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ABSTRACT 

 

MATHEMATICAL MODELS AND HEURISTIC ALGORITHMS FOR A 

MULTI-PRODUCT LOT STREAMING PROBLEM IN A TWO MACHINE 

FLOWSHOP 

 

AKDOĞAN, Şahika 

M.Sc., Department of Mathematics and Computer Science 

Supervisor: Assoc. Prof. Dr. Ferda Can ÇETİNKAYA 

February 2017, 100 pages 

 

 

In this study, we consider a multi-product lot streaming problem to 

minimize the makespan on a two-machine flowshop environment in which all 

product lots are processed by Machine 1 and then by Machine 2. Most of the 

current studies in the literature of the multi-product lot streaming problem assume 

that the number of sublots for each product is known in advance, and determines 

the size for each sublot of every product and the sequence of sublots of all products. 

However, in our study we assume that the total number of sublots for all products is 

known advance, although the number of sublots for each product is not known in 

advance. Our problem is to determine the number of sublots for each product, the 

size of each sublot and the sequence of sublots that gives the minimum makespan. 

We investigate this multi-product lot streaming problem for two cases in which 

sublots of each product are equal sized in the first case while sublots of each 

product are unequal sized in the second case. We develop mixed integer linear 

mathematical models and heuristic algorithms for solving each case. We compare 

these solutions of mathematical models and heuristic algorithm. We design 



viii 

 

computational experiments to evaluate the performance of our solutions approaches 

in terms of makespan time. The results show that the mixed integer programming 

models do not seem to be a useful alternative, especially for large scale problem 

instances. However, our proposed heuristic algorithms find optimal or near-optimal 

solutions in very short time. 

 

Keywords: Lot Streaming, Equal Sublots, Unequal Sublots, Makespan 
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ÖZ 

 

İKİ MAKİNALI AKIŞ TİPİ ATÖLYEDE  

ÇOK ÜRÜNLÜ KAFİLE BÖLME VE KAYDIRMA PROBLEMİ İÇİN 

MATEMATİKSEL MODELLER  

VE 

SEZGİSEL ALGORİTMALAR 

 

 

 

AKDOĞAN, Şahika 

Yüksek Lisans, Matematik-Bilgisayar Bölümü 

Tez Yöneticisi: Doç. Dr. Ferda Can ÇETİNKAYA 

Şubat 2017, 100 sayfa 

 

Bu çalışmada, tüm ürünlerin önce birinci ve daha sonra ikinci makinede 

işlem gördüğü iki makinalı bir akış tipi üretim sisteminde tüm ürün kafilelerinin 

bitirilme süresini en küçükleyen çok ürünlü kafile bölme ve kaydırma problemi ele 

alınmıştır. Çok ürünlü kafile bölme ve kaydırma problemi literatüründe yer alan 

çalışmaların çoğu, her ürün kafilesinde yer alan alt kafilelerin sayısının önceden 

bilindiğini varsayar ve her ürüne ait alt kafilelerin büyüklüğü ile tüm kafilelere ait 

alt kafilelerin kendi aralarındaki işlem sırasını belirler. Oysa ki, yaptığımız 

çalışmada, her ürün kafilesinde yer alan alt kafilelerin sayısının önceden 

bilinmemesine karşın tüm ürün kafilelerinde yer alan alt kafilelerin toplam sayısının 

önceden bilindiğini varsaymaktayız. Sorunumuz, her ürün kafilesinde yer alacak alt 

kafilelerin sayısını, bu alt kafilelerin büyüklüğünü ve tüm ürün kafilerinin bitirilme 

süresini en küçükleyecek şekilde tüm kafilelere ait alt kafilelerin kendi aralarındaki 

işlem sırasını belirlemektir. Bu çok ürünlü kafile bölme ve kaydırma problemini iki 
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farklı durum için irdeledik. Birinci durumda her ürün kafilesindeki alt kafileler eşit 

büyüklükteyken, ikinci durumda her ürün kafilesindeki alt kafileler eşit olmayan 

büyüklükte olabilmektedir. Çözüm yaklaşımlarımızın hem çözüm kalitesi hem de 

süresi açısından performansını değerlendirmek için sayısal deneyler tasarladık. 

Sonuçlar, karışık tam sayılı programlama modellerinin özellikle büyük ölçekli 

problem örnekleri için yararlı bir alternatif olmadığını göstermiştir. Bununla 

birlikte, önerdiğimiz sezgisel algoritmalar çok kısa sürede optimum veya optimuma 

yakın çözümler bulmaktadır. 

 

Anahtar Kelimeler: Kafile Bölme ve Kaydırma, Eşit Alt Kafileler, Eşit Olmayan 

Alt Kafileler, Tüm Ürünlerin Bitirilme Süresi 
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CHAPTER 1 

 

 

1 INTRODUCTION 
 

 

 

Nowadays, to stay competitive in the industrial world market, manufacturing 

companies have to run an efficient operation for changing market needs. Thus, 

accelerated but effective methodologies of production scheduling become a key 

issue. Due to the batch production nature of such an environment, the use of 

appropriate production lot size/sizes on the shop floor is central to achieving this 

objective. One technique that can effectively influence the flow of a lot of jobs over 

the machines by appropriately determining the size of production lots, also called 

sublots, is lot streaming. 

Literately, the term lot streaming shall be introduced as follows [1]: 

“Lot streaming denotes the techniques of splitting given jobs, each consisting of 

identical items, into sublots to allow overlapping of successive operations in multi-

stage manufacturing systems, to reduce production makespan. More specifically, 

The goal of lot streaming is to determine the number of sublots for each product, 

the size of each sublot and the sequence for processing the sublots to minimize 

production makespan with all required constraints satisfied.” 

To make definition clear, we consider the scenario that discrete and identical 

products (called lot) are to be processed on several machines as a flow shop. Instead 

of transferring the entire lot, it is considered to transferring the items of the lot in 

smaller batches (called sublots). This technique of splitting lots in to sublots and 

processing different sublots simultaneously over different machines is called lot 
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streaming. Briefly, lot streaming is a technique to accelerate the processing of the 

product when reducing the process time. 

As an illustration of the lot streaming problem, suppose a lot consist of 100 

items and it is processed on two machines Machine 1 (M1) and Machine 2 (M2). 

Suppose, the processing times per item of the lot on M1 and M2 are 2 and 1 time 

units, respectively.  If the lot is not to be split into sublots, the distribution of the lot 

for processing over the machines will be as shown in Figure 1.1. 

 
Figure 1.1 Processing without Lot Streaming 

 

On the other hand, if the lot is split into four sublots with sizes 40, 20, 10 and 30 

items and these sublots were processed in an overlapping fashion, the distribution of 

the lot for processing over the machines will be as shown in Figure 1.2. 

 
Figure 1.2 Processing with Lot Streaming 

 

In industry, the quality and success of operations are evaluated basically three 

commonly used performance measures [2]. These are Makespan ( maxC ), Mean Flow 

Time (MFT) and Average Work in Progress Levels (WIP Levels). 
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Makespan is defined as completion time of the last sublot on the last machine. 

As shown in Figure 1.1 and Figure 1.2, the reduction in makespan is obvious. 

However this advantage may not be that obvious if setup and/or transfer times are 

considered [3]: 

“One apparent advantage of lot streaming is reduction in the makespan 

value. However, this advantage may not be that obvious if set up and/or transfer 

times are encountered during the handling of individual sublots. The problem get 

even more interesting depending on whether it can be performed a priori, i.e., before 

the arrival of a sublot on a machine. Also, if more than one lot is to be processed on 

the machines, the makespan value will depend on whether or not the sublots from 

different lots are intermingled. The sequence in which the lots themselves are 

processed can impact the makespan value as well.” 

Optimal production management aims to eliminate the waste created by the 

manufacturing system. Reducing WIP and mean flow time of the production batches 

are the core concepts of lean manufacturing [4]. Keeping unnecessary inventory 

causes a capital expense. This waste of capital is reduced to a large extend by 

employing the concept of lot streaming. Also waste of time is decreased by the lot 

streaming concept, since the main drive to apply lot streaming is to lower the 

makespan and MFT. 

In this study, we consider a multi-product lot streaming problem on a two-

machine flowshop environment in which all products (lots) are processed by 

Machine 1 and then by Machine 2. That is, the first and second operations of the 

products are performed by Machine 1 and Machine 2, respectively. Current studies in 

the literature assumes that the total number of sublots for each product is known in 

advance and the sizes of sublots of each product is to be optimally determined within 

the limit of the total number of sublots of the product. Our main difference from the 

current studies is that we assume that the total number of sublots for all products is 

known advance and our problem is to determine the number of sublots for each 
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product, the size of each sublot and the sequence of sublots that gives the minimum 

makespan. We investigate the multi-product lot streaming problem for both equal 

and unequal sized sublots cases. For this purpose, we develop mixed integer linear 

mathematical models and heuristic algorithms for solving each case and compare 

these mathematical models with heuristic algorithms. 

The remainder of this report is as follows. Chapter 2 provides detailed 

background information and review the related literature about the lot streaming 

problems. We briefly define our problem along with assumptions for its two cases 

and provide details of mathematical models in Chapter 3. The details of our proposed 

heuristic algorithms are explained in Chapter 4. We also provide numerical examples 

for our heuristic algorithms in this chapter. Chapter 5 explains the software 

implementation details of the proposed heuristic algorithms and provides a software 

usage manual. In Chapter 6, we discuss the results of our computational experiments 

done for determining the performance of the heuristic algorithms by comparing them 

with the mathematical programming models providing the optimal solution. Finally, 

a brief summary and conclusion of our research and future research directions are 

given in Chapter 7. 
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CHAPTER 2 

 

 

2 LOT STREAMING: BASICS AND LITERATURE REVIEW 
 

 

 

In this chapter, we first prove the basics of the lot streaming problem and then 

provide a review of recent studies on lot streaming in scheduling problems. We will 

discuss the related literature in two categories: single-product lot streaming and 

multi-product lot streaming. 

2.1 Basics of Lot Streaming 
 

In the last sixty years, thousands of papers were released about flowshop 

scheduling and its several variations. Especially, at the end of last century, researches 

were focused on a scenario where the lots are split into sublots, that is called lot 

streaming. In these studies related to the lot streaming problem, generally the goal is 

to determine the number of sublots for each product lot, the size of each sublot and 

the processing sequence of the sublots and product lots.  

To understand these studies, the components of lot streaming problem must 

be clearly identified. The components which are derived from Chang and Chui and 

Feldman and Biskup are summarized in Table 2-1. [5]  
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Table 2-1 Components of Lot Streaming Problems 

 
 

Below, we give briefly explains the terms in Table 2-1. 

 

Product Type 

 Single-product/Multiple Products: This approach considers either a 

single-product or a multiple products. 
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Production Type 

 Flow Shop: In this production type, jobs are processed according to a 

sequence. If all the jobs follow the same route, this manufacturing system 

called flow shop.    

 Job Shop: In this production type, jobs may follow different routes. They 

may visit the same machine once or more. This manufacturing system is 

called job shop. 

 Open Shop: The open shop scheduling problem is a scheduling problem 

in which a given set of jobs must each be processed for given amounts of 

time at each of a given set of workstations, in an arbitrary order, and the 

goal is to determine the time at which each job is to be processed at each 

workstation. [6] 

 Arborescent Shop: The arborescent shop is an m-stage production 

system, in which each stage has at least one immediate successor except 

for the last stage (i.e. the finished goods stage), and has only one 

immediate predecessor except for the first stage (i.e. the raw materials or 

purchased parts stage). [7]  

 

Sublot Type 

 Fixed Sublot: A fixed sublot means all products have identical number of 

items on all stages. [8] 

 Equal Sublots: Equal sublots means that sublot sizes of each product are 

fixed.  

 Consistent Sublot: A sublot is called consistent if it doesn’t alter its size 

over the stages of processing. [9] 

 Variable Sublots: In variable sublot (unequal sublot) case, the sublot 

sizes between the stages i and i+1 are not equal to those between stages 

i+1 and i+2, given the same number of  sublots. [9] 
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Divisibility of the Sublot Size 

 Discrete Sublots: For discrete sublots, the number of items of a sublot 

has to be an integer.  

 Continuous Sublots: For continuous case, no such restriction exists.[8] 

 

Sequence of the Sublots 

 Intermingling Sublots: In the multi-product case, if intermingling sublots 

are allowed, the processing of sublots of a product may be interrupted by 

sublot of other product. In this case, each sublot is treated as an 

independent product. [8] 

 Non-Intermingling Sublots: For non-intermingling sublots case, no 

interruption in the processing of sublots of a product is allowed, which is 

obviously always given in one-product settings and can be forced in 

multi-product settings.[8] 

 

Operation Continuity 

 No Idling: In no idling case, when the sublots start their operation on the 

same stage, they must finish their operation without interruption. 

