when total number of jobs is fixed and total number of sublots changed,

we don’t reach as certain conclusion as previous sample. If we look at Table 6-15,

when total number of jobs is fixed and number of sublots is increased, the average

percentage makespan deviation of heuristic algorithm from mathematical model

82

neither continuously increasing, nor continuous decreasing. It behaves randomly for

that case for this scenario.

Figure 6.4 Average Percentage Deviations for Changing Number of Jobs

for Scenario 2

For the third scenario, as for the second scenario, when number of jobs and

number of sublots are increased, the makespan of heuristic algorithm and

mathematical model are increased. The details of makespan values for changing total

number of jobs are given in Table 6-16, Table 6-17, Table 6-18, Table 6-19 and

Table 6-20. Again as in the previous scenarios, normal completed mathematical

model’s makespan times are represented as green and time limit or resource limit

exceeded makespan times are represented in yellow. It is obvious that when number

of jobs is increased, mathematical model fails to reach optimal solution. Also, the

same results are received when number of jobs is fixed and number of total sublots is

increased. As shown in Table 6-21, when total number of sublots is threefold of total

number of jobs approximately 40% of mathematical models are unable to provide

optimal solution.

1,566666667

0,166666667

-0,366666667

0,1

-0,666666667

-1

-0,5

0

0,5

1

1,5

2

A
ve

ra
ge

 P
er

ca
nt

ag
e D

ev
ia

tio
n

Average DEV%

83

Table 6-16 Makespan values for 5 Number of Jobs for Scenario 3

Table 6-17 Makespan values for 10 Number of Jobs for Scenario 3

Table 6-18 Makespan values for 15 Number of Jobs for Scenario 3

Table 6-19 Makespan values for 20 Number of Jobs for Scenario 3

84

Table 6-20 Makespan values for 25 Number of Jobs for Scenario 3

As seen on Table 6-21, when number of total number of jobs increases, the

average percentage makespan deviation of heuristic algorithm from mathematical

model decreases, almost they are same, 0%. It shows that when total number of jobs

and total number of sublots increase, average percentage makespan deviations are

close to each other, as well they are same. Also, number of blue bannered makespan

values is increased when total number of jobs is increased as in the second scenario,

but this time deviation is negligible.

85

Table 6-21 The Deviation of Heuristic Approaches from Mathematical Model

Solved by GAMS with respect to Changing Number of Jobs and Total Lot Sizes

for the Third Scenario

6.2 Comparative Computational Results of the Mathematical Model

and the Heuristic Algorithm for the Case with Unequal Sized

Sublots

In this section, we compare the solutions obtained by the mathematical model

and the heuristic algorithm for MPLS problem with unequal sized sublots.

For the first scenario, as expected, when the number of jobs and the number

of sublots are increased, the makespan values obtained by heuristic algorithm and the

mathematical model are increased as shown in Table 6-22. Also Table 6-22 shows

86

that mathematical model provides the optimal makespan value for all problem

instances.

If we analyze the average percentage makespan deviation for changing total

number of jobs, as you seen in Figure 6.5, the average percentage makespan

deviation of heuristic algorithm from mathematical model is 1.5% maximum, 0%

minimum and 0.38% on average. We conclude that Scenario1’s heuristic approach

provides very close solution to optimal solution.

Figure 6.5 Makespan Deviation’s Average Percentage for each Total Number of

Jobs for Scenario 1

Moreover, if we analyze Table 6-22, when total number of jobs is 10, 15, 20

and 25 average percentage makespan deviation of data group sets is 0.1%, but when

total number of jobs is 5, average percentage makespan deviation of data group set is

1.5%. So we conclude that when total number of jobs is increased, average

percentage makespan deviation of heuristic algorithm from mathematical model

decreases, mostly. But we can’t conclude that when total number of sublots is

increased, the average makespan percentage deviation doesn’t always increases or

decreases for all data group sets. For example for data group set with total number of

jobs is 5, when number of sublots is increased from two fold to three fold of number

of jobs, average percentage makespan deviation decreases but when number of

sublots is increased from three fold to fourfold of number of jobs; average

5

10

15

20

25

1,5

0,2

0,1

0,0

0,1

Average Percantage Deviaiton

T
ot

al
 N

um
be

r
of

 J
ob

s AVG % DEV

87

percentage makespan deviation decreases. On the other hand, for data group set with

total number of jobs is 20, when number of sublots is increased from two fold, three

fold or four fold of number of jobs; average percentage makespan deviation is same,

0%. So it is concluded that when total number of jobs is fixed and total number of

sublots are increased as a multiple of total number of jobs, the average makespan

percentage deviation neither decreases, nor increases; behaves unpredictably.

