MATHEMATICAL MODELS AND HEURISTIC ALGORITHMS
FOR
A MULTI-PRODUCT LOT STREAMING PROBLEM
IN
A TWO-MACHINE FLOWSHOP

SAHIKA AKDOGAN

FEBRUARY 2017
111



MATHEMATICAL MODELS AND HEURISTIC ALGORITHMS
FOR
A MULTI-PRODUCT LOT STREAMING PROBLEM
IN
A TWO-MACHINE FLOWSHOP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
OF
CANKAYA UNIVERSITY

BY

SAHIKA AKDOGAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
THE DEPARTMENT OF
MATHEMATICS AND COMPUTER SCIENCE

v



Title of the Thesis: Mathematical Models and Heuristic Algorithms for a Multi-
Product Lot Streaming Problem in a Two Machine Flowshop

Submitted by Sahika AKDOGAN

Approval of the Graduate School of Natural and Applied Sciences, Cankaya
University.

A

DAY

W/
>
— ~ -_

Prof. Dr. Halil T{ EXYUBOGLU
Dircctor

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.
f

J
| v~

Assoc. Prof. Drl Fahd JARAD
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Supervisor

;:_\/, : __“ Z
e //‘i')‘ (
B e —
Assoc. Prof. Dr. Ferda Can CETINKAYA
Examination Date: 06.02.2017
( )
Examining Committee Members \\ p —
> %-..('?f ‘

Assoc, Prof. Dr. Ferda Can CETINKAYA  (Cankaya 'Lfi_w-iv;)ﬁ—:"f

Asst. Prof. Dr. Ozlem DEFTERLI (Cankaya Univ.)

Asst. Prof. Dr. Bidlent Giirse] EMIROGLU  (Kankkale Univ.) /44464



STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name Sahika

[Last Name Akdogan
| 1'.41
Signature
’ 1 10\ 3
Date 0b UA ./~

vi



ABSTRACT

MATHEMATICAL MODELS AND HEURISTIC ALGORITHMS FOR A
MULTI-PRODUCT LOT STREAMING PROBLEM IN A TWO MACHINE
FLOWSHOP

AKDOGAN, Sahika
M.Sc., Department of Mathematics and Computer Science
Supervisor: Assoc. Prof. Dr. Ferda Can CETINKAYA
February 2017, 100 pages

In this study, we consider a multi-product lot streaming problem to
minimize the makespan on a two-machine flowshop environment in which all
product lots are processed by Machine 1 and then by Machine 2. Most of the
current studies in the literature of the multi-product lot streaming problem assume
that the number of sublots for each product is known in advance, and determines
the size for each sublot of every product and the sequence of sublots of all products.
However, in our study we assume that the total number of sublots for all products is
known advance, although the number of sublots for each product is not known in
advance. Our problem is to determine the number of sublots for each product, the
size of each sublot and the sequence of sublots that gives the minimum makespan.
We investigate this multi-product lot streaming problem for two cases in which
sublots of each product are equal sized in the first case while sublots of each
product are unequal sized in the second case. We develop mixed integer linear
mathematical models and heuristic algorithms for solving each case. We compare

these solutions of mathematical models and heuristic algorithm. We design

vil



computational experiments to evaluate the performance of our solutions approaches
in terms of makespan time. The results show that the mixed integer programming
models do not seem to be a useful alternative, especially for large scale problem
instances. However, our proposed heuristic algorithms find optimal or near-optimal

solutions in very short time.

Keywords: Lot Streaming, Equal Sublots, Unequal Sublots, Makespan
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0z

iKi MAKINALI AKIS TiPi ATOLYEDE
COK URUNLU KAFILE BOLME VE KAYDIRMA PROBLEMI iCIN
MATEMATIKSEL MODELLER
VE
SEZGISEL ALGORITMALAR

AKDOGAN, Sahika
Yiiksek Lisans, Matematik-Bilgisayar Boliimii
Tez Yoneticisi: Dog. Dr. Ferda Can CETINKAYA
Subat 2017, 100 sayfa

Bu calismada, tiim {iriinlerin 6nce birinci ve daha sonra ikinci makinede
islem gordiigli iki makinali bir akis tipi iiretim sisteminde tiim tiriin kafilelerinin
bitirilme siiresini en kiigiikleyen ¢ok iirlinli kafile bolme ve kaydirma problemi ele
almmistir. Cok tiriinlii kafile bélme ve kaydirma problemi literatiiriinde yer alan
calismalarin ¢ogu, her iiriin kafilesinde yer alan alt kafilelerin sayisinin 6nceden
bilindigini varsayar ve her iiriine ait alt kafilelerin biiyiikligii ile tiim kafilelere ait
alt kafilelerin kendi aralarindaki islem swasmi belirler. Oysa ki, yaptigimiz
calismada, her iirlin kafilesinde yer alan alt kafilelerin sayisinin Onceden
bilinmemesine karsin tiim iiriin kafilelerinde yer alan alt kafilelerin toplam sayisiin
onceden bilindigini varsaymaktayiz. Sorunumuz, her {iriin kafilesinde yer alacak alt
kafilelerin sayisini, bu alt kafilelerin biiytikliigiinii ve tiim iiriin kafilerinin bitirilme
stiresini en kiigiikleyecek sekilde tiim kafilelere ait alt kafilelerin kendi aralarindaki

islem sirasini belirlemektir. Bu ¢ok tirlinlii kafile bélme ve kaydirma problemini iki

X



farkli durum i¢in irdeledik. Birinci durumda her {iriin kafilesindeki alt kafileler esit
biiytikliikteyken, ikinci durumda her iiriin kafilesindeki alt kafileler esit olmayan
biiytikliikte olabilmektedir. Coziim yaklagimlarimizin hem ¢6ziim kalitesi hem de
siiresi agisindan performansini degerlendirmek icin sayisal deneyler tasarladik.
Sonuglar, karigik tam sayili programlama modellerinin 6zellikle biiylik 6lcekli
problem Ornekleri i¢in yararli bir alternatif olmadigmni goéstermistir. Bununla
birlikte, 6nerdigimiz sezgisel algoritmalar ¢ok kisa siirede optimum veya optimuma

yakin ¢oziimler bulmaktadir.

Anahtar Kelimeler: Kafile Bolme ve Kaydirma, Esit Alt Kafileler, Esit Olmayan

Alt Kafileler, Tiim Uriinlerin Bitirilme Siiresi
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CHAPTER 1

INTRODUCTION

Nowadays, to stay competitive in the industrial world market, manufacturing
companies have to run an efficient operation for changing market needs. Thus,
accelerated but effective methodologies of production scheduling become a key
issue. Due to the batch production nature of such an environment, the use of
appropriate production lot size/sizes on the shop floor is central to achieving this
objective. One technique that can effectively influence the flow of a lot of jobs over
the machines by appropriately determining the size of production lots, also called
sublots, is /ot streaming.

Literately, the term /ot streaming shall be introduced as follows [1]:

“Lot streaming denotes the techniques of splitting given jobs, each consisting of
identical items, into sublots to allow overlapping of successive operations in multi-
stage manufacturing systems, to reduce production makespan. More specifically,

The goal of lot streaming is to determine the number of sublots for each product,
the size of each sublot and the sequence for processing the sublots to minimize
production makespan with all required constraints satisfied.”

To make definition clear, we consider the scenario that discrete and identical
products (called lo?) are to be processed on several machines as a flow shop. Instead
of transferring the entire lot, it is considered to transferring the items of the lot in
smaller batches (called sublots). This technique of splitting lots in to sublots and

processing different sublots simultaneously over different machines is called /ot



streaming. Briefly, lot streaming is a technique to accelerate the processing of the
product when reducing the process time.

As an illustration of the lot streaming problem, suppose a lot consist of 100
items and it is processed on two machines Machine 1 (M1) and Machine 2 (M2).
Suppose, the processing times per item of the lot on M1 and M2 are 2 and 1 time
units, respectively. If the lot is not to be split into sublots, the distribution of the lot

for processing over the machines will be as shown in Figure 1.1.

0 200 300 time

Figure 1.1 Processing without Lot Streaming

On the other hand, if the lot is split into four sublots with sizes 40, 20, 10 and 30
items and these sublots were processed in an overlapping fashion, the distribution of

the lot for processing over the machines will be as shown in Figure 1.2.
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Figure 1.2 Processing with Lot Streaming

In industry, the quality and success of operations are evaluated basically three

commonly used performance measures [2]. These are Makespan (C

max

), Mean Flow

Time (MFT) and Average Work in Progress Levels (WIP Levels).
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Makespan is defined as completion time of the last sublot on the last machine.
As shown in Figure 1.1 and Figure 1.2, the reduction in makespan is obvious.
However this advantage may not be that obvious if setup and/or transfer times are
considered [3]:

“One apparent advantage of lot streaming is reduction in the makespan
value. However, this advantage may not be that obvious if set up and/or transfer
times are encountered during the handling of individual sublots. The problem get
even more interesting depending on whether it can be performed a priori, i.e., before
the arrival of a sublot on a machine. Also, if more than one lot is to be processed on
the machines, the makespan value will depend on whether or not the sublots from
different lots are intermingled. The sequence in which the lots themselves are
processed can impact the makespan value as well.”

Optimal production management aims to eliminate the waste created by the
manufacturing system. Reducing WIP and mean flow time of the production batches
are the core concepts of lean manufacturing [4]. Keeping unnecessary inventory
causes a capital expense. This waste of capital is reduced to a large extend by
employing the concept of lot streaming. Also waste of time is decreased by the lot
streaming concept, since the main drive to apply lot streaming is to lower the
makespan and MFT.

In this study, we consider a multi-product lot streaming problem on a two-
machine flowshop environment in which all products (lots) are processed by
Machine 1 and then by Machine 2. That is, the first and second operations of the
products are performed by Machine 1 and Machine 2, respectively. Current studies in
the literature assumes that the total number of sublots for each product is known in
advance and the sizes of sublots of each product is to be optimally determined within
the limit of the total number of sublots of the product. Our main difference from the
current studies is that we assume that the total number of sublots for all products is

known advance and our problem is to determine the number of sublots for each
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product, the size of each sublot and the sequence of sublots that gives the minimum
makespan. We investigate the multi-product lot streaming problem for both equal
and unequal sized sublots cases. For this purpose, we develop mixed integer linear
mathematical models and heuristic algorithms for solving each case and compare
these mathematical models with heuristic algorithms.

The remainder of this report is as follows. Chapter 2 provides detailed
background information and review the related literature about the lot streaming
problems. We briefly define our problem along with assumptions for its two cases
and provide details of mathematical models in Chapter 3. The details of our proposed
heuristic algorithms are explained in Chapter 4. We also provide numerical examples
for our heuristic algorithms in this chapter. Chapter 5 explains the software
implementation details of the proposed heuristic algorithms and provides a software
usage manual. In Chapter 6, we discuss the results of our computational experiments
done for determining the performance of the heuristic algorithms by comparing them
with the mathematical programming models providing the optimal solution. Finally,
a brief summary and conclusion of our research and future research directions are

given in Chapter 7.



CHAPTER 2

LOT STREAMING: BASICS AND LITERATURE REVIEW

In this chapter, we first prove the basics of the lot streaming problem and then
provide a review of recent studies on lot streaming in scheduling problems. We will
discuss the related literature in two categories: single-product lot streaming and

multi-product lot streaming.

2.1 Basics of Lot Streaming

In the last sixty years, thousands of papers were released about flowshop
scheduling and its several variations. Especially, at the end of last century, researches
were focused on a scenario where the lots are split into sublots, that is called /of
streaming. In these studies related to the lot streaming problem, generally the goal is
to determine the number of sublots for each product lot, the size of each sublot and
the processing sequence of the sublots and product lots.

To understand these studies, the components of lot streaming problem must
be clearly identified. The components which are derived from Chang and Chui and

Feldman and Biskup are summarized in Table 2-1. [5]



Table 2-1 Components of Lot Streaming Problems

Dimension

Level

Product Type

*Single-product

*Multi-product

*Flow shop

*Open shop

Production Type *Job shop * Arborescent shop
] *Fix *Consistent
Sublot Type *Equal *Variable
Divisibility of the Sublot *Discrete *Continuous

Size

Sequence of the Sublots

*Intermingling

*Non-Intermingling

Operation Continuity

*Idling

*No Idling

Transfer Timing

*No-wait schedules

*Wait schedules

Performance Measures

Time models

*Makespan

*Mean flow time

*Total flow time

*Mean tardiness

*Number of tardy jobs

*Total deviation from due date

Cost models

*Total cost
*Total cost with makespan

Activities Involved

Setup

*No setup
*Attached setup
*Detached setup

Production

*Raw materials
*Work-In-Process
*Finished goods

Transportation

*Transportation Time
*Return Time

*Capacities of transporters
*Number of transporters

Below, we give briefly explains the terms in Table 2-1.

Product Type
e Single-product/Multiple Products: This approach considers either a

single-product or a multiple products.



Production Type

Flow Shop: In this production type, jobs are processed according to a
sequence. If all the jobs follow the same route, this manufacturing system
called flow shop.

Job Shop: In this production type, jobs may follow different routes. They
may visit the same machine once or more. This manufacturing system is
called job shop.

Open Shop: The open shop scheduling problem is a scheduling problem
in which a given set of jobs must each be processed for given amounts of
time at each of a given set of workstations, in an arbitrary order, and the
goal is to determine the time at which each job is to be processed at each
workstation. [6]

Arborescent Shop: The arborescent shop is an m-stage production
system, in which each stage has at least one immediate successor except
for the last stage (i.e. the finished goods stage), and has only one
immediate predecessor except for the first stage (i.e. the raw materials or

purchased parts stage). [7]

Sublot Type

Fixed Sublot: 4 fixed sublot means all products have identical number of
items on all stages. [8]

Equal Sublots: Equal sublots means that sublot sizes of each product are
fixed.

Consistent Sublot: A sublot is called consistent if it doesn’t alter its size
over the stages of processing. [9]

Variable Sublots: In variable sublot (unequal sublot) case, the sublot
sizes between the stages i and i+/ are not equal to those between stages
i+1 and i+2, given the same number of sublots. [9]

7



Divisibility of the Sublot Size

e Discrete Sublots: For discrete sublots, the number of items of a sublot
has to be an integer.

e Continuous Sublots: For continuous case, no such restriction exists.[8]

Sequence of the Sublots

e Intermingling Sublots: In the multi-product case, if intermingling sublots
are allowed, the processing of sublots of a product may be interrupted by
sublot of other product. In this case, each sublot is treated as an
independent product. [§]

e Non-Intermingling Sublots: For non-intermingling sublots case, no
interruption in the processing of sublots of a product is allowed, which is
obviously always given in one-product settings and can be forced in

multi-product settings.[8]

Operation Continuity

e No Idling: In no idling case, when the sublots start their operation on the
same stage, they must finish their operation without interruption.

e Idling: The idling case allows idle times.

As known, under the same sublot type, the makespan with idle times generate

better results than no idling case. Idling and no-idling cases are illustrated

Figures 2.1 and 2.2, respectively. [10]
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Figure 2.2 No Idling Case

Transfer Timing

No-wait: In no-wait schedules, each sublot has to be transferred to and
processed on the next stage immediately after it has been finished on the
preceding stage.

Wait: In a wait schedule, sublot may wait for processing between

consecutive stages.[8]

Performance Measures

Time Models: As shown in Table 2-1, the performance of a model
depends on minimizing makespan, mean flow time, total flow time, mean
tardiness, number of tardy jobs and total deviation from due date.

Cost Models: The performance of a model depends on minimizing the

total cost.



Activities Involved

o Setup: If attached setups are required the setup cannot start until the
sublot is available at the particular stage. In a detached setup the setup is
independent from the availability of the sublot. Sometimes setup times
are neglected or do not occur.

e Production: Even for the time model, production time is important; for
the cost model the inventory type must be considered.

e Transportation: Transportation activity includes the movement of a
sublot between stages and the return of an empty transponder. For cost
models, the transportation cost per trip is the only important component.
For time models, the load and unload times, transportation time, return
time of transporter, and the number of capacitated transporters should be
considered. Sublot size dependent transfer times can also be considered.
Note that the extent to which the transportation activity affects the

makespan depends on the number of capacitated transporters [5].