 Idling: The idling case allows idle times.  

As known, under the same sublot type, the makespan with idle times generate 

better results than no idling case. Idling and no-idling cases are illustrated 

Figures 2.1 and 2.2, respectively. [10] 
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Figure 2.1 Idling Case 

 

 
Figure 2.2 No Idling Case 

 

Transfer Timing  

 No-wait: In no-wait schedules, each sublot has to be transferred to and 

processed on the next stage immediately after it has been finished on the 

preceding stage. 

 Wait: In a wait schedule, sublot may wait for processing between 

consecutive stages.[8] 

 

Performance Measures 

 Time Models: As shown in Table 2-1, the performance of a model 

depends on minimizing makespan, mean flow time, total flow time, mean 

tardiness, number of tardy jobs and total deviation from due date. 

 Cost Models: The performance of a model depends on minimizing the 

total cost. 
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Activities Involved 

 Setup: If attached setups are required the setup cannot start until the 

sublot is available at the particular stage. In a detached setup the setup is 

independent from the availability of the sublot. Sometimes setup times 

are neglected or do not occur. 

 Production: Even for the time model, production time is important; for 

the cost model the inventory type must be considered.  

 Transportation: Transportation activity includes the movement of a 

sublot between stages and the return of an empty transponder. For cost 

models, the transportation cost per trip is the only important component. 

For time models, the load and unload times, transportation time, return 

time of transporter, and the number of capacitated transporters should be 

considered. Sublot size dependent transfer times can also be considered. 

Note that the extent to which the transportation activity  affects the 

makespan depends on the number of capacitated transporters [5]. 

 

2.2 Evolution of Lot Streaming 
 

Lot streaming problem is originally identified by Reiter [11] in 1966 and 

rediscovered in the late 1980s to early 1990s. If we get back in the history, in 1964, 

as a response to the Toyota Manufacturing Program, Joseph Orlicky developed 

material requirements planning (MRP) [12]. MRP serves as a center organizer that 

translates the overall production plan into a series of specific steps for achieving the 

planned production. But MRP has the following weaknesses: 

 MRP system is not able to get rid of the uncertainties of production 

parameters. It assumes that production parameters such as lot sizes 

and lead times could be determined a priori, external to the system and 

kept fixed. 
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 It ignores the finite capacity constraints and focus on material flow. 

 All the operations of a lot are processed on a machine before 

transferring the lot to the other machine. 

To get rid of these disadvantages, as an extension of MRP, manufacturing 

resource planning (MRPII) is developed. MRP II is an integrated method of 

operational and financial planning for manufacturing companies. Hence, MRPII [13] 

systems provide better control of inventories and quality improved scheduling, 

quality control and design control, reduction of working capital of inventory.  

By the time, in the 1980s, just-in-time (JIT) manufacturing approach and 

optimized production technology (OPT) are appeared. JIT is a methodology aimed 

primarily at reducing flow times within production as well as response times from 

suppliers and to customers [14]. However, in spite of allowing overlapping of 

operations, JIT fails to optimality of using unit-size sublots given that these might be 

suboptimal in a majority of production environments where significant amounts of 

transfer times and setup times are incurred. OPT aims to reduce the waste in 

manufacturing system when paying more attention to critical resources than JIT 

does. OPT uses large process batches to eliminate setup costs and small transfer 

batches to reduce inventory carrying costs. So it maximizes throughput while 

eliminating the overall cost. But long setup times of machines, process variability 

and unbalanced workload cast a suspicion on the success of OPT. 

At the end of 1980s, a new technique called constant work-in-process 

(CONWIP) was introduced to get rid of the weaknesses of JIT. CONWIP allows the 

simultaneous processing of different types of lots and it makes CONWIP more 

flexible than JIT. But, it doesn’t solve the sublot sizing or lot sequencing issues. 

 

 

 



12 

 

2.3 Single-Product Lot Streaming 
 

As described in the previous section, processing through the use of transfer 

lots on several machines were introduced by JIT and OPT approaches in 1980s. 

Szendrovits [15] published his study that is one of the first papers that introduces the 

lot streaming approach for minimizing cost for the single-product, multi-stage lot 

streaming problem with continuous and equal sublots with no-idling case. Even this 

study doesn’t include transportation activities, many other researches and studies are 

referenced Szendrovits’s work. In 1976, Goyal [16] extended Szendrovits’s work by 

developing an algorithm to obtain the optimal sublot sizes. He added transportation 

cost to Szendrovits’s work and created a new algorithm to determine the production 

lot size and number of sublots for the single-product multi-stage productions. Again 

in the same year, Szendrovits extended Goyal’s study and present a simpler and 

faster model to minimize the total cost. 

Truscott [17] introduced a model for the single-product, multi-stage lot 

streaming problem with variable sublot in 1986. This model includes setup, 

operations and load movements between operations. The first objective of this model 

is to minimize the total production time for the lot. The second aim is to minimize 

the number of load movements. This approach develops a branch-and-bound 

algorithm to solve sub problems of scheduling transportation activities. But solving 

sub problems as zero-one mixed integer programs makes this approach too complex 

especially for small problems. 

In 1989, Potts and Baker [18] created a model for the single-product  lot 

streaming problem up to three machines for minimizing makespan when lot 

streaming is invoked. They show that they can always find the optimal scheduling 

policy with consistent sublots when the number of the machines are less than or 

equal to three. 
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In 1990, Kropp and Smunt [19] released a paper for the single-product, multi-

stage lot streaming problem with equal and consistent sublots. The main propose of 

the algorithm to minimize the makespan or mean flow time. The makespan problem 

was modeled as linear programming model while the mean flow time model as a 

quadratic programming model. They determined the optimal way of splitting a job 

into sublots under various setup times to run time ratios, number of machines in the 

flow shop, and number of allowed sublots by using quadratic programming approach 

to the mean flow time problem. At the same year, Baker and Pyke [20] presented a 

model for single-product  multi-machine flow shops. They used only two sublots to 

minimize cycle time. Later on, their study was used as base to create the concept of 

bottleneck machine. 

In 1993, Trietsch and Baker [10] studied the single-product  two-machine 

flowshop problem for continuous and discrete sublots. They created a model for 

more than one transporter to minimize the makespan. Also the same year Baker and 

Jia [21] were created a model for single-product  lot streaming problems for product 

lines with three machines. They researched effects of different constraints, i.e. no 

idling time, using of equal and consistent sublots, on the makespan value. 

Glass, Gupta and Potts [22] developed an algorithm to minimize the 

makespan for a single job in three-stage production processes. They considered the 

continuous and consistent sublots on each machine. This algorithm characterized a 

critical path structure for optimal solution and showed that for the open shop, to 

minimize makespan, constant time is required. In 1998, Chen and Steiner [23] 

extended the study of Glass et al. with no setup time to the case of attached setups in 

a multi-machine flow shops. They showed that no-wait schedules are more 

convenient in some specific conditions. Again in I998, Sen, Topaloglu and Benli [24] 

studied single-product  lot streaming problems with equal, consistent and variable 

sublots. Their study justified that equal sublots give more effective results in their 

conditions. 
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In 1999, Sriskandarajah and Wagneur [25] considered the problem of 

minimizing makespan in two-machine no-wait flowshops with multiple products 

requiring lot streaming. They considered the number of sublots for each product was 

fixed. They reached the solution that when the flowshop produces only a single 

product; they obtained optimal continuous-sized sublots. It means that these sublot 

sizes were also optimal for the problem of simultaneous lot streaming and scheduling 

of multiple products. 

In 2000, Kumar, Bagchi and Sriskandarajah [26] extended the heuristic of 

Sriskandarajah and Wagneur for the multiple machine case. They showed that, using 

linear programming approach for one type product, usage of continuous sized sublots 

gives optimal result. Again at the same year, Ramasesh et al. [27] presented an 

economic production lot size model for the single item multi-stage manufacturing 

system with equal sublots and no idling case using lot streaming. This heuristic 

minimizes the total relevant cost including the cost of setup, transportation and 

finished goods. 

In 2001, Kalir and Sarin [28] developed a heuristic for single-product  

flowshop manufacturing systems to split a lot into sublots to optimize different 

performance measures especially the objective function of makespan. In the same 

year, Bogaschewsky et al. [29] presented a deterministic model for single-product  

multi-stage lot streaming problem including transportation activities and cost 

objective. For equal sublots, they generated an algorithm to find optimal number of 

sublots. For variable sublots, they suggested two algorithms, one is an heuristic, ant 

the other is an optimal seeking. 

In 2003, Kalir and Sarin also released an optimal solution algorithm for the 

single-batch problem with sublot attached setups [30]. This heuristic guarantees the 

near-optimal solution in a fast and efficient way. In the same year Chen and Steiner 

[31] showed that the addition of the no-wait constraint in a regular flowshop doesn’t 

affect the minimum makespan for the single-product  lot streaming problem in no-
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wait flowshops. Van Nieuwenhuyse and Vandaele [32] created a cost minimization 

model for a single-product  deterministic flowshop lot streaming problem. In their 

approach, they assumed that sublot sizes are discrete and equal-sized to minimize the 

sum of inventory holding, transportation costs and gap costs. As a result, they 

reached that adding gap cost to the total cost function gives the same results as a no 

lot splitting case. 

In 2004, Chiu et al. [33] developed a binary mixed integer programming for a 

single-product, multi-stage lot streaming problem to minimize total cost including 

the transportation and makespan costs. They proposed two heuristics. The first one 

extended the two-stage method of Trietsch and Baker (1993). The second heuristic 

was built to relax the transporter capacity constraints. 

In 2005, Chiu and Chang [7] released two models for a multi-stage flowshop 

lot streaming problems. In their models, the sublot sizes are assumed to be equal, the 

number of transporters and the capacity of them are assumed to be infinite. They 

carried out an experimental design for the cost factors and analyze a number of 

different levels. 

 

2.4 Multi-Product Lot Streaming 
 

In the literature, studies mainly focuses on simple lot streaming problems. 

Because when the scale of problem is expanded, its complexity increases. To get rid 

of this complexity, researchers partition the multi-product lot streaming problem into 

a sub problem, propose different heuristic approaches to them and solve these 

partitions individually. In this section, we explain the heuristic approaches of 

different kinds of multi-product lot streaming problems’ solutions. 

In 1985, Truscott was first studied single job, equal sized sublots lot 

streaming problem on multiple machines by considering the setup times [34]. In 

1992, Vickson and Alfredsson modified the Johnson’s rule to obtain optimal solution 
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for unit sized and equal sized sublots by ignoring transfer and setup times for 

multiple jobs on two and three machines flowshops system [35]. They created the 

non-intermingled solution which is among many optimal solutions there exists an 

optimal solution where sublots of the same products are processed continuously on 

each machine [4]. Again in 1992, Cetinkaya and Kayaligil extended the study of 

Vickson and Alfredsson by considering detached setups [36]. Their heuristic was 

very similar to Johnson’s rule and showed that splitting jobs into sublots and 

sequencing them could be done independently. In 1994, Cetinkaya studied on lot 

scheduling problem to minimize the maximum makespan for two-stage flow shops in 

which the movement of transfer batches (sublots) from the first stage to the next 

were allowed when set-up, processing and removal times were considered as 

separable and independent of the order in which jobs were processed at any of two 

stages [37]. In 2001, Kalir and Sarin released a bottleneck minimal idleness heuristic, 

for the multi-product  lot streaming problem [28]. This heuristic minimizes the idle 

time between sublots of each product and gives very close solution to optimal. Again 

in 2001, Kalir and Sarin extended their heuristic for multiple jobs by excluding setup 

times. In 2009, Laha and Sarin [38] and in 2011, Glass and Possani [39] referred to 

this heuristic in their studies.  

In 1993, Trietsch and Baker presented linear and integer programming 

formulation for a single job using continuous and discrete values of consistent 

sublots on a three machine flowshop systems [10]. In 2001, Wagneur added the no-

wait condition to Trietsch and Baker’s formula [40]. In 1997 and 1998, Chen and 

Steiner extended this case by detached [41] and attached setup times [23]. In 2000, 

Kumar, Bagchi and Sriskandarajah extended the two-staged approach of 

Sriskandarajah et al.[25] for the case of multi-product, multi-stage, no-wait flowshop 

environment with non-intermingled and discrete sublots using three-staged approach 

[26]. In 2002, Buckhin, Tzur and Jaffe presented single machine bottleneck 

procedure [42] which guarantees very close solution to optimal solution and optimal 
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solution for some special cases for two-machine, sublot-attached flowshop lot 

streaming problems. In 2003, Hall et al. studied on Sriskandarajah and Wagneur’s 

problem [25] by attaching setup times to it [43]. They reached an efficient solution 

for the multi-stage, no-wait multi-product lot streaming problem with consistent non-

intermingled integer sublot sizes. In 2005, they modified their heuristic for no-wait 

two-machine open shops with consistent non-intermingled sublots [43]. With this 

heuristic, they reached good results for two-machine flowshops with up to 50 

products. 

