
  

 

 

ANALYSIS OF HYBRID DYNAMICAL SYSTEMS WITH AN APPLICATION 

IN BIOLOGICAL SYSTEMS 

 

 

 

 

 

 

 

 

NOURA A. ABDULRAZAQ TAHAR  

 

 

 

 

 

 

JANUARY 2017 



  

ANALYSIS OF HYBRID DYNAMICAL SYSTEMS WITH AN APPLICATION IN 

BIOLOGICAL SYSTEMS 

 

 

 

  

A THESIS SUBMITTED TO 

 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED 

  

SCIENCES OF 

 

ÇANKAYA UNIVERSITY 

 

 

BY 

NOURA A. ABDULRAZAQ TAHAR 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

 

DEGREE OF  

 

MASTER OF SCIENCE IN 

 

THE DEPARTMENT OF  

 

MATHEMATICS AND COMPUTER SCIENCE 

 

 

JANUARY 2017



  

 



  

iii 

 

 

 



  

iv 

 

ABSTRACT 

 

ANALYSIS OF HYBRID DYNAMICAL SYSTEMS WITH AN APPLICATION 

IN BIOLOGICAL SYSTEMS  

 

Tahar, Noura A. Abdulrazaq 

M.Sc., Department of Mathematics and Computer Science 

Supervisor: Assoc. Prof. Dr. Fahd JARAD 

Co-Supervisor: Dr. Nurgül GÖKGÖZ  KÜÇÜKSAKALLI 

January 2017, 52 Pages 

 

There are many complex dynamics appearing in nature, science, and technology. One of 

the most useful approaches to model these phenomena is hybrid dynamical systems. 

Hybrid dynamic systems describe the interactions of continuous and discrete variables 

regulating each other. In this work, we have looked at different types of hybrid systems 

that have been used in the modeling of biological systems. We have also looked at the 

stability analysis of these systems and have given an example of a subclass of hybrid 

piecewise linear systems and checked the stability of these systems through an example.  

 

Keywords: Hybrid dynamic models, a piecewise linear system of biological systems, 

the stability of models. 
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ÖZ 

 

BİYOLOJİK SİSTEMLERDE BİR UYGULAMA İLE HİBRİT DİNAMİK     

SİSTEMLERİN ANALİZİ 
 

 

Tahar, Noura A. Abdulrazaq 
 

Yüksek Lisans, Matematik-Bilgisayar Anabilim Dalı 

Tez Yöneticisi: Doç. Dr. Fahd JARAD. 

Ortak Tez Yöneticisi: Dr. Nurgül GÖKGÖZ  KÜÇÜKSAKALLI 

Ocak 2017, 52 sayfa 

 

Doğada, bilimde ve teknolojide ortaya çıkan pek çok karmaşık dinamik vardır. Bu 

olayları modellemek için en kullanışlı yaklaşımlardan biri hibrit dinamik sistemledir. 

Hibrit dinamik sistemler birbirini düzenleyen sürekli ve süreksiz değişkenlerin 

etkileşimini tarif eder. Bu çalışmada, biyolojik sistemlerin modellenmesinde kullanılan 

farklı hibrit sistemlere baktık ve bu sistemlerin bir altsınıfı için örnek verdik, parçalı 

doğrusal sistemler ve bir örnek üzerinden bu sistemlerin kararlılığını kontrol ettik. 

 

Anahtar Kelimeler: Hibrit dinamik sistemleri modelleri, parçalı doğrusal biyolojik 

sistemler, modellerin kararlılığı. 
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CHAPTERSCHAPTER 1 

1. INTRODUCTION 

1.1 Background to the Study 

Constructing mathematical models of biological systems is an important approach to 

understanding many dynamic systems. They can be used for numerical simulations in 

order for us to understand the behavior of biological systems in their initial conditions. 

Recent developments of the mathematical models of biological systems in [1] have 

given us the best models for us to be able to investigate the future behavior of biological 

systems by bifurcation theory. The authors in [1] applied its mathematical model to the 

complex interactions of the tumor-immune system and [1] explained the construction of 

the model as a tumor system consisting of killer cells and immune systems consisting of 

cytotoxic T lymphocytes (CTLs). 

The first idea of the mathematic modeling was applied to the logistic equation which 

shows that the growth of cells is exponential with respect to time. An analogy can 

investigate the behavior of the Lotika Volterra competition model based on the logistic 

equation. Hence, our system is the competition model of tumor –immune systems, so we 

can say that if the size of tumor cells is small, then the growth of tumor cells is slowed, 

and if the size of tumor cells is large, then the growth of tumor cells is fast. 

After the authors in [1] attempted to kill the tumor cells to get to the stages of treatment, 

which were difficult; however, it is possible to control the growth of the tumor size by 

enhancing the size of the immune system (injections). This process gave us the term 

(tumor-dormancy).
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There is no specific time to discourage tumor systems. Sometimes, they occur in the 

early of growth of tumor cells, or they may occur after the treatment state (injection). If 

this occurs a long time after the increase of the size of the tumor, then the percentage of 

inhibition will be smaller and it will be called a small dormant tumor. However, if the 

growth of tumor cells is fast and increasingly uncontrolled, then the tumor cells will 

escape from the immune system and became killer cells. This stage is known as the 

sneaking state. There are many complex ideas that explain dormant tumors, and the 

sneaking state that occurs as the result of non-linear dynamic interactions. 

In this thesis, we will investigate the mathematical model and the addition of the delay 

time for systems to became piecewise linear functions. To understand the behavior of 

the interactions we must analyze the stability of the result models and then show the 

stability for the models.  

The numerical simulations are very important to prove the stability of the complex 

systems with respect to delay time. 

1.2 Brief Description of the Study 

In this thesis, we studied the piecewise linear models applied to tumor-immune systems. 

Firstly, we started with mathematical models of an immunogenic tumor, which 

summarized the complex interactions between tumor systems and immune systems by 

[1]. Then, we presented the general formula for a piecewise linear system, that is, a class 

of hybrid dynamic systems. We also introduced the construction of hybrid dynamic 

systems and their types with examples. We started with a competition model that 

describes the interactions within tumor-immune systems in n-dimensions based on 

population models. Then, we presented some genetic protein networks in n-dimensions. 

We led the hybrid models of a number of biological models and then discussed the 

stability of the fixed point, equilibrium points and the concepts of stability of piecewise 

linear systems by of the  Lyapunov function.  
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Finally, we presented some examples with numerical simulations to check the stability 

of these examples. 

1.3 Purpose of the Study 

There are many non-linear dynamic systems and biological phenomena in nature that are 

very complex and which cannot be solved with numerical simulations. Therefore, we 

have selected a hybrid dynamic model with the addition of a time delay, which means 

the replacement of the non-linearity of the dynamic system with piecewise linear 

dynamic systems, after which there will be many methods to solve the differential 

equations of the linear systems with difference equations. 

 Piecewise linear functions help us to investigate the behavior of dynamic systems in the 

future. Predictions of future behavior help us to formulate control theorems. We studied 

the interactions with tumor-immune systems and with the stability, we came to know the 

stability of tumor systems. This result has helped scientists to control the growth of 

tumors. 

To sum up, piecewise linear systems give us the control theorems that may contribute to 

the treatment of diseases. 

1.4 Significance of the Study 

There are five benefits of this thesis. Firstly, most dynamic systems can be presented as 

piecewise linear functions with time delays. Secondly, by piecewise linear functions we 

can produce a simple model describing complex models. Moreover, it becomes easy to 

find solutions. 

And from the genetic networks, we have known that the stability of periodic solutions 

occurred in the piecewise linear model and it becomes easy to check the stability of 

genetic networks. 
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Hybrid models provide us with a simple model for the concentrations of complex 

interactions, their solutions and a check on their stability with the help of the Lyapunove 

function. 
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CHAPTER 2 

2. BACKGROUND INFORMATION 

2.1 Introductions of immunogenic tumors system  

 Tumor cells that die due to, or are discouraged by, immune cells are called the tumor 

dormant. This means that the growth of tumor cells becomes controlled or discouraged 

by the immune system and this gives us the biological term (immunogenic tumors 

system). 

In order for cancer to be inhibited by the immune system, there must occur complex and 

developed interactions. Researchers have conducted a number of studies to enable them 

to obtain the mathematical model that describes these interactions. One of the best 

studies was by [1]. 

2.1.1 The dynamics of immunogenic tumor systems 

The dynamics of immunogenic tumor systems are not well understood, but it is known 

that the behavior of tumor cells is based on the population of immune cells, which 

means that both are inversely proportional to each other. If the size of the immune 

system is large, then the size of a tumor decreases and if the size of the immune system 

is small, then the size of a tumor increases and it may escape the immune system. 

The authors in [1] presented a number of effector cells that help tumor cells to escape 

immune surveillance such that Quality-tainted cells misfortune or concealing of tumor 

antigens, the loss of MHC class I atoms and tumor-actuated disarrange in 

immunoregulation. 
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Let us look at the damper cancer. This one is dormant within the large population of 

immune cells and it will not grow more than previously. This dormant state may occur 

after the treatment state or it may occur in the early stages of tumor progression. If the 

dormant state of the tumor cells occurs late or after an increase in tumor size, and since 

the tumor cells may escape from the immune system by means of the so-called 

"sneaking through mechanism [2], then such a tumor is called a small dormant tumor, 

which is common in animals.  

There is diverse clarification for the end of the torpid state of a tumor for the sneaking 

through of tumors and for safe immune stimulation effects. Often these clarifications 

depend on the thoughts of insusceptible selection, antigenic modulation, the production 

by tumor cells of various sorts of invulnerable cell blocking factors, the generation of 

safe silencer cells, changes in auto-administrative systems in tumor confinement regions 

and other more confusing concepts that are exceptionally difficult to demonstrate or 

invalidate tentatively. 