88

Table 6-22 Scenario 1’s Makespan Values for MPLS Problem with

Unequal Sublot

For the second scenario, as expected, when number of jobs and number of

sublots are increased, the makespan of heuristic algorithm and mathematical model

are increased as shown in Table 6-23. Here, it is important to notice that only one

89

mathematical model throws the time limit or resource limit exceeded warn and it is

highlighted in yellow in Table 6-23. So except that problem instance, we presume

that mathematical model’s makespan is optimal. Also we conclude that heuristic

algorithm provides very close solution to optimal solution. If we look at Figure 6.7,

average percentage makespan deviation of heuristic algorithm from mathematical

model is 1.1% maximum, 0% minimum and 0.5% on average. So for Scenario2, we

conclude that heuristic algorithm provides very close solution to optimal solution.

Moreover, if we look through the average percentage makespan deviation of

heuristic algorithm from mathematical model, in Table 6-23, we conclude that when

number of job is fixed and number of sublots is increased by multiple of number of

jobs, the behavior of average percentage deviation is not always increased or

decreased. Average percentage deviation’s behavior is unpredictable.

90

Table 6-23 Scenario 2’s Makespan Values for MPLS Problem with

Unequal Sublot

For example if we look at the Figure 6.6, when number of jobs is 5; average

percentage makespan deviation is neither increasing nor decreasing when the total

91

number of sublots are increasing as multiple of total number of jobs. The same

situation is observed for the problem instances with total number of job is 10, 15, 20

and 25 as shown in Table 6-23.

Figure 6.6 Average Percentage Deviation for Increasing Total Number of

Sublots when Total Number of Jobs is 5

Figure 6.7 Makespan Deviation’s Average Percentage for each Total

Number of Jobs for Scenario 2

For the third scenario, as expected, when number of jobs and number of

sublots are increased, the makespan of heuristic algorithm and mathematical model

are increased as shown in Table 6-24. Also it is important to notice that all cells in

are highlighted in green. It means that the mathematical model gives us the optimal

solution for all problem instances in this scenario. If we analyze the average

0,9

1,9

0,3
0,0
0,5
1,0
1,5
2,0

5 10 15

A
ve

ra
ge

Pe

rc
an

ta
ge

D

ev
ia

tio
n

Number of Sublots

AVG % DEV

5
10
15
20
25

1,0
0,3

1,1
0,1

0,0

Average Percantage DeviationT
ot

al
 N

um
be

r
of

 J
ob

s

AVG % DEV

92

percentage makespan deviation for changing total number of jobs, as you seen in

Figure 6.8, the average percentage makespan deviation of heuristic algorithm from

mathematical model is 1.0% maximum, 0% minimum and 0.26% on average. So as

in Scenario2, we conclude that Scenario3’s heuristic algorithm provides makespan

that is very close to optimal makespan.

Figure 6.8 Makespan Deviation’s average Percentage for each Total

Number of Jobs for Scenario 3

5

10

15

20

25

1,0

0,2

0,1

0,0

0,0

Average Percantage Deviation

T
ot

al
 N

um
be

r
of

 J
ob

s

AVG % DEV

93

Table 6-24 Scenario3’s Makespan Values for MPLS Problem with

Unequal Sublot

94

If we analyze the average percentage makespan deviations of heuristic

algorithm from mathematical model, we conclude that when number of jobs and

number of sublots are increased, the average percentage makespan deviation

decreases. Below; Figure 6.9, Figure 6.10 and Figure 6.11 shows that average

percentage makespan deviation of heuristic algorithm from mathematical model

decreases when total number of sublots increases as multiple of number of jobs. As

seen Figure 6.9, when total number of jobs is 5 and total number of sublots is one

fold of number of jobs, average percentage makespan deviation is 2.7%, but when

total number of jobs is 25 and total number of sublots is one fold of number of jobs

average percentage makespan deviation is 0%. The same situation is observed when

total number of sublots is twofold, three fold and four fold number of jobs in Figure

6.10 and Figure 6.11. So we conclude that Scenario3’s average percentage makespan

deviation is predictable and this value decreases when total number of jobs and total

number of sublots are increased.