In 2002, Yoon and Venture developed a linear programming for no-wait lot 

streaming flowshops to find the optimal sequence that minimize the absolute 

deviation [44]. In order to accelerate production, a job was allowed to overlap its 

operations between successive machines and by splitting it into a number of smaller 

sublots and moving the completed potion of the sublots to downstream 

machines[45]. They also developed a hybrid generic algorithm for buffers between 

successive machines having infinite capacities and sublots are equal sized and 

buffers between successive machines having finite capacities and sublots are 

consistent [46]. 

In 2004, Hug, Cutright and Martin developed an integer programming model 

to obtain optimum sublot sizes while enumerating the number of sublots for multi-

product  lot streaming problem using discrete sublots [47]. In 2007, 2008 and 2009 

Marimuthu, Ponnambalam and  Jawahar released a tabu search, a simulated 

annealing, hybrid generic algorithm, ant colony optimization and threshold 

accepting algorithms which include setup times [48], [49, 50]. 

In 2005, Zhang, Yin, Liu and Linn proposed two heuristics to minimize the 

mean completion time for multi-job lot streaming problem in two-stage hybrid 

flowshops with m identical machines at the first stage and a single machine at the 

second stage [51]. 
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In 2009, Martin presented a hybrid genetic algorithm/mathematical 

programming heuristic for the n-job, m-machine flowshop problem with lot 

streaming. The number of sublots for each job and the size of sublots were directly 

addressed by the heuristic and setups may be sequence-dependent. A new aspect of 

this problem, the interleaving of sublots from different jobs in the processing 

sequence, were developed and addressed [52]. 

In 2011, Buscher and Shen proposed an integer programming formulation to 

solve multi-product lot streaming problem in a job shop environment where setup 

times are involved. They optimally solved this problem for consistent sublots [53]. 

F.M. Defersha and M. Chen developed a hybrid genetic algorithm for a model that 

appeared in recent literature for one -job m -machine lot streaming problems with 

variable sublots and setup and showed that the performance of the proposed genetic 

algorithm is encouraging in the same year [54]. 

In 2012, M. Karimi and Nasab presented a mathematical modeling of joint lot 

sizing and scheduling problem in job shop environment under a set of working 

conditions. They deal with process compressibility and their further experiences on 

random test data confirmed that  the performance of the proposed method with less 

than 5.02% optimality gap while solving the problems in very shorter times than 

CPLEX [55]. 

In 2013, N. Mortezaei and N. Zulkifli developed a mathematical model for 

the integration of lot sizing and flow shop scheduling with lot streaming. They 

developed a mixed-integer linear model for multiple products lot sizing and lot 

streaming which enabled the operator to find optimal production quantities, optimal 

inventory levels, optimal sublot sizes, and optimal sequence simultaneously 

[56]. With this research they showed that the best makespan shall be achieved 

through the consistent sublots with intermingling case. 

. 
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CHAPTER 3 

 

 

3 PROBLEM DEFINITION AND MATHEMATICAL MODELS 
 
 
 

In this chapter we first define our problem under consideration for both equal 

and unequal sublots cases and then propose mathematical models for solving these 

problems.  

3.1 Problem Statement 
 

There is a set of N jobs (product lots) to be processed on a two-machine 

flowshop in which both machines M1 and M2 operate independently and ready at 

time zero for processing jobs. All jobs are available at time zero and processed first 

on M1 and then on M2. That is, the first and second operations of the jobs are 

performed by machines M1 and M2, respectively. The setup times required before 

processing each job and the transfer time from machine M1 to machine M2 are 

assumed to be zero, and ignored. 

In our study, we assume that the total number of allowed sublots for all jobs 

is S (where S > N) and known in advance. Moreover, only one job can be processed 

on a machine at a time and preemption is not allowed, i.e. the processing of any 

sublot cannot be interrupted on any machine at any time and resumed at a later time. 

Our problem is to determine the number of sublots for each job, the size of 

the each sublot and the processing sequence of all sublots that gives the minimum 

makespan. We investigate the problem for two cases: unequal sized sublots and equal 

sized sublots. Details of these approaches will be explained at the following sections. 
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3.2 Mathematical Model for the Case with Unequal Sized Sublots 
 

Based on the problem characteristics and assumptions given in Section 3.1, 

we developed a mixed integer linear programming (MILP) model for solving 

optimally the lot streaming problem with unequal sized sublots. This model aims to 

determine the sublot sizes for each product and the processing sequence of the 

sublots of all products for the case with unequal sized sublots. Below, we present 

parameters, indices and variables are used in this model. 

 

Parameters and Indices: 
N  Number of jobs 

S  Total number of sublots allowed for all jobs (where NS  ) 

j  Index for jobs ( Nj ,...,2,1 ) 

t  Position index for sublots in the sequence ( St ,...,2,1 ) 

m  Index for machines ( 2,1m ) 

jQ  Lot size of job j  

mjp ,  Unit processing time of job j  on machine m  

L  Sufficiently large positive number 

 

Decision Variables: 

sequence  in  the  position     toassigned  is   job ofsublot   a
0
1

,

tj
otherwise

if
Z tj







  

 tjX , Size of the sublot which belongs to job j  assigned to position t   

 mtC , Completion time of the sublot assigned to position t  on machine m   

 maxC Makespan (completion time of all jobs on Machine 2) 
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MILP: 

Minimize: 

      2,max SCC            (1) 

 

Subject to: 

 



N

j
tjZ

1
, 1 for St ,...,2,1  (2) 

 tjtj ZLX ,,   for Nj ,...,2,1 ; St ,...,2,1  (3) 

 j

S

t
tj QX 

1
,  for Nj ,...,2,1  (4) 

 0,0 mC  for 2,1m  (5) 

 00, tC  for St ,...,2,1  (6) 

 


 
N

j
tjmjmtmt XpCC

1
,,,1,  for St ,...,2,1 ; 2,1m  (7) 

 


 
N

j
tjmjmtmt XpCC

1
,,1,,  for St ,...,2,1 ; 2,1m  (8) 

  1 ,0, tjZ  for tj,  (9) 

 0, tjX  for tj,   

 0, mtC  for mt,   

 

In the above presented MILP model, the objective function maxC  in (1) is to 

minimize the makespan, which is the completion time of the last sublot in the 

processing sequence of the products. The Constraint Set (2) ensures that each 

position in the sequence is occupied by a sublot of a job. The Constraint Set (3) 

guarantees that size of a sublot becomes positive if this sublot is assigned to a 
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position in the sequence.  Constraint Set (4) ensures that the sum of all sublot sizes of 

a job equals to the lot size of this job. Constraint Sets (5) and (6) are initialization 

constraints for completion times of sublots on each machine. Constraint Set (7) 

guarantees that the completion time of a sublot on a machine should be greater than 

or equal to the sum of completion time of the sublot in the previous position and the 

processing time of this sublot on the same machine. Constraint Set (8) ensures that 

the completion time of a sublot on a machine should be greater than or equal to the 

sum of the completion time of this sublot on the previous machine and the processing 

time of this sublot on the current machine. Constraint Set (9) imposes binary and 

non-negativity restrictions on the decision variables, respectively. 

In this MILP model, two sets of the decision variables are continuous 

variables, and the number of this type of decision variables is )2(  NS . However, 

there is only one set of decision variables, which has NS   binary. This means that 

there are totally )1(2  NS  decision variables. On the other hand, the MILP model 

has 2)1(6  SNS  constraints.  

 

3.3 Mathematical Model for the Case with Equal Sized Sublots 
 

The second model aims to determine sublot sizes for each product and the 

processing sequence of the sublots of all products for the case with equal sized 

sublots. Additional parameters, indices and variables for our model to solve the case 

with equal sized sublots are given below: 

 

Additional Parameters and Indices: 

1 NS  Maximum number of sublots allowed for a job 

k   Index for sublots ( 1,...,2,1  NSk ) 
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Additional Decision Variables: 

 sublots    intosplit    is   job
0
1

,

kj
otherwise

if
Y kj





   

tkjX ,,  Non-negative continuous variable 

 

MILP: 

Minimize: 

        2,max SCC          (10) 

Subject to: 

 





1

1
, 1

NS

k
kjY  for Nj ,...,2,1  (11) 

  







N

j

NS

k
kj SYk

1

1

1
,   (12) 

 



N

j
tjZ

1
, 1  for St ,...,2,1  (13) 

  







S

t

NS

k
kjtj YkZ

1

1

1
,,  for Nj ,...,2,1 ; 1,...,2,1  NSk  (14) 

 1,,,,  tjkjtkj ZYX   for Nj ,...,2,1 ; 1,...,2,1  NSk ;  

        St ,...,2,1     (15) 

 0,0 mC  for 2,1m  (16) 

 00, tC  for St ,...,2,1  (17) 

  





 

N

j

NS

k
tkjmj

j
mtmt Xp

k
Q

CC
1

1

1
,,,,1,       for St ,...,2,1 ; 2,1m  (18) 

  





 

N

j

NS

k
tkjmj

j
mtmt Xp

k
Q

CC
1

1

1
,,,1,,       for St ,...,2,1 ; 2,1m  (19) 

  1 ,0, kjY                     for kj,   (20) 
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  1 ,0, tjZ                     for tj,  

 0,, tkjX                     for tkj ,,   

 0, mtC                     for mt,  

 

In the above MILP model, the objective function maxC  in (10) is to minimize 

the makespan, which is the completion time of the last sublot in the sequence. 

Constraint Set (11) ensures that a job is split into at most 1 NS  sublots. 

Constraint Set (12) guarantees that the sum of sublots of all jobs is equal to the total 

number of sublots for all jobs. Constraint Set (13) ensures that each position in the 

sequence is occupied by a sublot of a job. Constraint Set (14) guarantees that total 

number of positions occupied by a job is equal to the total number of sublots of this 

job. Constraint Set (15) determines the values of the continuous variables tkjX ,, ’s. 

Constraint Set (16) and (17) are initialization constraints for completion times. 

Constraint Set (18) guarantees that the completion time of a sublot on a machine 

should be greater than or equal to the completion time of the sublot in the previous 

position plus the processing time of this sublot on the same machine. Constraint Set 

(19) ensures that the completion time of a sublot on a machine should be greater than 

or equal to the completion time of this sublot on the previous machine plus the 

processing time of this sublot on the current machine. Constraint Set (20) imposes 

binary and non-negativity restrictions on the decision variables, respectively. 

In this MILP model, two sets of the decision variables are continuous 

variables, and the number of this type of decision variables is )2(  NS . However, 

there are two sets of binary decision variables, which have totally )12(  NSN

binary variables. This means that there are totally )1(2  NS  decision variables. 

On the other hand, the MILP model has   362)2(  SNNSSNx  

constraints.
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CHAPTER 4 
 

 

4 HEURISTIC ALGORITHMS 
 

 

 

The size of the the MILP models increases drastically with the increase in the 

number of jobs and the total number of sublots allowed. Therefore, the optimal 

solutions to the large-scale problems are not likely to be obtained within reasonable 

computational times. Moreover, the existence of a polynomial-time algorithm to 

solve the problem optimally is unlikely since we have an NP-hard problem. This 

motivated us to develop fast algorithms that provide near-optimal solutions.  

In this chapter we present our proposed heuristic algorithms for solving the 

two cases, unequal sized and equal sized sublots, of the lot streaming problem under 

consideration.  

4.1 Heuristic Algorithm for the Case with Unequal Sized Sublots  

 

By this heuristic, we aim to determine the number of the sublots for each 

product, the size of each sublot on each machine and the processing sequence of the 

sublots for minimizing the makespan for multi-product lot streaming problem with 

unequal sublots. To address this problem, we extend the heuristic algorithm of 

Cetinkaya [37]. Below, we present the notation and formulation of our heuristic for 

the multi-product flowshop lot streaming problem with unequal sublots: 
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Parameters: 

M  Number of machines ( 2M ) 
N  Number of jobs  
S  Total number of sublots  

nQ  Lot size of job n  

mn,P  Processing time for one unit of job n  on machine m   

mn,TP  Total processing time for one unit of job n  on machine m    

nK  Number of sublots of job n  

ns,x  Size of the sublot s  of job n  

ns,k  Total process time for sublot s  of job n    

nZ  Idle time for job n    

ns,f  Fraction factor for sublot s  of job n    

ms,,n,TSP  Total processing time for sublot s  of job n  on machine m    

 

Indices: 

m  Machine index where ,...,Mm 1  
n  Job index where ,...,Nn 1  

s  Sublot index where n,...,Ks 1  

 

Heuristic Algorithm for Unequal Sized Sublots Case: 

 

Step 1: 

Identify the maximum process time on 1M  and 2M , that is: 

mn, ,  mn,TP  max  where nmn,mn, .QPTP    
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The job with the highest mn,TP  value will be the primary job to calculate 

sublot sizes. 