The dynamics of nonlinear systems are very complex; however, [1] has studied the non-

linear dynamics of the competition between tumor and effectors cells systems. 

2.1.2 Mathematical models of immunogenic tumor systems 

There are many mathematical models that describe the interactions within tumor-

immune system in vivo and in-vitro that tell us that the behavior of tumor cells is 

exponential, which means if the tumor size population is small, then the growth of tumor 

cells will be fast, and if the tumor size population is large, then the growth of tumor cells 

will decrease. 

As a rule of non-exponential tumor growth, the energy is very much portrayed by the 

logistic equation [3, 4]. 

By focusing on the fact that the effector cells (EC) of immune cells consist of (CTL or 

NK cells), we can describe the interaction between (EC-TC) in vitro as described by the 

kinetic scheme as [1] 
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  𝐸 + 𝑇

𝑘1
→

𝑘−1
← 

𝐶

𝑘2
→𝐸 + 𝑇∗

𝑘3
→𝑇∗ + 𝐸

 

Then we can present the mathematical model of the interactions between effectors cells 

and the immunogenic tumor in vivo as [1] 

 

dE

dT
= s + F(C, T) − d1E− k1ET + (k−1 + k2)C, (2.1.2.1) 

 

dT

dt
= aT(1 − bTtot) − k1ET+ (k−1 + k3)C, (2.1.2.2) 

 

dC

dt
= k1ET − (k−1 + k2 + k3)C, (2.1.2.3) 

 

dE∗

dt
= k3C − d2E

∗  , (2.1.2.4) 

 

dT∗

dt
= k2C − d3T

∗. (2.1.2.5) 

 

Where E equals the concentrations of effector cells, T equals the concentration of tumor 

cells, C is the complex conjugate of (E − T). E∗, 𝑇∗are the inhibition of the effector and 

tumor cells respectively, 𝑘1 is a non-negative parameter that describes the connecting of 

EC to TC. 𝑘−1 is a non-negative parameter that describes the separation of EC from TC. 

k-2 is a positive parameter  that describes the death of tumor cells, and k3 is a positive 

parameter that describes the death of immune cells. 
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We assume that the immunogenic tumor in the spleen Ttot = T + C  is the normal (non-

improved by TC nearness) rate that describes the complex interaction (EC − TC),and 

d1, d2, d3 are positive constants that describe the rates of the end of E, E∗ and T∗ cells 

respectively. 

We also assume that the tumor cells do not leave the TC or EC − TC complexes and a is 

a rate of maximal growth of TC. b−1 which is a rate of the maximal carrying capacity of 

the organic environment for TC.  

The region TC  that consists of tumor cells will stimulate EC; moreover, there are a 

number of cells near the tumor region such as (nearby lymph nodes), that will enhance 

migration of EC into this region. This process will contribute to the stimulated 

accumulation of effectors cells. [5], [6], [7] gave us the function that consists of the 

parameter which plays a role in the accumulation process as [1]: 

F(C, T) =
fC

g + T
      (2.1.2.6) 

where f, and g are positive constants. The function F(C, T) depends on C≈ EC − TC 

complexes, but C does not depend only on the effector cells. This function is not 

predictable with a model in which one assumes that the accumulation of effectors cells 

due to the presence of signals. However, it is predictable with the acumination of (C ≈

KET) which limits the rate of transport of effectors cells to the tumor. This rate does not 

occur in the circulation. 

 From equations 2.1.2.4 and 2.1.2.5, T∗ and E∗  do not have any effect on the other 

variables or no effect on each other; therefore, it is not necessary to analyze them. We 

focus on equation 2.1.2.1 and 2.1.2.3 that manages the behavior of this system. 

It is not easy to form and dissociate the  C complex conjugates since this work needs to 

select accurately the appropriate time before the beginning of the decomposition of 

tumor cells. The motivation of the effector's cells occurs on a much slower timescale, 
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which implies an approximate, the equation 2.1.2.5, i.e. (
dC

dt
= 0) that gives the 

following result as [1]  

C ≈ KET,      (2.1.2.7) 

where [1]  

k =
k1

k2 + k3 + k−1
. 

The authors in [1] have stated that  EC − TC conjugates in most of the cases comprise a 

small concentration of effectors cells or tumor cells which approximate Ttot ≈ T along 

with Equations 2.1.2.6 and 2.1.2.7. We can rewrite the equations 2.1.2.1 and 2.1.2.2 as 

[1]: 

dE

dt
= s +

pET

g + T
−mET − dE   ,       (2.1.2.8) 

dT

dt
= aT(1 − bT) − nET,       (2.1.2.9) 

where 

p = fK,m = Kk3, n = Kk2, and d = d1. 

 

2.2 Hybrid Dynamic System Model 

2.2.1 Definition of Hybrid Dynamic System 

 

Hybrid dynamic systems describe the complex dynamic systems by a function that 

consists of the coexistence of continuous and discrete time. 

This means that the dynamical systems may take the values from a continuous set (real 

numbers) or they may take the values from a discrete set of symbols {q1, q2, … . , qn}. 

The mathematical modeling of hybrid dynamic systems will help us to understand the 

behavior and analyses of complex nonlinear dynamics of biological systems. In addition 
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to the model of the hybrid dynamic, we can find solutions and check, the stability of 

these biological systems. 

Hybrid models correspond to any interaction or coupling between two or more models 

that are not based on the same formalism: for example deterministic and stochastic, 

global and local, phenomena logical and physically based. 

2.2.2 Mathematical Models of Hybrid Dynamic Systems  

There are many forms for a model of hybrid dynamic systems; however, the most 

common of them is from the viewpoint of a deterministic dynamic, which is summarized 

as follows [8]. 

dx(t)

dt
= Fi(t)(x(t), u(t), μ) ,  (2.2.2.1) 

i(t) = G(i(t−), x(t−), u(t), μ), (2.2.2..2) 

x(t) = R(i(t−), x(t−), u(t), μ), (2.2.2..3) 

y(t) = O(i(t), x(t), u(t), μ), (2.2.2..4) 

where x(t) ∈ Rn  is the continuous state at time t ∈ R 

i(t) ∈ {1,2,3,… . . N} is the discrete state at t; Fi(t) is the vector-valued smooth 

function.u(t) ∈ Rm is the external input, μ ∈ RL is the system (bifurcation) parameters: 

G is a map of  the discrete-state move from i(t−) to i(t) with i(t−) ≡ lim
ԏ→t−0

i(ԏ); R is a 

reset map of continuous state accompanying a discrete-state move and y(t) ∈ Rkis the 

output, and O is the yield work( the output function). 

 

2.2.3 Types of Hybrid Dynamic System 

There are three types of hybrid dynamic system in [9]. 
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2.2.3.1 Decoupled Models 

Theses describe the same phenomena that are divided into independent levels. Then we 

can model and find the solutions for each one. Moreover, in this model, we can compare 

the models that describe the same phenomena but based on different hypotheses; 

therefore this model is the best [10]. 

2.2.3.2 Coupled Models 

This case studies two or more different models that are coupled through input/output 

variables. It describes the concentrations of biochemical substances in plasma [11]. 

2.2.3.3 Intricate Models 

This model describes the strong and complex concentration of non-linear dynamic 

systems. Moreover, the model is, in actuality, interesting; however, its modeling 

potential changes relying upon the setting under the type of breaking points, thresholds, 

switches (Hills function) or Peaks (Dirac's function). It is not easy to build and solve this 

model because the formalism selected is fundamentally and exclusively mathematical, 

which is a strong constraint [12]. Construction for three types, see Figure 1. 

 

 

 

 

                        

                                                                                                          

 

 

 

 

Figure 1: Construction of three types of hybrid dynamic system [9] 
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2.2.4 The main articles of the applications of hybrid dynamic system 

1. Gene regulatory networks 

2. Tumor and its treatment 

3. Complex Neural systems 
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CHAPTER 3 

3. DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT 

ARGUMENT 

 

Piecewise constant arguments are a discrete class of hybrid dynamical system and they 

are presented by difference equations.They help us to use numerical simulations and 

build the hybrid control theory of differential equations. 

3.1. Logistic equation with piecewise constant arguments 

Gave us and the applied new model on a population or logistic equation in a single 

species with continuous and discrete time as [13] 

dN(t)

dt
= rN(t){1 − aN(t) − bN(⟦t⟧)}             (3.1.1) 

where N(t) is the population concentration and a, b, r are positive parameters.⟦t⟧ is the 

infinite interval and the discrete part and t ∈ (0,∞) is the contiguous part. 

By model (3.1.1), it is easy to investigate the competitions models of diseases with 

respect to time such as [13] having modeled the piecewise constant argument of the 

competition model of bacteria cells with respect to time as [13] 

dx(t)

dt
= rx(t){1−∝ x(t) − 

0
x(⟦t⟧)-

1
x(⟦t − 1⟧)}     (3.1.2) 

Since every single tumor-immune system presents the population or logistic equation as 

[13]
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{
 

 
dN1

dt
= r1N1 (1 −

N1

k1
) −

r1 ∝12i

k1
N1N2 +

r1 ∝12S

k1
N1N2,

dN2

dt
= r2N2 (1 −

N2

k2
) −

r2 ∝21

k2
N1N2.

 (3.1.3) 

N1, N2 present the tumor and immune populations respectively; however, it (the 

equation) consists only continuous time situations. 

3.2 Tumor-immune system with piecewise constant arguments 

Now, by using time -delay inclusion of [14], we have the piecewise constant argument 

of the tumor-immune competition model as follows [13] 

{
 
 

 
 

dx

it
= r1x(t) (1 −

x(t)

k1
) −∝1 x(t)y(⟦t⟧) +∝2 x(t)y(⟦t − 1⟧,

dy

dt
= r2y(t) (1 −

y(t)

k2
) +∝1 y(t)x(⟦t⟧ −∝2 y(t)x(⟦t − 1⟧ − d1y(t).

