
EXPLOITING TEMPORAL QUERY BEHAVIOR FOR IMPROVING

RESULT CACHE ACCURACY IN WEB SEARCH ENGINES

SAFAA JUMAAH WAJJI

DECEMBER 2016

EXPLOITING TEMPORAL QUERY BEHAVIOR FOR IMPROVING RESULT CACHE

ACCURACY IN WEB SEARCH ENGINES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

SAFAA JUMAAH WAJJI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

DECEMBER 2016

i

ii

iii

ABSTRACT

EXPLOITING TEMPORAL QUERY BEHAVIOR FOR IMPROVING

RESULT CACHE ACCURACY IN WEB SEARCH ENGINES.

WAJJI, Safaa

M.Sc., Department of Computer Engineering

Supervisor: Asst. Dr. Abdül Kadir GÖRÜR

Co-Supervisor: Asst. Dr. Tayfun Kucukyilmaz

Dec 2016, 43 pages

In Web Search Engines responding to the user queries in a timely fashion is

an important requirement. One of the integral techniques to improve the response

time of a search engine is caching. By storing different types of information in a fast

access memory storage, caching achieves a higher availability and better response

times for the search engine.

Due to anonymous and global access pattern of the queries, search engines are often

considered timeless frameworks. That is, search engine sites constantly respond to

queries that are submitted all around the world at an almost constant pace throughout

the day. During our studies, we evaluate this phenomenon and come to the

conclusion that each of the data centers, which in cooperation form the general

infrastructure of a general purpose search engine in fact realizes high levels of query

temporality. In this work, we aim to apply and exploit the temporal behavior of the

submitted queries to improve the cache accuracy by proposing a new caching

architecture. To this end, we improved the state-of-the-art result caching framework

Static-Dynamic Cache (SDC) and modified it in order to incorporate query

temporality. Our experiments show that the proposed caching framework improves

the hit rate of a result cache up to 3%, which is roughly 25% of the possible room for

improvement.

Keywords: Result Caching, Search Engines, Caches.

iv

ÖZ

ARAMA MOTORLARINDA SORGU ZAMANSALLIGINI KULLANARAK

CEVAP ONBELLEGI ENIYILEME

WAJJI, SAFAA

Yüksek Lisans, Bilgisayer Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd. Doç. Dr. Abdül Kadir GÖRÜR

Aralık 2016, 41 sayfa

Arama motorları için kullanıcı sorgularına hızlı ve zamanında cevap verebilmek

önemli bir gereksinimdir. Cevap zamanını iyilemek için yaygın olarak kullanılanılan

temel tekniklerden biri cavap sayfalarının önbelleklenmesidir. Birçok farklı bilgiyi

hafıza gibi hızlı erişim yeteneğine sahip bir yapıda saklayarak önbellekler arama

motorlarına daha kabul edilebilir bir cevap zamanı elde etme olanağı sağlarlar.

Kullanıcı sorgularının anonim ve küresel yapısından dolayı arama motorları yaygın

olarak zamana bağlı olmayan yapılar olarak algılanmışlardır. Yani, ara motoru siteleri

sürekli olarak kendilerine gönderilmiş olan dünyanın her yerinden gelen sorgulara

gün boyu cevap vermektedirler. Araştırmalarımız sırasında, bu fenomeni inceledir ve

veri merkezlerinin, yani bir arama motorunun altyapı taşlarının, yüksek seviyede

sorgu zamansallığının etkisi altında kaldığını farkettik. Bu çalışmamızda amacımız

sorgu zamansallığını kullanan yeni bir önbellek yapısı önermek ve bu şekilde

önbellek başarısını artırmaktır. Bu amaçla en gelişkin teknoloji olarak kabul edilen

Statik-Dinamik Önbellek (SDC) inceleyerek üzerine sorgu zamansallığını kullanan

değişiklikler önerdik. Yapılan deneyler önerdiğimiz önbellek yapısının önbellek

cevaplama oranını %3 kadar artırdığını göstermektedir ki bu yapılabilecek

maksimum eniyilemenin neredeyse %25'ine denk gelmektedir.

Anahtar Kelimeler: Sonuç Önbelleği, Arama motorları, Önbellekler.

v

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisors Dr. ABDUL ALKADIR GORUR of the

Computer Engineering Department at Cankaya University and and Dr. Tayfun

Küçükyilmaz of the Computer Engineering Department at TED University, without

their helpful advices, valuable comments and guidance this thesis could not be

completed. Their doors was always open for me whenever I need help from them. I

want to thank my family for their support. Finally, I would like to thanks my friends,

teachers for every thing.

vi

Table of Contents

STATEMENT OF NON PLAGIARISM.. iii
ABSTRACT.. iv
ÖZ…………………...……………………………………………………………... v
ACKNOWLEDGEMENTS………………………………………………………... vi
TABLE OF CONTENTS…………………………………………………………... vii
LIST OF FIGURES………………………………………………………………... ix
LIST OF TABLES……………………….………………………………………… xi

CHAPTERS:

1. Introduction...1

2. Related Work...5

 2.1 Result Caching ..5

 2.2 Static Cache and Dynamic Cache..7

 2.3 Static Dynamic Caching (SDC)...8

3. The Motivation..11

 3.1 Search Engine...11

 3.2 The Caching Process ..12

 3.3 Query Compatibility...16

4. Techniques and Models ..20

 4.1 Static-Dynamic Result Caching ..20

 4.1.1 Static Cache...20

 4.1.2 Dynamic Cache ...21

 4.2 Semi-Static Cache..21

 4.3 Modified Query Frequency..24

 5. Setup ...26

 5.1 Static Cache Setup ..26

vii

 5.2 Dynamic Cache Setup ...26

 5.3 Semi-Static Setup...26

 5.4 Final Setup...27

6. Experimental Results...29

 6.1 Static-Dynamic Cache Results...29

 6.2 SSDC Results...31

7. Conclusions...43

REFERENCES……………………………………………………………R1

viii

LIST OF FIGURES

FIGURES

Figure (1.1) Search Engine Components...2

Figure (1.2) The Inverted List..3

Figure (2.1) LRU Cache Mechanism...9

Figure (3.1) Geographically Distributed Data Centers..11

Figure (3.2) Data Centers Components...12

Figure (3.3) Search Engine Components...13

Figure (3.4) Static Cache Query Composition (10% of the total cache capacity is

 reserved as a static cache)..17

Figure (3.5) Static Cache Query Composition (20% of the total cache capacity is

 reserved as a static cache)..18

Figure (3.6) Static Cache Query Composition (30% of the total cache capacity is

 reserved as a static cache)..18

Figure (3.7) Static Cache Query Composition (40% of the total cache capacity is

 reserved as a static cache)..19

Figure (4.1) Day Query Occurrences During a Day..22

Figure (4.2) Night Query Occurrences During a Day..23

Figure (4.3) Every Time Query Occurrences During a Day....................................24

Figure (6.1) The Hit Rate for SDC(10% as static, 90% as dynamic) and SSDC(10%

 as static, 40% as semi-static and 50% as dynamic)............................32

Figure (6.2) The Hit Rate for SDC(20% as static, 80% as dynamic) and SSDC(20%

 as static, 30% as semi-static and 50% as dynamic)............................33

Figure (6.3) The Hit Rate for SDC(30% as static, 70% as dynamic) and SSDC(30%

 as static, 20% as semi-static and 50% as dynamic)............................34

Figure (6.4) The Hit Rate for SDC(40% as static, 60% as dynamic) and SSDC(40%

 as static, 10% as semi-static and 50% as dynamic)............................35

Figure (6.5) The Hit Rate for SDC(40% as static, 60% as dynamic) and SSDC(10%

 as static, 30% as semi-static and 60% as dynamic)............................37

ix

Figure (6.6) The Hit Rate for SDC(40% as static, 60% as dynamic) and SSDC(20%

 as static, 20% as semi-static and 60% as dynamic)............................38

Figure (6.7) The Hit Rate for SDC(40% as static, 60% as dynamic) and SSDC(30%

 as static, 10% as semi-static and 60% as dynamic)............................39

Figure (6.8) The Hit Rate for SDC(30% as static, 70% as dynamic) and SSDC(10%

 as static, 20% as semi-static and 70% as dynamic)............................40

Figure (6.9) The Hit Rate for SDC(30% as static, 70% as dynamic) and SSDC(20%

 as static, 10% as semi-static and 70% as dynamic)............................41

Figure (6.10) The Hit Rate for SDC(20% as static, 80% as dynamic) and SSDC

 (10% as static, 10% as semi-static and 80% as dynamic)..................42

Figure (6.11) The Hit Rate For Each Cache With Optimal Values For Each cache..42

x

LIST OF TABLES

Tables

Table (3.1) Main Statistics Of AOL Data Set..14

Table (5.1) Static, Semi-Static and Dynamic Cache Sizes......................................27

Table (6.1) Table Of Terms...30

Table (6.2) Static-Dynamic Caching (SDC) Results For Different capacities........31

Table (6.3) SSDC Result (10% Static-40% Semi-Static-50% Dynamic)...............32

Table (6.4) SSDC Result (20% Static-30% Semi-Static-50% Dynamic)...............33

Table (6.5) SSDC Result (30% Static-20% Semi-Static-50% Dynamic)...............34

Table (6.6) SSDC Result (40% Static-10% Semi-Static-50% Dynamic)...............35

Table (6.7) SSDC Result (10% Static-30% Semi-Static-60% Dynamic)...............36

Table (6.8) SSDC Result (20% Static-20% Semi-Static-60% Dynamic)...............37

Table (6.9) SSDC Result (30% Static-10% Semi-Static-60% Dynamic)...............38

Table (6.10) SSDC Result (10% Static-20% Semi-Static-70% Dynamic)...............39

Table (6.11) SSDC Result (20% Static-10% Semi-Static-70% Dynamic)...............40

Table (6.12) SSDC Result (10% Static-10% Semi-Static-80% Dynamic)...............41

xi

CHAPTER 1

INTRODUCTION

The importance of computers in our daily lives is increasing every day,

especially with the expansion of data digitization, social networking and

computerized communication technologies, and with the advent of the Internet and

data sharing technologies. Many major research fields are gaining attention. One of

the most important advances in our daily lives is that of web search engines (WSE).

Today, WSE is a multi-billion dollar information industry and everyone all around

the globe constantly uses WSE services. With such a large industry, improving the

speed and response time of a search engine is of almost equal importance to that of

improving the quality of information. Many web search engines work in a

distributive manner and are composed of several sites across the world that are

geographically distributed. Most of time, it is beneficial that these geographically

distributed sites serve their respective regions, meeting the demands of local users in

order to reduce the response time of a query. When a query is requested by a local

user, the closest site will reply to the requested query. Sometimes in large search

engines in order to improve throughput and response time several queries can be

forwarded to a far away data center, this operation is commonly known as query

forwarding.. In case of query forwarding, the response time of a query can become

longer than the quality of service requirements of the web search engines. , which

can lead to users disappointment and dissatisfaction due to high response time.

A typical search engine can be conceptually divided into several parts; namely Web

Crawler, Indexer, cache and Query Processor (Fig. 1.1). Web Crawler (or Spider) is

software or executable script for searching for and fetching web pages that have been

visited by users. It parses those pages in a data structure of extracted links of the

pages depending on such factors of quality including the number of requests of a

page that are gathered by a web crawler and the importance and popularity of a page

in store as well as the download rate.