Figure 6.9 Makespan Deviation’s Average Percentage when Total

Number of Jobs Increases and Total Number of Sublots is Two Fold of Total

Number of Jobs

95

Figure 6.10 Makespan Deviation’s Average Percentage when Total

Number of Jobs Increases and Total Number of Sublots is Three Fold of Total

Number of Jobs

Figure 6.11 Makespan Deviation’s Average Percentage when Total

Number of Jobs Increases and Total Number of Sublots is Four Fold of Total

Number of Jobs

96

CHAPTER 7

7 CONCLUSION

In this study, we consider a multi-product lot streaming problem on a two-

machine flowshop environment in which all products are processed by Machine 1

and then by Machine 2. Most of the current studies in the literature of the multi-

product lot streaming problem assume that the number of sublots for each product is

known in advance, and determines the size for each sublot of every product and the

sequence of sublots of all products. As opposite of the current studies in the

literature, we assume that the total number of sublots for all products is known

advance and our problem is to determine the number of sublots for each product, the

size of each sublot and the sequence of sublots that gives the minimum makespan.

We investigate the multi-product lot streaming problem for both equal and unequal

sized sublots cases. For this purpose, we develop mixed integer linear mathematical

models and heuristic algorithms for solving each case and compare these

mathematical models with heuristic algorithms.

For unequal sublot case, the experimental studies show that almost all

problem instances mathematical model provides optimal solution and thus, we were

able to compare the heuristic algorithm’s solution with the optimal solution. This

comparison shows that heuristic algorithm provides solutions with makespan values

that deviate 0.38% from the optimal solution, which is almost optimal. Also, as the

total number of jobs increases, the average percent deviation of the makespan of the

heuristic algorithm from the optimal makespan decreases. As the total number of

jobs increases, the solution time of the MILP model by GAMS increases. However,

97

the heuristic algorithm provides the solution in almost less than a second. Thus, for

real time implementation, the solutions obtained by the heuristic algorithm can be

used.

For equal sublot case, our three different scenarios showed that when the total

number of jobs increases, the mathematical model cannot be solved optimally by

GAMS within the allowed time limit or resource limit. However, the heuristic

algorithm provides solutions in a short time.

Finally, our results of experiments show that the heuristic algorithm provides

near-optimal solutions for both equal and unequal sublots cases. When we compare

the solutions of the heuristic algorithms for equal and unequal sublots cases, we can

easily conclude that splitting sublots unequally provides more near-optimal solutions

than splitting them equally since every lot may not be split into equal sublots. For

example, when the total lot size is 15 units and we split this lot into 4 equal sublots,

each sublot size becomes 3.75 units and it is not possible. Only integer number sized

sublots are meaningful.

Lot streaming problems with a total number of sublots for all jobs are not yet

extensively studied. Thus, there is considerable number of issues remaining open for

future research. Several extensions of our study can be investigated. One of them is

that our problem studied in this study can be extended for more complex machining

environments such as flow shops having more than two machines, jobs shops, and

open shops. Study of the same problem for different performance measures such as

total or maximum lateness, total completion times, and the number of tardy jobs

would be some extensions.

97

REFERENCES

1. Defersha, F.M. and M. Chen, A hybrid genetic algorithm for flowshop lot
streaming with setups and variable sublots. International Journal of
Production Research, 2010. 48(6): 1705-1726.

2. Kalir, A.A. and S.C. Sarin, Evaluation of the potential benefits of lot
streaming in flow-shop systems. International Journal of Production
Economics, 2000. 66(2): 131-142.

3. Sarin, S.C. and P. Jaiprakash, Flow shop lot streaming. 2007: Springer
Science & Business Media.

4. Rodoslu, E., Heuristic Approaches for the Lot Streaming Problem in Multi-
Product Flow Shops. 2013(Koc University Graduate School of Sciences and
Engineering): 5,13.

5. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 6. 131,134-135.
6. Open Shop Scheduling. Available from: https://en.wikipedia.org/wiki/Open-

shop_scheduling.
7. Chiu, H.N. and J.H. Chang, Cost models for lot streaming in a multistage

flow shop. Omega, 2005. 33(5): 435-450.
8. Feldmann, M. and D. Biskup, On lot streaming with multiple products. 2005.
9. Chang*, J.H. and H.N. Chiu, A comprehensive review of lot streaming.