        (3.2.1) 

where ⟦t⟧ is the discrete time and t ∈ [0,∞) is the continuous time. The behavior that 

the system has taken to investigate the piecewise linear function is explained as follows: 

 The tumor cells consist of killer cells, and immune cells consist of resting and Cytotoxic 

T lymphocytes (CTLs); however, the latter (CTLs) are more important than the resting 

cells in our studies because they have the great effect of killing tumor cells. 

It is known that immune cells have discrete time to increase in order to kill tumor cells, 

so a delay is added to the discrete time  ⟦t⟧ for the immune cells  

∝1 x(t)y(⟦t⟧).Moreover, the immune cells need the time discrete delay in order to build 

up a reasonable reaction acknowledgment of tumor cells y(⟦t − 1⟧. Similarly to the 

tumor cells, it needs a discrete time to decrease by providing the immune cells 

∝1 y(t)x(⟦t⟧; it also it needs in a delay discrete time in order to proliferate 

∝2 y(t)x(⟦t − 1⟧. In the end, the immune cells (CTLs) need to continuous time to 

death d1y(t).And the positive parameters 𝑟1, 𝑟2 present the growth rates 

of  𝑥(𝑡),𝑦(𝑡) respectively,𝑘1, 𝑘2 equals the carrying capacities of 𝑥(𝑡), 𝑦(𝑡) respective, 

and 𝑑1 presents the death rate of 𝑦(𝑡). 
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3.3 Genetic regulatory networks 

We will study a simple form for a continuous dynamic system of genetic regulatory 

networks that describes the interactions between two genes (𝑎 and 𝑏) that code by two 

proteins (𝐴 and𝐵). Since the interactions between genetic networks are very complex 

and it is not easy to understand the behavior of these networks, we use a discrete 

approximation method with a piecewise constant argument function to simplify 

networks to produce a new model such that it becomes easy to analyzes. The dynamics 

of genetic regulation networks is given as [15].the dynamic of a genetic regulatory 

network of two genes (a and b ) that coding a regulatory protein (A and B ) ,see Figure 

2. 

 

 

 

 

 

 

ẋi = fi(x) − 
i
xi,        1 ≤ i ≤ n, (3.3.1) 

Where x = (x1, x2, … . . , xn)
t > 0 is the population of proteins. fi(x) is the synthesis rate 

for each protein xi and ɣixi  is the decay rate of each protein xi 

We rewrite (3.3.1) in the general case as [15] 

ẋ = f(x) − x,          (3.3.2) 

where f(x) = (f1(x), f2(x),…… , fn(x) )
t and  = diag(

1
, 
2
, …… , 

n
) is a constant 

diagonal matrix. 

A B

ba

Figure 2: The transcription of two genes [15] 
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If we consider to any gene i  on the concentration x of a protein in the cell, then fi: IR+
n →

IR+ is the dependence of the synthesis rate of a protein that is encoded by 

i. Therefore,[15] 

fi(x) =∑κilbil(x),        

i∈I

 (3.3.3) 

Where κil > 0  is a rate parameter, bil: IR+
n→ {0, 1} is a Boolean-valued regulation 

function, I is an index set and bil catches and controls the conditions that are under the 

protein encoded by gene i  synthesized at a rate ĸil . 

Given the step function [15] 

s+, s−: K×IR+ → {0,1} 

The conditions that control the step are [15] 

h+(xi, i)=s
+(xi,i) = {

1,     xi > i,
0, xi < i.  

   

   s−(xi,i) = 1 − s+(xi,i), 

(3.3.4) 

Where KIR+. A step function leads a dynamic system for genetic- protein and it 

controls the activity of the gene changes in a switch-like (inhibition-activation) manner 

at the networks of a regulatory protein. Note that the step function does not considerxi =

i; therefore, they are not the regulatory functions. 

-{i
j
}, {

i
}, {κil} are the parameters of the discrete part of the hybrid dynamic system of 

(3.3.2) and our simple example for two genes-proteins is [15] 

ẋa = κas
+(xb,b

1)s−(xa,a
2) − 

a
xa   , (3.3.5) 

ẋb = κbs
+(xa,a

1)s−(xb,b
2) − 

b
xb   . (3.3.6) 

Where the discrete part can be defined by the difference equation 𝑠+ = 1 − 𝑠−. The rate 

κa presents the gene a  if the concentration xb of protein B, is greater than b
1
, 
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and  xa from protein A is less than a
2
. Similarly, the rate κb presents the gene b if the 

concentration xa from protein A is greater than  a
1, and xb forming protein B is less 

than b
2
. 

Now, we see the concentration of the gene-protein in n −dimensions that are defined on 

the region  Ω as domainsD Ω, so firstly, we present the properties of the domains in 

the phase space. 

3.3.1 Domains in phase space 

For n −dimensions, the phase space is Ω = Ω1, … . . , Ωn where every Ωi is defined by 

Ωi = {xi ∈ IR+|0 ≤ xi ≤ maxi} where maxi  is a positive parameter with maxi >

maxx∈Ω (
fi(x)

i
). 

The protein encoded by the gene will change in a different interaction at a different 

concentration; therefore, for every  xi   ∃pi such that [15] 

{i
1, … . . , i

pi}, 

We let   D be the domain in the region Ω, which means D Ω such that D =

D1, … . , Dn where every Di is defined by the following equations as [15] 

Di = {xi ∈ Ωi|0 ≤ xi ≤ i
1}, 

Di = {xi ∈ Ωi|xi = i
1}, 

Di = {xi ∈ Ωi|i
1 ≤ xi ≤ i

2}, 

Di = {xi ∈ Ωi|xi = i
2}, 

⁞ 

Di = {xi ∈ Ωi|xi = i
pi}, 

Di = {xi ∈ Ωi|i
pi ≤ xi ≤ maxi}. 
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If we work on n-dimensions then the general form of the domains is defined by [15] 

∏ (2pi + 1).
n

i=1
 

3.3.2 Types of domains 

3.3.2.1 Regulatory domain    

This domain has the variables xi that does not belong to D and it is defined by Dr. 

3.3.2.2 Switching domain 

In this domain, at least one of the variables xi  has a value  belonging to  D  and it is 

defined by Ds. 

Definition 3.1: The order k ∈ N of a domain D ∈ Ds  is equal to the numbers of 

switching domains [15] 

order(D) = k, 

Definition 3.2: If k ≥ 1 is the order of the domain and supp(D) Ω,  then 

- For the regulatory domain D ∈ Dr ,supp(D) = Ω, 

- For the switching domainD ∈ Ds, supp(D) = (n − k)dimensions. 

If we define the boundary of D in  supp(D) to be the set ∂D for all values xi ∈

supp(D) by following sets [15] 

A(D) = {D′ ∈ D\D′ ∂D}, 

The set A(D) has the domains in the boundary of D that are switching domains [15] 

R(D) = {D′ ∈ Dr\D  ∂D
′}. 

R(D) has the regulatory domains that have D in their boundary. 

The domain D of order  k such that k ≥ 1  and I is the subset of k , such that  I k  then 

domain are presented as [15] 
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D = {x ∈ Ω|xi = i
qi < xi < i

qi+1  if iI}, 

Where we have the tradition that i
0 = 0 and i

pi+1 = maxi, and i
0 ≤ xi and  xi ≤

i
pi+1, if i I, in order to incorporate the bounds of the domain Ω. 

Now, our simple example is a two-gene network in the two-dimensional phase space Ω, 

as in Figure 3. 

The phase space has 9 regulatory domains and 16 switching domains, and we find 

D1, D2 because the protein concentration has two thresholds each, as in the following 

sets [15] 

D1 = {(xa, xb) ∈ Ω|0 ≤ xa < a
1, 0 ≤ xb < b

1} , is a regulatory domain. 

D2 = {(xa, xb) ∈ Ω|0 ≤ xa < a
1, xb = b

1}  is a switching domain. Here, only xb is a 

switching variable. Therefore the order of the switching domain is 1 and 

supp(D2){(xa, xb) ∈ Ω|xb = b
1}, see Figure 3. 

 

       

 

  

 

 

 

 

 

The focal point ∅(𝐷13) 𝑓𝑜r 𝑡ℎ𝑒  𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦 𝑑𝑜𝑚𝑎𝑖𝑛 𝐷13. 𝑥𝑎, 𝑥𝑏  𝑖𝑠 attracted 

to ∅(𝐷13) 𝑏𝑦
𝜅𝑎

𝑎
𝑎𝑛𝑑

𝜅𝑏

𝑏
 , respectively, see Figure 4 

0 1
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b
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12D 22D

24D

                  
Figure 3: Phase space for a two-gene network with PWL model [15] 
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There are a number of boxes and every box has a solution in the phase space. We 

explain the method to find the solution of boxes by focal points 

3.3.3 Classical solutions and focal points 

The simple linear system for (3.3.2) can be written as [15] 

ẋ = fD − x,     x ∈ D (3.3.3.1) 

Where fD = fi(x1, … . , xn) is the value of the synthesis rate fi  in the box Bs Thus the 

solutions in the box are easy to compute by [15] 

x(t) = ∅(D) + e(t0−t)(x(t0) − ∅(D)), (3.3.3.2) 

Where ∅(D) satisfies the linear system ∅(D) = fD inside each boxBs , and the solutions 

are monotonical as t → ∞; Additionally, all solutions that tend to a stable equilibrium 

are called the focal point of the box. 

Definition 3.3: if we let  D ∈ Dr be a regulatory domain, there exists a focal point for 

the flow in D defined by [15] 

 ∅(D) = −1fD ∈ Ω. 