1

Fig. (1.1): Search Engine Components

the second part; Indexer is responsible for producing suitable data structure for

searching. This data structure is commonly known as an Inverted index. The

inverted index is an indexed data structure and contain a mapping of the content and

it also known as posting list . The Data (in the Inverted index) is represented with a

dictionary of terms of a web page and an inverted list for each term in that page, the

lists containing the information about the frequency and the positions of those terms

(Fig 1.2). This then is the process which generates the best results matching a query

requested by the users in the least time for responding. This is known as Query

Processing, where sorting pages and selecting the most appropriate (i.e. high

ranking) pages query processing can take several properties into account:

- The analysis of the links for a web page

 - The probability of the existence of spam

- The number of clicks for a web page (number of requests by users)

- The analysis of a search activity

- The relation between a request and society

- The statistics of the terms

- The availability of a term within local sites

2

Fig (1.2): The Inverted List

The importance of this stage of the WSE process is the integral speed and efficiency

of the search engine in order to improve search engine performance. A very

commonly used technique is caching, which is the process of storing important

information in a fast memory. Since queries or query results stored in the fast access

memory can be used faster than the data residing on the disk; caching has many

advantages, first it improves the response time wastly. Second it produces a high

throughput on the web search engine and finally it enables search engine

optimization through consumption of least computational resources. The cache stores

the most requested and recently appended queries inside the storage after

recomputing the data with specific algorithms dedicated to such purposes in a small

amount of that storage. The efficiency of the caches is the amount of time that a

request demands a reply from the user by responding to a search request in the

shortest possible time. The most important metric of a query to be cached or stored

in the cache is the instance number of requests for a specific query and the arrival

time of a query to the cache. The synchronization between the hit rate and the arrival

time is the underlying measure of the performance of the cache. The aim of caching

is to reduce work load and response reaction time on the data centres of local or

3

global severs with numerous methods such as admission, pre-fetching, eviction and

refreshing. The main major operation for the cache is the procedure of determining

the query entry in the cache known as (Admission). When the cache admits a set of

queries and becomes full, a number of queries will be evicted from the cache. This

operation underlies the term (Eviction). For the future probabilities that appear for

some queries depending on different measurements, the number of the queries is

cached before their being requested, which is known as (Prefetching). For a number

of reasons, such as the capacity of the cache or the validity of the queries, there is a

need for a (Refreshing) technique to make a decision in those situations.

4

CHAPTER 2

Related Work

2.1 Result Caching

One way to improve web search engine performance is through result

caching (Markatos 2001). In results caching, we process the results of many searched

queries that have been requested from many users and we store them in storage with

special properties including the ability to retrieve them in the least amount of time.

Any future occurrence of a query that are already cached in the storage is one of the

best solutions in this field. Hence, both the server and query processing performance

will be high and on the server side, the load will decrease greatly due to the requests

that will be served from the cache rather than the server. Moreover, the query

processing will be less congested with the occurrence of any future queries that have

already been cached, which will decrease the time needed to reply to a user request.

Result caching is a method such that a number of sites is processed by taking the

highest frequency entries, also known as the hit ratio. Whenever the hit ratio is high,

performance improves; this depends on many factors, including the replacement

policy in the cache as there are many replacements and refreshing techniques such as

time-to-leave prediction (Alıcı et al., 2012). The steps of the caching starts whenever

a new query enters the cache and as a result the size and number of items inside it

will increase and it is here that we will need a method for replacement to avoid the

overload on the cache, therefore requiring a real-time process. Moreover, the items

that need to be removed from the cache are the queries with the least popularity in

order to ensure that the cache will only serve the queries with the highest popularity.

The researches focused on analysing the statistics of the entries. In 1998, Hoelscher

[Hoelscher 1998] reached a conclusion that approximately 59% of users searched for

requests within the first page of results. Moreover, in the Lampel and Moran

experiment [Lampel and Moran 2003], it was found that 63.5% of users searched for

results in the first page only. Similarly, 85% of users preferred the first results page

in Silverstein’s experiment [Silverstein et al. 1999]. The commonality between all

5

those experiments is the popularity of the pages within a range; in practice, the

frequencies of the pages and hit rate of the cache lies under the accuracy and

effectiveness of the methods and techniques that are working in the cache. There are

many architectures of result caching with different results for each one of them, and

each architecture aims to improve the hit rate of the cache. As a result of those

attempts, there were many designs and each one of those designs dealt with the

queries differently, such as the static cache and the dynamic cache. Furthermore,

there are a number of hybrid designs that synchronize more than one type of cache,

and all those researchers aimed at one object, offering the best cache that would

serve the user in less time. In the static cache architecture, in storage with preloaded

entries before setting the cache online, the entries consist of a set of queries with a

high frequency from a previous log. Unlike the static cache, the dynamic cache is

designed with policies to make it more flexible by offering free space by removing

queries and replacing them with others according to the policy work. The first to

apply time reduction for a response in search engines was Markatos [Markatos

2003], by designing a fully static cache results and comparing them with fully

dynamic ones. In the first design, the queries with the highest popularity received a

slight difference in many tests. On the other side, the dynamic design showed that

some queries received a number of requests for only a certain amount of time in the

interval appearance, and there were suddenly queries with a high number of requests,

such as web page broadcasts or streamings of special events. Another result in

caching design was presented by Lempel and Moran [Lempel and Moran, 2003],

which provided the cache system with a new caching policy called PDC

(Probabilistic Driven Caching). PDC focuses on the statistics of the queries that were

submitted earlier in the search engine and any other query with no occurrence

previously being considered in this policy. This policy segments the queries into two

groups: the first group, that contains queries with high ranking, will receive a high

probability; the second group is the queries with low probability and these queries

will be evicted from the cache. Saravia designed a hybrid system from two-level

caching [Saravia et al. 2001], in which the first cache is storage for the queries with

an LRU (Least Recently Used) policy. The other is storage with a postings list that

contains the queries inside it, wherein each query entering the first level is

distributed into a posting list at the second level. From all the designs above, we

found that Makrato’s design is missing a pre-fetching method in order to reply to