 

Step 2: 

Identify number of sublot used by job with the highest mn,TP  value 

).( n,mJHTP  We assume that each job except mn,JHTP  value has only one 

sublot and the rest of the sublots belong to mn,JHTP . That is, 








          otherwise     )1(
    not    is    job if   1

NS
JHTPn

K n,m
n  

 

Step 3: 

Identify the size of each sublot of mn,JHTP  using the following algorithm: 


























n1
1-s

n

nK
n

n

ns,

Ks1   wheres    ,.x

   .Q
1-

x
n






1      

where  

1,

2,

n

n
n P

P
   and n  is the index of mn,JHTP . 

The jobs except mn,JHTP aren’t split. For these jobs sublot size equals to lot 

size, i.e. 

nn1, Qx   where n is NOT the mn,JHTP . 

 

Step 4: 

If, at least, one of the sublot size calculated at Step 3, is non-integer sized go 

to Step 4.1 to recalculate the integer sized ones. Otherwise, go to Step 5. 
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Step 4.1 (Converting non-integer sized sublot to integer-sized sublot) 

For all jobs, 

Step 4.1.1 :  

Calculate the idle time nZ   as 









 




1

1
,2,

1
,1,

1
..max

u

s
nsn

u

s
nsn

Ku
n xPxPZ

n

 where   N  ,1 n   

 

Step 4.1.2 :  

For each sublot s, calculate the integer sized sublot 

 
















































 
 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x  

 

Step 4.1.3 :  

If 



nK

1i
nni, Qx , then the calculated sublot sizes, that are ns,x , are not 

integer sublot sizes go to Step 2 using following nZ . 

 nsnnn fPZZ ,1, 1min   

where  

  nsn

s

m
nmnnnns, xPxPPZf ,1,

1

1
,2,1, 







 





. 

Otherwise, 

1. If there are no zero sized sublots, go to Step 5. 

2. If there exist zero sized sublots, transfer them to the next job 

with greatest mn,TP after the current job. 
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Step 5: 

Calculate the total process time of each sublot ( ms,,n,TSP ) on both machine and 

group them as Set 1 and Set 2. 

Set 1 is a set of sublots that are processed on 1M  at most in the time that are 

processed on 2M . In other words; each sublot of Set 1 is processed on 1M  in 

less or equal time on 2M . 

Set 2 is a set of sublots that are processed on 1M  longer than that are 

processed on 2M . 

Set 1 and Set 2 are mathematically expressed as 

 2,,sns,1n,n TSPTSP:k 1Set   

 2,,sns,1n,n TSPTSP:k 2Set    

where mnnsms,,n, PxTSP ,., ,  Nn ,1 ,  nn Kk ,1  and  2,1m . 

 

Step 6: 

Optimize Set 1 and Set 2 by rearranging their entities. While Set 1 is 

optimized by sorting sublots according to their increasing process time on 1M

; Set 2 is optimized by sorting sublots according to their decreasing process 

time on 2M . If we call optimized Set 1 as OSet 1 and optimized Set 2 as 

OSet2, the mathematical representation of OSet 1 and OSet 2 are as follows: 

 1,,1 sns,1n,n TSPTSP: 1  Set k 1 OSet   

 2,,1 sns,2n,n TSPTSP: 2  Set k 2 OSet   where  Nn ,1 ,  nn Kk ,1 .  

 

Step 7: 

To minimize the makespan, sublot sequence is needed to be optimized. 

Optimized sublot sequence, OS, is a combination of Set 1 and Set 2 as all 
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elements of Set 1 is followed by all elements of Set 2. OS is represented 

mathematically as follows: 

m

S

m
n

S

n
kkOS

21

11 
   

where, 1 Setkn  , 2 Setkm  , 1S  and 2S  are the sizes of Set 1 and Set 2, 

 respectively. 

 

4.1.1 Numerical Example 

 

In this section, we provide a numerical example for illustrating the heuristic 

algorithm for solving the unequal sized sublot case. Consider a simple instance of the 

problem in which there are 5 jobs and the total number of sublots is 20. Unit 

processing times on the machines and the lot sizes for all jobs are given in Table 4-1. 

 

Table 4-1 Process Times on M1 and M2 

 
 

First we will find the job with the maximum process time. As seen on Table 

4-1, the job with the maximum process time is Job 4. So, Job 4 will have the 

maximum number of sublots when other jobs have only one sublot, which is equal to 

the lot. It means that 

164204 K  and 15321  KKKK . 



31 

 

Now, we shall find the sizes of sublots for each job. Here it is obvious that for 

Jobs 1, 2, 3 and 5, the sublot equals to the total lot size of the job since these jobs are 

not split into sublots and have only one sublot. But Job 4 is split in to 16 sublots. Our 

sublot factor 4  is  

9
1
9

1,4

2,4
4 

P
P

 . 

When we calculate the size of each sublot in Job 4 using 4 , we obtain:
 

141063.820.
1169

19
4,1















 xx

 
131077.74,1.4,2

 xxx   

121099.64,1.2
4,3

 xxx 
 

111029.64,1.3
4,4

 xxx 
 

101066.54,1.4
4,5

 xxx 
 

91009.54,1.5
4,6

 xxx 
 

81058.44,1.6
4,7

 xxx 
 
71012.44,1.7

4,8
 xxx 

 

61071.34,1.8
4,9

 xxx 

 
51034.34,1.9

4,10
 xxx   

41001.34,1.10
4,11

 xxx 
 

31070.24,1.11
4,12

 xxx 
 

02.04,1.12
4,13  xx 

 
21.04,1.13

4,14  xx 
 

97.14,1.12
4,15  xx 

 
7.174,1.12

4,16  xx 

 

After calculating the size of each sublot, we shall categorize these sublots as 

Set 1 and Set 2. As shown in Table 4-2, each sublot’s process time on M1 is less than 

its process time on M2. Thus, it is obvious that all sublots belong to Set 1. 














4164154144134124114104948474645

4443424151312111

,,k,,k,,k,,k,,k,,k,,k,,k,,k,,k,,k,k

,,,k,,k,,k,,k,,k,,k,,k,k 
1 Set

 

2 Set  is empty. 
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Now, to find the sequence of sublots that provides the optimal makespan, we 

will find 1 OSet  and 2 OSet . While 2 Set  is empty, 2 OSet  is empty too. But to 

obtain 1 OSet , we rearrange 1 Set  as 










1,11,51,21,3 kkkkkkkkkk

kkkkkkkkkk 
1 OSet

,,,,,,,,,
,,,,,,,,,,

4,164,154,144,134,124,11

4,104,94,84,74,64,54,44,34,24,1
. 

 

Table 4-2 Total Sublot Process Times of Jobs on M1 and M2 
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As seen on Table 4-2, almost all sublots are non-integer sized. So we need to 

recalculate integer sized sublots. To do this, first we calculate the idle time nZ  where

  N  ,1 n  . Our first idle time is -148.63x10 . Now by using this idle time we 

calculate non-integer sized sublots of Job 4 using the following formula. 

 
















































 
 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

 
Now, when we recalculate integer sized sublots, we will see all of them are 

zero. That is, 

      0020,1063.8min020,1
0.911063.8min 14

14














  



xxx1,4

       0020,1063.8min020,1
0.911063.8min 14

14














  



xxx2,4
 

      0020,1063.8min020,1
0.911063.8min 14

14














  



xxx3,4

 0 16,415,414,413,412,411,410,49,48,47,46,45,44,43,4 xxxxxxxxxxxxxx
. 

Here, it is obvious that 



4K

1i
i,4 Qx 4 since 




4K

1i
i,4x 0 and 200  . So we need 

to use the fraction factor s,4f  to recalculate the new idle time 4Z  as 

   14
14

1063.801
0.911063.8 









  xxf1,4

 
   14

14
1063.801

0.911063.8 








  xxf2,4

 

141063.8  xffffffffffffff 16,415,414,413,412,411,410,49,48,47,46,45,44,43,4

 

Our new idle time 4Z  is 

    11063.811063.81min 1414
4,1,44   xxfPZZ s4 . 
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Now, when we recalculate the new sublot sizes using the new idle time 

14Z , we obtain: 

     120,1min020,1
0.911min 













 1,4x  

     919,9min120,1
1.911min 













 2,4x  

     1010,81min1020,1
10.911min 













 3,4x

    02020,1
20.911min 













 4,4x

    02020,1
20.911min 













 5,4x

 0 16,415,414,413,412,411,410,49,48,47,46,45,44,4 xxxxxxxxxxxxx
 

Here, again we need to check whether that sum of the sublot sizes are equal to 

the total lot size. We observe that 





4K

1i
i,4 Qx 4201091 . 

When we analyze the sublot sizes, we see that sublot sizes are zero for 13 

sublots. It means that 13 of the sublots out of 16 are useless for Job 4. So they will be 

transferred to Job 2, which is the job with the second maximum process time. Thus, 

the total number of sublots for Job 2 becomes 13+1=14. Now, we need to find 

integer sized sublots for Job 2. First, we need to calculate our sublot factor 2  which 

is  

7
1
7

1,2

2,2
2 

P

P
 .   
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If we calculate the sizes of each sublot for Job 2 using 2 , we obtain:
 

10
142,1 105.117.

17
17 










 xx
 

9
2,12,2 1005.1.  xxx   

9
2,1

2
4,3 1036.7.  xxx 

 
8

2,1
3

2,4 1015.5.  xxx 

 
7

2,1
4

2,5 1061.3.  xxx 

 
6

2,1
5

2,6 1052.2.  xxx   
5

2,1
6

2,7 1076.1.  xxx 
 

4
2,1

7
2,8 1023.1.  xxx 

 
4

2,1
8

2,9 1066.8.  xxx 
 
3

2,1
9

2,10 1006.6.  xxx 
 

04.0. 2,1
10

2,11  xx 
 

29.0. 2,1
11

2,12  xx 
 

08.2. 2,1
12

4,13  xx 
 
5.14. 2,1

13
2,14  xx 

 

But it is obvious that sublot sizes are not integer sized and we need integer 

sized sublots. To do this, we need to calculate the idle time for Job 2 which is 

 

10
1

1
2,2,2

1
2,1,2

1
105.1..max

2















  xxPxPZ
u

s
s

u

s
s

Ku
2

 

 

Now by using this idle time 2Z  we calculate non-integer sized sublots of Job 

2 using the following formula. 

 

 













































 
 

 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

 

 

Now, when we recalculate integer sized sublots, we will see all of them are 

zero. That is, 

      017,105.1min017,1
0.6105.1min 10

10














  



xxx1,2
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      017,105.1min017,1
0.6105.1min 10

10














  



xxx 2,2

 
0 14,213,212,211,210,29,28,27,26,25,24,23,2 xxxxxxxxxxxx

 

Here it is obvious that 



2K

1i
i,2 Qx 2 since 




2K

1i
i,2x 0  and 170  . Thus, we 

need to use the fraction factor s,2f  to recalculate the new idle time 2Z  as 

 

    1105.11105.11min 1010
2,1,22   xxfPZZ s2 . 

 

Now, when we recalculate the new sublot sizes using the new idle time 

12Z , we obtain: 

     117,1min017,1
0.711min 













 1,2x  

     716,7min117,1
1.711min 







 



 2,2x  

     99,79min817,1
8.711min 







 



 3,2x

    01717,1
17.711min 







 



 4,2x

 
0 14,213,212,211,210,29,28,27,26,25,24,2 xxxxxxxxxxx

 

Here, again we need to check whether that sum of the sublot sizes are equal to 

the total lot size. We observe that 

 





2K

1i
i,2 Qx 217971 . 
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When we analyze the sublot sizes, we see that 3 sublots are enough for Job 2. 

So the remaining 11 sublots will be transferred to Job 1, which is the job with the 

maximum process time after Job 2. Thus, the total number of sublots for Job 1 

becomes 11+1=12. Now, we need to find integer sized sublots for Job 1. First, we 

need to calculate our sublot factor 1  which is  

2
3
6

1,2

2,1
1 

P
P

 . 