0 1

a
2

a
amax

ax

1

b

2

b

bmaxbx

aa  /

bb  /

13D

)( 13D
•

             : The focal point  Figure 4: The focal point 
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Suppose that ∅(D) ∈ supp(D′) for all D′ ∂D; this means the trajectories will take the 

contiguous time to reach the focal point, which is a special case. From Figure 3.2, we 

have a regulatory domain D13by [15] 

xȧ = κa − 
a
xa, 

xḃ = κb − 
b
xb. 

Hence the focal point for D13 is ∅(D) = (
κa

a
,
κb

b
), which lies when the solution leaves the 

domain D13and enters another domain, such as D25.  Therefore, there will be two 

different focal points in different domains. The problem occurs when the trajectories 

continuously  flows and enters  a switching domain because the vector field for the 

switching domain is unknown  and since the step functions are not defined when the 

variable xi takes some threshold value i
qi, it will be difficult to know the new solutions 

of in the switching domain. Therefore, Filippov's approach will help us to find the 

solution to the switching domains. 

3.3.4 Filippov solutions and focal sets 

The piecewise linear function (3.3.2) is defined in a regulatory domain; however, the 

switching domain is not defined because k ≥ 1 where k presents variables assuming a 

threshold value. 

If the solutions for the different regulatory domains such  as D1, D11 enter a switching 

domain D6, that appear as transparent walls. However, if  D13, and D15 go toward the 

same switching domain as D14, then the switching domain is referred to as black walls 

and we use the Filippov approach to solving it. 

The focal points ∅(D1) = (0,0), ∅(D11) = (0,
κb

b
) , ∅(D13) = (

κa

a
,
κb

b
) and ∅(D15) =

(
κa

a
, 0) . D6 is a transparent wall and D14 is a black wall ,see Figure 5. 
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The theory control concludes the Filippov approach when the solution to switching 

domains is called sliding modes. The approach contains the numerical simulation of 

piecewise linear functions by Euler's method or other methods that explain the behavior 

of the solution. 

The Filippov approach develops system (3.3.3.1) to become [15] 

                                                      𝑥̇ ∈ 𝐻(𝑥) ,                                                     (3.3.3.3) 

Where 𝐻: → 2𝑅
𝑛
a set is valued function and is defined by [15] 

                                                      𝐻(𝑥) = {𝑓𝐷 − 𝑥).                                                (3.3.3.4)  

𝐷 is a regulatory domain.                                                                                       

Definition 3.4: Let ξt(x0)  be an absolutely continuous function that is the solution of 

system (3.3.3.4) on the interval [0, T]in the sense of Filippov, such that ξ0(x0) =

x0 and ξ̇t ∈ H(ξt)  for most of t ∈ [0, T].

15D

14D

13D

)( 13D

)( 15D

•

•
1

a
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2

b

1

b

0

bx
bmax

amax

ax2

ax

1

a
2

a

2

b

1

b

0

bx

amax

bmax

1D

6D

11D

)( 11D

)( 1D
•

1

Figure 5: Behavior of two gene networks with the PWL model [15] 
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CHAPTER 4 

4. THE STABILITY OF HYBRID DYNAMIC SYSTEM 

4.1 Concepts of the stability of fixed points 

Firstly, we will present the stability of the one-dimensional system, which can be 

described by [16].In a one-dimensional system, we suppose that the real phenomena are 

described mathematically by discrete dynamic systems. Every discrete dynamic system 

has fixed points 𝑓(𝑥∗) = 0, where 𝑥∗ is a fixed point; however, their proprtries are not 

similar.This means that if the neighborhood point of a fixed point is attracted to the fixed 

point, then the fixed point is stable. If the neighborhood or trajectories  point  goes away 

from the fixed point, then the fixed poin is unstable. The convergence and divergence 

can be seen in the phase planes of the systems. 

Let us consider the stability of 2-dimensions. In this case, we will use the Jacobian 

matrix 𝐴 as [16] 

𝐴 =

(

 
 

𝜕𝑥̇

𝜕𝑥

𝜕𝑥̇

𝜕𝑦

𝜕𝑦̇

𝜕𝑥

𝜕𝑦̇

𝜕𝑦)

 
 

 

Then, we compensate for all fixed points in matrix 𝐴 and find the eigenvalues: 

- if  𝑅𝑒𝑙 1,2 > 0 , then the fixed point is unstable, 

- if  𝑅𝑒𝑙 1,2 < 0, then the fixed point is stable. 



  

24 

 

4.2 Concepts of the stability of piecewise linear systems  

4.2.1 The Lyapunov-Razumikhin method  

The Lyapunov method is one of the main methods that help us to design and analyzes 

the controller of dynamic systems, be they linear or non-linear systems. This method is 

based on the sufficient conditions [17, 18], namely those which are set up for (stability, 

uniform stability, and uniform asymptotic stability) of the zero solutions [19] 

This section studies the comparison of values of a solution in different parts that will 

help us to check the stability for of the systems with an argument function that has a 

discontinuity. 

Stability Theorems [19]: 

Let N be the natural numbers, i.e., N = {0,1,2,… . } and R+be the positive real numbers, 

i.e., R+ = [0,∞)  

  Rn   are an n-dimensional real space for n∈ N and the Euclidean norm for Rn is‖. ‖. 

Suppose that  i is a real-valued sequence such that [19]: 

0 = 1 < 2 < ⋯ < i < ⋯ < ⋯𝑤𝑖𝑡ℎ i → ∞ as i → ∞ 

Let we then let a piecewise linear function [19] 

x(t) = f (t, x(t), x(β(t))) (4.1) 

Here x ∈ s(ρ) = {x ∈ Rn: ‖x‖ < 𝜌}, t ∈ R+[12] 

β(t) = i, if t ∈ [i, i+1), i ∈ N 

with these  assumptions, we can check the stability [19] 

(C1) f(t, y, z) ∈ C(R+×s(ρ)×s(ρ)) , 

(C2) If y = z = 0 then f(t, 0,0) = 0 ∀t ≥ 0, 
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(C3) f(t, y, z) satisfies the Lipchitz equation as: 

‖f(t, y1, z1) − f(t, y2, z2)‖ ≤ ℓ(‖y1 − y2‖ + ‖z1 − z2‖), (4.2) 

For allt ∈ R+and y1, y2, z1, z2 ∈ S() where L > 0 is a Lipchitz constant, 

(C4) There is a positive number  such that  i+1 − i ≤ , ∀i ∈ N, 

(C5)ℓ[1 + (1 + ℓ)eℓ < 1, 

(C6) 3ℓe
ℓ < 1, 

(C7) Ќ = {a ∈ C(R+, R+)} a is entirely expanding and a(0) = 0}, 

(C8) = {b ∈ {C(R+, R+)}, b(0) = 0, b(s) > 0 𝑓𝑜𝑟 𝑠 > 0}. 

Definition 4.1 

Let V be function denoting {R+×S(ρ) → R+} and V ∈  Ҩ if: 

i. V is continuous on R+×S(ρ),  whereV(t, x) ≡ 0 for all  x = 0  and  t ∈ R+; 

ii. V(t, x)is continuous on the interval  (i, i+1)×S(ρ) and for each where there 

exists the derivative for the right side at t = i, i ∈ N. 

 

Definition 4.2 

If we let V ∈ Ҩ, there exists the derivative of 𝑉that satisfies definition (4.1) in [19] 

V(t, x, y) =
∂V(t,x)

∂t
+gradx

T V(t, x)f(t, x, y) (4.3) 

For allt ≠ i in R
+ and x, y ∈ S(ρ). 
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Note: 

We let (C1 – C6) are be satisfied; then the zero solution of the piecewise linear system 

(4.1) has stability. To checking the stability of the piecewise linear model (4.1), we have 

to use the Lyapunov-Razumikhin method. We present the concepts of the stability in the 

following theorems. This is approach is identical to that of the Lyapunov method with 

ordinary differential equations.   

 Theorem 4.1 

Let V ∈ Ҩ,u ∈  Ҟ if [12] 

i. u(‖x‖ ≤ V(t, x) ≤ v(‖x‖) on R+×s()  

ii. 𝑉  (t, x, y) ≤ 0 for all t ≠ i in R
+ and x, y ∈ S() such that V(β(t), y) ≤ v(t, x), 

Then the zero solution of (4.1) is uniformly stable. 

Proof: we assume that v(δ1) ≤ u(ɛ)such that ɛ > 0 𝑎𝑛𝑑 δ1 =  K(ℓ) > 0,  we 

therefore prove the stability in two parts in [19] 

1.    t0 = j  

Hence, j ∈ N and satisfies ‖x(j)‖ < 𝛿. Since the zero solution is stable, then the 

condition V (j , x(j)) ≤ v(δ) < 𝑣(δ1) ≤ u(ɛ) is satisfied and gives us V(t, x(t)) ≤

u(ɛ) ∀t ≥ j . Here  ‖x(t)‖ < ɛ ∀𝑡 ≥ j , which means the change of 𝑗 ∈ 𝑁 does not 

effect in the change of .  

2.  t0 ∈ IR+  

Hence,  t0 ≠ I   for all  i ∈ N; 

We assume  j ∈ N  such that j < t0 < j+1.Solutions of (4.1) satisfy ‖𝑥(𝑡0‖ < .by 

follow same steps of case 1 we have‖𝑥(𝑗)‖ < 1  leads for‖𝑥(𝑡)‖ < 𝜀 for𝑡 ≥ 𝑗. Also it 

is true for all 𝑡 ≥ 𝑡0 where 𝑡0 ∈ 𝑅+. 
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Theorem 4.2: 

Let V ∈ Ҩ,u ∈ Ќ if [19] 

i. u(‖x‖ ≤ V(t, x) ≤ v(‖x‖) on R+×S()  

ii. V(t, x, y) ≤ −w(‖x‖ for all t ≠ i  in R
+ and x, y ∈ S() such that V(β(t), y) <

𝜓(V(t, x)) such that (s) > 𝑠 ∀𝑠 > 0  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  > 0  𝑎𝑛𝑑 𝑤 ∈ 𝛺  

Then the zero solution for (4.1) is uniformly asymptotically stable 

Proof: we assume that the zero solution of (4.1) is uniformly stable from theorem (4.3). 