6

new requests. In Saravi’s cache, the second level provides good performance, which

helps the memory with replying to requests, a good overall throughput with no pre-

fetching strategy. The Lempel and Moran cache serves only the subsequent pages

that relate to the first one. For those that are subsequent, they used an SLRU

(Segmented Least Recently Used) Policy. Thus, the PDC grants a pre-fetching for

the user expectation request; however, the problem of this method is that when no

request is received within a period of time, the session ends and anything newly

subsequent received after that will receive less priority, which might not put those

subsequent items into the first results page. Another cache design (Baeza-Yates and

Saint-Jean, 2003) includes a two-level cache with a static setting, Moreover,

(Altingovde et al., 2011) proposed a result cache with a document ID cache, and

storing the document IDs without the snippets in order to reduce the query traffic at

the end of the search system. In a cache with three levels, there is a result caching

and a postings list caching and the intersection of the postings list caching and the

result caching (Long and Suel, 2005).

Tolosa et al. (2014) present a single static cache by making a couple of posting lists

and term intersection lists by generating terms that are mined from the query logs

with the top N-frequent method from posting lists cache, result cache and the term

intersection cache. All these architectures can be summarized into two main designs:

static and dynamic caches. In addition to those two caches, there are the hybrid

designs which may contain one or both of with different policies from one design to

another, such as Saravia’s cache and the state-of-the-art caching of the SDC (Static

Dynamic Cache) (Fagni et al. 2006). Moreover, there are the three-level architectures

cache (Li et al. 2007), which proposes a cache with results, posting lists, and

document caches. Additionally, there is the five-level cache that was proposed by

(Marin et al. 2010) and (Özcan et al. 2012)

2.2 Static Cache And Dynamic Cache

The static is a type of cache which usually stores the most frequent subset of

queries in the query logs, because of this reason the static caches in the literature are

often deployed in an offline manner. In the literature features and techniques which

are different than query frequency are also proposed. The entries are identified by

such quality measurement such that they increase the hit ratio of the cache. On

such basis, the hit rate will show the impact of the cache policies. Practically,

7

whenever the hit rate increases, better performance of the cache is achieved. Unlike

the static design, the dynamic cache has the capability of redeveloping itself by

evicting the queries inside it. By removing the queries and depending upon a policy

that is suitable to it, for example, the LRU (Least Recently Used) (O’Neil 1999) (Fig

2.1) is one of those policies which depend on the recency of the queries. Most of

those policies aim to offer a free space inside the memory by evicting any

unimportant queries from the cache. However, even with those policies, the

performance was not very accurate and occasionally there was a loss of some

important data due to the behaviours of the policies. Therefore, there was a hybrid

system and one of best of these systems is Fagni’s cache. Most of the result caching

aims to enhance and improve the performance of the search engine, Cambazoğlu

proposed the last techniques to compute the unseen queries from previous logs that

were already cached in order to enhance the availability of the search engine

(Cambazoğlu et al. 2012). Skobeltsyn showed in his paper (Skobeltsyn et al. 2008)

the impact of result caching on a dynamic cache with index pruning. Frances

(Frances et al. 2014) created a multi-site web search setting by combining result

caching with replication and query forwarding. Puppin et al. (2010) incremented the

caching policies in order to reduce the workload of a distributed search architecture

that is collection selection based. The refreshing method is an additional factor to the

result caching performance (Cambozoğlu et al. 2010; Jonassen et al. 2012; Jacobs

and Longo 2015). Using the information at the back end of system, the result cache

receives notifications for updating the index and informs it about the expiration using

a statistic from that information (Sazoğlu et al. 2015; Alıcı et al. 2015;

Prokhorenkova et al. 2015; Blanco et al. 2015; Bai and Junqueira 2012; Brotnikov et

al. 2015).

8

Fig. (2.1): LRU Cache Mechanism

2.3 Static Dynamic Caching (SDC)

SDC is a hybrid design of two segments of caches: static and dynamic. The

static part is a block filled with a set of queries that receive a high number of

requests from previous logs. The cache is filled with those queries offline and this

cache will be a read-only purpose cache. In the second part of cache, there is a fully

dynamic cache. The mechanism in this part is different from the static part such that

all the queries yield to a replacement method and each query needs to gain more

popularity in order to avoid the replacement policy and stay in the cache. In this

design, Fagni used the (LRU) policy To understand dynamic caching better, we

represent Q as a query and S and D for the static and dynamic parts respectively.

Initially, each Q from a user logs in to the cache and the cache will search for that Q

in S. If Q is found, then it is a cache hit and it will return 1 with and associated

query. If Q cannot be found in S, then Q will be searched for in D. If Q appears in

D, then it is a cache hit and Q's popularity will increase due to that request.

Otherwise, if Q does not appear in D, then it is a cache miss and Q will be added to

D as a new query, which will give Q the opportunity to compete with other queries

9

inside the D cache at the end. Whenever Q acquires more future occurrences, its

popularity will increase. In cases when the cache is full, the LRU will delete a Q

with the least popularity in order to provide space for a new Q. Every hit and miss of

the cache is important because those two factors will provide the hit ratio of the

cache with this equation (1):

(1)

10

CHAPTER 3

The Motivation

3.1 Search Engine

WSE is software that works together to make the final virtual form of a

search engine. The main problem is that search engines are geographically

distributed and due to this fact, search engines serve their own regions with data

centres (Fig 4.1).