International Journal of Production Research, 2005. 43(8): 1515-1536.
10. Trietsch, D. and K.R. Baker, Basic techniques for lot streaming. Operations

Research, 1993. 41(6): 1065-1076.
11. Reiter, S., A system for managing job-shop production. The Journal of

Business, 1966. 39(3): 371-393.
12. Material Requirement Planning. Available from:

https://en.wikipedia.org/wiki/Material_requirements_planning.
13. Manufacturing resource planning. Available from:

https://en.wikipedia.org/wiki/Manufacturing_resource_planning#History_and
_evolution.

14. Just in Time Manufacturing. Available from:
https://en.wikipedia.org/wiki/Just-in-time_manufacturing.

15. Szendrovits, A.Z., Manufacturing cycle time determination for a multi-stage
economic production quantity model. Management Science, 1975. 22(3):
298-308.

16. Goyal, S., Note-Note on “Manufacturing Cycle Time Determination for a
Multi-Stage Economic Production Quantity Model”. Management Science,
1976. 23(3): 332-333.

98

17. Truscott, W.G., Production scheduling with capacity-constrained
transportation activities. Journal of Operations Management, 1986. 6(3-4):
333-348.

18. Potts, C. and K. Baker, Flow shop scheduling with lot streaming. Operations
research letters, 1989. 8(6): 297-303.

19. Kropp, D.H. and T.L. Smunt, Optimal and heuristic models for lot splitting in
a flow shop. Decision sciences, 1990. 21(4): 691-709.

20. Baker, K. and D. Pyke, Solution Procedures for the Lot‐Streaming Problem.
Decision sciences, 1990. 21(3): 475-491.

21. Baker, K.R. and D. Jia, A comparative study of lot streaming procedures.
Omega, 1993. 21(5): 561-566.

22. Glass, C., J. Gupta, and C. Potts, Lot streaming in three-stage production
processes. European Journal of Operational Research, 1994. 75(2): 378-394.

23. Chen, J. and G. Steiner, Lot streaming with attached setups in three-machine
flow shops. Iie Transactions, 1998. 30(11): 1075-1084.

24. Şen, A., E. Topaloǧlu, and Ö.S. Benli, Optimal streaming of a single job in a
two-stage flow shop. European Journal of Operational Research, 1998.
110(1): 42-62.

25. Sriskandarajah, C. and E. Wagneur, Lot streaming and scheduling multiple
products in two-machine no-wait flowshops. IIE transactions, 1999. 31(8):
695-707.

26. Kumar, S., T.P. Bagchi, and C. Sriskandarajah, Lot streaming and scheduling
heuristics for m-machine no-wait flowshops. Computers & Industrial
Engineering, 2000. 38(1): 149-172.

27. Ramasesh, R.V., H. Fu, D.K. Fong, and J.C. Hayya, Lot streaming in
multistage production systems. International Journal of Production
Economics, 2000. 66(3): 199-211.

28. Kalir, A.A. and S.C. Sarin, A near-optimal heuristic for the sequencing
problem in multiple-batch flow-shops with small equal sublots. Omega, 2001.
29(6): 577-584.

29. Bogaschewsky, R.W., U.D. Buscher, and G. Lindner, Optimizing multi-stage
production with constant lot size and varying number of unequal sized
batches. Omega, 2001. 29(2): 183-191.

30. Kalir, A.A. and S.C. Sarin, Constructing near optimal schedules for the flow-
shop lot streaming problem with sublot-attached setups. Journal of
Combinatorial Optimization, 2003. 7(1): 23-44.

31. Chen, J. and G. Steiner, On discrete lot streaming in no-wait flow shops. Iie
Transactions, 2003. 35(2): 91-101.

32. Van Nieuwenhuyse, I. and N. Vandaele. Minimizing total costs in flow shops
with overlapping operations: the importance of gap costs. in Proceedings of
the Annual POMS Conference POM in the Service Economy. 2003.

99

33. Chiu, H.-N., J.-H. Chang, and C.-H. Lee, Lot streaming models with a limited
number of capacitated transporters in multistage batch production systems.
Computers & Operations Research, 2004. 31(12): 2003-2020.

34. TRUSCOTT, W.G., Scheduling production activities in multi-stage batch
manufacturing systems. International Journal of Production Research, 1985.
23(2): 315-328.