Our aim is to prove "uniform" asymptotic stability with i, i ∈ N. 

We assume  j ∈ N and  ρ1 ∈ (0, ρ).we prove the stability in two parts as 

(1)  t0 = j and δ > 0 Satisfies 𝑣((𝑙))  = 𝑢(
1
)ssuch that (ℓ) > 1, from theorem 

(4.1) we have 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑣() ≤ 𝑣((ℓ))∀𝑡 ≥ 𝑗 and exactly the ‖𝑥(𝑡)‖ < ,now 

we want to prove that this δ can be taken as δ0 in the discussion of uniform asymptotic 

stability. We want to prove that there exists a aT = T(ɛ) > 0 for the arbitrary  > 0 such 

that 0< ɛ < ρ1 and satisfies [19] 

‖x(t)‖ < ɛ ∀𝑡 ≥ j + T   if ‖x(j)‖ < 𝛿. 

Let a set of function [19] 

 = inf  {𝑤(𝑠): 𝑣−1(𝑢(ɛ)) ≤ 𝑠 ≤ 𝜌1} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ɛ < 
1
 𝑎𝑛𝑑  𝑢, 𝑣 ∈ ҟ 𝑔𝑖𝑣𝑒𝑠    𝑢(ɛ) <

𝑣(𝜌1) that leads 𝑣−1(𝑢(ɛ)) < 𝜌1 . 

It is known that δ1 = K(ℓ)δ,by definition of ψ(s) , 

We have [19] 

 ψ(s) − s > 𝑎 𝑓𝑜𝑟 𝑎 > 0 𝑎𝑛𝑑  𝑢(ɛ) ≤ s ≤ v(δ1)  

let  u(ɛ) + Na ≥ v(δ1) such that N is the smallest positive integer. 
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Assume that [19]   

tk = k(
v(δ1)


+ ) + j, k = 1,2,… , N.We shalll show that this[4]  

V(t, x(t)) ≤ u(ɛ) + (N − k)a  for   t ≥ tk,     k = 0,1,2,… , N       (4.4) 

We have [19]] 

V(t, x(t)) ≤ v(δ1) ≤ u(ɛ) + Na  ∀t ≥ t0 = j, 

 (4.4) is true for all  0 ≤ k < 𝑁.we can show that at 𝑘 = 𝑘 + 1 in [19] 

V(t, x(t)) ≤  u(ɛ) + (N − k − 1)a  ∀ t ≥ tk+1,         (4.5) 

 

To proving (4.5);   

We let Ik = [β(tk) + , tk+1]. Firstly, to prove that t∗ ∈ Iksuch that [19] 

V(t∗, x(t∗)) ≤ u(ɛ) + (N − k − 1)a,           (4.6) 

Otherwise, V(t, x(t)) > 𝑢(ɛ) + (N − k − 1)a ∀ t ≥ Ik, 

and  V(t, x(t)) ≤ u(ɛ) + (N − k)a      ∀t ≥ tk,            (4.7) 

We take β(t) for all t ≥ Ik in (4.7) in [19] 

V (β(t), x(β(t))) ≤ u(ɛ) + (N − k)a ∀t ≥ β(tk) +                                  (4.8) 

By applying condition (ii) in Theorem (4.2), we get [19] 

 (V(t, x(t))) > 𝑉(t, x(t)) + a > 𝑢(ɛ) + (N − k)a ≥ V (β(t), x(β(t)))   for all t ∈ Ik,  

Also by [19], 
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  V (t, x(t), x((t))) ≤ −w(‖x(t)‖) ≤ − for all t ≠ m in Ik, 

 We get [19] 

v−1(u()) ≤ ‖x(t)‖ ≤ 
1 
for t ∈ Ik, 

Since the function V is continuous and x(t) is solution for (4.1), then [19] 

V(tk+1, x(tk+1)) ≤ V(β(tk) + , x(β(tk) + )) − ɣ(tk+1 − β(tk) − ) 

< 𝑣(δ1) − ɣ(tk+1 − tk − ) = 0,which is a contradiction. 

(4.6) is proved. 

(2) t∗ ∈ Ik, where𝑡∗ satisfies that [19] 

  V(t∗, x(t∗)) ≤  u(ɛ) + (N − k − 1)a     

We consider that [19] 

V(t, x(t)) ≤ u() + (N − k − 1)a ∀ t ∈ [t∗, ∞),           (4.9) 

If (4.9) is not true for 𝑡∗, then we assume that there are  t ∈ (t∗, ∞) such that [19] 

V(t, x(t)) >  𝑢(ɛ) + (N − k − 1)a ≥ V(t∗, x(t∗)), 

If there exist t̃ ∈ (t∗, t) such that t̃ ≠ m,then by (4.9), we have [12]  

 { V (t̃, x(t̃), x(β(t̃))) > 0 𝑎𝑛𝑑  𝑉(t̃, x(t̃)) > 𝑢(ɛ) + (N − k − 1)a}. 

However, if t̃  did not existt,̃ then we have only  t ∈ (t∗, t) such that t ≠ m, which 

satisfies [19] 

V (t, x(t), x(β(t))) ≤ 0 or  V(t, x(t)) ≤ u(ɛ) + (N − k − 1)a. 
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Notes [19]: 

1. If Vʹ (t, x(t), x(β(t))) ≤ 0 then  V (t, x(t)) ≤ V(t∗, x(t∗))∀       (contradiction)  

2. If V(t, x(t)) ≤  u(ɛ) + (N − k − 1)a then V(t, x(t)) ≤  V(t, x(t)) (contradiction) 

So there exists   t̃  and it satisfies Theorm (4.2)) in [19] 

ψ(V(t̃, x(t̃))) > 𝑉(t̃, x(t̃)) + a > 𝑢(ɛ) + (N − k)a ≥ V (β(t̃), x(β(t̃)))  

which gives[19] 

  V(t, x(t)) ≤ u() + (N − k − 1)a ∀ t ≥ t∗and ∀ t ≥ tk+1. 

The proof of (4.2) is complete. 
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CHAPTER 5 

5. STABILITY ANALYSIS OF SOME MODELS 

5.1 The logistic equation 

5.1.1 Stability of the logistic equation with a piecewise argument constant 

We have studied in Chapter 3 the logistic equation with a piecewise constant argument 

for the single species in [20] 

dN(t)

dt
= rN(t){1 − bN(t) − aN(t)}          (5.1.1.1) 

The solution for (5.1.1.1) is [20] 

N(t) = N(n)exp {r∫(1 − aN(s) − bN(n))ds}

t

n

 (5.1.1.2) 

n ≤ t < 𝑛 + 1 

The logistic equations before adding the time delay are [20] 

d

dt
{
1

N(t)
exp {r[1 − bN(n)]t} = ar exp{r[1 − bN(n)]t} , t ∈ [n, n + 1) (5.1.1.3) 

Then by integrating Equation (5.1.1.3) on the intervals [n, n + 1), we get [20] 

N(t) =
N(n) exp{r[1−bN(n)](t−n)}

1+aN(n)(
exp{r[1−bN(n)](t−n)}−1

1−bN(n)
)
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n ≤ t < 𝑛 + 1 (5.1.1.4) 

Suppose t → n + 1 in (5.1.4) 

 

N(n + 1) =
N(n) exp{r[1 − bN(n)]}

1 + aN(n) (
exp{r[1 − bN(n)]} − 1

1 − bN(n)
)
    , n = 0,1,2,… 

(5.1.1.5) 

By setting 𝑓(𝑥) = 𝑥 we can get the fixed points of (5.1.1.5) in [20] 

f(x) = x(n + 1) =
x(n) exp P{r[1 − x(n)]}

1+∝ x(n) ((exp{r[1 − x(n)]} −
1

1 − x(n)
))

 

n = 0,1,2,… (5.1.1.6) 

 where b ≠ 0 because if b = 0 it will be the trivial dynamics of (5.1.1.1) in [20] 

x =
xexp[r(1 − x)]

1+∝ x(
exp[r(1 − x)] − 1

1 − x )
 

(5.1.1.7) 

By rewrite (5.1.7) as [20] 

x[x(1−∝)− 1](
exp[r(1−∝)] − 1

1 − x
) = 0, 

the fixed points become in [20] 

(5.1.1.8) 

x∗ = 0    and    x∗ =
1

1 + a
 

Then, we check the eigenvalues of 𝑓(𝑥∗) = 0, and if |𝑖| >

0 𝑡ℎ𝑒𝑛 𝑥∗ is unstable. If |𝑖 < 0| then 𝑥∗ is stable. 

 

(5.1.1.9) 
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5.1.2 Stability Hybrid dynamic model of logistic equation 

We take the general case of logistic equation by replacing [𝑡] in (5.1.1.1) with  (𝑡) such 

that in [19] 

N(t) = rN(t) (1 − aN(t) − bN(β(t)))    t > 0  

By the following setting of the positive equilibrium, N∗  is denoted by the origin: 

x = b(N − N∗) 

 We then have [19] 

x(t) = −r[x(t) +
1

1+∝
][∝ x(t) + x(β(t))]  

Here [19] 

 f(x, y) = −r (x +
1

1+∝
) (∝ x + y) is  a continuous function for all   derivatives   x, y ∈

s() 

Take the derivative once of  f(x, y) ∀x, y. And we get [19] 

|
∂f

∂x
| ≤ r (2 ∝ + +

∝

1+∝
) , |

∂f

∂y
| ≤r (+

1

1+∝
)  for x, y ∈ S(). 