Fig (3.1): Geographically distributed Data Centres

11

The data centres are high powered facilities and serve users' requests. They are

available at all times and the processes consume much energy (nearly 2% of the

world's energy) (Fig. 3.2). Therefore, any effective method that helps to serve users

perfectly with better results will help to decrease energy consumption. One of the

important methods to make this possible is caching.

Fig (3.2): Data Centres components

3.2 The Caching Process

The concept behind caching is ambiguous for many people and some have

different ideas about the sequence of the query process within the search engine. A

query goes into two main options within the cache level. Every search engine is

geographically distributed and when a user requests a web page, the request will

reach the local server (the nearest main server to the user). One of these techniques is

Duplication, the method which puts many copies of a web page into many data

centre servers. Every time a user asks for that page, the page will be served from the

nearest data centre to that user. Another method is query forwarding, which can be

considered to be a complementary phase for the duplication method whenever a

server cannot serve a user request due to overloading, the forwarding operation sends

requests to another server to serve it.

12

Because of this, the search engine starts working on the parts to increase the speed of

the search and retrieve the queries that feed users requests that depend on the caching

(Fig. 3.3), especially the result caching. With this cache, researchers aim to design

and improve their own cache systems.

Fig (3.3) : search engine components

In this paper, we focused on a new term in the cache system, which we called

the Query Compatibility (Kucukyilmaz et al. 2016). With this idea, we give the

cache more flexibility to admit more queries inside it with more information to occur

in the cache in the most compatible place that gives more replies to the user

requesting it. We start our test with a dataset called AOL and this dataset belongs to

America Online Inc. and it was suitable to conduct research and tests on it since it

has good properties such as the huge number of website requests and the dates and

13

CACHECACHE

QUERY ENGINEQUERY ENGINE

INDEXERINDEXER

TOKENIZERTOKENIZER

CRAWLERCRAWLER

USER

WWW

times for those requests. We modified the AOL dataset by removing a number of

duplicated queries due to many simultaneous requests from many users. After this

process, we had on each line in the dataset (query, date and time), where query

corresponds to the website requested by a user, date and time showed the time at

which the query was requested. We removed the useless queries that had been

ciphered because of their content and privacy issues. After all the normalization

processing, we obtained the information as seen in (Table 3.1).

Dataset No. of queries No. of distinct Date
AOL 2747923 1216371 August 4 2006

Table 3.1: Main statistics of AOL data set

We found that most of the cache systems served the user with two evaluation

criteria, namely frequency and recency; but with our test results, we observed that

many queries produced a high number of occurrences in a period of time and

decreased in another. Initially, we started a test to show the baselines for all the

distinct queries in the AOL dataset and we checked the number of occurrences within

one day. We found that the baseline started increasing slightly at some points in the

first quarter of the baseline and in the second quarter the increments more greatly

than the first quarter at some points. However, the range of the occurrences for most

of the queries within the second and the third quarter were higher than the others

until the fourth quarter. Then the baseline continued with same scenario as the first

quarter with some increments higher than the first quarter. After that, we modified

our dataset and added many statistics to our queries (total_freq, day_freq,

night_freq), where total_freq corresponds the total number of hits for a query either

in the day or night, where day_freq represents the number of hits for the day and

night_freq determines the total number of hits for a query within the night hours.

From that, we produced a result wherein most of the modern cache systems focused

on the frequency with a high number of requests and ignoring queries with smaller

numbers of occurrences (first and the final quarter of the baseline). This led us to

conclude that those queries can admit the cache at some level and might not enter

another. However, the problem here is that a number of requests for a specific query

14

occurs at certain times, which is the underline of the Query Compatibility term. This

query might be important for a certain time and it can be requested by a number of

users and not be ignored as it may be important and enhance the hit ratio of the

cache. As an example of the modern state-of-art result caching system, we have

Fagni’s SDC. Fagni focused on the queries with the highest frequencies from

previous logs. He put them inside the static part and the remaining queries competed

with each other in order to be admitted into the dynamic part. The main factor in the

static part is the frequency and the dynamic is the recency of the queries. In order to

explain the amount of processing required to deal with this, we analysed the query

and put the total frequencies into each percentage of occurrences for the day.

After checking the number of occurrences in our data set to check the number

of processes that our design will deal with, we found that the queries with a low

number of occurrences have acceptable frequencies and the number of frequencies

can provide a good number of hits that enhance the hit ratio of the cache. With all the

information that we gained from all the tests above we reached a result, that the

focusing on the highest frequency queries provide a high number of hits. especially

that the static cache work depending on this mechanism and the first step in the static

cache is that the cache will be filled with the highest frequencies queries from a

previous log offline before putting the cache in the online mode.

The benefits of using the static cache are many, one of the main benefits is that the

cache is already filled with queries and that will help to avoid the compulsory misses

for the queries. Also providing a high number of hits to the cache system and

avoiding the amount of processing comparing to the other caching systems.

Moreover, putting those queries in the static cache will provide a high speed for

retrieving them to the user since they receive a high number of requests, which

makes them popular for a large number of people, especially social media sites as

they almost always appear due to people’s behaviour when requesting them, which

depending on many factors that depend on their relationships and concerns. In the

final analysis, the static cache will provide a great number of hits to any cache

containing it. However, the static cache alone is insufficient because, as mentioned

previously, the static part is a read-only part and it will not provide any opportunity

to refresh it. In order to repair this, there is the dynamic part which focuses on the

queries with high frequencies for a period of time, especially the LRU methods on

which SDC depends in the dynamic part. All the queries will admit the dynamic

15

cache regardless of whether it starts empty. However, that any new query admits the

dynamic cache will receive a compulsory miss, and any query admitted to the cache

needs to receive more occurrences to avoid the eviction method. The good point in

the dynamic is that the queries with a high number of frequencies will not stay in the

cache unless it gains more requests, thereby avoiding the cache Hang Over Problem,

which means that any query receives a high number of frequencies for a short time,

similarly to the attack on 9/11 which received a huge number of frequencies.