When we calculate the sizes of each sublot for Job 1 using 1 , we obtain:
 

3
121,1 1093.1212.

12
12 










 xx
 

3
1,11,2 1086.5.  xxx   

0117.0. 1,1
2

1,3  xx 
 

023.0. 1,1
3

1,4  xx 
 

046.0. 1,1
4

1,5  xx 

 
093.0. 1,1

5
1,6  xx   

187.0. 1,1
6

1,7  xx 
 

375.0. 1,1
7

1,8  xx 
 

75.0. 1,1
8

1,9  xx 
 

5.1. 1,1
9

1,10  xx 
 

3. 1,1
10

1,11  xx 
 

6. 1,1
11

1,12  xx 
 

 

But it is obvious that sublot sizes are not integer sized and we need integer 

sized sublots. To do this, we need to calculate the idle time for Job 1 which is 

 

0087.0..max
1

1
1,1,2

1
1,1,1

1 1










 




u

s
s

u

s
s

Ku
1 xPxPZ

 

 

Now by using this idle time 1Z  we calculate the non-integer sized sublots of 

Job 1 using the following formula 
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 
















































 
 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

.

 
Now, when we recalculate the integer sized sublots, we see all of them are 

zero. That is, 

      012,109.2min012,3
0.630087.0min 3 







 



  xx1,1

 
      012,0087.0min012,3

0.30087.0min 






 



 2,1x

 
0 12,111,110,19,18,17,16,15,14,13,1 xxxxxxxxxx  

Here it is obvious that 



1K

1i
i,1 Qx 1 since 




1

0
K

1i
i,1x  and 120  . Thus, we 

need to use the fraction factor s,1f  to recalculate the new idle time 1Z  as 

  30087.099.21min 2,11,11  fPZZ 1 . 
Now, when we recalculate the new sublot sizes using the new idle time 

31Z , we obtain: 

  212,2min012,3
0).63(3min 







 



 1,1x

 
     310,3min212,3

2.633min 






 



 2,1x

 

   6512,3
5.31min 







 



 3,1x

    11112,3
11.33min 







 



 4,1x

 
   01212,3

15.33min 






 



 5,1x

0 12,111,110,19,18,17,16,15,1 xxxxxxxx  
Here, again we need to check whether that sum of the sublot sizes are equal to 

the total lot size. We observe that 





1K

1i
i,1 Qx 1121632 . 

When we analyze the sublot sizes, we see that 4 sublots are enough for Job 1. 

So the remaining 8 sublots will be transferred to Job 3, which is the job with the 
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maximum process time after Job 1. Thus, the total number of sublots for Job 3 

becomes 8+1=9. Now, we need to find integer sized sublots for Job 1. First, we need 

to calculate our sublot factor 3  which is  

4
1
4

1,3

2,3
3 

P
P

 . 

When we calculate the sizes of each sublot for Job 3 using 3 , we obtain:

4
93,1 1083.116.

14
14 










 xx
 

4
3,13,2 1032.7.  xxx   

3
3,1

2
3,3 1092.02.  xxx 

 
011.0. 3,1

3
3,4  xx 

 
046.0. 3,1

4
3,5  xx 

 

187.0. 3,1
5

3,6  xx   
75.0. 3,1

6
3,7  xx 

 
3. 3,1

7
3,8  xx 

 
12. 3,1

8
3,9  xx 

 

But it is obvious that sublot sizes are not integer sized and we need integer 

sized sublots. To do this, we need to calculate idle time for Job 3 which is 

 

4
1

1
3,2,3

1
3,1,3

1
1083.1..max

3















  xxPxPZ
u

s
s

u

s
s

Ku
3

 

Now by using this idle time 3Z  we calculate the non-integer sized sublots of 

Job 3 using the following formula. 

 

 













































 
 

 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

 
Now, when we recalculate integer sized sublots, we see all of them are zero. 

That is, 

   0016,1
0.31083.1min

4








 



 

xx1,3
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0 9,38,37,36,35,34,33,32,3 xxxxxxxx  

Here it is obvious that 



3K

1i
i,3 Qx 3 since 




3

0
K

1i
i,3x  and 160  . Thus, we 

need to use the fraction factor s,3f  to recalculate the new idle time 3Z  as 

  11083.111083.11min 44
3,11,33   xxfPZZ 3 . 

 

Now, when we recalculate new sublot sizes using new idle time 13Z , we 

obtain: 

1016,1
0).3(1min 







 



 1,3x  

   4116,1
1.31min 







 



 2,3x

 

   11516,1
5.31min 







 



 3,3x

 
   01616,1

16.31min 






 



 4,3x

 

0 9,38,37,36,35,34,3 xxxxxx  
Here, again we need to check whether that sum of the sublot sizes are equal to 

the total lot size. We observe that 





3K

1i
i,3 Qx 3161141 . 

When we analyze the sublot sizes, we see that 3 sublots are enough for Job 3. 

So the remaining 6 sublots will be transferred to Job 5, which is the job with the 

maximum process time after Job 3. Thus, the total number of sublots for Job 5 

becomes 6+1=7. Now, we need to find integer sized sublots for Job 5. First, we need 

to calculate our sublot factor 5  which is  

5.1
4
6

1,5

2,5
5 

P
P

 . 

When we calculate the sizes of each sublot for Job 5 using 5 , we obtain:
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155.05.
15.1

15.1
75,1 











x
 

233.0. 5,15,2  xx   

349.0. 5,1
2

5,3  xx 
 

52.0. 5,1
3

5,4  xx 
 

78.0. 5,1
4

5,5  xx 
 

18.1. 5,1
5

5,6  xx   
77.1. 5,1

6
5,7  xx   

But it is obvious that sublot sizes are not integer sized and we need integer 

sized sublots. To do this, we need to calculate the idle time for Job 5 which is 

621.0..
1

1
5,2,5

1
5,1,5

1
max

5










 




u

s
s

u

s
s

Ku
5 xPxPZ

 
 

Now by using this idle time 5Z  we calculate the non-integer sized sublots of 

Job 5 using the following formula 

 
















































 
 






1

1
,

1,

1

1
,2,1,

,min
s

m
nmn

n

s

m
nmnnn

ns, xQP

xPPZ
x

.

 
 

Now, when we recalculate the integer sized sublots, we see all of them are 

zero. That is, 

   005,4
0.2621.0min 







 



 1,5x

 
0 7,56,55,54,53,52,5 xxxxxx  
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Here it is obvious that 



5K

1i
i,5 Qx 5 since 




5

0
K

1i
i,5x  and 50  . Thus, we need 

to use the fraction factor s,5f  to recalculate the new idle time 5Z  as 

    49994.3378.3621.0)1554.01(4621.01min 5,11,55  xfPZZ 5 . 
 

Now, when we recalculate the new sublot sizes using the new idle time 

45Z , we obtain: 

105,4
0).2(4min 







 



 1,5x

 
   115,4

1.24min 






 



 2,5x

 
   225,4

2.24min 






 



 3,5x

 
   055,4

5.24min 






 



 4,5x

 
Here, when we calculate the rest of sublots sizes, we will see that  

0 7,56,55,5 xxx . 
 

Here, again we need to check whether that sum of the sublot sizes are equal to 

the total lot size. We observe that 





5K

1i
i,5 Qx 551211 . 

 

When we analyze the sublot sizes, we see that 4 sublots are enough for Job 5. 

Thus, the remaining 3 sublots are useless, and 17 sublots are enough as the total 

number of sublots for all jobs. 

 

Below, in Table 4-3, the sizes and process times of each integer sized sublot 

is given. 
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Table 4-3 Size and Process Times of Integer Sized Sublots 

 
 

As shown in Table 4-3, each sublot’s process time on M1 is less than its 

process time on M2. So all sublots belongs to Set 1, and Set 2 is empty, obviously. 

That is, 










4,53,52,51,53,42,41,43,32,3

1,33,22,21,2

,,,,,,,,
,,,,,,,,
xxxxxxxxx

xxxxxxxx 
1 Set 1,41,31,21,1 . 
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Now, to find the sequence of sublots that provides the optimal makespan, we 

determine 1 OSet  and 2 OSet . While 2 Set  is empty, 2 OSet  is empty, too. But to 

obtain 1 OSet , we rearrange 1 Set  as 










4,13,13,33,42,43,23,52,22,1

4,52,51,52,3

,,,,,,,,
,,,,,,,,
xxxxxxxxx

xxxxxxxx 
1 OSet 1,14,13,12,1 .

 Thus, we obtain the sizes and sequence of unequal sublots that provides 

smallest makespan using our heuristic algorithm for the lot streaming problem under 

consideration. 

 

4.2 Heuristic Algorithm for the Case with Equal Sized Sublots 
 

With this heuristic, we aim to reach the minimum makespan for the multi-

product lot streaming problem with equal sized sublots. To address this problem, we 

develop two-parted heuristic that each part contains first heuristics basically. At the 

first part of the heuristic, we consider each lots of job. Sequentially, we assign the 

max number of sublots to each job and find the number of the sublots for each 

product, the size of each sublot on each machine and the sequence for processing the 

sublots. We pick the one with minimum makespan as a result. At the second part of 

the heuristic; we work on the two jobs with the highest processing times and again 

we find the number of the sublots for each product, the size of each sublot on each 

machine and the sequence for processing the sublots according to our heuristic. At 

the end, heuristic returns the solution of part that has the minimum makespan time. 

Below, we present the notation and formulation of the two-stepped heuristic 

algorithm: 
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Parameters: 

M  Number of machines ( 2M ) 
N  Number of jobs  
S  Total number of sublots  

nQ  Lot size of job n  

mn,P  Processing time for one unit of job n  on machine m   

mn,TP  Total processing time for one unit of job n  on machine m    

nK  Number of sublots of job n  

ns,x  Size of the sublot s  of job n  

OS  Optimal sublot sequence 

LOS  List of optimal sublot sequence 

ms,,n,TSP  Total processing time for sublot s  of job n  on machine m    

 

Indices: 

m  Machine index where ,...,Mm 1  
n  Job index where ,...,Nn 1  

s  Sublot index where n,...,Ks 1  

 

Heuristic Algorithm for Equal Sized Sublots Case: 

 

Step 1: (Sequentially, Split All Lots of Jobs Equally) 

 

Step 1.1: 

For each job nJ , 
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Step 1.1.1: 

Identify number of sublot used by each job. We assume that nJ  is the 

job with the highest mn,TP  value. We assume that each job except nJ  

value has only one sublot and the rest of the sublots belong to nJ . 






otherwise 1)-(N-S

J otn is n job if   1
K n

n  

Step 1.1.2: 

Find the size of each equal-sized sublot of nJ  as 

n

n
ns, K

Q
x  .

 
 

The jobs except nJ  aren’t split. For these jobs sublot size equals to lot 

size, i.e. 

nn1, Qx   where n is NOT the nJ . 

 

Step 1.1.3: 

Calculate the total process time of each sublot ( ms,,n,TSP ) on both 

machine and group them as Set 1 and Set 2. 

Set 1 and Set 2 are mathematically expressed as 

 2,,sns,1n,n TSPTSP:k 1 Set   

 2,,sns,1n,n TSPTSP:k 2 Set   

where 
mnnsms,,n, PxTSP ,., ,  Nn ,1 ,  nn Kk ,1  and  2,1m . 

 

Step 1.1.4: 

Optimize Set 1 and Set 2 by rearranging their entities. While Set 1 is 

optimized by sorting sublots according to their increasing process time 
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on 1M ; Set 2 is optimized by sorting sublots according to decreasing 

process time on 2M . If we call optimized Set 1 as OSet 1 and 

optimized Set 2 as OSet 2, the mathematical representation of OSet 1 

and OSet 2 are as follows: 

 1,,1 sns,1n,n TSPTSP:  Set1 k 1 OSet   

 2,,1 sns,2n,n TSPTSP:  Set2 k 2 OSet  where  Nn ,1 ,  nn Kk ,1   

 

Step 1.1.5: 

To calculate makespan for nJ , optimized sublot sequence is needed. 

Optimized sublot sequence for nJ , nOS , is a combination of Set 1 and 

Set 2 as all elements of Set 1 is followed by all elements of Set 2. nOS  

is represented mathematically as follows: 

m

S

m
r

S

r
n kkOS

21

11 
   

where 1 Setkr  , 2 Setkm  , 1S  and 2S  are the sizes of Set 1 and Set 

2 of nJ , respectively. 

After calculating nOS , we add nOS  to LOS . 