2.2 Evolution of Lot Streaming

Lot streaming problem is originally identified by Reiter [11] in 1966 and
rediscovered in the late 1980s to early 1990s. If we get back in the history, in 1964,
as a response to the Toyota Manufacturing Program, Joseph Orlicky developed
material requirements planning (MRP) [12]. MRP serves as a center organizer that
translates the overall production plan into a series of specific steps for achieving the
planned production. But MRP has the following weaknesses:

e MRP system is not able to get rid of the uncertainties of production
parameters. It assumes that production parameters such as lot sizes
and lead times could be determined a priori, external to the system and

kept fixed.
10



e [t ignores the finite capacity constraints and focus on material flow.
e All the operations of a lot are processed on a machine before
transferring the lot to the other machine.

To get rid of these disadvantages, as an extension of MRP, manufacturing
resource planning (MRPII) is developed. MRP II is an integrated method of
operational and financial planning for manufacturing companies. Hence, MRPII [13]
systems provide better control of inventories and quality improved scheduling,
quality control and design control, reduction of working capital of inventory.

By the time, in the 1980s, just-in-time (JIT) manufacturing approach and
optimized production technology (OPT) are appeared. JIT is a methodology aimed
primarily at reducing flow times within production as well as response times from
suppliers and to customers [14]. However, in spite of allowing overlapping of
operations, JIT fails to optimality of using unit-size sublots given that these might be
suboptimal in a majority of production environments where significant amounts of
transfer times and setup times are incurred. OPT aims to reduce the waste in
manufacturing system when paying more attention to critical resources than JIT
does. OPT uses large process batches to eliminate setup costs and small transfer
batches to reduce inventory carrying costs. So it maximizes throughput while
eliminating the overall cost. But long setup times of machines, process variability
and unbalanced workload cast a suspicion on the success of OPT.

At the end of 1980s, a new technique called constant work-in-process
(CONWIP) was introduced to get rid of the weaknesses of JIT. CONWIP allows the
simultaneous processing of different types of lots and it makes CONWIP more

flexible than JIT. But, it doesn’t solve the sublot sizing or lot sequencing issues.
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2.3 Single-Product Lot Streaming

As described in the previous section, processing through the use of transfer
lots on several machines were introduced by JIT and OPT approaches in 1980s.
Szendrovits [15] published his study that is one of the first papers that introduces the
lot streaming approach for minimizing cost for the single-product, multi-stage lot
streaming problem with continuous and equal sublots with no-idling case. Even this
study doesn’t include transportation activities, many other researches and studies are
referenced Szendrovits’s work. In 1976, Goyal [16] extended Szendrovits’s work by
developing an algorithm to obtain the optimal sublot sizes. He added transportation
cost to Szendrovits’s work and created a new algorithm to determine the production
lot size and number of sublots for the single-product multi-stage productions. Again
in the same year, Szendrovits extended Goyal’s study and present a simpler and
faster model to minimize the total cost.

Truscott [17] introduced a model for the single-product, multi-stage lot
streaming problem with variable sublot in 1986. This model includes setup,
operations and load movements between operations. The first objective of this model
is to minimize the total production time for the lot. The second aim is to minimize
the number of load movements. This approach develops a branch-and-bound
algorithm to solve sub problems of scheduling transportation activities. But solving
sub problems as zero-one mixed integer programs makes this approach too complex
especially for small problems.

In 1989, Potts and Baker [18] created a model for the single-product lot
streaming problem up to three machines for minimizing makespan when lot
streaming is invoked. They show that they can always find the optimal scheduling
policy with consistent sublots when the number of the machines are less than or

equal to three.
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In 1990, Kropp and Smunt [19] released a paper for the single-product, multi-
stage lot streaming problem with equal and consistent sublots. The main propose of
the algorithm to minimize the makespan or mean flow time. The makespan problem
was modeled as linear programming model while the mean flow time model as a
quadratic programming model. They determined the optimal way of splitting a job
into sublots under various setup times to run time ratios, number of machines in the
flow shop, and number of allowed sublots by using quadratic programming approach
to the mean flow time problem. At the same year, Baker and Pyke [20] presented a
model for single-product multi-machine flow shops. They used only two sublots to
minimize cycle time. Later on, their study was used as base to create the concept of
bottleneck machine.

In 1993, Trietsch and Baker [10] studied the single-product two-machine
flowshop problem for continuous and discrete sublots. They created a model for
more than one transporter to minimize the makespan. Also the same year Baker and
Jia [21] were created a model for single-product lot streaming problems for product
lines with three machines. They researched effects of different constraints, i.e. no
idling time, using of equal and consistent sublots, on the makespan value.

Glass, Gupta and Potts [22] developed an algorithm to minimize the
makespan for a single job in three-stage production processes. They considered the
continuous and consistent sublots on each machine. This algorithm characterized a
critical path structure for optimal solution and showed that for the open shop, to
minimize makespan, constant time is required. In 1998, Chen and Steiner [23]
extended the study of Glass et al. with no setup time to the case of attached setups in
a multi-machine flow shops. They showed that no-wait schedules are more
convenient in some specific conditions. Again in 1998, Sen, Topaloglu and Benli [24]
studied single-product lot streaming problems with equal, consistent and variable
sublots. Their study justified that equal sublots give more effective results in their

conditions.
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In 1999, Sriskandarajah and Wagneur [25] considered the problem of
minimizing makespan in two-machine no-wait flowshops with multiple products
requiring lot streaming. They considered the number of sublots for each product was
fixed. They reached the solution that when the flowshop produces only a single
product; they obtained optimal continuous-sized sublots. It means that these sublot
sizes were also optimal for the problem of simultaneous lot streaming and scheduling
of multiple products.

In 2000, Kumar, Bagchi and Sriskandarajah [26] extended the heuristic of
Sriskandarajah and Wagneur for the multiple machine case. They showed that, using
linear programming approach for one type product, usage of continuous sized sublots
gives optimal result. Again at the same year, Ramasesh et al. [27] presented an
economic production lot size model for the single item multi-stage manufacturing
system with equal sublots and no idling case using lot streaming. This heuristic
minimizes the total relevant cost including the cost of setup, transportation and
finished goods.

In 2001, Kalir and Sarin [28] developed a heuristic for single-product
flowshop manufacturing systems to split a lot into sublots to optimize different
performance measures especially the objective function of makespan. In the same
year, Bogaschewsky et al. [29] presented a deterministic model for single-product
multi-stage lot streaming problem including transportation activities and cost
objective. For equal sublots, they generated an algorithm to find optimal number of
sublots. For variable sublots, they suggested two algorithms, one is an heuristic, ant
the other is an optimal seeking.

In 2003, Kalir and Sarin also released an optimal solution algorithm for the
single-batch problem with sublot attached setups [30]. This heuristic guarantees the
near-optimal solution in a fast and efficient way. In the same year Chen and Steiner
[31] showed that the addition of the no-wait constraint in a regular flowshop doesn’t

affect the minimum makespan for the single-product lot streaming problem in no-
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wait flowshops. Van Nieuwenhuyse and Vandaele [32] created a cost minimization
model for a single-product deterministic flowshop lot streaming problem. In their
approach, they assumed that sublot sizes are discrete and equal-sized to minimize the
sum of inventory holding, transportation costs and gap costs. As a result, they
reached that adding gap cost to the total cost function gives the same results as a no
lot splitting case.

In 2004, Chiu et al. [33] developed a binary mixed integer programming for a
single-product, multi-stage lot streaming problem to minimize total cost including
the transportation and makespan costs. They proposed two heuristics. The first one
extended the two-stage method of Trietsch and Baker (1993). The second heuristic
was built to relax the transporter capacity constraints.

In 2005, Chiu and Chang [7] released two models for a multi-stage flowshop
lot streaming problems. In their models, the sublot sizes are assumed to be equal, the
number of transporters and the capacity of them are assumed to be infinite. They
carried out an experimental design for the cost factors and analyze a number of

different levels.

2.4 Multi-Product Lot Streaming

In the literature, studies mainly focuses on simple lot streaming problems.
Because when the scale of problem is expanded, its complexity increases. To get rid
of this complexity, researchers partition the multi-product lot streaming problem into
a sub problem, propose different heuristic approaches to them and solve these
partitions individually. In this section, we explain the heuristic approaches of
different kinds of multi-product lot streaming problems’ solutions.

In 1985, Truscott was first studied single job, equal sized sublots lot
streaming problem on multiple machines by considering the setup times [34]. In

1992, Vickson and Alfredsson modified the Johnson’s rule to obtain optimal solution
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for unit sized and equal sized sublots by ignoring transfer and setup times for
multiple jobs on two and three machines flowshops system [35]. They created the
non-intermingled solution which is among many optimal solutions there exists an
optimal solution where sublots of the same products are processed continuously on
each machine [4]. Again in 1992, Cetinkaya and Kayaligil extended the study of
Vickson and Alfredsson by considering detached setups [36]. Their heuristic was
very similar to Johnson’s rule and showed that splitting jobs into sublots and
sequencing them could be done independently. In 1994, Cetinkaya studied on lot
scheduling problem to minimize the maximum makespan for two-stage flow shops in
which the movement of transfer batches (sublots) from the first stage to the next
were allowed when set-up, processing and removal times were considered as
separable and independent of the order in which jobs were processed at any of two
stages [37]. In 2001, Kalir and Sarin released a bottleneck minimal idleness heuristic,
for the multi-product lot streaming problem [28]. This heuristic minimizes the idle
time between sublots of each product and gives very close solution to optimal. Again
in 2001, Kalir and Sarin extended their heuristic for multiple jobs by excluding setup
times. In 2009, Laha and Sarin [38] and in 2011, Glass and Possani [39] referred to
this heuristic in their studies.

In 1993, Trietsch and Baker presented linear and integer programming
formulation for a single job using continuous and discrete values of consistent
sublots on a three machine flowshop systems [10]. In 2001, Wagneur added the no-
wait condition to Trietsch and Baker’s formula [40]. In 1997 and 1998, Chen and
Steiner extended this case by detached [41] and attached setup times [23]. In 2000,
Kumar, Bagchi and Sriskandarajah extended the two-staged approach of
Sriskandarajah et al.[25] for the case of multi-product, multi-stage, no-wait flowshop
environment with non-intermingled and discrete sublots using three-staged approach
[26]. In 2002, Buckhin, Tzur and Jaffe presented single machine bottleneck

procedure [42] which guarantees very close solution to optimal solution and optimal
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solution for some special cases for two-machine, sublot-attached flowshop lot
streaming problems. In 2003, Hall et al. studied on Sriskandarajah and Wagneur’s
problem [25] by attaching setup times to it [43]. They reached an efficient solution
for the multi-stage, no-wait multi-product lot streaming problem with consistent non-
intermingled integer sublot sizes. In 2005, they modified their heuristic for no-wait
two-machine open shops with consistent non-intermingled sublots [43]. With this
heuristic, they reached good results for two-machine flowshops with up to 50
products.

In 2002, Yoon and Venture developed a linear programming for no-wait lot
streaming flowshops to find the optimal sequence that minimize the absolute
deviation [44]. In order to accelerate production, a job was allowed to overlap its
operations between successive machines and by splitting it into a number of smaller
sublots and moving the completed potion of the sublots to downstream
machines[45]. They also developed a hybrid generic algorithm for buffers between
successive machines having infinite capacities and sublots are equal sized and
buffers between successive machines having finite capacities and sublots are
consistent [46].

In 2004, Hug, Cutright and Martin developed an integer programming model
to obtain optimum sublot sizes while enumerating the number of sublots for multi-
product lot streaming problem using discrete sublots [47]. In 2007, 2008 and 2009
Marimuthu, Ponnambalam and Jawahar released a fabu search, a simulated
annealing, hybrid generic algorithm, ant colony optimization and threshold
accepting algorithms which include setup times [48], [49, 50].

In 2005, Zhang, Yin, Liu and Linn proposed two heuristics to minimize the
mean completion time for multi-job lot streaming problem in two-stage hybrid
flowshops with m identical machines at the first stage and a single machine at the

second stage [51].
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In 2009, Martin presented a hybrid genetic algorithm/mathematical
programming heuristic for the n-job, m-machine flowshop problem with lot
streaming. The number of sublots for each job and the size of sublots were directly
addressed by the heuristic and setups may be sequence-dependent. A new aspect of
this problem, the interleaving of sublots from different jobs in the processing
sequence, were developed and addressed [52].

In 2011, Buscher and Shen proposed an integer programming formulation to
solve multi-product lot streaming problem in a job shop environment where setup
times are involved. They optimally solved this problem for consistent sublots [53].
F.M. Defersha and M. Chen developed a hybrid genetic algorithm for a model that
appeared in recent literature for one -job m -machine lot streaming problems with
variable sublots and setup and showed that the performance of the proposed genetic
algorithm is encouraging in the same year [54].

In 2012, M. Karimi and Nasab presented a mathematical modeling of joint lot
sizing and scheduling problem in job shop environment under a set of working
conditions. They deal with process compressibility and their further experiences on
random test data confirmed that the performance of the proposed method with less
than 5.02% optimality gap while solving the problems in very shorter times than
CPLEX [55].

In 2013, N. Mortezaei and N. Zulkifli developed a mathematical model for
the integration of lot sizing and flow shop scheduling with lot streaming. They
developed a mixed-integer linear model for multiple products lot sizing and lot
streaming which enabled the operator to find optimal production quantities, optimal
inventory levels, optimal sublot sizes, and optimal sequence simultaneously
[56]. With this research they showed that the best makespan shall be achieved

through the consistent sublots with intermingling case.

18



CHAPTER 3

PROBLEM DEFINITION AND MATHEMATICAL MODELS

In this chapter we first define our problem under consideration for both equal
and unequal sublots cases and then propose mathematical models for solving these

problems.

3.1 Problem Statement

There is a set of N jobs (product lots) to be processed on a two-machine
flowshop in which both machines M/ and M2 operate independently and ready at
time zero for processing jobs. All jobs are available at time zero and processed first
on M1 and then on M2. That is, the first and second operations of the jobs are
performed by machines M/ and M2, respectively. The setup times required before
processing each job and the transfer time from machine M/ to machine M2 are
assumed to be zero, and ignored.

In our study, we assume that the total number of allowed sublots for all jobs
is S (where S > N) and known in advance. Moreover, only one job can be processed
on a machine at a time and preemption is not allowed, i.e. the processing of any
sublot cannot be interrupted on any machine at any time and resumed at a later time.

Our problem is to determine the number of sublots for each job, the size of
the each sublot and the processing sequence of all sublots that gives the minimum
makespan. We investigate the problem for two cases: unequal sized sublots and equal

sized sublots. Details of these approaches will be explained at the following sections.
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3.2 Mathematical Model for the Case with Unequal Sized Sublots

Based on the problem characteristics and assumptions given in Section 3.1,
we developed a mixed integer linear programming (MILP) model for solving
optimally the lot streaming problem with unequal sized sublots. This model aims to
determine the sublot sizes for each product and the processing sequence of the
sublots of all products for the case with unequal sized sublots. Below, we present

parameters, indices and variables are used in this model.

Parameters and Indices.:

N Number of jobs

S Total number of sublots allowed for all jobs (where S > N )
Jj Index for jobs (j =1,2,...,N)

t Position index for sublots in the sequence (¢ =1,2,...,S)

m Index for machines (m =1,2)

Q, Lotsize ofjob j

P,  Unit processing time of job j on machine m

L Sufficiently large positive number

Decision Variables.:

j’t

B {1 if asublot of job j is assigned toposition ¢ in the sequence

0 otherwise

X, =Size of the sublot which belongs to job ;j assigned to position ¢
C, ,, = Completion time of the sublot assigned to position # on machine m

C.... =Makespan (completion time of all jobs on Machine 2)

max
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MILP:
Minimize:

Crax =Cs 5

max

Subject to:

In the above presented MILP model, the objective function

for t=12,...,S

for j=12,...N; t=12,...,5

for j=12,...N

for m=12

for t=12,...,S

for t=12,...,5; m=12

for t=12,..,5; m=12

for Vj,t¢
for Vj,t¢

for Vt,m

(1)

)

3)

4)

)
(6)

(7

(®)

)

in (1) is to

minimize the makespan, which is the completion time of the last sublot in the

processing sequence of the products. The Constraint Set (2) ensures that each

position in the sequence is occupied by a sublot of a job. The Constraint Set (3)

guarantees that size of a sublot becomes positive if this sublot is assigned to a
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position in the sequence. Constraint Set (4) ensures that the sum of all sublot sizes of
a job equals to the lot size of this job. Constraint Sets (5) and (6) are initialization
constraints for completion times of sublots on each machine. Constraint Set (7)
guarantees that the completion time of a sublot on a machine should be greater than
or equal to the sum of completion time of the sublot in the previous position and the
processing time of this sublot on the same machine. Constraint Set (8) ensures that
the completion time of a sublot on a machine should be greater than or equal to the
sum of the completion time of this sublot on the previous machine and the processing
time of this sublot on the current machine. Constraint Set (9) imposes binary and
non-negativity restrictions on the decision variables, respectively.