However, by the time it started to decrease, the number of frequencies; no query

inside the cache will receive such a high number of requests such as the 9/11 attack;

therefore because that we use the dynamic cache system. No query will receive a

high number of requests. Such a query has a high probability of not being evicted

from the cache if it becomes full and a new query comes to the cache. With those

two caching systems working together, we can provide a good hit ratio and cover

many user requests in addition to giving the query more flexibility to admitting the

cache with low frequencies.

3.3 Query Compatibility

 In most of the cache systems, the researchers used a real data set such that

they used a data set from a real search engine with real logs and full statistics. Since

we could not provide a real data set, we used the AOL data set, which is sufficient

for testing the cache systems; however, it is missing a number of other statistics that

make the research and tests more effective and accurate. Nevertheless, we made

many modifications to the data set in order to make it suitable for our work. We

observed that the query contained a temprorality, which means that the query is able

to acquire a good number of occurrences for a short time. We concluded that the

query can be categorised into three types query that receives most of its occurrences

at the day hours called (Day Query) and the query that has the highest number of

occurrences in the night hours, which is called a (Night Query) and the query with a

high number of occurrences most of time, either in the day or night hours, is called

the (EveryTime Query). Moreover, we found that the cache systems, specifically the

static cache, focused on the every time queries and stored them, and the dynamic part

gave an opportunity for them to be admitted inside it. However, there were many

queries that received satisfying frequencies for a specific time to be admitted.

However, after that, its was evicted when that period of time ended and on the

16

second day, the cache executed the same procedure with the query. As a result, the

number of misses increased, which meant that this query showed a temporality that

can give the cache a better hit ratio when we used a good way to utilize it. We also

analysed our data set in order to understand the behaviour of the query with different

cache sizes. We tested it with only fully static caches, the first being at 10% size of

the static cache from the AOL data set (Fig 3.4).

Fig (3.4): Static Cache Query composition

(10% of the total cache capacity is reserved as a static cache)

With 10% of the static cache, we can see in the cache with different capacities we

found that with 1% of the capacity, the number of every time queries is more than

70% of the 10% of the static cache, and when we continue our test with higher

capacities, 2%, 4%, 8%, 16% of the value of every time queries decrease and the

values of the day and night queries increase, thus proving our theory about the query

compatibility even with more than 10% of the cache.

17

Fig (3.5): Static Cache Query composition

(20% of the total cache capacity is reserved as a static cache)

Fig (3.6): Static Cache Query composition

(30% of the total cache capacity is reserved as a static cache)

18

Fig (3.7): Static Cache Query composition

(40% of the total cache capacity is reserved as a static cache)

For the 20%, 30% and 40% of static caches, the increments of day and night queries

increased every time we increase the size of the cache and the capacity (Figs. 3.6 and

3.7).

We checked the test for only those values because after the 40% of static the within

the SDC, the performance will decrease and the cache will start to be more static

than an SDC. Moreover, any size greater than that will be unreasonable and perform

badly for the cache. Additionally, there are many queries with identical properties for

the day and night hours. in order to provide a good cache system in the present time,

it is necessary to focus on the powerful points of modern cache systems and the SDC

is considered the best of them. We already explained what it can and cannot do and

we conduct a search on the query characteristics in a manner to affect any cache

system enhancement. We will work in a space within the essence of the SDC;

however, we will also concentrate on the weak points of the SDC in a manner so as

to provide a better hit ratio by serving out the cache with query compatibility without

losing any query that can make our cache more effective and a complementary part

of the SDC.

19

CHAPTER 4

Techniques and Models

In this part, we introduce the solution by presenting the work progress with

the AOL data set and the designs and techniques that we used within our research.

Moreover, we implemented the static-dynamic caching with the same method that

Fagni used with his own SDC. We present each method in one part with the same file

as a data set and make every process on it depend on the cache sequence. The SDC

progress measures the accuracy and performance of our cache by comparing the

SDC result with ours, followed by checking the final result of each cache with the

same data set.

4.1 Static-Dynamic Result Caching

Static-dynamic caching (Fagni et al., 2006) is a state-of-the-art caching

method in the current time. We establish it by creating two separate parts and

synchronizing them to obtain the baseline. Moreover, we provide many states for

SDC to check the worst case and the optimal case by measuring the highest hit rate

and the lowest hit rate. For this purpose, we run the SDC at different sizes by giving

different percentages for the static and dynamic segments in each case.

4.1.1 Static Cache

We started our work by filtering the AOL data set by removing the

unnecessary queries that are ciphered for a number of reasons from the source with

the sign (-). Moreover, we removed the queries that appear with same date and time,

which occurs when a number of users make simultaneous queries. Additionally, we

removed any queries that were missing dates or times. After that, we calculated the

number of distinct queries by adding all duplications by the query title into a field

we call the FREQUENCY, which contains the number of occurrences for a query

within the data set. Then, we sorted them according to the FREQUENCY field. Until

this step, we did not use any of the previously explained methods since those are the

20

only steps that were used in the SDC. After sorting the data set, we took the queries

with the highest frequencies and put them in the static part as the static cache content

and calculated the total frequencies of those queries (inside the static part) as the

total number of hits for this part of the SDC.

4.1.2 Dynamic Cache

In this caching part, we removed all the queries that appear in the static cache

in order to conduct an accurate simulation for the SDC. Because of that, we made

separate files as dynamic data sets. Then we started our test by using the LRU

method as the main mechanism of the dynamic cache.

4.2 Semi-Static Cache

The semi-static is our new method that we use in the result caching which

depends on a new feature for the caching. This feature was mentioned in the previous

chapter as “Query Compatibility” and we focused on this feature because we found

that it had never been mentioned or used previously. When we start our tests on this

feature, we give it much attention and when we measured the query behaviour each

time, we increased the cache sizes and capacities.