We assume that r(2 ∝ + 2+ 1) = ℓ satisfies the Lipchitz equation. (C1) − (C3) are 

satisfied for sufficient small. Also, (C5) − (C6) is satisfied.  

We assume that ∝ ≥ 1and p <
1

1+∝
.  

We let a Lyapunov function V(x) = x2where x ∈ s(p) and t ≠ i; 

Therefore, we have [19] 

V` (x(t), x(β(t))) = −2rx(t)(x(t) +
1

1+∝
)(∝ x(t) + x(β(t))), 
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≤ −2r(x(t) +
1

1+∝
)(∝ x2(t) − |x(t)||x(β(t))|, 

≤ −2r (x(t) +
1

1+∝
) (∝ −1)x2(t) ≤ 0, 

Where [19] 

  V(x(β(t))) ≤ V(x(t)). 

By Theorem 4.1, we say the zero solution is uniformly stable. This means that the 

positive equilibrium N∗ is uniformly stable. 

From theorem 4.2, it could check the uniformly asymptotic stability by following steps 

We assume that 
1
∈ (0,) such that x(t) ∈ S(

1
) for all t ≥ t0 where |x(t0)| <

𝛿 𝑎𝑛𝑑  > 0.   

We assume that q ∈ R+ such that  1 < 𝑞 <∝, which satisfies [19] 

ψ(s) = q2s, 

w(s) = 2r(∝ −q)ƞs2, 

ƞ =
1

1+∝
− p1, 

V(x) = x2, 

V` (x(t), x(β(t))) ≤ −2r (x(t) +
1

1+∝
)(∝ −q)x2(t) ≤ −w(|x(t)|, t≠ i. 

whenever [19] 

V (x(β(t))) < 𝜓(V(x)). 

It means the zero solution convergence to the positive equilibrium N∗. Therefore, N∗ is 

uniformly asymptotically stable as per Theorem 4.2. 
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5.2 Competitions Model  of Tumor-Immune System 

5.2.1 Stability of the competition model with a piecewise argument constant 

Chapter 3 presents the mathematical model for the interaction among tumor-immune 

cells with piecewise constant arguments of delay as [13] 

{
 
 

 
 

dx

dt
= r1x(t) (1 −

x(t)

k1
) −∝1 x(t)y(⟦t⟧) +∝2 x(t)y(⟦t − 1⟧),

dy

dt
= r2y(t) (1 −

y(t)

k2
) +∝1 y(t)x(⟦t⟧) −∝2 y(t)x(⟦t − 1⟧) − d1y(t).

 (5.2.1.1) 

 Where ⟦t⟧ is the continuous part,  t ∈ [0,∞) denotes the discrete state, x(t) equals the 

size of tumor cells, r1 is the growth rate of x(t) and k1 is the carrying capacity of (t). 

We now assume that every one of (5.2.1.1) is based on the logistic equation since they 

describe the competition of everyone with respect to time. Moreover, we let the capacity 

of the tumor cells larger than the immune system [14].  

The parameter values are given in [13] in terms of consistency with the biological facts 

and they are given in Table 5.1. 

 To check the stability, we must find the solution to every one of the systems (5.2.1.1) by 

integrating every one of them in (5.2.1.1) on an interval of the form t ∈ [n, n + 1) as 

[13] 

 

{
x(t) = x(n)e∫ x(s)(r1(1−x(s)k1)−∝1y(n)+∝2y(n−1)ds,

t
n

y(t) = y(n)e∫ y(s)(r2(1−y(s)k2)+∝1x(n)−∝2x(n−1)−d1)ds
t
n

                     

 

(5.2.1.2) 

 

 

 



  

36 

 

Table 1: Parameters values used for numerical analysis [13] 

Parameters Values 

r1(growth rate of tumor cells)                                            0.18 day−1a 

r2(growth rate of CTLs)                                                        0.1045 day−1a 

k1(carrying capacity of tumor cells)                                   5.0×106cellsa 

k2(carrying capacity of CTLs)                                          3.0×106cellsa 

∝1(decay rate of tumor cells by CTLs) 4.401×108cells1day1b 

∝2(decay rate of CTLs by tumor cells)   3.422×10−9cells−1day−1a 

d1(death rate of CTLs)                                                         0.0412 day1a 

 

 

where  k1 =
1

k1
, k2 =

1

k2
.if x(n), y(n) > 0𝑡ℎ𝑒𝑛 𝑥(t), y(t) > 0. 

If t → n + 1, then x(n + 1), y(n + 1) > 0 and if assume initial condition of  

x(n)and y(n) then we find the time of (2.2). 

If  t ∈ [n, n + 1), then we have [13] 

{

dx

dt
− {r1 −∝1 y(n) +∝2 y(n − 1)}x(t) = −r1k1(x(t))

2
,

dy

dt
− {r2 +∝1 x(n) −∝2 x(n − 1) − d1}y(t) = −r2k2(y(t))

2
.

 (5.2.1.3) 

Everything in (5.2.1.3) represents the Bernoulli differential equation, which can obtain 

[13] 
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{
 
 

 
 

d

dt
[
1

x(t)
e[r1−∝1y(n)+∝2y(n−1)]t] = r1k1e

[[r1−∝1y(n)+∝2y(n−1)]t

,
d

dt
[
1

y(t)
e[r2+∝1x(n)−∝2x(n−1)−d1]t] = r2k2e

[[r2+∝1x(n)−∝2x(n−1)−d1]t,

 (5.2.1.4) 

by integrating (5.2.1.4) on the [13] 

{
 
 

 
 x(n + 1) =

x(n)[r1 −∝1 y(n) +∝2 y(n − 1)]

[r1 −∝1 y(n) +∝2 y(n − 1) − r1k1x(n)]e
−[r1 −∝1 y(n) +∝2 y(n − 1) − r1k1x(n)],

y(n + 1) =
y(n)[r2 +∝1 x(n) −∝2 x(n − 1) − d1]

[r2 +∝1 x(n) −∝2 x(n − 1) − d1 − r2k2v(n)]e
−[r2+∝1x(n)−∝2x(n−1)−d1] + r2k2y(n)]

 (5.2.1.5) 

interval t ∈ [n, n + 1), so [13] 

Now, we have a system of two-dimensions of difference equation; then we find the 

equilibrium points to check their stability. 

Given the conditions [13] 

∝1>∝2, 𝑟2 > 𝑑1 and 𝑟1 >
(∝1−∝2)(𝑟2−𝑑1)

𝑘2𝑟2
 (5.2.1.6) 

 

The positive equilibrium [13]  

(𝑥̅, 𝑦̅) = (
𝑘2𝑟1𝑟2+(∝2−∝1)(𝑟2−𝑑1)

𝑘1𝑘2𝑟1𝑟2+(∝1−∝2)2
,
𝑘1𝑟1(𝑟2−𝑑1)+𝑟1(∝1−∝2)

𝑘1𝑘2𝑟1𝑟2+(∝1−∝2)2
) (5.2.1.7) 

Now, we apply the following setting to get the linear system of (5.2.61.5) about the 

positive equilibrium points [13]  

𝑤(𝑛 + 1) = 𝐵𝑤(𝑛) 

 where  𝐵 is [13] 
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𝐵 =

(

 
 
 
 

𝑒−𝑘1𝑟1𝑥̅ 0 −
(1 − 𝑒−𝑘1𝑟1𝑥̅)𝑥1

𝑘1𝑟1

(1 − 𝑒−𝑘1𝑟1𝑥̅)𝑥2
𝑘1𝑟1

1 0 0   0  
(1 − 𝑒𝑘2𝑟2𝑦̅)𝑥1

𝑘2𝑟2
−
(1 − 𝑒𝑘2𝑟2𝑦̅)𝑥1

𝑘2𝑟2
𝑒−𝑘2𝑟2𝑦̅ 0

0 0 1 0

 

)

 
 
 
 

 

 

Then check the eigenvalues of the matrix. If |λij| < 1, then  𝑟1 is stable but if |λij| > 1, 

then 𝑟1 is unstable [21]. 

5.2.2 Stability of Hybrid model of competition model 

The interactions between tumor and immune cells is based on the Lotika-Volterra model 

as prey and predator models that are represented by 𝑥, 𝑦 in [22] 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑐𝑥𝑦 − 𝑑𝑦. 

where 𝑥 is the populations of tumor cells and 𝑦 is the populations of immune cells. 

By adding the stochastic parameter   for distribution the function (𝑡) to the  pervious 

model as [22] 

 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑐𝑥𝑦 − 𝑑𝑦. 

 

(t) is defined by [22] 

(𝑡) = 1 −
𝑒−4𝑡

2
 

Therefore,we get [22] 
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𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − (1 −

𝑒−4𝑡

2
)𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑐𝑥𝑦 − 𝑑𝑦. 

If we lead the positive equilibrium points as[22] 

𝑥 =
𝑑

𝑐
, 𝑦 =

𝑎

𝑏(1 −
𝑒−4𝑡

2 )
 

And we take limit for the equilibrium points at 𝑡 → ∞ as [22] 

lim
𝑡→∞

𝑎

𝑏(1 −
𝑒−4𝑡

2
)
=
𝑎

𝑏
> 0 

Therefore, the simplest model is stable and it makes a small circle on the positive 

equilibrium where = 
1

4
, see Figure 6.  

 

 

Figure 6: Evolutions of interaction of competition model where 𝑎 = 2, 𝑏 = 𝑐 = 1, 𝑑 =

3 𝑎𝑛𝑑  =
1

4
.[22] 
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5.3 Gene-protein networks  

A analysis of the behavior of regulatory genetic networks is difficult because the 

solutions of phase spaces lie in the switching domains and they have become undefined. 

Therefore, we will study the solutions of PWL systems for every box of the phase space 

in domains by built on the hypercube. The threshold is the domains that do not take their 

values from threshold values as a regulatory domain. The intersections of the domains 

occurring at the least value have a threshold value as the switching domain.  