In this MILP model, two sets of the decision variables are continuous
variables, and the number of this type of decision variables is S x (N + 2). However,
there is only one set of decision variables, which has § x N binary. This means that

there are totally 28 x (N +1) decision variables. On the other hand, the MILP model

has 65+ N x(S+1)+2 constraints.

3.3 Mathematical Model for the Case with Equal Sized Sublots

The second model aims to determine sublot sizes for each product and the
processing sequence of the sublots of all products for the case with equal sized
sublots. Additional parameters, indices and variables for our model to solve the case

with equal sized sublots are given below:

Additional Parameters and Indices.:

S-N+1 Maximum number of sublots allowed for a job

k Index for sublots (k=1,2,...,.S — N +1)
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Additional Decision Variables:

1 if
Y Z‘{

0 otherwise

X Non-negative continuous variable

J.kt
MILP:
Minimize:
C'max :CS,Z
Subject to:
S—N+1
Zsz =1 for j=12,....N
k=1
N S-N+1
> 2k, =5
J=l k=l .
N
Zth =1 for t=12,...,S
=
S S-N+1
D Z.,=DkY, for j=12,..,N; k=12,.,.S—N+1
t=1 k=1
X 2Y, +Z, —1 for j=12,..,.N; k=12,..,.S—N+1;
t=12,...,S
Co,n =0 for m=1,2
0=0 for t=12,...,S
N S-N+1
mZCoi +Z % m Xy, fort=12,..8; m=12
j=l k=1
N S-N+1 )
CthCtmfl—i_Z %'P,m'Xj,kt for t=12,..,5; m=12
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job j is split into k sublots

for Vj,k

(10)

(1D

(12)

(13)

(14)

(15)

(16)
(17)

(18)

(19)

(20)



Z,, € {0,1} for Vj,t

X., . >0 for Vj,k,t

Jokit —

C >0 for Vt,m

In the above MILP model, the objective function C

max 10 (10) 1s to minimize
the makespan, which is the completion time of the last sublot in the sequence.
Constraint Set (11) ensures that a job is split into at most S — N +1 sublots.
Constraint Set (12) guarantees that the sum of sublots of all jobs is equal to the total
number of sublots for all jobs. Constraint Set (13) ensures that each position in the
sequence is occupied by a sublot of a job. Constraint Set (14) guarantees that total

number of positions occupied by a job is equal to the total number of sublots of this

job. Constraint Set (15) determines the values of the continuous variables X, ’s.

Constraint Set (16) and (17) are initialization constraints for completion times.
Constraint Set (18) guarantees that the completion time of a sublot on a machine
should be greater than or equal to the completion time of the sublot in the previous
position plus the processing time of this sublot on the same machine. Constraint Set
(19) ensures that the completion time of a sublot on a machine should be greater than
or equal to the completion time of this sublot on the previous machine plus the
processing time of this sublot on the current machine. Constraint Set (20) imposes
binary and non-negativity restrictions on the decision variables, respectively.

In this MILP model, two sets of the decision variables are continuous

variables, and the number of this type of decision variables is S x (N + 2). However,
there are two sets of binary decision variables, which have totally Nx(2S5—N+1)
binary variables. This means that there are totally 25 x (N +1) decision variables.
On the other hand, the MILP model has Nx[S(S—N+2)—N+2]+65+3

constraints.
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CHAPTER 4

HEURISTIC ALGORITHMS

The size of the the MILP models increases drastically with the increase in the
number of jobs and the total number of sublots allowed. Therefore, the optimal
solutions to the large-scale problems are not likely to be obtained within reasonable
computational times. Moreover, the existence of a polynomial-time algorithm to
solve the problem optimally is unlikely since we have an NP-hard problem. This
motivated us to develop fast algorithms that provide near-optimal solutions.

In this chapter we present our proposed heuristic algorithms for solving the
two cases, unequal sized and equal sized sublots, of the lot streaming problem under

consideration.

4.1 Heuristic Algorithm for the Case with Unequal Sized Sublots

By this heuristic, we aim to determine the number of the sublots for each
product, the size of each sublot on each machine and the processing sequence of the
sublots for minimizing the makespan for multi-product lot streaming problem with
unequal sublots. To address this problem, we extend the heuristic algorithm of
Cetinkaya [37]. Below, we present the notation and formulation of our heuristic for

the multi-product flowshop lot streaming problem with unequal sublots:
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Parameters:

M Number of machines (M =2)

N Number of jobs

S Total number of sublots

0, Lot size of job n

P, Processing time for one unit of job 7 on machine m

TP, , Total processing time for one unit of job #» on machine m
K, Number of sublots of job n

X, Size of the sublot s of job n

k,, Total process time for sublot s of job n

Z, Idle time for job n

Son Fraction factor for sublot s of job n

ISP, Total processing time for sublot s of job n on machine m
Indices:

m Machine index where m =1,... M

h Job index where n=1,....N

S Sublot index where s=1,...,. K

n

Heuristic Algorithm for Unequal Sized Sublots Case:

Step 1:

Identify the maximum process time on M, and M, , that is:

In,m, max{Tan} where TP, =P, .0,
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The job with the highest 7P, value will be the primary job to calculate

sublot sizes.

Step 2:
Identify number of sublot used by job with the highest 7F,, value

(JHTP,,). We assume that each job except JHTPE,, value has only one
sublot and the rest of the sublots belong to JHTE, , . That is,

_ |1 if job n is not JHTE,,
" |S=(N-1) otherwise

Step 3:
Identify the size of each sublot of JHTP,  using the following algorithm:

o,-1
e
a, " —1
X =

-
a,”.x, Vs wherel<s<K,

n

where

2

a =—= and n is the index of JHTP,,.

n
n,l

The jobs except JHTP, aren’t split. For these jobs sublot size equals to lot
size, i.e.

x;, =0, where n is NOT the JHTP, .

Step 4:

If, at least, one of the sublot size calculated at Step 3, is non-integer sized go

to Step 4.1 to recalculate the integer sized ones. Otherwise, go to Step 5.
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Step 4.1 (Converting non-integer sized sublot to integer-sized sublot)
For all jobs,

Step4.1.1:

Calculate the idle time Z, as

1<usK, |3

Z, = max{ y P.x, —uZ_IZPn’z.x_v’n} where n € [],N]
s=1 s=1

Step4.1.2 :

For each sublot s, calculate the integer sized sublot

51
|:Zn - (Pnl _Pn,z) - xm,n:l 51

— 1 m=1 —
xs,n min Pn,l > Qn por xm,n
Step 4.1.3 :
K'Y
If Z x,, =0,  then the calculated sublot sizes, that arex,, are not
i=1

integer sublot sizes go to Step 2 using following Z

Z,=Z,+P, min(l-f.)

n,l
where
s—1
fv,n = |:Zn _(Pn,l _Pn,2 )me,n :|/Pn,1 _x.v,n °
m=1
Otherwise,
1. Ifthere are no zero sized sublots, go to Step 5.

2. [If there exist zero sized sublots, transfer them to the next job

with greatest TP after the current job.

28



Step 5:

Calculate the total process time of each sublot (7SP, ) on both machine and
group them as Set / and Set 2.

Set 1 is a set of sublots that are processed on M, at most in the time that are
processed on M, . In other words; each sublot of Ser 1 is processed on M, in
less or equal time on M, .

Set 2 is a set of sublots that are processed on M, longer than that are

processed on M, .
Set I and Set 2 are mathematically expressed as
Set 1=1{k, TSP, , <TSP, ,}|

Set 2=k, : TSP, , > TSP, , |

n,s, 1

where 75P,  =x P, ., NE [l,N], k,€[l,K,] and m={1,2}.

s,n.t nm 2

Step 6:
Optimize Set I and Set 2 by rearranging their entities. While Set [ is

optimized by sorting sublots according to their increasing process time on M,
; Set 2 1s optimized by sorting sublots according to their decreasing process
time on M,. If we call optimized Ser I as OSet I and optimized Set 2 as
OSet2, the mathematical representation of OSet I and OSet 2 are as follows:

OSet 1={Vk,eSet 1:TSP, , <TSP,., .}

> TSP

ns2 — n+l,s,2

OSet 2 = {Vk, e Set 2 : TSP \ where n € [LN], &, e[LK,].

Step 7:

To minimize the makespan, sublot sequence is needed to be optimized.

Optimized sublot sequence, OS, is a combination of Set / and Set 2 as all
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4.1.1

elements of Set I is followed by all elements of Set 2. OS is represented

mathematically as follows:

M S,
oS=Uk, Uk,
n=1 m=1

where, k,€Setl, k, e Set2, S, and S, are the sizes of Set I and Set 2,

respectively.

Numerical Example

In this section, we provide a numerical example for illustrating the heuristic

algorithm for solving the unequal sized sublot case. Consider a simple instance of the

problem in which there are 5 jobs and the total number of sublots is 20. Unit

processing times on the machines and the lot sizes for all jobs are given in Table 4-1.

Table 4-1 Process Times on M1 and M2

JOB | Process Time on | Process Time on Total Lot Size
NO M1 M2

Job 1 3 6 12

Job 2 1 7 17

Job 3 1 4 16

Job 4 1 9 20

Job 5 4 6

First we will find the job with the maximum process time. As seen on Table

4-1, the job with the maximum process time is Job 4. So, Job 4 will have the

maximum number of sublots when other jobs have only one sublot, which is equal to

the lot. It means that

K,=20-4=16 and K, =K, =K, =K, =1.
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Now, we shall find the sizes of sublots for each job. Here it is obvious that for
Jobs 1, 2, 3 and 5, the sublot equals to the total lot size of the job since these jobs are
not split into sublots and have only one sublot. But Job 4 is split in to 16 sublots. Our

sublot factor @, is

P9
1

When we calculate the size of each sublot in Job 4 using ¢,, we obtain:

8 -6
9-1 4 Xy 4 =a’.x, , =3.71x10
X4 Z(T 20=8.63x10714 " .
’ 9"~ -1 X049 .x1’4=3.34x10
xy 4 =0, =7.77x107 13 v 20 _3omio?
’ ’ 114 14
2 -12
X =a“.x, , =6.99x10 11 -3
4 1,4 - -
3, ; X4 =@ Xy =2.70x10
3 —11
X =a~.x =6.29x10 12
4.4 = =
; 1,4 X34=% X4 0.02
4 -10
X =a '.x, , =5.66x10 13
5.4 1,4 = =
> > x14,4 a .x1,4 0.21
5 —9
x,  =oa .x, ,=509%10 _ 12 _
6,4 14 Y54 =0 "Xy =1.97
0. _ —3 12
x7’4 =a .x1’4 =4.5&x10 Y64 =% Fig =177
x8,4=(x7.x1,4 =4.12x10_7

After calculating the size of each sublot, we shall categorize these sublots as
Set 1 and Set 2. As shown in Table 4-2, each sublot’s process time on M1 is less than

its process time on M2. Thus, it is obvious that all sublots belong to Set 1.

kl,l’kl,2’kl,3’k1,5’k1,4’k2,4’k3,4’k4,4’

k5,4’k6,4’k7,4’k8,4’k9,4’kl 0,4’k1 1,4’k12,4’k1 3,4’k1 4,4’k1 5,4’k1 6,4

Set 2 is empty.

Set 1 =
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Now, to find the sequence of sublots that provides the optimal makespan, we

will find OSer 1 and OSetr 2. While Set 2 is empty, OSet 2 is empty too. But to

obtain OSet 1, we rearrange Set 1 as

k k k k k k6,4’ k7,45 k8,45 k9,4 s k10,4 s

1,4>M2,4513 45

OSet ] =

4,45

5,45

kl 1,4> k12,4’ k13,4’ k14,4 > k15,4’ k1,3 > k1,2’ k16,4’ k1,5’ k1,1

Table 4-2 Total Sublot Process Times of Jobs on M1 and M2

SUBLOT NO Total Sublot Process Time on Total Sublot Process Time on
M1 M2

X, 12x3=36 12x6=72
X, ; 17x1=17 17x7=119
X, 16x1=16 16x4=64
x,; 5x4=20 5x6=30
X4 863x10™x1=8.63x107* 863x10%x8=7.77x107*
X34 7770 x1=7.7%10" 7.77x10%°x9= 6.99.10™*
X4 6.99x10™x1=6.99x107"* 6.99x107x9=6.29.107"
X4 6.29x107x1= 6.29x107* 6.29x10™x9=5.66107°
Xs54 5.66x107°x1 =5.66x107° 5.66x107°x9 = 5.09x107
X5 5.09x10%x1=5.09x10% 5.09x107x9 = 4582107
X74 4.58x10%x1=4.5&107 4.58x107%x9=4.12x10"
X34 4.12x107 x1=4.12x107 4.12x107 x9=3.71x10"*
X4 3.71x10%x1=3.71x10% 3.71x10% x8=3.34107
X104 3.34107x1 =334x107 3.34107x8 =301x107*
X114 3.01x10™x1=3.01x107 3.01x10x9=270x10"
Xp24 2.70x10%x10270x10" 2.70x107 x9=0.02
X4 0.02x1=0.02 0.02x9=0.21
X4 0.21x1=0.21 0.21x9=1.97
Xi54 1.97x1=1.97 1.97x9=17.7
X0, 17.7x1=17.7 17.7x9=159.3
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As seen on Table 4-2, almost all sublots are non-integer sized. So we need to

recalculate integer sized sublots. To do this, first we calculate the idle time Z, where

ne [],N ] Our first idle time is 8.63x10". Now by using this idle time we

calculate non-integer sized sublots of Job 4 using the following formula.

s—1
|:Zn 7(Pn.l -F, )zxm.n} 51
— 3 =1
- N oS,
n, m=1

Now, when we recalculate integer sized sublots, we will see all of them are

zero. That is,

X, , = min

—

[B.63x10"~ (1 9)%/ 20— o} = min{8.63x10™ |20~ 0}=0

-

[B.63x10"~(1- 9)%/ 20— o} = min{8.63x10™ |20~ 0}=0

X,, = min

Xy = min{ [B.63:10™ *9)%/ 20 70} — min{8.63x10™ |20~ 0}=0

Xy g =Xy = X5y =Xy =Xy = Xgy =Xg =Xy =Xyy g =Xy g =Xp34 = X144 =Xp54=%15,=0

K, K,
Here, it is obvious that Z x,, # 0, since Z x,, =0and 0+ 20. So we need

i=1 i=1

to use the fraction factor f, to recalculate the new idle time Z, as

= ([8-63x1 0~ —9)91/ j —0=863x10"
fri= ([8-63x1 0 -1 —9)91/ j —0=8.63x10"

f3,4 = f4,4 = f5,4 = fw = f7,4 = f8,4 = f9,4 = 1{10,4 = f11,4 = f12,4 = f13,4 = f14,4 = f15,4 = f16,4 =8.63x10™"

Our new idle time Z, is

Z,=Z,+P,min(l- £, ,)=8.63x10" +(1-8.63x10™)=1.
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Now, when we recalculate the new sublot sizes using the new idle time

Z, =1, we obtain:
X, = mmﬂ[ ~(1 —9)%J,20 _0} _ min{1.20}= 1
oo
%, =mmﬂ[1—( 20 10} min{81,10}= 10

., minﬂ[l ~(1-9)20

. ~(1-9)20

om0y

Xpg =Xs54 =Xy =X74 =Xg4 =Xgy = X104 = X114 = X124 = X134 = X144 =Xy54

o)
(-

Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that

K4
D x,=1+9+10=20=0,.

i=1
When we analyze the sublot sizes, we see that sublot sizes are zero for 13
sublots. It means that 13 of the sublots out of 16 are useless for Job 4. So they will be
transferred to Job 2, which is the job with the second maximum process time. Thus,

the total number of sublots for Job 2 becomes 13+1=14. Now, we need to find
integer sized sublots for Job 2. First, we need to calculate our sublot factor &, which

1S

34
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If we calculate the sizes of each sublot for Job 2 using «,, we obtain:

14

_ — 7 _ —4
X ( 71 ).17:1.5);10*‘“ Xyo =0, =1.23d0

9 Xgy = a8~x1'2 =8.66x107*
Xy, =QX,,, = 1.05x10"

) B X, =0’ x,, =6.06x107
Xy, =a”.x,=736x10
X, =a'’x, =0.04
x,, =a’x,=515x10"
xp, =a'lx, =029
x5, =ax,=3.61x10"7
X =a'?x,, =2.08
X, =0 X, =2524107°
X, =0 x, =145
x,, =a’x, =1.76x107 ' '

But it is obvious that sublot sizes are not integer sized and we need integer

sized sublots. To do this, we need to calculate the idle time for Job 2 which is

u u-l
Z, = max{z Pyxg,— z P“.x\.vz} =1.5x107"

<usk, (s=I s=1

Now by using this idle time Z, we calculate non-integer sized sublots of Job

2 using the following formula.