Initially, we create a data set with distinct queries, and we create compatibility

between each query. Then, we provided a factor for this process and in order to

provide more space to the query, we increased the time-line for the day and night

queries by separating the time into two parts, the first part of the time-line being

between 07:00 and 18:00 as the day period and the night time period will be between

18:00 and 07:00.

The queries that come with any time-line needs to receive 60% or more of the total

occurrences within a period in order to be accepted as a query related to that time-

line. Anything less than that, the query will be accepted as an every time query. We

also ignored the queries that appeared only once in the data set, which we considered

as unsatisfactory. To provide a clearer view about the query compatibility, we took

random values that satisfied this feature. In (Fig. 4.1), we took the query (map quest)

as an example of a day query.

21

Fig (4.1): Day Query Occurrences during a day

We can easily observe that the number of occurrences starts high from the beginning

of the first day hour (day period). Between 07:00 and 08:00, the query increases to

more than 300 occurrences within the first hour and the occurrences continued to

increase after that. From 11:00, the query reached the highest number of occurrences

and continued with varying differences from 12:00. After 18:00, the occurrences

started decreasing until the end of the night period. As an example for the night

query, we have the query (my space) as an example in Fig. 4.2.

22

Fig (4.2): Night query occurrences during a day

With this query, we can easily classify it as a night query for the period of high

activity at the beginning of the first hour in the night period starting 17:00 and

lasting until the first two hours of the next day. When we compare it with the

previous example, we found the number of activity hours for the previous query

numbered more than the night query example. However, we need to take into

consideration that the focus here is on the total number of occurrences rather than the

hours of activity for the query. After those two examples, we see that the number of

occurrences is higher with the every time queries and that the queries do not have a

specific activity period. Moreover, have a high number of occurrences most of the

time. For this example, we took one of the most frequently requested queries

(Google) as an example of an every time query (Fig 4.3).

23

Fig (4.3): Every time query occurrences during one day

The (Google) query yields the highest query requested in our data set (AOL) in all

the tests and it is more suitable to be in the static part rather than the other parts. We

found a high number of occurrences from the beginning in comparison with the first

hour for either the day query example (Fig 4.1) or the night query example (Fig 4.2)

and almost the same or slightly below the highest occurrences for the previous

examples. Most of the time, it yields a large number of occurrences, and even with

the lowest occurrences, between 2:00 AM and 7:00 AM, the number of occurrences

each hour of that period is very high compared to previous examples. To calculate

the query compatibility, we used the following formula:

 (1)

where n represent the query and the formula for the query compatibility equals the

number of the occurrences for a query in the day period divided by the total number

of occurrences for a query within the day and the night periods.

4.3 Modified Query Frequency

In this part, we used the modified query frequency to explain the method that

we used within our semi-static cache strategy to put each query inside the correct

24

part. We aim to estimate future query occurrences. For example, when a query comes

during the day period, there is a high probability of this query appearing in the night

period. However, with the night query, the situation is different and we need to

decrease the expectation for future occurrences during the day. Immediately after

calculating the query compatibility, we created two files of the remaining data set

after the static part queries were removed and each one of them was created with the

same queries but with a different equation than the other. With the first file, we

executed formula number (3), the modified query for the day queries:

 (3)

This equation gives us the total number of occurrences for the day with a number of

additional future expected occurrences for the query. Furthermore, for the night, and

every time queries are made, we keep the modified frequencies equal to the total

number of occurrences.

In the second process, we calculate the modified frequencies with same files;

however, this time, we only served the night queries with equation (4) and we kept

the other queries with the modified frequencies equal to their total occurrences.

 (4)

After finishing the work with the modified frequency for each query, we produce two

files each one of which served one kind of query. Then, we sorted those files

according to the modified frequency field. With those procedures, we produced all

the data sets that we will use in our final synchronized simulation.

25

CHAPTER 5

Setup

We conducted our experiments on a PC with a 1.6 GHZ Intel Core i5

processor, 4GB of RAM and the Linux Ubuntu 15.10 operating system. We were

unable to obtain a realistic data set, so we depended on the AOL data set due to it

being, at that time, the best option available for the use of statistics, thus making it a

good data set for experiments.

5.1 Static Cache Setup

Because of the static cache filled mechanism, we sort the AOL data set and

put the n most frequent queries into the static part and keep the remaining queries in

a separated file without the static cache queries. First, we start with a fully static

cache, and afterwards, we decrease the cache size by small portion of 10%.

5.2 Dynamic Cache Setup

For the dynamic part, we used an LRU cache and we started the experiment

with this part with a fully-dynamic cache with the remaining queries from the AOL

data set after removing the static queries from it. We started with 10% and the

capacities of 1%,2%,4%,8% and 16%, and we continued with 10% and increased

them by another 10% for each new test until we reached a 100% fully-dynamic

cache.

5.3 Semi-Static Cache Setup

This part is our novel part and the main part in our research. It contains the

modified queries that have been sorted for the day and for the night. The main

difference in this cache is that it has a swapping part. the first part is the part with

queries that yields the highest modified frequencies depending on daytime

compatibility. At the beginning of the night hours, a swap to the night part that is

already filled with queries with modified frequencies depends on the night time

26

compatibility. The size of the semi-static cache ranges from 10% up to 40% by 10%

increments for each term of tests (Table 5.1).

Table 5.1 :Static, Semi-Static and Dynamic Cache Sizes.

From the table above, for each dynamic cache size, there are many tests for more

than one time with different sizes for each different size for the static and semi-static

cache.

Because we could not obtain a real data set, we did the swapping and every other

operation as simulations. Moreover, we conducted all those operations in order to

select their optimal value and to compare our results with the SDC cache results so

as to cover all the cases for the caches.