 

Step 1.2: 

After splitting all jobs into equal sublots and adding optimal sublot 

sequence of each job to LOS , we find the sequence on LOS with the 

smallest makespan. This sequence is the optimal sublot sequence obtained 

in Step 1. That is, 

 NnOSOS n  1;min .
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Step 2: (Split Two Jobs with the First and Second Highest Processing 

Times) 

Step 2.1: 

Identify the maximum process time on 1M  and 2M , that is: 

mn, ,  mn,TP  max  where nmn,mn, .QPTP   

The two of jobs with the highest mn,TP  value will be the primary and the 

secondary jobs to calculate sublot sizes. Let’s call the first job (primary 

job) with highest mn,TP  value 1JH ; and the second job (secondary job) 

with highest mn,TP  value 2JH . 

 

Step 2.2: 

Identify number of sublot used by each job. We assume that the jobs 

except 1JH  and 2JH  have only one sublot; 2JH  has two sublots and 1JH  

has the rest of the sublots. 










          ofindex   theis  job    1-1)-(N-S
                        ofindex   theis  job    2

nor   ofindex  eneither th is  job    1
K

1

2

21

n

JHnif
 JHnif

JHJHnif

 
 

Step 2.3: 

Find the size of each equal-sized sublot of 1JH  and 2JH  as  

n

n
ns, K

Q
x  . 

Obviously, the jobs except 1JH  and 2JH  the sublot size of job equals to 

lot size of job; because they are not split. 

nn1, Qx   where n is NOT the nJ . 
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Step 2.4: 

Calculate the total process time of each sublot ( ms,,n,TSP ) on both machine 

and group them as Set 1 and Set 2. 

Set 1 is a set of sublots that are processed on 1M  at most in the time that 

are processed on 2M . In other words; each sublot of Set 1 is processed on  

1M  in less or equal time on 2M . 

Set 2 is a set of sublots that are processed on 1M  longer than that are 

processed on 2M . 

Set 1 and Set 2 are mathematically expressed as 

 2,,sns,1n,n TSPTSP:k 1 Set   

 2,,sns,1n,n TSPTSP:k 2 Set   

where 
mnnsms,,n, PxTSP ,, ,  Nn ,1 ,  nn Kk ,1  and  2,1m . 

 

Step 2.5: 

Optimize Set 1 and Set 2 by rearranging their entities. While Set 1 is 

optimized by sorting sublots according to their increasing process time on 

1M ; Set 2 is optimized by sorting sublots according to decreasing process 

time on 2M . If we call optimized Set 1 as OSet 1 and optimized Set 2 as 

OSet 2, the mathematical representation of OSet 1 and OSet 2 are as 

follows: 

 1,,1 sns,1n,n TSPTSP:  Set1 k 1 OSet   

 2,,1 sns,2n,n TSPTSP:  Set2 k 2 OSet  where  Nn ,1 ,  nn Kk ,1   
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Step 2.6: 

To minimize makespan, sublot sequence is needed to be optimized. 

Optimized sublot sequence, OS, is a combination of Set1 and Set2 as all 

elements of Set1 is followed by all elements of Set2. OS is represented 

mathematically as follows: 

m

S

m
n

S

n
kkOS

21

11 
   

 where, 1 Setkn  , 2 Setkm  , 1S  and 2S  are the sizes of Set 1 and Set 2 

of nJ , respectively. 

 

Step 3:  

If the makespan of the sequence obtained in Step 1 is smaller than that of the 

one obtained in Step 1, then the solution obtained in Step 1 should be selected 

for implementation. Otherwise; the solution obtained in Step 2 should be 

selected. 

 

4.2.1 Numerical Example 

 

In this section, we provide a numerical example for illustrating the heuristic 

algorithm for solving the equal sized sublot case. Consider the simple instance of the 

problem given in Section 4.1.1 in which there are 5 jobs and the total number of 

sublots is 20. Unit processing times on the machines and the lot sizes for all jobs are 

given in Table 4-4. 
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Table 4-4 Process Times on M1 and M2 

 
 

First we will find the job with the maximum process time. As seen on Table 

4-1, the job with the maximum process time is Job 4. So, Job 4 will have the 

maximum number of sublots when other jobs have only one sublot. It means that that 

Job 4 will be split into 16 equal sized sublots while the other jobs will not split into 

sublots. That is, 

164204 K  and 15321  KKKK . 

 

Now, we shall find the sizes of sublots for each job. Here it is obvious that for 

Jobs 1, 2, 3 and 5 the sublot size equals to the total lot size of the job since these jobs 

are not split into sublots and have only one sublot, which is equal to the lot. But Job 

4 is split in to 16 sublots. Size of each sublot in Job 4 is 

25.1
16
20

4

4 
K
Qxs,4  where 161  s . 

 

So by splitting only Job 4’s total lot, we obtain the sublots sizes in Table 4-5. 
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Table 4-5 Sublot Sizes and Process Times Obtained in Step 1 

 
 

As seen on Table 4-5, all sublots belong to Set 1 since the total process time 

on M1 is less than the total process time on M2 for all jobs. That is, 










1,5

1,31,21,1

xxxxxxxxxx
xxxxxxxxxx 

 Set
,,,,,,,,,
,,,,,,,,,,

1
4,164,154,144,134,124,114,104,94,8

4,74,64,54,44,34,24,1  

 

To find the sequence of sublots that provides the optimal makespan, we 

determine 1 OSet  by rearranging it as 










1,15,14,164,154,144,134,124,114,104,94,8

4,74,64,54,44,34,24,1

,,,,,,,,,,,,
,,,,,,,

xxxxxxxxxxxxx
xxxxxxx 

1 OSet
1,21,3
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Thus, the optimal sequence of sublots obtained by splitting Job 4 into 16 sublots is 

equal to 1 OSet . That is, 

 








1,15,14,164,154,144,134,124,114,104,94,8

4,74,64,54,44,34,24,1

,,,,,,,,,,,,
,,,,,,,

xxxxxxxxxxxxx
xxxxxxx 

OS
1,21,3

4
 

 

If we apply the same procedure for Jobs 2, 3, 1 and 5, we obtain the following 

optimal sequences of sublots obtained by splitting Jobs 2, 3, 1 and 5 into 16 sublots, 

respectively. That is, 










1,15,14,13,12,162,152,142,132,122,11

2,102,92,82,72,62,52,42,32,22,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx 

OS2
 










1,15,14,12,13,163,153,143,133,123,11

2,102,93,83,73,63,53,43,33,23,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx 

OS3
 










5,14,12,13,11,161,151,141,131,121,11

1,101,91,81,71,61,51,41,31,21,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx 

OS1

 










1,14,12,13,15,165,155,145,135,125,11

5,105,95,85,75,65,55,45,35,25,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx 

OS 5

 

 

Makespan values of the sequences obtained above are as follows: 

4MOS 466.25 

2MOS 466.0625 

3MOS 498 

1MOS 467.25 

5MOS 466.25 

It is obvious that 2MOS  has the smallest makespan value. Thus, at the first 

step of the heuristic algorithm we obtain the following sublot sequence with a 

makespan value of 466.025 time units.  










1,15,14,13,12,162,152,142,132,122,11

2,102,92,82,72,62,52,42,32,22,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx 

OS2
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Now we continue with second step of the heuristic algorithm in which two 

jobs with the first and second highest processing times are only split into sublots. As 

seen on Table 4-4, the job with the maximum process time is Job 4 and the job with 

the second maximum process time is Job 2. According our heuristic approach, jobs 

except Job 4 and Job 2 will have only one sublot, which is equal to the lot, Job 2 will 

have 2 sublots, and Job 4 has the rest of the sublots. That is, 

1531  KKK  

22 K  

155204 K  

Now, we shall find the sizes of sublots for each job. Here it is obvious that for 

Jobs 1, 3 and 5 the sublot size equals to the total lot size of the job since these jobs 

are not split into sublots and have only one sublot, which is equal to the lot. But Job 

2 is split in to 2 equal sized sublots. Size of each sublot in Job 2 is 

5.8
2

17

2

2 
K
Qxs,2  where 21  s . 

For Job 4, we shall use 15 equal sublots. Size of each sublot in Job 4 is 

33.1
15
20

4

4 
K
Qxs,4  where 151  s . 

Sublot sizes and process times of all jobs are as shown in Table 4-6. 
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Table 4-6 Sublot Sizes and Process Times Obtained in Step 2 

 
 

As seen on Table 4-6, all sublots belong to Set 1. So Set 2 is empty. That is, 










5,14,154,144,134,124,114,104,94,8

4,74,64,54,44,34,24,1

,,,,,,,,
,,,,,,,,,,,

xxxxxxxxx
xxxxxxxxxxx 

1 Set 1,32,21,21,1

 

 

To find the sequence of sublots that provides the optimal makespan, we 

determine 1 OSet  by rearranging it as 










1,12,22,15,13,14,154,144,134,124,11

4,104,94,84,74,64,54,44,34,24,1

,,,,,,,,,
,,,,,,,,,,

xxxxxxxxxx
xxxxxxxxxx 

1 OSet . 
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CHAPTER 5 

 
 

5 A SOFTWARE PACKAGE FOR SOLVING THE PROBLEMS 
 

 

 

When we create heuristic method, we also create software for user to create 

test scenarios and reloading them to compare the result with mathematical model’s 

result. This software is able to create scenarios depending on your choice of total 

number of sublots, total number of jobs, sublot division approach etc.; runs heuristic 

approach according to your heuristic choice; gives results in tabular and documented 

forms and create a reloading file for user to reloading obtained heuristic algorithm’s 

result to compare mathematical model’s one. 

In this chapter, we briefly explain the implementation of this software and 

usage of it. 

 

5.1 Brief Details of the Software Implementation 
 

This software is created for users to run and see the results of heuristic 

algorithms in more user friendly way. Because of this software request, we coded in 

C# using .NET technologies. 

When we created user interfaces, we used DevExpress library which is a gui 

library that creates ASP.NET UI controls that coder can use this library in his 

application to enhance UI. 
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When we coding the user interface for heuristic algorithms, we remain loyal 

to object oriented programing basis. In Figure 5.1, you can see the package diagram 

of this software.  

 
Figure 5.1 Package Diagram for Software 

 

Brief content explanations of these packages are as follows: 

 

common: This package contains classes that are used by commonly all 

packages. The class details of this package are given in Figure 5.2. 

 

 
Figure 5.2 Class Diagram of Package “common” 
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controller: This package contains the classes to control sublot sizes according 

to the selected heuristic approach. The details of this package are illustrated in 

Figure 5.3. 

 

 
Figure 5.3 Class Diagram of Package “controller” 

 

fileCreator: This package is responsible for creating “*.dat” files and “*.doc” 

files. “*.dat” files are used for reloading the heuristic results to the software to 

compare the mathematical model’s results. “*.doc” files are detailed 

documentation of results. The class content of this package is shown in Figure 

5.4. 

 

 
Figure 5.4 Class Diagram of Package “fileCreator” 
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parser: This package contains the classes that are used for parsing “*.dat” 

files. By this way, user may reach previously run heuristic results again. The 

classes of this package are illustrated in Figure 5.5. 

 

 
Figure 5.5 Class Diagram of Package “parser” 

 

solver: This package is responsible for running the heuristic algorithms and 

generating results according to the user’s choices. The class detail of this 

package is given in Figure 5.6. 

 

 
Figure 5.6 Class Diagram of Package “solver” 

 

ui: This package contains all the windows that are used by the user himself. 

The classes of this package are shown in Figure 5.7. 
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Figure 5.7 Class Diagram of Package “ui” 

 

util: This package is utility package as it is understood by its name. It contains 

all utility functions. The class content of this package is shown in Figure 5.8. 

 

 
Figure 5.8 Class Diagram of Package “util” 

 

5.2 Software Usage 
 

In this section, we briefly explain how the software is used. When the user 

runs the software, the welcome window, shown in Figure 5.9, appears. This window 

is for the user to make selection. If the user wants to create a scenario by entering the 

total number of jobs, total number of sublots etc., Multi Run choice item is selected. 

If the user wants to reload the multi run result, Reload Result item must be selected. 
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Figure 5.9 Welcome Window 

 

If the user select Multi Run choice, the window in Figure 5.10, appears. This 

window is created for the user to create a scenario data and run heuristic algorithm. 

Using Sublot Sizer box, user chose how he want to split lots. If user wants to split 

lots equally, Equal Sized Sublots choice should be clicked. On the other hand, if the 

user wants to split lots unequally, Non-Equal Sized Sublots radio button has to be 

clicked. 
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Figure 5.10 Multi Run Window 

 

As you seen in Figure 5-10, multi run window is opened with default values. 