51
|:Zn _(Pn.l -P, )Z xm.n:| o1
— mi m=1
x,, =min PO -2,
n,1 m=1

Now, when we recalculate integer sized sublots, we will see all of them are

zero. That is,

x,, = rnin{“l 52107~ (= 6)-91/J,17 - 0} —min{1.5x10™ [17}=0
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x,, = min {UI-S“OIO - 6)-%/}17 - 0} — min{1.5x10™ [17}=0

X2 =Xy = X5, =X, =Xy, = Xgr =Xgp = Xpg2 = Xpp0 = Xppo = Xp30 = Xy

KZ KZ
Here it is obvious that le.,z # (), since le.,z =0 and 0=17. Thus, we

i=1 i=1

need to use the fraction factor f;, to recalculate the new idle time Z, as
Z,=27,+P, min(l- f,,)=15x10"" + (1 -1.5x107" ) =1.

Now, when we recalculate the new sublot sizes using the new idle time

Z, =1, we obtain:
v mmﬂ[l ~(1- 7)% J’” _0} ~min{l17)=1
o [N -
x,, = min ﬂ[l ~(=78) |- s} — min {79.9}= 9

X, = minﬂ[l -( *7)~17J1/J,17 717} -0

Xyo = Xs52 = Xgp = X7 = Xgy = Xgy = Xypy =Xy = Xppp = Xy35 = Xpyp = 0

Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that

KZ
D x,=1+7+9=17=0, .

i=1
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When we analyze the sublot sizes, we see that 3 sublots are enough for Job 2.
So the remaining 11 sublots will be transferred to Job 1, which is the job with the
maximum process time after Job 2. Thus, the total number of sublots for Job 1

becomes 11+1=12. Now, we need to find integer sized sublots for Job 1. First, we

need to calculate our sublot factor ¢, which is

P
ooBo 6y
P 3

2,1
When we calculate the sizes of each sublot for Job 1 using &, , we obtain:

_ 6
X, = (%}12 =12.93x107" Xy, =o'y, =0.187
’ 27 -1

. X, =a’ x,=0375
X,, =a.x;; =5.86x10

xg; =a’x; =075
X, =a’x,=00117
X0 =0 x,, =15

x,, =a’ x,, =0.023
g , _ 0
Xy =0 x,; =3

x,, =a'x, =0.046
: : —a'x =6
X =0 X, =

X, =0’ x, =0.093

But it is obvious that sublot sizes are not integer sized and we need integer

sized sublots. To do this, we need to calculate the idle time for Job 1 which is

u-l1

Z, = max {Z Pyx, - Y. P, .x&]} =0.0087
s=1

Isu<k, | sop

Now by using this idle time Z, we calculate the non-integer sized sublots of

Job 1 using the following formula
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s—1
|:Zrz - (Rz‘l - Rz‘Z )z 'xrn rzj|/
X, = min m=1 .0, me )
m=1

Now, when we recalculate the integer sized sublots, we see all of them are

zero. That is,

X, = min{“o‘oom_ (3- 6)-(% J,lz— 0} —min{2.9x10° [12}=0
X, = min{“o 0087 - 0}/ J 12— 0} min{ 0.0087 12} = 0

Xy =Xy = X5 1 =X =Xg 1 = Xg 1 =Xg 1 =Xpp1 =Xy = X121 = 0

K, K,
Here it is obvious that le., , # O, since le., ;=0 and 0=12. Thus, we

i=1 i=1
need to use the fraction factor f;, to recalculate the new idle time Z, as
Z, =7, +P, min (- f,,)=2.99+0.0087 = 3.
Now, when we recalculate the new sublot sizes using the new idle time

Z,=3, we obtain:
x,',:minﬂ3_(3_6)~%J,12—0}:min{z,lz}:z xi,=mm{ C3) a5} =6
I
ol )

Xsp =X = X7 = Xgg =Xgp =Xpgp = X111 = X2 = 0

X, = min{“3 -(3- 6)-2% J,l 2- 2} = min{3,10} =3

Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that

KI
D x,=2+3+6+1=12=0,.

i=]
When we analyze the sublot sizes, we see that 4 sublots are enough for Job 1.

So the remaining 8 sublots will be transferred to Job 3, which is the job with the
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maximum process time after Job 1. Thus, the total number of sublots for Job 3

becomes 8+1=9. Now, we need to find integer sized sublots for Job 1. First, we need

to calculate our sublot factor a; which is

P, 4

3,1

When we calculate the sizes of each sublot for Job 3 using a;, we obtain:

— — ~3 —
X5 =( 41 j.16=1.83x10‘4 Xoa =00, =0.187

4° -1

x,=a’x, =075
Xy, =a.x, =7.32x107

= —
. | Xg3 =0 X3 =3
Xy, =a”.x,=0292x10
Xoy =a'x ;=12

x5 =0’x, =0011

Xy =0’ x,=0046

But it is obvious that sublot sizes are not integer sized and we need integer

sized sublots. To do this, we need to calculate idle time for Job 3 which is

u u—1
Z, = maX{ZP}J X, —ZP},,X‘,,}} =1.83x10

Now by using this idle time Z; we calculate the non-integer sized sublots of

Job 3 using the following formula.

s—1
|:Zn - (Pn,l - Pn,Z )Z xm,n} s—1
x,, =min ! P .0, - me,n
1 m=1

Now, when we recalculate integer sized sublots, we see all of them are zero.

That s,

o= min{“l.%xl 0 - (- 3).%/ J’l 6_0} o
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Xp5 = X33 = Xy3 = X553 = Xg3 =X;5 = Xg3=X55=0
K Ky
Here it is obvious that le.,j # (), since le.,j =0 and 0=16. Thus, we
i=1 i=1
need to use the fraction factor f|; to recalculate the new idle time Z; as

Z,=Z,+P, min(l- f;;)=1.83x10" +1-1.83x10" =1.

Now, when we recalculate new sublot sizes using new idle time Z; =1, we

obtain:

X, = minﬂl - (‘3)-%J,1 6- 0} -1 x mi“ﬂ[l -(- 3)-5% J’l 6 5} 11
Yo = mi“ﬂ[l 7(73)91/}16*1} o X, = minﬂ[l - 3)16J1/J,16 —16} =0

X3 =X53 = X553 =X,3=Xg;3 =X5; =0
Here, again we need to check whether that sum of the sublot sizes are equal to
the total lot size. We observe that
K
D ox,;=1+4+11=16=0;.
i1
When we analyze the sublot sizes, we see that 3 sublots are enough for Job 3.
So the remaining 6 sublots will be transferred to Job 5, which is the job with the
maximum process time after Job 3. Thus, the total number of sublots for Job 5

becomes 6+1=7. Now, we need to find integer sized sublots for Job 5. First, we need

to calculate our sublot factor a5 which is

P
a=22-0_15
4

> P

5,1

When we calculate the sizes of each sublot for Job 5 using a,, we obtain:
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1.5-1
X, . = 5=0.155
b (1.57 —1)

X,s=a.x, 5 =0233
X5 =a’x;=0349
x5 =a’x =052
X5 =0 x5 =078
xgs=a’x;=1.18
xs=0x=1.77

But it is obvious that sublot sizes are not integer sized and we need integer

sized sublots. To do this, we need to calculate the idle time for Job 5 which is

u-l

Zs= max{z Pyx s — zf)s,rxsﬁ} =0.621

1<u<Ks s=1 s=1

Now by using this idle time Z; we calculate the non-integer sized sublots of

Job 5 using the following formula

s—1
|:Zrz - (Rz‘] - Rz‘Z )z )C””l j| s—1 .
'xx,rz = min e P > Qrz - z‘xm‘rl
nl m=l1

Now, when we recalculate the integer sized sublots, we see all of them are

zero. That is,
X, = min {UO'QI - (- 2)'%J,5 - O} =0

X5 = X35 =Xy5 =X55=Xg5=X,5,=0
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Kﬁ KS
Here it is obvious that Z x, s # Qs since Z x,s =0 and 0 # 5. Thus, we need

i=1 i=1
to use the fraction factor f ; to recalculate the new idle time Z; as

Zy=Z+ P, min(l- f,,)=0.621+ (4x(1-0.1554))= 0.621 +3.378 = 3.9994 = 4.

Now, when we recalculate the new sublot sizes using the new idle time

Z; =4, we obtain:
X5 = minﬂ4 B (72)‘%“,5 - 0} =1

s
e =minf - z>zy A

X5 = minﬂ[“ -(- 2)-5%J,5 - 5} =0

Here, when we calculate the rest of sublots sizes, we will see that

Xs55=Xg5 =X;5=0.

Here, again we need to check whether that sum of the sublot sizes are equal to

the total lot size. We observe that

K

Dxs=1+1+2+1=5=0;.

i=1

When we analyze the sublot sizes, we see that 4 sublots are enough for Job 5.
Thus, the remaining 3 sublots are useless, and 17 sublots are enough as the total

number of sublots for all jobs.

Below, in Table 4-3, the sizes and process times of each integer sized sublot

is given.
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Table 4-3 Size and Process Times of Integer Sized Sublots

SUBLOT Sublot Total Sublot Process Time Total Sublot Process Time
NO Size on M1 on M2
x 2 3 6
X 3 3 6
X, ;s 6 3 6
X,, 1 3 6
X 1 1 7
X 7 1 7
X, 9 1 7
X, 1 1 4
Xy, 4 1 4
X 11 1 4
X, 1 1 9
Xz 9 1 9
X,, 10 1 9
s 1 4 :
X5 1 4 6
X, 2 4 6
X;, 1 4 6

As shown in Table 4-3, each sublot’s process time on M1 is less than its
process time on M2. So all sublots belongs to Set 1, and Set 2 is empty, obviously.

That is,

Xi1oX125X1 35X 45X 15X 95X 35,X375
Set 1 =

X325 X335 X4 15 X4 25Xy 35 X5 15 X555 X535X54
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Now, to find the sequence of sublots that provides the optimal makespan, we
determine OSet I and OSet 2. While Set 2 is empty, OSet 2 is empty, too. But to

obtain OSer 1, we rearrange Set 1 as

OSet 1 :{

Xo19X315Xy15X715X305Xs15X55X5 45 } .

X12sX205Xs5 35X 35Xy 55Xy 35X335X)3,X 4
Thus, we obtain the sizes and sequence of unequal sublots that provides
smallest makespan using our heuristic algorithm for the lot streaming problem under

consideration.

4.2 Heuristic Algorithm for the Case with Equal Sized Sublots

With this heuristic, we aim to reach the minimum makespan for the multi-
product lot streaming problem with equal sized sublots. To address this problem, we
develop two-parted heuristic that each part contains first heuristics basically. At the
first part of the heuristic, we consider each lots of job. Sequentially, we assign the
max number of sublots to each job and find the number of the sublots for each
product, the size of each sublot on each machine and the sequence for processing the
sublots. We pick the one with minimum makespan as a result. At the second part of
the heuristic; we work on the two jobs with the highest processing times and again
we find the number of the sublots for each product, the size of each sublot on each
machine and the sequence for processing the sublots according to our heuristic. At
the end, heuristic returns the solution of part that has the minimum makespan time.

Below, we present the notation and formulation of the two-stepped heuristic

algorithm:
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Parameters:

M Number of machines (M =2)

N Number of jobs

S Total number of sublots

0, Lot size of job n

P, Processing time for one unit of job 7 on machine m

TP, , Total processing time for one unit of job #» on machine m
K, Number of sublots of job n

X, Size of the sublot s of job n

oS Optimal sublot sequence

LOS List of optimal sublot sequence

ISP, ,, Total processing time for sublot s of job n on machine m
Indices:

m Machine index where m =1,...,M

n Job index where n=1,...,.N

S Sublot index where s=1,..., K

n

Heuristic Algorithm for Equal Sized Sublots Case:

Step 1: (Sequentially, Split All Lots of Jobs Equally)

Step 1.1:
For each job J,
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Step 1.1.1:
Identify number of sublot used by each job. We assume that J, is the

job with the highest 7P,, value. We assume that each job except J,

value has only one sublot and the rest of the sublots belong to J, .

n

1 if jobnisnotJ,
S - (N - 1)otherwise
Step 1.1.2:

Find the size of each equal-sized sublot of J, as

_9

Xon K o

n

The jobs except J, aren’t split. For these jobs sublot size equals to lot
size, 1.e.

x;, =0, where n is NOT the J,.

Step 1.1.3:
Calculate the total process time of each sublot (7SP, ) on both

machine and group them as Set / and Set 2.
Set I and Set 2 are mathematically expressed as
Set 1 ={k,:TSP, , <TSP, .}

Set 2=1{k, : TSP, , > TSP, ,}

s, 1 =

where 75p —x p N e[l,N], k, e[l,Kn] and m:{1,2}.

n,s,m  Vs.n.t on,m

Step 1.1.4:
Optimize Set I and Set 2 by rearranging their entities. While Set I is

optimized by sorting sublots according to their increasing process time
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on M,; Set 2 is optimized by sorting sublots according to decreasing

process time on M,. If we call optimized Set I as OSet I and

optimized Set 2 as OSet 2, the mathematical representation of OSet 1

and OSet 2 are as follows:
OSet 1=1{Vk,eSetl : TSP, , <TSP,., .}

> TSPMM}Where ne [I,N],kn S [I,Kn]

ns2 —

OSet 2 = {Vk,  Set2 : TSP

Step 1.1.5:

To calculate makespan for J,, optimized sublot sequence is needed.
Optimized sublot sequence for J,, OS,, is a combination of Set / and

Set 2 as all elements of Sez 1 is followed by all elements of Set 2. OS,

1s represented mathematically as follows:
N S,
oS, =Uk, Uk,
r=1 m=l1
where k. € Setl, k, € Set2, S, and S, are the sizes of Set I and Set

2 of J,, respectively.

After calculating OS,, we add OS, to LOS .

Step 1.2:
After splitting all jobs into equal sublots and adding optimal sublot

sequence of each job to LOS , we find the sequence on LOS with the

smallest makespan. This sequence is the optimal sublot sequence obtained

in Step 1. That is,

OS =min{0S,;1<n< N}
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Step 2: (Split Two Jobs with the First and Second Highest Processing

Times
Step 2.1:
Identify the maximum process time on M, and M,, that is:
3n,m, max{ TP, } where TP, =P, .0,
The two of jobs with the highest 7P, value will be the primary and the
secondary jobs to calculate sublot sizes. Let’s call the first job (primary

job) with highest 7P, value JH,; and the second job (secondary job)

with highest 7P, , value JH,.

Step 2.2:
Identify number of sublot used by each job. We assume that the jobs

except JH, and JH, have only one sublot; JH, has two sublots and JH,
has the rest of the sublots.

1 if job nis neither the index of JH, nor JH,
K, =42 if jobnistheindex of JH,
S-(N-1)-1 if jobnis theindex of JH,

Step 2.3:
Find the size of each equal-sized sublot of JH, and JH, as
_9,
X =—.
s,n K

Obviously, the jobs except JH, and JH, the sublot size of job equals to
lot size of job; because they are not split.

x;, =0, where n is NOT the J,.
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Step 2.4:

Calculate the total process time of each sublot (7.SP, ) on both machine
and group them as Sef [ and Set 2.

Set 1 is a set of sublots that are processed on M, at most in the time that
are processed on M,. In other words; each sublot of Set [ is processed on
M, in less or equal time on M,.

Set 2 is a set of sublots that are processed on M, longer than that are

processed on M,.