To study the solutions in switching domains, we have to study the equilibrium points of 

the PWL system that lies in the regulatory domains. Its stability is asymptotic, and the 

stability of the equilibrium points of the PWL is important in the control theory of 

hybrid dynamic systems. 

The paper [15] studies the construction of the equilibrium points of PWL systems and 

their stability. Firstly we will explain the types of equilibrium points then followed by 

the stability for them. 

5.3.1 Types of Equilibrium Points 

5.3.1.1 Regulatory Equilibrium Points 

The solutions 𝑥 of a focal point ∅(𝐷) where 𝐷 equals regulatory domain which is 

asymptotically stable.  

5.3.1.2 Singular Equilibrium Points 

Singular equilibriums points are found by the focal points ∅(𝐷) and their solutions are 

founded by the Filippove method, which uses the terms of weakly stable. This is the 

opposite of the Lyapunove method,  which uses the terms of stable the same differential 

equation .So [15] has presented the concepts of stable and weakly stable in the following 

section.  

5.3.2 Stability of genetic regulatory networks with piecewise linear function 

The stability of genetic regulatory networks with piecewise a linear function is based on 

the equilibrium points as follows [15] 
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1. If the equilibrium set 𝐸 which is a subset of neighborhoods 𝑉 such that 𝐸 𝑉, there 

exists a point 𝑈 such that 𝐸 𝑈 𝑉 and every solution 𝜉𝑡  of Equation (3.5.3.3) where 

𝜉0(𝑥) = 𝑥 for all points 𝑥 ∈ 𝑈 then equilibrium set 𝐸 is stable. 

2. If the equilibrium set 𝐸 which is a subset of neighborhoods 𝑉 such that 𝐸𝑉, there 

exists point 𝑈 such that 𝐸 𝑈 𝑉 .and some solution 𝜉𝑡 of Equation  (3.5.3.3) where 

𝜉0(𝑥) = 𝑥 for all points 𝑥 ∈ 𝑈,then equilibrium set 𝐸 is  weakly stable. 

3. If the first case is satisfied in addition to the following conditions[15] 

i. 𝜉𝑡(𝑥) ∈ 𝑉, ∀𝑡 ≥ 0, 

ii. lim
𝑡→∞

𝜉𝑡(𝑥) ∈ 𝐸. 

     Then equilibrium set 𝐸 is asymptotically stabl 

4-If the second case is satisfied in addition to the following conditions [15] 

i. 𝜉𝑡(𝑥) ∈ 𝑉, ∀𝑡 ≥ 0, 

ii. (𝑖𝑖) lim
𝑡→∞

𝜉𝑡(𝑥) ∈ 𝐸. 

Then equilibrium set 𝐸 is weakly asymptotically stable. 

By the following numerical example, the stability of genetic networks will be clear. 

5.3.3 Examples 

Given the simplest model of piecewise linear as [23] 

𝑑𝐸

𝑑𝑡
= 

𝑠(𝑡)
𝐸 𝐸 + 𝐾𝑠(𝑡)

𝐸 , 

𝑠(𝑡) = {
𝑠1   𝑖𝑓 (𝐸 ≥ 𝑒),

𝑠2 𝑖𝑓 (𝐸 < 𝑒).
 

𝐾𝑆1
𝑇 = 400,𝐾𝑆2

𝑇 = 0, 𝑒 = 3,
𝑠1,𝑠2
𝑇 = −1. 

   We start with 𝐸1 as [6]: 
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𝑑𝐸1
𝑑𝑡

= 
𝑠1(𝑡)
𝐸 𝐸1(0) + 𝐾𝑠1(𝑡)

𝐸 , 

𝑑𝐸1
𝑑𝑡

= −1𝐸1(0) + 400. 

The solutions of 𝐸1 are given by [23]: 

𝐸⃗ 1(0) = (−𝐸1(0) + 400)𝑒−𝑡, 

 We assume initial condition according to (𝐸 ≥ 𝑒), 

𝐸1(0) = 3,3.5, 

𝐸⃗ 1(0) = (−1(3) + 400)𝑒−𝑡 = 397 > 0 (𝑠𝑡𝑎𝑏𝑙𝑒), 

𝑑𝐸⃗ 1
𝑑𝑡

= (−1(3.5) + 400)𝑒−𝑡
𝑡=0
⇒   396.5 > 0(𝑠𝑡𝑎𝑏𝑙𝑒). 

Let check 𝐸2 is [23]:  

𝑑𝐸⃗ 2
𝑑𝑡

= 
𝑠2(𝑡)
𝐸 𝐸2(0) + 𝐾𝑠2(𝑡)

𝐸 , 

 We assume the initial conditions according to (𝐸 < 𝑒) in [23] 

𝐸2(0) = 0.5,  

𝐸⃗ 2(𝑡) = (−1(0.5) + 0)𝑒−𝑡
𝑡=0
⇒ −0.5 < 0(𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒). 

Example: 

Let the general form of concentrations of RNA molecules and proteins with piecewise 

linear function for 𝑛  of genes in [24]:  

dy

dx
= Ms(t)x(t) + ks(t),  
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 where Ms(t) is a constant matrix[24] 

si(t) = Fi (q([y1(t − 1,i), y2(t − 2,i)],… , yn(t − ni))), 

Qi(y(t)) = {
1   if xi(t) > hi
0   if xi(t) ≤ hi

  , 

where y(t) ∈ Rnis the vector that presents the continuous variables. By the state space of 

the system, we can investigate as si (
t +
t −

) ∈ Rn, This presents the switching 

matrix . M: s → Rn×n as a diagonal matrix of eigenvalues, k: s → Rn is the switching 

vectors that present the state of the system and Fi: {0,1)
n → {0,1} is a step function for 

the state spaces  si(t). 

For two-dimensions, we have four state spaces (regions) ,see Figure 7. Since n! = 2! =

4  state spaces and the solutions will remove (converge or discourage) the state spaces 

finally to form a square shape. The convergence occurs when the eigenvalues are 

negative, however, the divergence occurs when the eigenvalues are positive [16]  

 

 

 

 

 

 

 

 

 

1h

regionI regionII

regionIII regionIV

21

1

2 )2,2(

1h

0

Figure 7: State space, Thresholds of example [16] 
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Here [11] 

 si(t) = F(q([y1(t), y2(t)])), 

The state spaces  si(t) = (0,0),(0,1),(0,0),(1,1) and we can get Ms(t) as [16] 

M0,0 = M0,1 = M1,0 = M1,1 = [
−1 0
0 −1

] 

 and [11] 

 ks(t) = k0,0, k0,1, k1,0, k1,1  

where 

k0,0 = (
0

2
) , k0,1 = (

2

2
) , k1,0 = (

0

0
) , k1,1 = (

2

0
), 

And   h1 = h2 = 1. 

To understand the behavior and dynamic of the system, we apply the above results to the 

given piecewise linear model and check the convergence of all points as: 

The first state IV  that characterizes [16] 

( x1(t) > ℎ = 1, x2(t) ≤ h = 1), 

By the operation Qi(y(t)), it will note that the chosen point is si(t) = (1,0) by [16] 

dy

dt
= M1,0y(t) + k1,0, 

(

dx1
dt
dx2
dt

) = (
−1 0
0 −1

)(
x1
x2
) + (

0

0
). 

By solving the linear system, we get [16] 
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(
x⃗ 1(t)

x⃗ 2(t)
) = (

x1(0)e
−t

x2(0)e−t
). 

If we let 𝑡 = 0 and assume the initial values [16] 

(𝑥1(0), 𝑥2(0))
𝑇
= (1.5,1)𝑇 

Then (𝑥1(0),𝑥 2(0)
𝑇 = (1.5,1)𝑇 > 0, the stability for the solution in region IV which is 

stable.  

Region III is characterized by [16] 

{x1, x2 ≤ h = 1}, 

By the operation  Qi(y(t)) ,it selects the point (0,0) by [16] 

dx

dt
= M(0,0)x(t) + k0,0, 

(
dx1
dt
dx2
dt

) = (
−1 0
0 −1

) (x1
x2
) + (0

2
), 

By solving the linear system, we get [16] 

(x1
x2
) = ( x1(0)e

−t

2−(2−x2(0))e−t
), 

If we let 𝑡 = 0 and assume the initial values 

(𝑥1(0), 𝑥2(0))
𝑇
= (1,1)𝑇 , 

 Then (𝑥1(0),𝑥 2(0)
𝑇 = (1,1)𝑇 > 0,  and the stability for the solution in Region IV is 

stable.  

Region II that characterizes [16] 

{x1, x2 ≥ h = 1}, 
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 By the operation Qi(y(t)) will select the point (1,1) as [16] 

dx

dt
= M(1,1)x(t) + k1,1, 

(

dx1
dt
dx2
dt

) = (
−1 0
0 −1

)(
x1
x2
) + (

2

0
), 

By solving the linear system we get [11] 

(x1
x2
) = (2−(2−x1

(0))e−t

x2(0)e−t
), 

If we let 𝑡 = 0 and assume the initial values 

(𝑥1(0),𝑥2(0))
𝑇
= (1.2,1.5)𝑇, 

Then (𝑥1(0),𝑥 2(0)
𝑇 = (1.2,1.5)𝑇 > 0, the stability for the solution in region IV is 

stable.  

The region II that characterizes [16]  

{x1 ≤ h = 1, x2 > ℎ = 1}, 

By the operation Qi(y(t)) it will choose the point (0,1) as [16] 

dx

dt
= M(0,1)x(t) + k0,1, 

(
dx1
dt
dx2
dt

) = (
−1 0
0 −1

) (x1
x2
) + (2

2
), 

By solving the linear system we get in [16] 

(x1
x2
) = (2−(2−x1

(0))e−t

2−(2−x2(0))e−t
), 

If we let 𝑡 = 0 and assume the initial values 



  

47 

 

(𝑥1(0),𝑥2(0))
𝑇
= (1,1.5)𝑇, 

Then (𝑥1(0),𝑥 2(0)
𝑇 = (1,1.5)𝑇 > 0,the stability for the solution in Region II is stable. 