If the user wants to change the total number of jobs; Total Number of Jobs text box 

must be set. If the total number of sublots is wanted to be set, Total Number of 

Sublots text box is updated. If the user wants the total number of sublots as multiple 

of total number jobs, as we do at our scenarios, then it is enough to check Is 

Multiple of Job Number check box. Otherwise, the user may enter the total number 

of sublots by separating them with comma as 5, 10, 15 etc. In this case for each job-

sublot pair, the heuristic is rerun and create scenario as combination of this entire 

pair. If user wants to set the total lot size, Lot Size text field must be used. User may 

enter maximum and minimum values of the total lot size by separating them with 
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comma and code randomly generate the total lot size between these maximum and 

minimum values. But again if the user wants the lot sizes as a multiple of the total 

number of sublots, special notation may be used for this field. For example, if the 

user wants the total lot size as threefold of the total number of sublots, it is enough to 

set the lot size text field 3x. In the same way, if the user wants to test the heuristic 

algorithm for each job-sublot pair with the lot sizes that are twofold and threefold of 

the total number of sublots; it is enough to set this field 2x, 3x. For setting the 

process time for each unit of a job on machines 1 and 2, Process Time on M1 and 

Process Time on M2 values are set. In these fields, the user is allowed to set 

minimum and maximum values of process times and, code randomly generate 

process time for each unit of a job for each machine. Also, there exists a text box 

called How Many Times Does the Program Run for Each job-Sublot 

Combination. This value is used for generating different job-sublot pairs with newly 

generated lot sizes and process times. Also there is a checkbox called Generate 

GAMS Files that is used for automatically generating the GAMS code into user 

desktop to run the mathematical model for each job-sublot pair. After completing all 

these data entrance, Solution button is clicked to run the heuristic with these data. 

As illustrated in Figure 5.11, for each job-sublot pair Gantt charts are created 

after the solution button is clicked. The details of Gantt chart are given in Figure 

5.12. In Figure 5.12, each sublot is represented with different color and big 

rectangular boxes. The pop-up balloons on each sublot represent the sizes of 

corresponding sublots. Also when the square small boxes on the left side of each 

sublot represent the corresponding sublots’ processing start up time; the right hand 

side one’s represent the corresponding sublots’ process completion time on that 

machine. At this step if the user want to see or save the data details, performance 

details,  deviation comparisons of heuristic approach with mathematical model or 

just makespan values  in “*.doc” format, Show in *.doc format checkbox is clicked. 
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Figure 5.11 Multi Run Form after Solution is Generated 

 

 
Figure 5.12 Gantt Chart Created by the Heuristic Algorithm 
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If the user wants to compare the results of the heuristic algorithm with the 

results of the mathematical model, Reload Results radio button in Figure 5.9 should 

be selected and Reloaded Results Form appears as shown in Figure 5.13. 

 

 
Figure 5.13 Reloaded Results Form 

 

Reloaded Results Form is opened empty as seen on Figure 5.13 and waits 

the user to select the heuristic results that are generated by the heuristic itself, “*.dat” 

files. After the user clicks the Browse button and selects the dat files, the content of 

dat file is parsed and reloaded this form as shown in Figure 5.14. 
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Figure 5.14 Reloaded Results Form after Dat Files are Reloaded 

 

As seen in Figure 5.14, the user may load lst files. If the user load lst files, 

both Gantt charts obtained by the heuristic algorithm and the mathematical model 

solved by GAMS are shown and the user may see not only details of the heuristic 

results, but also the details of mathematical model results. For example, if we reload 

the results of the first set to this form, the lst file is parsed and the details are shown 

as in Figure 5.15. 

 
Figure 5.15 Reload Result Form after Lst File is Reloaded 



67 

 

Here, if the user clicks on Gantt Chart of Set1.1 checkbox, Gantt charts 

obtained by the heuristic algorithm and the mathematical model solved by GAMS 

are obtained as in Figure 5.16.Again when creating doc file at the Set1.1 section, the 

details of the results obtained by the heuristic algorithm and the mathematical model 

solved by GAMS are analyzed. 

 

 
Figure 5.16 Gantt Charts Obtained by the Heuristic Algorithm and the 

Mathematical Model Solved by GAMS 
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CHAPTER 6 

 
 

6 COMPUTATIONAL EXPERIMENTS 
 

 

 

In this chapter, we describe our computational experiments to evaluate the 

effectiveness and efficiency of the MILP models and the proposed heuristic 

algorithms in solving the MPLS problem under consideration.  

The mathematical models are coded and solved in GAMS 23.7. All 

computational experiments are conducted on laptop with Intel Core i5 with 2.30 GHz 

CPU and 4GB RAM under 64-bit Windows Home 7 Premium operating system. 

This chapter begins with the brief explanation of comparative computational 

results of the mathematical model and the heuristic algorithm for equal sublot case. 

Then we switch our focus on unequal sublot case and again we explain the 

comparative results.  

For analyzing the performance of the mathematical model and heuristic 

algorithm, we created different MPLS problems on two machines. We use 5, 10, 15, 

20 and 25 number of jobs and for each job we assume total number of sublots as 

twofold, threefold and fourfold of total number of jobs. As represented in Figure 6.1 

and Figure 6.2, for each job-sublot pair, we create five samples. In the following 

sections, we call data group to these five-sampled MPLS problems. Also we called 

data group set to three-itemed set of data groups which each data group has same 

number of jobs but different total number of sublots.  
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Figure 6.1 Data Group and Data Group Set Representations for Unequal Sized 

Sublots Case 

 

 
Figure 6.2 Data Group and Data Group Set Representations for Equal Sized 

Sublots Case 

 

For qualifying the solution success, we compare the makespan values 

obtained by the heuristic algorithm and the mathematical model with respect to 

changing total lot size, sublot size etc., and we analyze the behavior of the heuristic 

algorithm and the mathematical model for each data groups. We present makespan 

values in tabular form as seen on Figure 6.1 and Figure 6.2 and, we will use color 

code; green for normally completed mathematical model and yellow for the 
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mathematical model that throws time limit or resource limit exceeded error. So for 

the green ones we except that makespan of mathematical model obtained by GAMS 

satisfy the optimal solution and for the yellow ones makespan of mathematical model 

obtained by GAMS is near optimal.  

We create our problem instances in three different scenarios. For the first 

scenario, for each job-sublot pair, we assume total lot size is 20 and by changing the 

processing time for one unit of job for each pair, we create totally 75 different MPLS 

problem instances. For the second scenario, we use the same parameters of first 

scenario except the total lot size. We randomly generate the total lot size between 2 

and 20 for each job-sublot pair and we compute the result of MPLS problem on 75 

different problem instances. For the last scenario, we create problem instances that 

for each job-sublot pair, the processing time of each job on first machine is less than 

or equal to the processing time of each job on the second machine and we compute 

the result of 75 different MPLS problem. Thus, totally, 225 problem instances are 

used to measure the effectiveness of the mathematical models and the heuristic 

algorithms. 

 

6.1 Comparative Computational Results of the Mathematical Model 

and the Heuristic Algorithm for the Case with Equal Sized 

Sublots 
 

In this section, we compare the makespan values obtained by the 

mathematical model and the heuristic algorithm for MPLS problem with equal sized 

sublots.  

Below, we compare the makespan deviation of heuristic algorithm from 

mathematical model with respect to changing total lot size, sublot size etc. When we 

choose the final makespan value of heuristic algorithm, for each instance of data, we 
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pick the smallest average deviation from makespan of Step 1 and Step 2 of heuristic 

approach’s solutions.  

For example, assume we have the following makespan values: Table 6-1 for 

Data Group 1; Table 6-2 for Data Group 2 and Table 6-3 for Data Group 3.  

 

Table 6-1 Number of Jobs is 5 and Number of Sublots is 10 

 
 

Table 6-2 Number of Jobs is 5 and Number of Sublots is 15 
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Table 6-3 Number of Jobs is 5 and Number of Sublots is 20 

 
 

In order to analyze performance of heuristic algorithm and mathematical 

model, we calculate the deviation of heuristic algorithm’s makespan from 

mathematical model’s makespan. As shown in Table 6-1, Table 6-2 and Table 6-3, 

the makespan value of algorithm and heuristic approach increase when number of 

sublot is increased, as expected. But the average percentage deviations of heuristic 

algorithm from mathematical model are not increased linearly when numbers of 

sublots are increased. Also heuristic algorithm’s Step1 provides 33% smaller average 

percentage makespan deviation than heuristic algorithm’s Step 2 does. Also, 46.6% 

of these problem instances, heuristic algorithm’s makespan value equals to 

mathematical model’s makespan value. It means that 46.6% of these three data 

groups, heuristic algorithm provide optimal solution.  

Now, as we demonstrated above, we analyze comparative computational 

results of mathematical model and heuristic algorithm for our three different 

scenarios. 
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For the first scenario, as expected, when number of jobs and number of 

sublots are increased, the makespan of heuristic algorithm and mathematical model 

are increased. The details of makespan values for changing total number of jobs are 

given in Table 6-4, Table 6-5, Table 6-6, Table 6-7 and Table 6-8.  As shown on 

these tables, when number of jobs is increased, mathematical model throws time 

limit or resource limit exceeded warn more often. When number of job is 5, two 

problem instances provides near optimal solution ;but when number of job is 10 only 

one problem instance provides near optimal solution and for 15, 20 and 25 numbers 

of jobs all problem instances provides near optimal solution. That means when 

number of jobs are increased, mathematical model provides the near optimal 

solution, not optimal solution. 

 

Table 6-4 Makespan values for 5 Number of Jobs for Scenario 1 
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Table 6-5 Makespan values for 10 Number of Jobs for Scenario 1 

 
 

Table 6-6 Makespan values for 15 Number of Jobs for Scenario 1 

 
 

Table 6-7 Makespan values for 20 Number of Jobs for Scenario 1 
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Table 6-8 Makespan values for 25 Number of Jobs for Scenario 1 

 
 

We start first scenario’s analysis by analyzing the performance of heuristic 

algorithm. If we look at Table 6-9, for only one data group, Step2 of heuristic 

algorithm provides smaller average percentage makespan deviation than Step1 

provides. So when we compare the average percentage makespan deviation of 

heuristic algorithm from mathematical model, we often use makespan value of 

heuristic algorithm’s Step2 as heuristic algorithm’s makespan value. 

If we analyze the performance of heuristic algorithm with respect to 

mathematical model, we have to compare their success to reach optimal makespan 

values. Below in Table 6-9, a blue bannered makespan deviation highlights the 

makespan values that heuristic algorithm provides smaller makespan than 

mathematical model does. 
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Table 6-9 The Deviation of Heuristic Approaches from Mathematical 

Model Solved by GAMS with respect to Changing Number of Jobs and Total 

Lot Sizes for the First Scenario 

 
 

As shown in Figure 6.3, when total number of jobs and total number of 

sublots are increased, heuristic algorithm provides smaller makespan values than 

mathematical model provides. If we look at Figure 6.3, when total number of jobs 

increases, the average percentage makespan deviation of heuristic algorithm from 

mathematical model decreases, even more it goes negative values. When total 

number of jobs increases, mathematical model is unable to reach optimal makespan 

even heuristic algorithm achieves it. If we analyze the average percentage makespan 

deviation values, as seen on Figure 6.3, average percentage makespan deviation of 

heuristic is 0.26% max; -1.23% min and -0.2% on average.  
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Figure 6.3 Average Percentage Deviations for Changing Number of Jobs 

for Scenario 1 

 

For the second scenario, as expected, when number of jobs and number of 

sublots are increased, the makespan of heuristic algorithm and mathematical model 

are increased. Also, it is important to point out when number of jobs is increased, 

mathematical model throws time limit or resource limit exceeded warn more often. 

The details of makespan values for changing total number of jobs are given in Table 

6-10, Table 6-11, Table 6-12, Table 6-13 and Table 6-14. 