35. Vickson, R. and B. Alfredsson, Two-and three-machine flow shop scheduling
problems with equal sized transfer batches. The International Journal of
Production Research, 1992. 30(7): 1551-1574.

36. Çetinkaya, F. C. and Kayaligı̇l, M.S., Unit sized transfer batch scheduling
with setup times. Computers & industrial engineering, 1992. 22(2): 177-183.

37. Çetinkaya, F.C., Lot streaming in a two-stage flow shop with set-up,
processing and removal times separated. Journal of the Operational Research
Society, 1994. 45(12): 1445-1455.

38. Laha, D. and S.C. Sarin, A heuristic to minimize total flow time in
permutation flow shop. Omega, 2009. 37(3): 734-739.

39. Glass, C.A. and E. Possani, Lot streaming multiple jobs in a flow shop.
International Journal of Production Research, 2011. 49(9): 2669-2681.

40. Wagneur, E. Lot streaming in no-wait flowshops with one machine never
idle. in Control Applications, 2001.(CCA'01). Proceedings of the 2001 IEEE
International Conference on. 2001. IEEE.

41. Chen, J. and G. Steiner, Lot streaming with detached setups in three-machine
flow shops. European Journal of Operational Research, 1997. 96(3): 591-
611.

42. Bukchin, J., M. Tzur, and M. Jaffe, Lot splitting to minimize average flow-
time in a two-machine flow-shop. IIE Transactions, 2002. 34(11): 953-970.

43. Hall, N.G., G. Laporte, E. Selvarajah, and C. Sriskandarajah, Scheduling and
lot streaming in flowshops with no-wait in process. Journal of Scheduling,
2003. 6(4): 339-354.

44. Yoon, S.-H. and J.A. Ventura, Minimizing the mean weighted absolute
deviation from due dates in lot-streaming flow shop scheduling. Computers &
Operations Research, 2002. 29(10): 1301-1315.

45. Pan, Q.-K. and R. Ruiz, An estimation of distribution algorithm for lot-
streaming flow shop problems with setup times. Omega, 2012. 40(2): 166-
180.

46. Yoon, S.-H. and J.A. Ventura, An application of genetic algorithms to lot-
streaming flow shop scheduling. IIE Transactions, 2002. 34(9): 779-787.

47. Huq, F., K. Cutright, and C. Martin, Employee scheduling and makespan
minimization in a flow shop with multi-processor work stations: a case study.
Omega, 2004. 32(2): 121-129.

48. Marimuthu, S., S. Ponnambalam, and N. Jawahar, Tabu search and simulated
annealing algorithms for scheduling in flow shops with lot streaming.

100

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, 2007. 221(2): 317-331.

49. Marimuthu, S., S. Ponnambalam, and N. Jawahar, Evolutionary algorithms
for scheduling m-machine flow shop with lot streaming. Robotics and
Computer-Integrated Manufacturing, 2008. 24(1): 125-139.

50. Marimuthu, S., S. Ponnambalam, and N. Jawahar, Threshold accepting and
ant-colony optimization algorithms for scheduling m-machine flow shops
with lot streaming. Journal of materials processing technology, 2009. 209(2):
1026-1041.

51. Zhang, W., C. Yin, J. Liu, and R.J. Linn, Multi-job lot streaming to minimize
the mean completion time in m-1 hybrid flowshops. International Journal of
Production Economics, 2005. 96(2): 189-200.

52. Martin, C.H., A hybrid genetic algorithm/mathematical programming
approach to the multi-family flowshop scheduling problem with lot
streaming. Omega, 2009. 37(1): 126-137.

53. Buscher, U. and L. Shen. An integer programming formulation for the lot
streaming problem in a job shop environment with setups. in Proceedings of
the International MultiConference of Engineers and Computer Scientists.
2011. Citeseer.

54. Defersha, F.M. and M. Chen, A genetic algorithm for one-job m-machine
flowshop lot streaming with variable sublots. International Journal of
Operational Research, 2011. 10(4): 458-468.

55. Karimi-Nasab, M., S. Seyedhoseini, M. Modarres, and M. Heidari, Multi-
period lot sizing and job shop scheduling with compressible process times for
multilevel product structures. International Journal of Production Research,
2013. 51(20): 6229-6246.

56. Mortezaei, N. and N. Zulkifli, Integration of lot sizing and flow shop
scheduling with lot streaming. Journal of Applied Mathematics, 2013. 2013.