Set I and Set 2 are mathematically expressed as
Set 1 ={k, :TSP, , <TSP, ,}
Set 2={k, : TSP, , > TSP, ,}

where 7sp = x p . N e[l,N], k, e[l,Kn] and m:{1,2}.

s,n* n,m

Step 2.5:
Optimize Set I and Set 2 by rearranging their entities. While Ser I is

optimized by sorting sublots according to their increasing process time on

M, ; Set 2 is optimized by sorting sublots according to decreasing process

time on M, . If we call optimized Set I as OSet I and optimized Set 2 as
OSet 2, the mathematical representation of OSet I and OSet 2 are as
follows:

OSet 1=1{Vk,eSetl :TSP, , <TSP,., .}

> TSPMM}Where ne [I,N],kn S [I,Kn]

ns2 —

OSet 2 = {Vk,  Set2 : TSP
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Step 2.6:

To minimize makespan, sublot sequence is needed to be optimized.
Optimized sublot sequence, OS, is a combination of Set/ and Set2 as all
elements of Set/ is followed by all elements of Set2. OS is represented

mathematically as follows:

M S,
oS=Uk, Uk,
n=1 m=1

where, k, € Setl, k, € Set2, S, and S, are the sizes of Set I and Set 2

of J,, respectively.

Step 3:

If the makespan of the sequence obtained in Step 1 is smaller than that of the
one obtained in Step 1, then the solution obtained in Step 1 should be selected
for implementation. Otherwise; the solution obtained in Step 2 should be

selected.

4.2.1 Numerical Example

In this section, we provide a numerical example for illustrating the heuristic
algorithm for solving the equal sized sublot case. Consider the simple instance of the
problem given in Section 4.1.1 in which there are 5 jobs and the total number of
sublots is 20. Unit processing times on the machines and the lot sizes for all jobs are

given in Table 4-4.
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Table 4-4 Process Times on M1 and M2

JOB | Process Time on Process Time on Total Lot Size
NO M1 M2

Job 1 3 6 12

Job 2 1 7 17

Job 3 1 4 16

Job 4 1 9 20

Job 5 4 6 5

First we will find the job with the maximum process time. As seen on Table
4-1, the job with the maximum process time is Job 4. So, Job 4 will have the
maximum number of sublots when other jobs have only one sublot. It means that that
Job 4 will be split into 16 equal sized sublots while the other jobs will not split into
sublots. That is,

K,=20-4=16 and K, =K, =K, =K, =1.

Now, we shall find the sizes of sublots for each job. Here it is obvious that for
Jobs 1, 2, 3 and 5 the sublot size equals to the total lot size of the job since these jobs
are not split into sublots and have only one sublot, which is equal to the lot. But Job

4 is split in to 16 sublots. Size of each sublot in Job 4 is

X, :&:E:Lzs where 1<s<16.
YK, 16

So by splitting only Job 4’s total lot, we obtain the sublots sizes in Table 4-5.
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Table 4-5 Sublot Sizes and Process Times Obtained in Step 1

SUBLOT Sublot Total Sublot Process Time Total Sublot Process Time
NO Size on M1 on M2
X, 12 36 ”
X, 17 17 19
X, 16 16 [
X, 125 125 125
X3, 125 125 1125
1, 125 128 125
Xo 125 125 125
X5, 125 125 11.25
. 125 128 1128
X, 125 125 1125
X, 125 125 125
x,, 125 125 1125
X 125 125 125
X0 125 125 125
X 125 128 11.25
X2 125 125 125
% 125 125 11.25
5, 125 125 11.25
Xy 125 125 1125
X, 5 20 30

As seen on Table 4-5, all sublots belong to Set I since the total process time

on M1 is less than the total process time on M2 for all jobs. That is,

Xp1o X125 X 35Xy 45X 45 X3 45 X4 45 X5 45 X645 X7 45
Setl=

X8.45%9 45 %1045 X11,4>X12,45 X13,.45 X14,45 X15.45 X164 X1 5

To find the sequence of sublots that provides the optimal makespan, we

determine OSet 1 by rearranging it as

X us X a9 Xa goXg a9 XegsXe 40X
1,4°%245X3 45 4 45 X545 X6 4527 45
OSet 1 =

Xg,.45%9 45 X10,45 X11,45X12,4> 13,45 X14,4> X154 X16,45 X135 X1 25 X1 50 Xy )
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Thus, the optimal sequence of sublots obtained by splitting Job 4 into 16 sublots is
equal to OSet 1. That is,

X145X2,45X345X4 45X545%6 45%7 45
oS, =

Xg,45%9.45%10,45X11,45X12,4> %1345 X14,4> X154 X16,4> X735 %1,25 X1 55X

If we apply the same procedure for Jobs 2, 3, 1 and 5, we obtain the following
optimal sequences of sublots obtained by splitting Jobs 2, 3, 1 and 5 into 16 sublots,

respectively. That is,

X125%225X325X4 2585 25X 25X7 25 X5 55 X9 25 X025
oS, =
X125 %1225 %1325 X14,25 15,25 X16,2 0 X135 X145 X155 X1 1
X1,39%239X335X435X535X¢35X735X5 35X 55X0 75
os; =
X135 %1235 %1335 %1435 %1530 X16,30 X125 X1 45 X1 55X )
X1 X215 X315 X4 15%515X615%7 15X 15X9 15 X015
oS, =
X110 X12,10 X13,10 %14, %1515 %1615 X135 X125 X145 X1 5

X 55%250X3 55Xy 55 X555 X655 X755, X555Xg 55X1055
oS, =

X155 %1255 X135 %1455 X155 X165 X135 X125 X1 45X

Makespan values of the sequences obtained above are as follows:

MOS, =466.25
MOS, =466.0625
MOS,; =498
MOS, =467.25
MOS; =466.25
It is obvious that A0S, has the smallest makespan value. Thus, at the first

step of the heuristic algorithm we obtain the following sublot sequence with a

makespan value of 466.025 time units.

X125%225X325 X425 X5 55X625X725Xg25X995X1025
oS, =

X11,25%12,29 %1325 X14,25 X152 5 X16,2 0 X1,35 X145 X1 55 X1 1
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Now we continue with second step of the heuristic algorithm in which two
jobs with the first and second highest processing times are only split into sublots. As
seen on Table 4-4, the job with the maximum process time is Job 4 and the job with
the second maximum process time is Job 2. According our heuristic approach, jobs
except Job 4 and Job 2 will have only one sublot, which is equal to the lot, Job 2 will
have 2 sublots, and Job 4 has the rest of the sublots. That is,

K =K,=K. =1
K,=2
K,=20-5=15

Now, we shall find the sizes of sublots for each job. Here it is obvious that for
Jobs 1, 3 and 5 the sublot size equals to the total lot size of the job since these jobs
are not split into sublots and have only one sublot, which is equal to the lot. But Job

2 is split in to 2 equal sized sublots. Size of each sublot in Job 2 is

0, _17

==2 —-__ =85 where1<s<2.
K2

5,2

For Job 4, we shall use 15 equal sublots. Size of each sublot in Job 4 is

K,

x.r,4

Sublot sizes and process times of all jobs are as shown in Table 4-6.
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Table 4-6 Sublot Sizes and Process Times Obtained in Step 2

SuBLOT Sublot Total Sublot Process Time Total Sublot Process Time
NO Size on M1 on M2
X, 12 36 2
X, 85 35 51
x,, 85 %5 51
X 16 16 64
Xp. 133 133 1197
x,, 133 133 1197
X, 133 133 1197
X, 133 133 1197
1, 133 133 1197
X, 133 133 1197
X., 133 133 1197
x,, 133 133 1197
Xo 133 133 1197
Xpea 133 133 1197
x,, 133 133 1197
Xyae 133 133 1197
b 133 133 1197
133 133 1197
X 133 133 1197
X ; - 20 30

As seen on Table 4-6, all sublots belong to Set 1. So Set 2 is empty. That is,

Set ] = X115 X125 %225 X35 X1 45X 45 X3 45 X4 45 X5 45 X6 45 X7 45

Xg,49%9 45 X10,45 %1145 X12,45 X13,45 X14,4> X15.45 X1 5

To find the sequence of sublots that provides the optimal makespan, we

determine OSet 1 by rearranging it as

X140 X249X3.45X445X5 45 X645 X7 45X8 45X9 45 X105
OSet 1 =

X4 X12,45 X13,45 X14,45 X152 X135 X1 55 X1 25 X5 55 Xy
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CHAPTER 5

A SOFTWARE PACKAGE FOR SOLVING THE PROBLEMS

When we create heuristic method, we also create software for user to create
test scenarios and reloading them to compare the result with mathematical model’s
result. This software is able to create scenarios depending on your choice of total
number of sublots, total number of jobs, sublot division approach etc.; runs heuristic
approach according to your heuristic choice; gives results in tabular and documented
forms and create a reloading file for user to reloading obtained heuristic algorithm’s
result to compare mathematical model’s one.

In this chapter, we briefly explain the implementation of this software and

usage of it.

5.1 Brief Details of the Software Implementation

This software is created for users to run and see the results of heuristic
algorithms in more user friendly way. Because of this software request, we coded in
C# using .NET technologies.

When we created user interfaces, we used DevExpress library which is a gui
library that creates ASP.NET UI controls that coder can use this library in his

application to enhance UI.
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When we coding the user interface for heuristic algorithms, we remain loyal
to object oriented programing basis. In Figure 5.1, you can see the package diagram

of this software.

common controller fileCreator
parser solver =
util

GAMS LOT STREAMING SOTWARE

Figure 5.1 Package Diagram for Software

Brief content explanations of these packages are as follows:

common: This package contains classes that are used by commonly all

packages. The class details of this package are given in Figure 5.2.

AOptimalset & Job & Joblndex & JobWithinteger... (¥
Abstract Class Class Class Class

Set 5 Sublot 5 Subset
OptimalSet2 5 OptimalSet1
Class Class

- AOptimalset - AOptimalset

MACHINE NUMBER 5 SetType
Enum

NonSplittingOptimalSet1 (¥ SplttingOptimalSet1 (¥
Class Class

- OptimalSet2 - Optimalset2 - OptimalSetl - OptimalSetl

Figure 5.2 Class Diagram of Package “common”
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controller: This package contains the classes to control sublot sizes according

to the selected heuristic approach. The details of this package are illustrated in

SublotsOfJobWi rocessTi izerControllerHandler S i izerController v JobControllerHandler v
Class Class Class
ProcessTimeUsingSublot... (¥ { Program N OptimalSetController v
Cl; 1 Static Cl; Cl;
SublotsOfT C rocessTi izerControllerHandler 5 == H = ! s
Class | [ —"
- SublotsOf o
ProgramOutputController (¥ SublotSizer S ProgramController 5
Class Class Class

() DobController

NoLotSplittedJobController ¥
Class

UobController ISublotSizer ¥
Interface Interface

LotSplittedJobController ¥
Class
- NoLotSplittedJobCortroller

Figure 5.3 Class Diagram of Package “controller”

fileCreator: This package is responsible for creating “*.dat” files and “*.doc”
files. “*.dat” files are used for reloading the heuristic results to the software to
compare the mathematical model’s results. “*.doc” files are detailed

documentation of results. The class content of this package is shown in Figure

54.
AGamsFileCreator (¥ | DatFileCreator ¥ DocFileCreator ¥
Abstract Class Class Class
- XtraForm
EqualSizedSublotsGamsFileCreator ¥ NonEqualSizedSubl FileCreator ¥
Class Class
-» AGamsFileCreator -» AGamsFileCreator

Figure 5.4 Class Diagram of Package “fileCreator”
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parser: This package contains the classes that are used for parsing “*.dat”
files. By this way, user may reach previously run heuristic results again. The

classes of this package are illustrated in Figure 5.5.

./ IGamsResultLogParser

AGamsResultLstParser (¥ | GamsResultLogParser ¥

Abstract Class Class
izedSublot: ResultLstParser ¥ NonEqualSizedSublotsGamsResultLstParser ¥ IGamsResultLogParser ¥
Class Interface
-» AGamsResultLstParser -» AGamsResultLstParser

Figure 5.5 Class Diagram of Package “parser”

solver: This package is responsible for running the heuristic algorithms and
generating results according to the user’s choices. The class detail of this

package is given in Figure 5.6.

Asolver
AbstractC

NonEqualSublotSizeSolver (©
Class

 ASoler = ASaher  ASaver  ASoher

Figure 5.6 Class Diagram of Package “solver”

ui: This package contains all the windows that are used by the user himself.

The classes of this package are shown in Figure 5.7.
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MultiRunForm ¥ ProcessTimeGenerator ¥ ReloadedResultsForm (¥
Class Class Class
- Form -+ Form

resultsForm 82 TableForm 82 WelcomeForm
Class Class Class
-b XtraForm - Form b XtraForm

IDocFileCreatorForm ¥ IRunForm
Interface Interface

DrawStyle
Enum

Figure 5.7 Class Diagram of Package “ui”

util: This package is utility package as it is understood by its name. It contains

all utility functions. The class content of this package is shown in Figure 5.8.

Util ¥
Class

Figure 5.8 Class Diagram of Package “util”

5.2 Software Usage

In this section, we briefly explain how the software is used. When the user
runs the software, the welcome window, shown in Figure 5.9, appears. This window
is for the user to make selection. If the user wants to create a scenario by entering the
total number of jobs, total number of sublots etc., Multi Run choice item is selected.

If the user wants to reload the multi run result, Reload Result item must be selected.

60



-
o5 Welcome M

Please Select Run Type:
" Multi Run
" Reload Results

Figure 5.9 Welcome Window

If the user select Multi Run choice, the window in Figure 5.10, appears. This
window is created for the user to create a scenario data and run heuristic algorithm.
Using Sublot Sizer box, user chose how he want to split lots. If user wants to split
lots equally, Equal Sized Sublots choice should be clicked. On the other hand, if the
user wants to split lots unequally, Non-Equal Sized Sublots radio button has to be

clicked.
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HOW MANY TIMES DOES THE PROGRAMM RUN FOREACH JOB-SUBLOT COMBINATION?

1

FIND SOLUTION

SOLUTION V| Generate GAMS Files

-
o) GAMS vs ALGORITHM . "rH» . ' N
SUBLOT SIZER TOTAL NUMBER OF JOBS LOT SIZE
Non-Equal Sized Sublots 5 Lot size is between
) below values

Equal Sized Sublots

TOTAL NUMBER OF SUBLOTS 2,21

Is Multiple of Job Number?
5,9

PROCESS TIME ON M1

Process time is between
min and max values

Min 1
Max 10

~
ouulE ﬁ
MULTIPLE-CUSTOM

PROCESS TIME ON M2

Process time is between
min and max values

Figure 5.10 Multi Run Window

As you seen in Figure 5-10, multi run window is opened with default values.
If the user wants to change the total number of jobs; Total Number of Jobs text box
must be set. If the total number of sublots is wanted to be set, Total Number of
Sublots text box is updated. If the user wants the total number of sublots as multiple
of total number jobs, as we do at our scenarios, then it is enough to check Is
Multiple of Job Number check box. Otherwise, the user may enter the total number
of sublots by separating them with comma as 5, 10, 15 etc. In this case for each job-
sublot pair, the heuristic is rerun and create scenario as combination of this entire
pair. If user wants to set the total lot size, Lot Size text field must be used. User may

enter maximum and minimum values of the total lot size by separating them with
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comma and code randomly generate the total lot size between these maximum and
minimum values. But again if the user wants the lot sizes as a multiple of the total
number of sublots, special notation may be used for this field. For example, if the
user wants the total lot size as threefold of the total number of sublots, it is enough to
set the lot size text field 3x. In the same way, if the user wants to test the heuristic
algorithm for each job-sublot pair with the lot sizes that are twofold and threefold of
the total number of sublots; it is enough to set this field 2x, 3x. For setting the
process time for each unit of a job on machines 1 and 2, Process Time on M1 and
Process Time on M2 values are set. In these fields, the user is allowed to set
minimum and maximum values of process times and, code randomly generate
process time for each unit of a job for each machine. Also, there exists a text box
called How Many Times Does the Program Run for Each job-Sublot
Combination. This value is used for generating different job-sublot pairs with newly
generated lot sizes and process times. Also there is a checkbox called Generate
GAMS Files that is used for automatically generating the GAMS code into user
desktop to run the mathematical model for each job-sublot pair. After completing all
these data entrance, Solution button is clicked to run the heuristic with these data.