 As shown in these tables, when number of job is 5, only one problem 

instance provides near optimal solution; when job number is 10, 15, 20 and 25, all 

sixty solutions are near optimal. That means when number of jobs are increased, 

mathematical model provides the near optimal solution, not optimal solution.  
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Table 6-10 Makespan values for 5 Number of Jobs for Scenario 2 

 
 

Table 6-11 Makespan values for 10 Number of Jobs for Scenario 2 
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Table 6-12 Makespan values for 15 Number of Jobs for Scenario 2 

 
 

Table 6-13 Makespan values for 20 Number of Jobs for Scenario 2 

 
 

Table 6-14 Makespan values for 25 Number of Jobs for Scenario 2 

 
 

Also, it is important to point that, for  

 Number of jobs 10; 2 problem instances on 40 number of sublots 

 Number of sublots 15; 1 problem instances on 15 number of sublots and 2 

problem instances on  60 number of sublots 
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 Number of sublots 20; 2 problem instances on  60 number of sublots and 5 

problem instances on  80 number of sublots 

 Number of sublots 25; 3 problem instances on  50 number of sublots; 5 

problem instances on 75 number of sublots  and 5 problem instances on 

100 number of sublots 

heuristic algorithm provides 0.1% average smaller makespan value than 

mathematical model does. Table 6-15 presents the average percentage makespan 

deviation of heuristic algorithm from mathematical model with respect to changing 

number of jobs and total lot sizes. Blue bannered makespan deviations show that, on 

average, heuristic algorithm provides smaller makespan than mathematical model 

provides for that data group. According to results, it is obvious that when number of 

sublots is increased, mathematical model is unable to reach optimal solution even 

heuristic algorithm reaches it.  
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Table 6-15 The Deviation of Heuristic Approaches from Mathematical 

Model Solved by GAMS with respect to Changing Number of Jobs and Total 

Lot Sizes for the Second Scenario 

 
  

If we analyze behavior of average percentage makespan deviation of heuristic 

algorithm from mathematical model, Figure 6.4 shows that when number of jobs is 5, 

average percentage makespan deviation is approximately 1.56% but when total 

number of jobs is 25 average percentage makespan deviations is approximately -0, 

66%. So it is obvious that when total number of jobs is increased, average percentage 

makespan deviation of heuristic algorithm from mathematical model is decreased. It 

means when total number of jobs is increased, heuristic algorithm provides better 

makespan for this scenario. Moreover, if we analyze the performance of heuristic 

algorithm when total number of jobs is fixed and total number of sublots changed, 

we don’t reach as certain conclusion as previous sample. If we look at Table 6-15, 

when total number of jobs is fixed and number of sublots is increased, the average 

percentage makespan deviation of heuristic algorithm from mathematical model 
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neither continuously increasing, nor continuous decreasing. It behaves randomly for 

that case for this scenario. 

 

 
Figure 6.4 Average Percentage Deviations for Changing Number of Jobs 

for Scenario 2 

 

For the third scenario, as for the second scenario, when number of jobs and 

number of sublots are increased, the makespan of heuristic algorithm and 

mathematical model are increased. The details of makespan values for changing total 

number of jobs are given in Table 6-16, Table 6-17, Table 6-18, Table 6-19 and 

Table 6-20. Again as in the previous scenarios, normal completed mathematical 

model’s makespan times are represented as green and time limit or resource limit 

exceeded makespan times are represented in yellow. It is obvious that when number 

of jobs is increased, mathematical model fails to reach optimal solution. Also, the 

same results are received when number of jobs is fixed and number of total sublots is 

increased. As shown in Table 6-21, when total number of sublots is threefold of total 

number of jobs approximately 40% of mathematical models are unable to provide 

optimal solution. 
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Table 6-16 Makespan values for 5 Number of Jobs for Scenario 3 

 
 

Table 6-17 Makespan values for 10 Number of Jobs for Scenario 3 

 
 

Table 6-18 Makespan values for 15 Number of Jobs for Scenario 3 

 
 

Table 6-19 Makespan values for 20 Number of Jobs for Scenario 3 
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Table 6-20 Makespan values for 25 Number of Jobs for Scenario 3 

 
 

As seen on Table 6-21, when number of total number of jobs increases, the 

average percentage makespan deviation of heuristic algorithm from mathematical 

model decreases, almost they are same, 0%. It shows that when total number of jobs 

and total number of sublots increase, average percentage makespan deviations are 

close to each other, as well they are same. Also, number of blue bannered makespan 

values is increased when total number of jobs is increased as in the second scenario, 

but this time deviation is negligible. 
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Table 6-21 The Deviation of Heuristic Approaches from Mathematical Model 

Solved by GAMS with respect to Changing Number of Jobs and Total Lot Sizes 

for the Third Scenario 

 
 

6.2 Comparative Computational Results of the Mathematical Model 

and the Heuristic Algorithm for the Case with Unequal Sized 

Sublots 
 

In this section, we compare the solutions obtained by the mathematical model 

and the heuristic algorithm for MPLS problem with unequal sized sublots.  

For the first scenario, as expected, when the number of jobs and the number 

of sublots are increased, the makespan values obtained by heuristic algorithm and the 

mathematical model are increased as shown in Table 6-22. Also Table 6-22 shows 
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that mathematical model provides the optimal makespan value for all problem 

instances.  

If we analyze the average percentage makespan deviation for changing total 

number of jobs, as you seen in Figure 6.5, the average percentage makespan 

deviation of heuristic algorithm from mathematical model is 1.5% maximum, 0% 

minimum and 0.38% on average. We conclude that Scenario1’s heuristic approach 

provides very close solution to optimal solution. 

 
Figure 6.5 Makespan Deviation’s Average Percentage for each Total Number of 

Jobs for Scenario 1 

 

Moreover, if we analyze Table 6-22, when total number of jobs is 10, 15, 20 

and 25 average percentage makespan deviation of data group sets is 0.1%, but when 

total number of jobs is 5, average percentage makespan deviation of data group set is 

1.5%. So we conclude that when total number of jobs is increased, average 

percentage makespan deviation of heuristic algorithm from mathematical model 

decreases, mostly. But we can’t conclude that when total number of sublots is 

increased, the average makespan percentage deviation doesn’t always increases or 

decreases for all data group sets. For example for data group set with total number of 

jobs is 5, when number of sublots is increased from two fold  to three fold of number 

of jobs, average percentage makespan deviation decreases but when number of 

sublots is increased from three fold  to fourfold of number of jobs; average 
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percentage makespan deviation decreases. On the other hand, for data group set with 

total number of jobs is 20, when number of sublots is increased from two fold, three 

fold or four fold of number of jobs; average percentage makespan deviation is same, 

0%. So it is concluded that when total number of jobs is fixed and total number of 

sublots are increased as a multiple of total number of jobs, the average makespan 

percentage deviation neither decreases, nor increases; behaves unpredictably. 
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Table 6-22 Scenario 1’s Makespan Values for MPLS Problem with 

Unequal Sublot 

 
 

For the second scenario, as expected, when number of jobs and number of 

sublots are increased, the makespan of heuristic algorithm and mathematical model 

are increased as shown in Table 6-23. Here, it is important to notice that only one 
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mathematical model throws the time limit or resource limit exceeded warn and it is 

highlighted in yellow in Table 6-23. So except that problem instance, we presume 

that mathematical model’s makespan is optimal. Also we conclude that heuristic 

algorithm provides very close solution to optimal solution. If we look at Figure 6.7, 

average percentage makespan deviation of heuristic algorithm from mathematical 

model is 1.1% maximum, 0% minimum and 0.5% on average. So for Scenario2, we 

conclude that heuristic algorithm provides very close solution to optimal solution. 

Moreover, if we look through the average percentage makespan deviation of 

heuristic algorithm from mathematical model, in Table 6-23, we conclude that when 

number of job is fixed and number of sublots is increased by multiple of number of 

jobs, the behavior of average percentage deviation is not always increased or 

decreased. Average percentage deviation’s behavior is unpredictable.  
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Table 6-23 Scenario 2’s Makespan Values for MPLS Problem with 

Unequal Sublot 

 
 

For example if we look at the Figure 6.6, when number of jobs is 5; average 

percentage makespan deviation is neither increasing nor decreasing when the total 
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number of sublots are increasing as multiple of total number of jobs. The same 

situation is observed for the problem instances with total number of job is 10, 15, 20 

and 25 as shown in Table 6-23. 

 

 
Figure 6.6 Average Percentage Deviation for Increasing Total Number of 

Sublots when Total Number of Jobs is 5 

 

 
Figure 6.7 Makespan Deviation’s Average Percentage for each Total 

Number of Jobs for Scenario 2 

  

For the third scenario, as expected, when number of jobs and number of 

sublots are increased, the makespan of heuristic algorithm and mathematical model 

are increased as shown in Table 6-24. Also it is important to notice that all cells in 

are highlighted in green. It means that the mathematical model gives us the optimal 

solution for all problem instances in this scenario. If we analyze the average 
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percentage makespan deviation for changing total number of jobs, as you seen in 

Figure 6.8, the average percentage makespan deviation of heuristic algorithm from 

mathematical model is 1.0% maximum, 0% minimum and 0.26% on average. So as 

in Scenario2, we conclude that Scenario3’s heuristic algorithm provides makespan 

that is very close to optimal makespan. 

 
Figure 6.8 Makespan Deviation’s average Percentage for each Total 

Number of Jobs for Scenario 3 
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Table 6-24 Scenario3’s Makespan Values for MPLS Problem with 

Unequal Sublot 
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If we analyze the average percentage makespan deviations of heuristic 

algorithm from mathematical model, we conclude that when number of jobs and 

number of sublots are increased, the average percentage makespan deviation 

decreases. Below; Figure 6.9, Figure 6.10 and Figure 6.11 shows that average 

percentage makespan deviation of heuristic algorithm from mathematical model 

decreases when total number of sublots increases as multiple of number of jobs. As 

seen Figure 6.9, when total number of jobs is 5 and total number of sublots is one 

fold of number of jobs, average percentage makespan deviation is 2.7%, but when 

total number of jobs is 25 and total number of sublots is one fold of number of jobs 

average percentage makespan deviation is 0%. The same situation is observed when 

total number of sublots is twofold, three fold and four fold number of jobs in Figure 

6.10 and Figure 6.11. So we conclude that Scenario3’s average percentage makespan 

deviation is predictable and this value decreases when total number of jobs and total 

number of sublots are increased.  

 

 
Figure 6.9 Makespan Deviation’s Average Percentage when Total 

Number of Jobs Increases and Total Number of Sublots is Two Fold of Total 

Number of Jobs 
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Figure 6.10 Makespan Deviation’s Average Percentage when Total 

Number of Jobs Increases and Total Number of Sublots is Three Fold of Total 

Number of Jobs 

 

 
Figure 6.11 Makespan Deviation’s Average Percentage when Total 

Number of Jobs Increases and Total Number of Sublots is Four Fold of Total 

Number of Jobs 
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CHAPTER 7 

 
 

7 CONCLUSION 
 

 

 

In this study, we consider a multi-product lot streaming problem on a two-

machine flowshop environment in which all products are processed by Machine 1 

and then by Machine 2. Most of the current studies in the literature of the multi-

product lot streaming problem assume that the number of sublots for each product is 

known in advance, and determines the size for each sublot of every product and the 

sequence of sublots of all products. As opposite of the current studies in the 

literature, we assume that the total number of sublots for all products is known 

advance and our problem is to determine the number of sublots for each product, the 

size of each sublot and the sequence of sublots that gives the minimum makespan. 

We investigate the multi-product lot streaming problem for both equal and unequal 

sized sublots cases. For this purpose, we develop mixed integer linear mathematical 

models and heuristic algorithms for solving each case and compare these 

mathematical models with heuristic algorithms. 

For unequal sublot case, the experimental studies show that almost all 

problem instances mathematical model provides optimal solution and thus, we were 

able to compare the heuristic algorithm’s solution with the optimal solution. This 

comparison shows that heuristic algorithm provides solutions with makespan values 

that deviate 0.38% from the optimal solution, which is almost optimal. Also, as the 

total number of jobs increases, the average percent deviation of the makespan of the 

heuristic algorithm from the optimal makespan decreases. As the total number of 

jobs increases, the solution time of the MILP model by GAMS increases. However, 
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the heuristic algorithm provides the solution in almost less than a second. Thus, for 

real time implementation, the solutions obtained by the heuristic algorithm can be 

used. 

For equal sublot case, our three different scenarios showed that when the total 

number of jobs increases, the mathematical model cannot be solved optimally by 

GAMS within the allowed time limit or resource limit. However, the heuristic 

algorithm provides solutions in a short time.  

Finally, our results of experiments show that the heuristic algorithm provides 

near-optimal solutions for both equal and unequal sublots cases. When we compare 

the solutions of the heuristic algorithms for equal and unequal sublots cases, we can 

easily conclude that splitting sublots unequally provides more near-optimal solutions 

than splitting them equally since every lot may not be split into equal sublots. For 

example, when the total lot size is 15 units and we split this lot into 4 equal sublots, 

each sublot size becomes 3.75 units and it is not possible. Only integer number sized 

sublots are meaningful.  

Lot streaming problems with a total number of sublots for all jobs are not yet 

extensively studied. Thus, there is considerable number of issues remaining open for 

future research. Several extensions of our study can be investigated. One of them is 

that our problem studied in this study can be extended for more complex machining 

environments such as flow shops having more than two machines, jobs shops, and 

open shops. Study of the same problem for different performance measures such as 

total or maximum lateness, total completion times, and the number of tardy jobs 

would be some extensions. 
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