Every region is stable. 
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CHAPTER 6 

CONCLUSION AND DISCUSSION 

In this study, piecewise linear systems with time-delay, which are a class of hybrid 

dynamic systems, were is investigated in terms of mathematical modeling of 

dynamic systems.The most important piecewise linear part was the analysis stability 

of models with time- delay, which was take in long simulations. We started with a 

population model that concluded all concepts of stability theorems (fixed points, 

equilibrium points,  periodic solutions and phase spaces) in two-dimensions and n-

dimensions.Next, we were able to investigate the competition models that were based 

on population equations, In this way, we can check the stability for competition 

models of using numerical simulations. furthermore, the study has shown the 

dynamic of complex networks, such as gene regulatory networks. Piecewise linear 

systems helped us to produce the simplest model that is easy to check. Constructing 

piecewise linear systems of complex phenomena has contributed to investigating the 

future behavior of theses problems because they have the time-delay parameter with 

piecewise linear functions.The stability of networks was according to sufficient 

conditions. 

Then, we have to lead the hybrid model for some biological systems.The hybrid 

models were more stable than piecewise linear models by eigenvalues of the fixed 

and equilibrium points. 

At the end of this work, we investigated the construction of dynamic systems in two-

dimensions and n-dimensions as hyperplane maps with an example for each one.  

In our work, we collected a number of non-linear biological systems and analyzed 

them with PWL function, then proved the stability of complex genetic networks with 

piecewise linear functions in numerical simulations. 

 



  

49 

 

REFERENCES 

 

[1] Vladimir A. Kuzenetsov and Iliya A. Makalin. (1994), “Nonlinear Dynamics 

of Immunogenic Tumors: Parameters Estimation and Global Bifurcation 

Analysis”, Laboratory of Mathematical Immunogenic, Vol. 56, No. 2, pp. 295-

301. 

 

[2] Uyttenhove, C., J.Maryanski, and T.Boon.(1983),"Escape of Mouse 

Mastocytoma P815 After Nearly Complete Rejection is Due to Antigen-loss 

Variants Rather than Immunosuppression".J.Expl Med.157,1040-1052. 

 

[3] Emanuel,N.M.(1981),"Chemical and Biological Kinetics". Russian 

Chem.Rev.50,901-947. 

 

[4] Wheelock, E.and M.K.Robinson.(1983),"Biology of Disease". Endogenous 

Control of The Neoplastic Process.Lab.Investigation 48,pp 120-139. 

 

[5] Kuznetsov, V.A. (1979),"The dynamics of Cellular Immunological Antitumor 

reactions.I.Synthesis of Multi-Level Model". In Mathematical Methods of 

Systems Theory (in Russian ), Vol.1, pp.57-71. 

 

[6] Kuznetsov, V.A.(1991)," A mathematical Model for The Interaction Between 

Cytotoxic Lymphocytes and Tumor Cells. Analysis of The Growth, Stabilization, 

and Regression of The B-cell ymphoma in Mice Chimeric with Respect to The 

Major Histocompatibility Complex." Biomed.Sci.2, pp 465-476. 

 

[7] Kuznetsov, V.A.(1992),"Dynamics of Immune Processes During Tumor 

Growth" (in Russian) Moscow: Nauka. 

 

[8] Aihara K., Suzuki H. (2010), “Theory of Hybrid Dynamical Systems and Its 

Applications to Biological and Medical Systems”, Institute of Industrial Science, 

Tokyo Japan, pp. 4893-4896. 

 

[9] Stephanu A., Volbert V. (2016), “Hybrid Modelling a Classification Review”,    

Institute of Numerical Mathematics, Vol. 11, No. 1, pp. 40-44. 

 

[10] Fisher, N. Piterman.(2010), "The Executable Pathway to Biological Networks. 

Briengs in Functional genomics",pp.79-92. 

 

[11] B.S. Brooks, S.L. Waters.(2008)," Mathematical Challenges in Integrative 

Physiology", pp 893-896. 



  

50 

 

[12] Nomura T.(2010)," Toward an Integration of Biological and Physiological 

Functions at Multiple Levels". Frontiers in Physiology.pp 1-164. 

 

[13] Gurcan F, Kartal S., Bozkurt F. (2014), “Stability and Bifurcation Analysis 

of A Mathematical Model for Tumor-Immune Interaction with Piecewise 

Constant Arguments of Delay”, Article in Chaos Solitons and Fractals, Ankara-

Turkey, pp. 16-20.  

 

[14] Sarkar R. R., Banerjee S. (2006), “A Time Delay Model for Control of 

Alignment Tumor Growth”, a Third National Conference on Nonlinear 

Systems and Dynamics, Ankara, Turkey, pp. 20-27. 

 

[15] Gouze J. L, Jong H. D, Casey R. (2004), “Piecewise-Linear Models Of 

Genetic Regulatory Networks: Equilibria and Their Stability”, Tokyo, Japan, 

pp. 4-16. 

 

[16] Kahraman M. (2007), “Modelling Functional Dynamical Systems by 

Piecewise Linear Systems with Delay”, Master Thesis, Ankara-Turkey, pp. 51-

57. 

 

[17] Hale J. K. (1977), “Theory of Functional Differential Equations”, Springer-

Verlag, pp. New York, USA, pp. 12-19. 

 

[18] Razumikhin B. S. (1956), “Stability of Delay Systems”.Berlin, Germany, pp. 

12-21. 

 

[19] Akhmet M.(2009),“Nonlinear Hybrid Continuous/Discrete-Time Models”, 

Vol. 8, Master Thesis, Atılım University, Ankara-Turkey, pp. 70-79. 

 

[20] Gopalsmay K., Liu P.(1996), “Persistence and Global Stability in a 

Population Model”, The Flinders University of South Australia, pp. 59-61. 

 

[21] Li X, Mou C, Niu W, Wang D.(2011)," Stability Analysis for Discrete 

Biological Models using Algebraic Methods". Math Comput ,pp.247–62 

 

[22] Cattani C., Ciancio A. (2011), “Separable Transition Density in the Hybrid 

Model for Tumor-Immune System Competition”, Messina, Italy, pp.1-7. 

 

[23] Al-windawi., H.(2016),"Hybrid System Modeling and Simulation with Tumor-

Immune System Application", Master Thesis, Cankaya University, Ankara-

Turkey, pp. 30-32. 

 

[24] Oktem H., Karasozen B., Kahraman M. (2009), “A Model of Angiogenesis 

by Hybrid Systems With Delay on the Piecewise Constant Part”, Article in 

Journal of Process Control, Ankara, Turkey, pp. 5-7   

 



  

51 

 

                                                      APPENDICES 

  Curriculum Vitae 

 

PERSONAL INFORMATION: 

Full Name:      Noura A. Abdulrazaq Tahar 

Nationality:      Libyan 

Gender:           Female 

Date of Birth:   November
th20

1988  

Marital Status: Married 

Mobile:              05438999512 

Email: Haneenmohammed2012@gmail.com 

 

EDUCATION: 

Degree Institution Year of Graduation 

B.sc  in mathematics 

science 
    Omar Al- Mukhtar University 2012 

M.sc in mathematics 

and computer 

science 

             Çankaya University 

  
2017 

 

 



52 

 

LANGUAGES:     

Arabic: native 

English 

 

HOBBIES:     

Reading 

Playing sports 

 

WORK EXPERIENCE: 

1-Libyan high school (Lecturer for two years (mathematics lessons)) 

 

 

 


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	1.1 Background to the Study
	1.2 Brief Description of the Study
	1.3 Purpose of the Study
	1.4 Significance of the Study

	2. BACKGROUND INFORMATION
	2
	2.1 Introductions of immunogenic tumors system
	2.1.1 The dynamics of immunogenic tumor systems
	2.1.2 Mathematical models of immunogenic tumor systems

	2.2 Hybrid Dynamic System Model
	2.2.1 Definition of Hybrid Dynamic System
	2.2.2 Mathematical Models of Hybrid Dynamic Systems
	2.2.3 Types of Hybrid Dynamic System
	2.2.3.1 Decoupled Models
	2.2.3.2 Coupled Models
	2.2.3.3 Intricate Models

	2.2.4 The main articles of the applications of hybrid dynamic system


	3. DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT
	3
	3.1. Logistic equation with piecewise constant arguments
	3.2 Tumor-immune system with piecewise constant arguments
	3.3 Genetic regulatory networks
	3.3.1 Domains in phase space
	3.3.2 Types of domains
	3.3.2.1 Regulatory domain
	3.3.2.2 Switching domain

	3.3.3 Classical solutions and focal points
	3.3.4 Filippov solutions and focal sets


	4. THE STABILITY OF HYBRID DYNAMIC SYSTEM
	4
	4.1 Concepts of the stability of fixed points
	4.2 Concepts of the stability of piecewise linear systems
	4.2.1 The Lyapunov-Razumikhin method


	5. STABILITY ANALYSIS OF SOME MODELS
	5
	5.1 The logistic equation
	5.1.1 Stability of the logistic equation with a piecewise argument constant

	5.2 Competitions Model  of Tumor-Immune System
	5.2.1 Stability of the competition model with a piecewise argument constant
	5.2.2 Stability of Hybrid model of competition model

	5.3 Gene-protein networks
	5.3.1.1 Regulatory Equilibrium Points
	5.3.1.2 Singular Equilibrium Points
	5.3.2 Stability of genetic regulatory networks with piecewise linear function


	CONCLUSION AND DISCUSSION
	REFERENCES
	APPENDICES