As illustrated in Figure 5.11, for each job-sublot pair Gantt charts are created
after the solution button is clicked. The details of Gantt chart are given in Figure
5.12. In Figure 5.12, each sublot is represented with different color and big
rectangular boxes. The pop-up balloons on each sublot represent the sizes of
corresponding sublots. Also when the square small boxes on the left side of each
sublot represent the corresponding sublots’ processing start up time; the right hand
side one’s represent the corresponding sublots’ process completion time on that
machine. At this step if the user want to see or save the data details, performance
details, deviation comparisons of heuristic approach with mathematical model or

just makespan values in “*.doc” format, Show in *.doc format checkbox is clicked.
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— — A
e cil— = -

MULTIPLE-CUSTOM
| SUBLOT SIZER TOTAL NUMBER OF JOBS LOT SIZE PROCESS TIME ON M1 PROCESS TIME ON M2 |
(© Non-Equal Sized Sublots 5 Lot size is between Process time is between Process time is between
= ) below values min and max values min and max values
() Equal Sized Sublots ) ;
[ te F TOTAL NUMBER OF SUBLOTS 2,21 Min 1 Min 1
| Is Multiple of Job Number? Max 10 Max 10
5,9

HOW MANY TIMES DOES THE PROGRAMM RUN FOREACH JOB-SUBLOT COMBINATION?

| 1 1
: FIND SOLUTION
[¥] Generate GAMS Files [ "] show in *.doc Format
||
| Gantt Chart of Set 1.1

l | Gantt Chart of Set 2.1
|

|

\
[ |
I
I
|

¢ — = — = 4

Figure 5.11 Multi Run Form after Solution is Generated

a5 ALGORITHM GRAPH i

! ALGORITHM '

SUBLOTS'S START TIME ON MACHINE] SUBLOT'S STOP TIME ON MACHINE2

SUBLOT SIZE

)

—/ MAKESPAN
VALUE

0,000 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000
10,000 30,000 50,000 70,000 90,000 110,000 130,000 150,000 170,000 190,000 210,000
Time

o5 1 [ bos2 [l jos3 [l Jos+ [l Jo8S ‘

Figure 5.12 Gantt Chart Created by the Heuristic Algorithm
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If the user wants to compare the results of the heuristic algorithm with the
results of the mathematical model, Reload Results radio button in Figure 5.9 should

be selected and Reloaded Results Form appears as shown in Figure 5.13.

r ™y
o' ReloadedResultsForm E@&

.

RELOAD RUN RESULTS

Browse

Figure 5.13 Reloaded Results Form

Reloaded Results Form is opened empty as seen on Figure 5.13 and waits
the user to select the heuristic results that are generated by the heuristic itself, “*.dat”
files. After the user clicks the Browse button and selects the dat files, the content of

dat file is parsed and reloaded this form as shown in Figure 5.14.
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o ReloadedResultsForm ‘ = =
RELOAD RUN RESULTS

C:\Users\SAHIKA \Desktop \Heuri Show in *.doc Format

Load *.Ist file of Set 1.1 Gantt Chart of Set 1.1

Load *.Ist file of Set 2.1 Gantt Chart of Set 2.1

Figure 5.14 Reloaded Results Form after Dat Files are Reloaded

As seen in Figure 5.14, the user may load Ist files. If the user load Ist files,
both Gantt charts obtained by the heuristic algorithm and the mathematical model
solved by GAMS are shown and the user may see not only details of the heuristic
results, but also the details of mathematical model results. For example, if we reload
the results of the first set to this form, the Ist file is parsed and the details are shown

as in Figure 5.15.
ail ReloadedResultsForm T a =)

RELOAD RUN RESULTS

C:\Users\SAHIKA \Desktop \Heuri Browse Show in *.doc Format
EditX(k) | Edtclom) | Edt vk

W/ Load st fle of Set 1.1 Gantt Chart of Set 1.1 XK. | (size of kth sublot of job J)

B 4
Load *.Ist file of Set 2.1 Gantt Chart of Set 2.1 }; 5.000 ¢ %00000 QIOODOD
13 16.000 5.000
14 7.000 4.000
15 12.000 1.000
2.1 9.000 9.000 4.000
22 5.000 1.000
2.3 16.000 5.000
24 7.000 4.000
25 12000 1,000
31 9000 4000
32 5000 1000 L
| 33 16000 5000 I
34 7000 4000
35 12000 12000 1000
| 41 9000 9.000
I 42 5000 7000
43 16.000_ 16000 8000
44 7.000 6.000
45 12000 3.000
I 5.1 9.000 5.000
N 5.2 5.000 6.000
5.3 16.000  3.000
L . 5.4 7000 7.000 2000 S

i »

Figure 5.15 Reload Result Form after Lst File is Reloaded
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Here, if the user clicks on Gantt Chart of Setl.1 checkbox, Gantt charts
obtained by the heuristic algorithm and the mathematical model solved by GAMS
are obtained as in Figure 5.16.Again when creating doc file at the Setl.1 section, the
details of the results obtained by the heuristic algorithm and the mathematical model

solved by GAMS are analyzed.
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A A | 1
\sil’iz‘-\zjgﬂﬁ [ — 7 e e
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Figure 5.16 Gantt Charts Obtained by the Heuristic Algorithm and the
Mathematical Model Solved by GAMS
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CHAPTER 6

COMPUTATIONAL EXPERIMENTS

In this chapter, we describe our computational experiments to evaluate the
effectiveness and efficiency of the MILP models and the proposed heuristic
algorithms in solving the MPLS problem under consideration.

The mathematical models are coded and solved in GAMS 23.7. All
computational experiments are conducted on laptop with Intel Core 15 with 2.30 GHz
CPU and 4GB RAM under 64-bit Windows Home 7 Premium operating system.

This chapter begins with the brief explanation of comparative computational
results of the mathematical model and the heuristic algorithm for equal sublot case.
Then we switch our focus on unequal sublot case and again we explain the
comparative results.

For analyzing the performance of the mathematical model and heuristic
algorithm, we created different MPLS problems on two machines. We use 5, 10, 15,
20 and 25 number of jobs and for each job we assume total number of sublots as
twofold, threefold and fourfold of total number of jobs. As represented in Figure 6.1
and Figure 6.2, for each job-sublot pair, we create five samples. In the following
sections, we call data group to these five-sampled MPLS problems. Also we called
data group set to three-itemed set of data groups which each data group has same

number of jobs but different total number of sublots.

68



PROBLEM
INSTANCE
NO

S0

100
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2016,195
1445045
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2017677 1£27,159
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1863925
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DATA GROUP SET

Figure 6.1 Data Group and Data Group Set Representations for Unequal Sized

Sublots Case
10 15 2

Makespan Makespan Makespan
PROBLEM wochee | e e | ot ot | O AVG %
INSTANCE ou %DEV|| Heu %DEV o %DEV

Mathematical Mathematical Mathematical

Approach Mogal Approach Mogal Approach Moget DEV
erobiem 1 [0 3 =50 0 3 0z
Probiam 2 8050 0s 5210 00 5230 02
Problem 3 7200 a5 5500 35 %10 00
Eroblem 4 5530 04 6200 25 5310 00
Problem 5 4220 02 s20 00 6420 00

DATA GROUP | 14 || 01 15
DATA GROUP SET

Figure 6.2 Data Group and Data Group Set Representations for Equal Sized

Sublots Case

For qualifying the solution success, we compare the makespan values

obtained by the heuristic algorithm and the mathematical model with respect to

changing total lot size, sublot size etc., and we analyze the behavior of the heuristic

algorithm and the mathematical model for each data groups. We present makespan

values in tabular form as seen on Figure 6.1 and Figure 6.2 and, we will use color

code; green for normally completed mathematical model and yellow for the
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mathematical model that throws time limit or resource limit exceeded error. So for
the green ones we except that makespan of mathematical model obtained by GAMS
satisfy the optimal solution and for the yellow ones makespan of mathematical model
obtained by GAMS is near optimal.

We create our problem instances in three different scenarios. For the first
scenario, for each job-sublot pair, we assume total lot size is 20 and by changing the
processing time for one unit of job for each pair, we create totally 75 different MPLS
problem instances. For the second scenario, we use the same parameters of first
scenario except the total lot size. We randomly generate the total lot size between 2
and 20 for each job-sublot pair and we compute the result of MPLS problem on 75
different problem instances. For the last scenario, we create problem instances that
for each job-sublot pair, the processing time of each job on first machine is less than
or equal to the processing time of each job on the second machine and we compute
the result of 75 different MPLS problem. Thus, totally, 225 problem instances are
used to measure the effectiveness of the mathematical models and the heuristic

algorithms.

6.1 Comparative Computational Results of the Mathematical Model
and the Heuristic Algorithm for the Case with Equal Sized
Sublots

In this section, we compare the makespan values obtained by the
mathematical model and the heuristic algorithm for MPLS problem with equal sized
sublots.

Below, we compare the makespan deviation of heuristic algorithm from
mathematical model with respect to changing total lot size, sublot size etc. When we

choose the final makespan value of heuristic algorithm, for each instance of data, we
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pick the smallest average deviation from makespan of Step 1 and Step 2 of heuristic

approach’s solutions.

For example, assume we have the following makespan values: Table 6-1 for

Data Group 1; Table 6-2 for Data Group 2 and Table 6-3 for Data Group 3.

Table 6-1 Number of Jobs is 5 and Number of Sublots is 10

71

Step 1 of Heuristic Approach | Step 2 of Heuristic Approach %bl':ovilb'on “b?‘::::ﬂ *b?l«‘:i:::"
tween .
Step 2 of Mathematical Modal
Makespan of Makespan of Makespan Step 1 of "
Split All Lots of Jobs Equally | Split Two Jobs with the First of Heuristic Approach [ Heuriate Approach Makespan
Pick S ;nd'”' st e and §ee¥pd Hig‘h:s(. . Mathematical Model Make':’pan and Best of
Ic! malles unstic rocessi imes uristic a o
Approach :gpfoach Mathematical Mode M"";’::::;;rod" Stept m“p‘"
Makespani Step 2 Makespan
Problem 1 265,481 2686 2655 0,0 12 0,0
Problem 2 480,35 491 480,333333 0,0 22 0,0
Problem 3 327,01 327 3118 49 49 49
Problem 4 402 402,6 402 0,0 0,1 0,0
Problem 5 220,996 219 215 28 19 19
Average:15 Average:2,1 Average:13
Table 6-2 Number of Jobs is 5 and Number of Sublots is 15
Step 1 of Heuristic Approach | Step 2 of Heuristic Approach % Deviation *bt:::::" *;:::i::;‘o"
betwe: "
Makespan of Makespan of Makespan Step 1’:! _Sl_ep 2 of Malht:n.ahcal Modal
Split All Lots of Jobs Equally | Split Two Jobs with the First of Heuristic Approach Makes—;n and
. and = = and §ecopd Highest‘ ) Mathematical Model Makespan and Best of
ek Approach ) Am;rrlr:cshmms“ Mamem:::al Mode M‘"",;a“:::;:rm' Stept ':"“"‘“p‘“
Makespan! Step 2 Makespan
Problem 1 329,23 330,2 322,202222 22 25 22
Problem 2 349,285 3499 349272727 0,0 02 0,0
Problem 3 433525 434 433545455 0,0 0.1 0,0
Problem 4 438,982 409 393 17 41 41
Problem 5 291,98 292 283111111 3.1 3.1 3.1
Average:3 4 Average:2,0 Average:1,9




Table 6-3 Number of Jobs is 5 and Number of Sublots is 20

Step 1 of Heuristic Approach | Step 2 of Heuristic Approach %bl:eviaﬁon *b[:e“:i:::" *b[:::i:::"
tween .
Step 2 of Mathematical Modal
Makespan of Makespan of Makespan Step 1 of seg
Split All Lots of Jobs Equally | Split Two Jobs with the First of Heuristic Approach """,':::e::g;““ “";’nz‘“"
and and Second Highest Mathematical Model kesdpan and Best of
Pick Smallest Heuristic Processing Times Heuristic an .
Approach Approach Mathematical Mode Mam:;::::;r“' Stept l:::espan
Makespani Step 2 Makespan
Problem 1 534 534 5252 17 17 17
Problem 2 2865 302,02 285285714 0.4 59 0.4
Problem 3 346,006 346,008 346,062501 0,0 0.0 0,0
Problem 4 338,625 341,841 338,625 0.0 09 0.0
Problem 5 340 339,97 327 40 40 40
Average:1,2 Average:2,5 Average:1,2

In order to analyze performance of heuristic algorithm and mathematical
model, we calculate the deviation of heuristic algorithm’s makespan from
mathematical model’s makespan. As shown in Table 6-1, Table 6-2 and Table 6-3,
the makespan value of algorithm and heuristic approach increase when number of
sublot is increased, as expected. But the average percentage deviations of heuristic
algorithm from mathematical model are not increased linearly when numbers of
sublots are increased. Also heuristic algorithm’s Stepl provides 33% smaller average
percentage makespan deviation than heuristic algorithm’s Step 2 does. Also, 46.6%
of these problem instances, heuristic algorithm’s makespan value equals to
mathematical model’s makespan value. It means that 46.6% of these three data
groups, heuristic algorithm provide optimal solution.

Now, as we demonstrated above, we analyze comparative computational
results of mathematical model and heuristic algorithm for our three different

scenarios.
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For the first scenario, as expected, when number of jobs and number of
sublots are increased, the makespan of heuristic algorithm and mathematical model
are increased. The details of makespan values for changing total number of jobs are
given in Table 6-4, Table 6-5, Table 6-6, Table 6-7 and Table 6-8. As shown on
these tables, when number of jobs is increased, mathematical model throws time
limit or resource limit exceeded warn more often. When number of job is 5, two
problem instances provides near optimal solution ;but when number of job is 10 only
one problem instance provides near optimal solution and for 15, 20 and 25 numbers
of jobs all problem instances provides near optimal solution. That means when
number of jobs are increased, mathematical model provides the near optimal

solution, not optimal solution.

Table 6-4 Makespan values for S Number of Jobs for Scenario 1

PROBLEM || NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
10 20 0
v ﬁo‘,"" Makaspan ¥ ﬁor"" Makespan “ﬁc?" R
of Maksspan of Maksspan 5P M
Heuristic | o of Heuristic [ " of Heuristic of of
H Approach's| . Approach's | . . Approach’s | Heurtstic
Sten1 Approach’s | Mathematical Sten1 Approach’s | Mathematical Sten1 ADDroach” Mathematical
P step2 Model P Step2 Model P hp@tgpz 5] modgel
Problem 1 6855683 845643 S000 320 65 663,235 854
Problsm 2 80565 620 s218 520 52375 525287
Problem 3 559,953 630 S48 5820 45125 En-k--]
Problem 4 563317 50 5300 6200 53125 533958 551,
Problem § 423319 a3 5236 5240 6825 85957
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Table 6-5 Makespan values for 10 Number of Jobs for Scenario 1

PROBLEM |[ NUMBER
INSTANCE || OF NUMBER OF SUBLOTS
NO JOBS
2 E] @
Waespan Waespan Wasspan
of Ma:'apm " of M"::P" " of Maksspan |
Heuristic Heuristic of Heuristic Heuristic I:'Q" Heurtstic of of
1o Ap‘;::;'” Approacn's | Mathematical Ap‘;{::{"' Approacn's | Mathematical Apg{::;"’ A:;’g:gf.. Mathematical
step2 Model step2 Modal o Model
propiem 1 001312 010 100200008 809 20 = 8125 10008
Probiem 2 10213 102 1021518188 9513 320 852500001 1100805 1100747
Probiem 3 1213 122 121818215 11209 1210 121111117 %125 9141
Probiem & 1323626 132 132250002 10009 10030 1001 190805 1302091
Probiem 5 1261302 1270 - 13509 13510 195105265 1200625 1201414 1201111111
Table 6-6 Makespan values for 15 Number of Jobs for Scenario 1
PROBLEM || NUMBER
INSTANCE || OF NUMBER OF SUBLOTS
NO J0BS
% [ C3
Wakaspan Wakaspan Wakespan
of Ma:tapan " of M*::P" " of Maksspan | .
Heuristic Heurist of Heuristic Heurist of Heuristic of ’:'”.'
15 Approacn's [ ouiaio Approacn's | ,Heuristic Approach's | Heuristic
Stap1 pproach’s | Mathematical Stap1 Approach’s | Mathematical stapt Approach’s Mathematical
Stap2 Model Step2 Model Step2 Model
Probiem 1 R b R o [T N B T R ok T
Probiem 2 180125 1301288 19013333 14306 12821 16825 1920465 1920256 1920,
Probiem 3 162125 1623456 12142882 17306 17823 1751052532 1630435 1330708 1383,
Probiem & 170125 1701288 1701428838 16506 16503 1650689535 130092 130159 1
Froblem 5 122125 142997 142133333 1605 16328 1630740743 162092 1620708 1
Table 6-7 Makespan values for 20 Number of Jobs for Scenario 1
PROBLEM || NUMBER
INSTANCE || OF NUMBER OF SUBLOTS
NO JOBS
3 B £
Wakaspan Wakaspan Wakaspan
of par-all B of -l I of Masepan | m
Heuristic | O RPN | Heunistic Hoctatso o Heurtstic of aovpan
2 Approach’s Ap::oam’o Mathematical | 2PProch’s Ap:‘floama Mathematical | APErOCN'S | Heurtstic |y pn o oy
Step1 Step2 Modal Step1 Step2 Modal Stepl | Approacn's | Ty onay
Proviem 1 055 T B2 1905 B0 1982350
Probiem 2 180038 1801 1301666677 19305 19815 1980714286 2300384 2300153 2305565667
Proviem 3 2100883 2120 2104000149 19505 19505 1950333333 180344 1320153 1340
Proviem & 21205% 2102 2140952381 20906 20005 2093833 21032 2130153 2188571
Problem § 24205% w2 w2223 205 2015 20545654 210085 2101485 2105000001
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Table 6-8 Makespan values for 25 Number of Jobs for Scenario 1

PROBLEM|[ NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
50 75 100
Makes{pan Makespan Make?pan Makespan Make.«:pan Makespan
oF of Makespan o of Makespan o P Makespan
Heunstlc. Heuristic of HCUTISIIC. Heuristic of Heunsth of of
2 Approact’s APPIOach's | Approach’s | Mathematical | APRIO2C'S| HEUlIStie | pathematica
P p Step2 Model ep PP Model
Step2
2580,727 30204 3020,8 3024 2840,79T 2647293
Problem 1
Problem 2 2580,739 25816 2586,666667 3020,3 30204 3021,904766 2520,155 2520,492 2599,393939
Problem 3 2540715 25408 2544 23403 23416 2342222222 2900,179 2900,759 2967,681159
Problem 4 2639,946 2640 2628 24303 2480,8 2490 2960,167 2961,827 3150,985517
Problem § 2640,739 26416 2650,000001 2300,3 23200 2300,784314 2800,191 2800,759 2860

We start first scenario’s analysis by analyzing the performance

algorithm. If we look at Table 6-9, for only one data group, Step2

of heuristic

of heuristic

algorithm provides smaller average percentage makespan deviation than Stepl

provides. So when we compare the average percentage makespan deviation of

heuristic algorithm from mathematical model, we often use makespan value of

heuristic algorithm’s Step2 as heuristic algorithm’s makespan value.

If we analyze the performance of heuristic algorithm with respect to

mathematical model, we have to compare their success to reach optimal makespan

values. Below in Table 6-9, a blue bannered makespan deviation highlights the

makespan values that heuristic algorithm provides smaller makespan than

mathematical model does.
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Table 6-9 The Deviation of Heuristic Approaches from Mathematical
Model Solved by GAMS with respect to Changing Number of Jobs and Total

Lot Sizes for the First Scenario

NUMBER NUMBER
OF OF
JOBS SUBLOTS
0 15 70
DEVS of [ DEVsof | DEVsof | DEVof | DEVSof || DEVS of
5 Heuristic | Heuristic | Heuristic || Heuristic | Heuristic | Heuristic
Approach’s || Approach’s || Approachis| Approach’s || Approach’s || Approach’s
Stept Step2 Stept Step2 Stept Step2
0,0] 15 3.0 0,7] 0.1 17
2 30 30
10 DEVS of [ DEVSof || DEVsof || DEVof | DEVSof || DEVS of
Heuristic || Heuristic || Heuristic | Heuristic || Heuristic || Heuristic
Approach’s || Approach’s || Approach's|| Approach’s || Approach’s || Approach’s
Step1 Step2 Stept Step2 Step1 Step2
00 04 o.a]L 0.1 o.ql 04
3 45 60
15 DEVS%of || DEVs#of || DEVsof | DEV%of | DEVSof || DEVS of
Heuristic | Heuristic || Heuristic | Heuristic || Heuristic | Heuristic
Approach’s A h's || A h's || Approach’s
Stept Step2 Step1 Step2 Step1 Step2
00 01 o.6| 0,1 02| [ 02|
40 60 80
2 DEVS% of || DEVH#of || DEVSof | DEV%of | DEV%of || DEVS of
Heuristic Heuristic Heuristic Heuristic Heuristic Heuristic
Approach's|| Approach’s || Approach's|| Approach’s || Approach’s || Approach’s
Stept Step2 Stept Step2 Step1 Step2
0,1 o,z'! 0,1 0,1 02 02|
0 5 100
DEV% of DEV% of DEV% of DEV% of DEVS of DEV% of
25 Heuristic || Heuristic || Heuristic || Heuristic || =" 0 Heuristic
Approach's|[ Approach’s | Approachs|| Approach’s euris! h‘. Approach’s
Stept Step2 Stept Stepz || APProach’s Step2
Step1
0.1 0.1 0.1 0.1 -3,§| 4,ﬂ

As shown in Figure 6.3, when total number of jobs and total number of
sublots are increased, heuristic algorithm provides smaller makespan values than
mathematical model provides. If we look at Figure 6.3, when total number of jobs
increases, the average percentage makespan deviation of heuristic algorithm from
mathematical model decreases, even more it goes negative values. When total
number of jobs increases, mathematical model is unable to reach optimal makespan
even heuristic algorithm achieves it. If we analyze the average percentage makespan
deviation values, as seen on Figure 6.3, average percentage makespan deviation of

heuristic is 0.26% max; -1.23% min and -0.2% on average.
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Figure 6.3 Average Percentage Deviations for Changing Number of Jobs

for Scenario 1

For the second scenario, as expected, when number of jobs and number of
sublots are increased, the makespan of heuristic algorithm and mathematical model
are increased. Also, it is important to point out when number of jobs is increased,
mathematical model throws time limit or resource limit exceeded warn more often.
The details of makespan values for changing total number of jobs are given in Table
6-10, Table 6-11, Table 6-12, Table 6-13 and Table 6-14.

As shown in these tables, when number of job is 5, only one problem
instance provides near optimal solution; when job number is 10, 15, 20 and 25, all
sixty solutions are near optimal. That means when number of jobs are increased,

mathematical model provides the near optimal solution, not optimal solution.
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Table 6-10 Makespan values for 5 Number of Jobs for Scenario 2

PROBLEM| NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
10 15 20
Makespan Makespan Makespan
of Makespan of Makespan of Makespan
. of Makespan . of Makespan M. Makespan
Heuristic Heuristic of Heuristic Heuristic of Heuristic of of
5 Apg;oa:h £ Approach’s | Mathematical Ap;;‘roa:h s Approach's N Apg:oa:h S Heunstlt:! .
ep Step2 Model ep Step2 Model ep P tep2 Model
Problem 1 265,481 268,86 329,23 330,2 534 534
Problem 2 480,35 491 349,285 3499 2865 302,02
Problem 3 327,01 327 433,525 434 346,008 346,098
Problem 4 402 4026 438,982 409 338,625 341,841
Problem § 220.996 219 291,98 292 340 339.97

Table 6-11 Makespan values for 10 Number of Jobs for Scenario 2

PROBLEM| NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
20 30 40
Make?pan Makespan Make:pan Makespan Make?pan Makespan
or of Makespan or of Makespan or P Makespan
Heuristic Heuristic of Heuristic Heuristic of Heuristic of o
10 Ap;;troa:h's Approach’s | Mathematical ‘,gt ; 3| App 's N Apg:oa:h's Heunstlc‘ N
ep Step2 Model ep Step2 Model ep P tep2 *| Model
Problem 1 597,985 598 588,5715 665,75 665,85 664,1765 562,21 563,809 562,6429|
Problem 2 708,9 7175 709 440,98 44455 440,6668 839,994 855,08 839,5714
Problem 3 642,976 6843 637,75 839,84 840 840,111 550 550,214 549,5333|
Problem 4 699,814 7044 699,111 497,861 498,95 4976667 48125 489,03 4815714
Problem § 936.505 942 9366 55527 561 566.3 726.375 727.186 726.4483
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Table 6-12 Makespan values for 15 Number of Jobs for Scenario 2

PROBLEM| NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
30 45 60
Makespan Makespan Makespan Makespan Makespan
°.f . of Makespan °.’ . of Makespan °f Makespan Makespan
Heuristic Heuristic of Heuristic Heuristic of Heuristic of of
15 Approach’s| , ‘s Approach’s| , 8 N Approach’s| Heuristic N
Step1 Step2 Model Step1 Step2 Model Step1 PP Model
Step2
760,625 781 781,25 996,3667 95,232 98,2 95,737

Problem 1
Problem 2 1091,498 1094,954 1091563 898,107 899,809 8982174  1297,186 1304,86 1297,195
Problem 3 1076,084 1084,475 1076,357 1034,22 1037,492 1034,6 1164,03 1169,88 1164,462
Problem 4 1073,375 1079,045 10734 1092342 1092,757 1092,333 786,368 787,199 790,4444
Problem § 869,625 874,97 869,4286 1120,342 1130,08 1120,345 1039,308 1040,608 1039,833|

Table 6-13 Makespan values for 20 Number of Jobs for Scenario 2

PROBLEM| NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
40 60 80
Makes'pan Makespan Make:pan Makespan Make:pan Makespan
or of Makespan or . of Makespan or P Makespan
Heuristic | Heuristic of Heuristic | Heuristic of Heuristic of of
2 Apg:oa:h s Approach’s | Mathematical Apg:oa(;h s Approach’s| Mathematical Apg:oa::h s AHElr‘::élr::'s {0
i Step2 Model ep Step2 Model ep p‘;tepz Model
Problem 1 1327,556 13327 1328 1183,905 1184 1179,467 1285 12871 1287,252
Problem 2 1127,88 1128 1127952 1293224 1294275 1293,333 1500,226 1513,9 1504,1
Problem 3 1307,996 1308 1304,455 111,14 11186 111,778 1500,226 1513,9 1504,1
Problem 4 1251,458 1260 12519 114227 1149 1142,583 1178,032 11839 1180,909
Problem 5 1381.232 1386 1381.421 1284.16 1292 1285.854 1296.988 1298.838 1297.919|

Table 6-14 Makespan values for 25 Number of Jobs for Scenario 2

PROBLEM| NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
50 75 100
Makesfpan Makespan Make:pan Makespan Make:pan Makesnan
or of Makespan or of Makespan or P Makespan
He"""'c. Heuristic of Heunstlcl Heuristic of Heunstlcl of of
25 Apgroa;:h s Approach’s | Mathematical Apgroa:h s Approach’s| Mathematical Apgroa:h s AHe:;';;;ﬁs
tep Step2 Model tep Step2 Model tep "‘;[epz Model

Problem 1 1321,182 1325 132235 1976,098 1976,8 1979,25 1635,029 1641,175 1661,25
Problem 2 1420,344 1421,52 14224 2016,196 20164 2017,677 1427,159 1428,293 1434111
Problem 3 1572144 15756 15725 1445046 1452 14485 1856,174 1863,925 1860,615
Problem 4 1236,984 12394 1238 1457,158 1467 1461 1924174 1925,44 1996,235|
Problem 5 1436.958 1437 14335 1383.902 1388 1386 1772.04 1772.201 1776.5

Also, it is important to point that, for

e Number of jobs 10; 2 problem instances on 40 number of sublots

e Number of sublots 15; 1 problem instances on 15 number of sublots and 2

problem instances on 60 number of sublots
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e Number of sublots 20; 2 problem instances on 60 number of sublots and 5
problem instances on 80 number of sublots
e Number of sublots 25; 3 problem instances on 50 number of sublots; 5
problem instances on 75 number of sublots and 5 problem instances on
100 number of sublots
heuristic algorithm provides 0.1% average smaller makespan value than
mathematical model does. Table 6-15 presents the average percentage makespan
deviation of heuristic algorithm from mathematical model with respect to changing
number of jobs and total lot sizes. Blue bannered makespan deviations show that, on
average, heuristic algorithm provides smaller makespan than mathematical model
provides for that data group. According to results, it is obvious that when number of
sublots is increased, mathematical model is unable to reach optimal solution even

heuristic algorithm reaches it.
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Table 6-15 The Deviation of Heuristic Approaches from Mathematical
Model Solved by GAMS with respect to Changing Number of Jobs and Total

Lot Sizes for the Second Scenario

NUMBER NUMBER
OF OF
JOBS SUBLOTS
10 15 20
DEV?S (_7' DEV‘_)& 91 DEV‘_N 91 DEVS_S of DEV% of DEV% of
g . . Heuristic Heuristic
5 Apprsoach Apprsoach Apprsoach Ap[;f:ac Approach's Approach's
Stept Step2 Stept Step2 Stept Step2
15 21 34 2,0 12 25
20 30 40
SEVae of
DEV% of DEVS% of pevieotl  pevee ot DEV3% of DEV3% of
10 o . . Aeu Heuristic Heuristic
o s o s o s p":'f:": Approach's Approach's
Stept Step2 Stept Step2 Stept Step2
0.5 1,0 0.1 05 -0.1 0.8
30 45 60
DEVE of [~ DEvw ol |~ DEVwol | DEVeoll peveer | DEVSor
15 o . . Aeuns Heuristic Heuristic
PP PP PP i e Approach's Approach's
Stept Step2 Stept Step2 Stept Step2
0,0 04 0.0 03 -0.1 03
40 60 80
SEV of
DEVs o~ Devseor | Devkol | DEVE ol oeyser | pEvaeor
20 o . . Aeurls Heuristic Heuristic
PP PP PP Pheae Approach's Approach's
Stept Step2 Stept Step2 Stept Step2
0.0 03 0.0 04 108 03
50 75 100
DEVS% of DEV3 of DEV3% of DEVS% of DEV% of DEV% of
q . . Heuristic Heuristic
25 Apprsoach Apprscuch Apprscuch Ap,;:ac Approach's Approach's
Stept Step2 Stept Step2 Stept Step2
0.0 0.2 -0.1 0.2 -01 -0.1

If we analyze behavior of average percentage makespan deviation of heuristic
algorithm from mathematical model, Figure 6.4 shows that when number of jobs is 5,
average percentage makespan deviation is approximately 1.56% but when total
number of jobs is 25 average percentage makespan deviations is approximately -0,
66%. So it is obvious that when total number of jobs is increased, average percentage
makespan deviation of heuristic algorithm from mathematical model is decreased. It
means when total number of jobs is increased, heuristic algorithm provides better
makespan for this scenario. Moreover, if we analyze the performance of heuristic
algorithm when total number of jobs is fixed and total number of sublots changed,
we don’t reach as certain conclusion as previous sample. If we look at Table 6-15,
when total number of jobs is fixed and number of sublots is increased, the average

percentage makespan deviation of heuristic algorithm from mathematical model
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neither continuously increasing, nor continuous decreasing. It behaves randomly for

that case for this scenario.
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Figure 6.4 Average Percentage Deviations for Changing Number of Jobs

for Scenario 2

For the third scenario, as for the second scenario, when number of jobs and
number of sublots are increased, the makespan of heuristic algorithm and
mathematical model are increased. The details of makespan values for changing total
number of jobs are given in Table 6-16, Table 6-17, Table 6-18, Table 6-19 and
Table 6-20. Again as in the previous scenarios, normal completed mathematical
model’s makespan times are represented as green and time limit or resource limit
exceeded makespan times are represented in yellow. It is obvious that when number
of jobs is increased, mathematical model fails to reach optimal solution. Also, the
same results are received when number of jobs is fixed and number of total sublots is
mcreased. As shown in Table 6-21, when total number of sublots is threefold of total
number of jobs approximately 40% of mathematical models are unable to provide

optimal solution.

82



Table 6-16 Makespan values for 5 Number of Jobs for Scenario 3

PROBLEM || NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
10 15 20
cs’pm Mahospan " o:pm Makospen " o:pm M
akaspan
of Maksspan of M Maksspan
Heuristic Heuristic Heuristic of
Approacn's| Heuristic of Approach's | Heuristic of Approacn’s | Heuristic of
5 step1 Approach’s | Mathematical Stept Approach’s | Mathematical Stap1 ADDsoeci’s
Step2 Model Step2 Model P‘;wz Model

Problem 1 255 20 363,158 = 3%7.125 %72 367.1
Problem 2 282643 282 29548 297 7,076 308541
Problem 3 241314 288 435455 3 @55 855258
Problem 4 28014 20 203901 04 315375 319038
Problem 5 264

Table 6-17 Makespan values for 10 Number of Jobs for Scenario 3

PROBLEM || NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
20 £ 2
Wawsspan Waksspan Waaspan
of Ma:'apm " of M!::W‘ " of Makespan |
Heuristic Heuristic Heuristic of
10 || approacn's| Heunstic of Approach's | Heuristic of Approach’s " of toat
P';“p‘ Approach’s | Mathematical P@,am Approacn’s | Mathematical ppstcpl A:;:::’I‘c'o
Step2 Model Step2 Model Model

Problem 1 3 505 4353559 719232 72185
Problem 2 531252 5903 531,3333 551658 5525
Problem 3 679,564 652 677,555 826,651 332
Problem 4 2847 529 5245556 453335 4336
Problem § 26339 721 268 027 4522

Table 6-18 Makespan values for 15 Number of Jobs for Scenario 3

PROBLEM || NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
EJ I3 E3
v ﬁo',p‘" Maksspan “50?" Maksspan uiﬁo:pan e
“ of M of Maksspan bl I Y1
unistic |y ounstic of Hourstlo | o rstic of Heurltic of
s Apps;“;" ® Approach’s | Mathematical Apg:oa:m ° Approach’s | Mathematical Ap‘;{“‘"‘ ® A““‘":gf.
P Step2 Mogel P Step2 Model P el
Problem 1 839825 83433 3383 675,375 676,205 6754 69507 8334
Problem 2 73525 73 7354001 397258 38472 975 1053,197 1053,132
Problem 3 119128 119504 1915 3302% 8315 3302533 116297 1164602
Problem 4 955 90208 9955655 742 575,051 8742 765095 7671
Problem § 938 335328 3382 119573 1199 341 1195 629 827151 227

Table 6-19 Makespan values for 20 Number of Jobs for Scenario 3

PROBLEM || NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
&0 &0 3N
Wasspan Wasspan Wasspan
o[ makespan o | Maksspan o Mseepan
Heuristic | | O Makspan | Houristic Homstie Makoepan | Heuristic of Makospan
2 Approach’s sunste Approach's | Heuristic Approach's | Heuristic
Stept Approach’s | Mathematical Stept Approach’s | Mathematical Stept Approach's Mathematical
Stap2 Model Step2 Model step2 Model
Problem 1 1085319 10355 1085429 1525,139 1529 1525355 120413 1204353
Problem 2 11233 12775 1123888 12653244 1270.375 12587 149114 1491505
Problem 3 1384616 1330 1384313 1357.303 135745 1357818 1155922 1157218
Problem 4 178232 11793 178298 1454135 1455, 1854308 1112082 113088 11134
Problem 5 13121 13156 11 93305 g 905 9 3 207 65




Table 6-20 Makespan values for 25 Number of Jobs for Scenario 3

PROBLEM || NUMBER
INSTANCE OF NUMBER OF SUBLOTS
NO JOBS
50 75 100
Wawsspan Wawsspan Mawespan
c’f Maksspan c?‘ Makaspan clf Maksspan
. of Maksspan . of Maksspan . M
Heuristic Heurtstic of Heurlstic Heurtstic of Heurtstic of of
25 Approach's| . " Approach’s | , " Approach’s | Heuristic
Stap1 Approach’s | Mathematical stap1 Approach’s | Mathematical Stap1 ADDIOSCR'S Mathematical
Step2 Model Step2 Model “F‘;wpz Model
Problem 1 1637,136 16413 1637263 1711089 17113 17114 1257.045 12634
Problem 2 1282,168 12852 128255 1564171 1555,14 1557 1520072 1521802
Problem 3 1573,174 1577 15744 1653059 1653.44 1653036 1815029 131604
Problem 4 1059,163 1051.55 ¥ 1490176 14313 15£3.935 158395
Problem S 1561322 15556 2

As seen on Table 6-21, when number of total number of jobs increases, the
average percentage makespan deviation of heuristic algorithm from mathematical
model decreases, almost they are same, 0%. It shows that when total number of jobs
and total number of sublots increase, average percentage makespan deviations are
close to each other, as well they are same. Also, number of blue bannered makespan
values is increased when total number of jobs is increased as in the second scenario,

but this time deviation is negligible.
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Table 6-21 The Deviation of Heuristic Approaches from Mathematical Model
Solved by GAMS with respect to Changing Number of Jobs and Total Lot Sizes

for the Third Scenario

NUMBER NUMBER
OF OF
JOBS SUBLOTS
10 15 20
DEV% of DEV% of DEV% of DEV% of
Heuristic Heuristic Heuristic Heurisfic 35“"'?: :: 353"’:: ::
5 Approach’ Approach’ Approach’ Apﬁroac Approach's Approach's
s s s 's
Stept Step2 Stept Step2 Step1 Step2
19 22 03 09 04 0,7
20 30 40
DEV% of DEV% of DEV% of DEV% of
Heuristic Heuristic Heuristic Heurisfic fo?::‘: 35;:::
10 Approach’ Approach’ Approach’ Appfoac Approach's Approach's
S S s h's Stept Step2
Step1 Step2 Step1 Step2
0.1 11 0,0 03 0,0 05
30 45 60
DEV% of DEV% of DEV% of DEV3% of
Heuristic Heuristic Heuristic Heurisfic 35::::: 35:'::::
15 Approach’ Approach’ Approach’ Appfoac Approach's Approach's
S S s h's Stept Step2
Step1 Step2 Step1 Step2
0.0 04 0,0 02 0,0 01
40 60 80
DEV% of DEV% of DEV% of DEV% of
Heuristic Heuristic Heuristic Heurisfic 35“‘,'?::: 35:::::
20 Approach’ Approach’ Approach’ Ap;l)‘roac Approach's Approach's
s s s 's
Stept Step2 Stept Step2 Stept Step2
0.0 02 0,0 0.1 -0.1 0,0
50 75 100
DEV% of DEV% of DEV% of DEV% of
Heuristic Heuristic Heuristic Heurisfic 35:{?::: 3::/:: :‘:
25 Approach’ Approach' Approach’ Ap;')‘roac Approach's Approach's
s s s 's
Stept Step2 Stept Step2 Stept Step2
0.0 02 0.0 0.0 041 0.0

6.2 Comparative Computational Results of the Mathematical Model
and the Heuristic Algorithm for the Case with Unequal Sized
Sublots

In this section, we compare the solutions obtained by the mathematical model
and the heuristic algorithm for MPLS problem with unequal sized sublots.

For the first scenario, as expected, when the number of jobs and the number
of sublots are increased, the makespan values obtained by heuristic algorithm and the

mathematical model are increased as shown in Table 6-22. Also Table 6-22 shows
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that mathematical model provides the optimal makespan value for all problem
instances.

If we analyze the average percentage makespan deviation for changing total
number of jobs, as you seen in Figure 6.5, the average percentage makespan
deviation of heuristic algorithm from mathematical model is 1.5% maximum, 0%
minimum and 0.38% on average. We conclude that Scenariol’s heuristic approach

provides very close solution to optimal solution.

BAVG % DEV

NN
S W

Total Number of Jobs
S o

()]

Average Percantage Deviaiton

Figure 6.5 Makespan Deviation’s Average Percentage for each Total Number of

Jobs for Scenario 1

Moreover, if we analyze Table 6-22, when total number of jobs is 10, 15, 20
and 25 average percentage makespan deviation of data group sets is 0.1%, but when
total number of jobs is 5, average percentage makespan deviation of data group set is
1.5%. So we conclude that when total number of jobs is increased, average
percentage makespan deviation of heuristic algorithm from mathematical model
decreases, mostly. But we can’t conclude that when total number of sublots is
increased, the average makespan percentage deviation doesn’t always increases or
decreases for all data group sets. For example for data group set with total number of
jobs is 5, when number of sublots is increased from two fold to three fold of number
of jobs, average percentage makespan deviation decreases but when number of

sublots is increased from three fold to fourfold of number of jobs; average
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percentage makespan deviation decreases. On the other hand, for data group set with
total number of jobs is 20, when number of sublots is increased from two fold, three
fold or four fold of number of jobs; average percentage makespan deviation is same,
0%. So it is concluded that when total number of jobs is fixed and total number of
sublots are increased as a multiple of total number of jobs, the average makespan

percentage deviation neither decreases, nor increases; behaves unpredictably.
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Table 6-22 Scenario 1’s Makespan Values for MPLS Problem with
Unequal Sublot

NUMBER
JoBS

NUMBER OF SUBLOTS

PROBLEM|

AVG

For the second scenario, as expected, when number of jobs and number of
sublots are increased, the makespan of heuristic algorithm and mathematical model

are increased as shown in Table 6-23. Here, it is important to notice that only one
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mathematical model throws the time limit or resource limit exceeded warn and it is
highlighted in yellow in Table 6-23. So except that problem instance, we presume
that mathematical model’s makespan is optimal. Also we conclude that heuristic
algorithm provides very close solution to optimal solution. If we look at Figure 6.7,
average percentage makespan deviation of heuristic algorithm from mathematical
model is 1.1% maximum, 0% minimum and 0.5% on average. So for Scenario2, we
conclude that heuristic algorithm provides very close solution to optimal solution.
Moreover, if we look through the average percentage makespan deviation of
heuristic algorithm from mathematical model, in Table 6-23, we conclude that when
number of job is fixed and number of sublots is increased by multiple of number of
jobs, the behavior of average percentage deviation is not always increased or

decreased. Average percentage deviation’s behavior is unpredictable.
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Table 6-23 Scenario 2’s Makespan Values for MPLS Problem with
Unequal Sublot

NUMBER
OF
JOBS

NUMBER OF SUBLOTS

5

15

For example if we look at the Figure 6.6, when number of jobs is 5; average

percentage makespan deviation is neither increasing nor decreasing when the total
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number of sublots are increasing as multiple of total number of jobs. The same
situation is observed for the problem instances with total number of job is 10, 15, 20

and 25 as shown in Table 6-23.
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- 0.0 0,3

5 10 15

Number of Sublots

Figure 6.6 Average Percentage Deviation for Increasing Total Number of

Sublots when Total Number of Jobs is 5
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Figure 6.7 Makespan Deviation’s Average Percentage for each Total

Number of Jobs for Scenario 2

For the third scenario, as expected, when number of jobs and number of
sublots are increased, the makespan of heuristic algorithm and mathematical model
are increased as shown in Table 6-24. Also it is important to notice that all cells in
are highlighted in green. It means that the mathematical model gives us the optimal

solution for all problem instances in this scenario. If we analyze the average
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percentage makespan deviation for changing total number of jobs, as you seen in
Figure 6.8, the average percentage makespan deviation of heuristic algorithm from
mathematical model is 1.0% maximum, 0% minimum and 0.26% on average. So as
in Scenario2, we conclude that Scenario3’s heuristic algorithm provides makespan

that is very close to optimal makespan.

BAVG % DEV
25 0,0
w
S
< 20 0,0
(=}
3 0,1
_Q bl
£ 15
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= 10 ’
S
5 1,0

Average Percantage Deviation

Figure 6.8 Makespan Deviation’s average Percentage for each Total

Number of Jobs for Scenario 3
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Table 6-24 Scenario3’s Makespan Values for MPLS Problem with
Unequal Sublot

NUMBER OF SUBLOTS

PROBLEM
INSTANCE]

Problem 2
Problem 3
Problem 4
Problem §

AVG
DEV

AVG
DEV

AVG
DEV

AVG
DEV
AVG %
DEV
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If we analyze the average percentage makespan deviations of heuristic
algorithm from mathematical model, we conclude that when number of jobs and
number of sublots are increased, the average percentage makespan deviation
decreases. Below; Figure 6.9, Figure 6.10 and Figure 6.11 shows that average
percentage makespan deviation of heuristic algorithm from mathematical model
decreases when total number of sublots increases as multiple of number of jobs. As
seen Figure 6.9, when total number of jobs is 5 and total number of sublots is one
fold of number of jobs, average percentage makespan deviation is 2.7%, but when
total number of jobs is 25 and total number of sublots is one fold of number of jobs
average percentage makespan deviation is 0%. The same situation is observed when
total number of sublots is twofold, three fold and four fold number of jobs in Figure
6.10 and Figure 6.11. So we conclude that Scenario3’s average percentage makespan
deviation is predictable and this value decreases when total number of jobs and total

number of sublots are increased.

BAVG DEV

A:Total Number of Jobsis5,
Total Number of Sublotsis 10

B: Total Number of Jobsis 10,
Total Number of Sublotsis 20

C: Total Number of Jobs is 15,
Total Number of Sublotsis 30

D: Total Number of Jobs is 20,
Total Number of Sublots is40

E: Total Number of Jobsis 25,
Total Number of Sublotsis 50

[ c o E

Figure 6.9 Makespan Deviation’s Average Percentage when Total

A

Number of Jobs Increases and Total Number of Sublots is Two Fold of Total
Number of Jobs
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BAVG DEV

A:Total Numberof Jobs is5,
‘Total Number of Sublotsis 15

8: Total Number of Jobs is 10,
‘Total Number of Sublotsis 30

C:Total Number of Jobsis 15,
Total Number of Sublotsis 45

D: Total Number of Jobs is 20,
‘Total Number of Sublotsis 60

E: Total Number of Jobs is 25,
‘Total Number of Sublotsis 75

Figure 6.10 Makespan Deviation’s Average Percentage when Total
Number of Jobs Increases and Total Number of Sublots is Three Fold of Total
Number of Jobs

mAVG DEV.

A:Total Number of Jobs is5,
Total Number of Sublots s 20

B: Total Number of Jobs is 10,
Total Number of Sublots is 40

C: Total Number of Jobsis 15,
Total Number of Sublots s 60

D: Total Number of Jobs is 20,
Total Number of Sublots is 80

E: Total Numberof Jobs is 25,
Total Number of Sublots s 100

Figure 6.11 Makespan Deviation’s Average Percentage when Total
Number of Jobs Increases and Total Number of Sublots is Four Fold of Total
Number of Jobs
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CHAPTER 7

CONCLUSION

In this study, we consider a multi-product lot streaming problem on a two-
machine flowshop environment in which all products are processed by Machine 1
and then by Machine 2. Most of the current studies in the literature of the multi-
product lot streaming problem assume that the number of sublots for each product is
known in advance, and determines the size for each sublot of every product and the
sequence of sublots of all products. As opposite of the current studies in the
literature, we assume that the total number of sublots for all products is known
advance and our problem is to determine the number of sublots for each product, the
size of each sublot and the sequence of sublots that gives the minimum makespan.
We investigate the multi-product lot streaming problem for both equal and unequal
sized sublots cases. For this purpose, we develop mixed integer linear mathematical
models and heuristic algorithms for solving each case and compare these
mathematical models with heuristic algorithms.

For unequal sublot case, the experimental studies show that almost all
problem instances mathematical model provides optimal solution and thus, we were
able to compare the heuristic algorithm’s solution with the optimal solution. This
comparison shows that heuristic algorithm provides solutions with makespan values
that deviate 0.38% from the optimal solution, which is almost optimal. Also, as the
total number of jobs increases, the average percent deviation of the makespan of the
heuristic algorithm from the optimal makespan decreases. As the total number of

jobs increases, the solution time of the MILP model by GAMS increases. However,
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the heuristic algorithm provides the solution in almost less than a second. Thus, for
real time implementation, the solutions obtained by the heuristic algorithm can be
used.

For equal sublot case, our three different scenarios showed that when the total
number of jobs increases, the mathematical model cannot be solved optimally by
GAMS within the allowed time limit or resource limit. However, the heuristic
algorithm provides solutions in a short time.

Finally, our results of experiments show that the heuristic algorithm provides
near-optimal solutions for both equal and unequal sublots cases. When we compare
the solutions of the heuristic algorithms for equal and unequal sublots cases, we can
easily conclude that splitting sublots unequally provides more near-optimal solutions
than splitting them equally since every lot may not be split into equal sublots. For
example, when the total lot size is 15 units and we split this lot into 4 equal sublots,
each sublot size becomes 3.75 units and it is not possible. Only integer number sized
sublots are meaningful.

Lot streaming problems with a total number of sublots for all jobs are not yet
extensively studied. Thus, there is considerable number of issues remaining open for
future research. Several extensions of our study can be investigated. One of them is
that our problem studied in this study can be extended for more complex machining
environments such as flow shops having more than two machines, jobs shops, and
open shops. Study of the same problem for different performance measures such as
total or maximum lateness, total completion times, and the number of tardy jobs

would be some extensions.
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