5.4 Final Setup

After filling the static cache and the swapping parts for the semi-static cache,

the experiment starts by taking a query and initially searching for it in the static

cache. If the query is found, then it is a hit; if the query is not found, then we search

for it within the semi-static cache. For this part, the search differs such that it is less

complex than the others because we have a non-realistic data set. For that, we take

27

Dynamic Cache Size % Semi-Static Cache % Static Cache %

50% 10%

20%

30%

40%

40%

30%

20%

10%
60% 10%

20%

30%

30%

20%

10%
70% 10%

20%

20%

10%

80% 10% 10%

the query and we also check the time of this query. The query is shown as a day

query. We swap to the day part and search for it within it. If found, it is a hit, and if

not found, it is a miss. Then we search for it in the dynamic cache; if the query time

shows that the time is related to the night period, we swap to the night part and do

the same operations as the day swapping. If a query is not found in either the static

cache or the semi-static cache, we search for it in the dynamic cache. With the

dynamic cache, the cache can start empty. If a query is found in the cache, then it is a

hit and the node with this query will be pulled to the front of the cache because of the

LRU cache mechanism. If the query is not found even in the dynamic cache, then it

is a miss and we add this query to the dynamic cache with even less regard than any

other information for this query. Moreover, we a put it in the front of the cache. At

the end of all those searches until the end of the data set, we calculate the number of

hits and misses for all the queries.

28

CHAPTER 6

Experimental Results

In this chapter, we present every experimental result that we obtained from each

cache and compare them with one another to obtain and show the difference in

performance between them. We grouped the experiments in two: Static-Dynamic

caching and SSDC (Static-Semi static-Dynamic cache), in which we conducted the

tests with different sizes and with capacities for the cache at 1%, 2%, 4%, 8% and

16%.

6.1 Static-Dynamic Cache Results

By taking the sum of the hits from the static cache and dynamic cache and

dividing it with the total number of queries in the data set (5), we get the hit ratio for

each differently sized cache.

 (5)

Rather than making a baseline for each case for a cache, we put the results into a

table for the hit rate. We start with the SDC cases and we start with a fully static

cache. We then decrease the static with a partial increase of the dynamic (Table 6.2).

And to explain the terms that we will use in our setup and results we give the terms

and an explanation about each one of them in the table below (Table 6.1).

29

Term Explaination

50S-50D The capacity of the static cache is 50% of the cache size (1,2,4,8,16)
 and 50% is the capcaity of the dynamic cache for the same size.

40S-60D The capacity of the static cache is 40% of the cache size (1,2,4,8,16)
 and 60% is the capcaity of the dynamic cache for the same size.

30S-70D The capacity of the static cache is 30% of the cache size (1,2,4,8,16)
 and 70% is the capcaity of the dynamic cache for the same size.

20S-80D The capacity of the static cache is 20% of the cache size (1,2,4,8,16)
 and 80% is the capcaity of the dynamic cache for the same size.

10S-90D The capacity of the static cache is 10% of the cache size (1,2,4,8,16)
 and 90% is the capcaity of the dynamic cache for the same size.

100S-0D The capacity of the static cache is 100% of the cache size (1,2,4,8,16)
and 0% is the capcaity of the dynamic cache for the same size. Which
mean there is no values in the dynamic cache.

10-40-50 The capacity of the static cache is 10% of the cache size (1,2,4,8,16)
and 40% for the semi-static capacity and 50% the capacity of the
dynamic cache.

20-30-50 The capacity of the static cache is 20% of the cache size (1,2,4,8,16)
and 30% for the semi-static capacity and 50% the capacity of the
dynamic cache.

30-20-50 The capacity of the static cache is 30% of the cache size (1,2,4,8,16)
and 20% for the semi-static capacity and 50% the capacity of the
dynamic cache.

40-10-50 The capacity of the static cache is 40% of the cache size (1,2,4,8,16)
and 10% for the semi-static capacity and 50% the capacity of the
dynamic cache.

10-30-60 The capacity of the static cache is 10% of the cache size (1,2,4,8,16)
and 30% for the semi-static capacity and 60% the capacity of the
dynamic cache.

20-20-60 The capacity of the static cache is 20% of the cache size (1,2,4,8,16)
and 20% for the semi-static capacity and 60% the capacity of the
dynamic cache.

30-10-60 The capacity of the static cache is 30% of the cache size (1,2,4,8,16)
and 10% for the semi-static capacity and 60% the capacity of the
dynamic cache.

10-20-70 The capacity of the static cache is 10% of the cache size (1,2,4,8,16)
and 20% for the semi-static capacity and 70% the capacity of the
dynamic cache.

30

20-10-70 The capacity of the static cache is 20% of the cache size (1,2,4,8,16)
and 10% for the semi-static capacity and 70% the capacity of the
dynamic cache.

10-10-80 The capacity of the static cache is 10% of the cache size (1,2,4,8,16)
and 10% for the semi-static capacity and 80% the capacity of the
dynamic cache.

Table 6.1: table of Terms

 SIZE 1% 2% 4% 8% 16%

50S-50D 0.483 0.500 0.520 0.544 0.576

40S-60D 0.479 0.495 0.515 0.537 0.566

30S-70D 0.474 0.490 0.509 0.530 0.556

20S-80D 0.468 0.483 0.501 0.522 0.545

10S-90D 0.460 0.475 0.492 0.511 0.533

100S-0D 0.448 0.463 0.481 0.500 0.520

Table 6.2: Static-Dynamic Caching (SDC) Results for Different Capacities

From the tables above, we found that the highest hit rate came in the (90S-10D).

However, the SDC was not working with a static part larger than the dynamic. By

decreasing the static part, the hit rate decreased and most of the SDC caches used a

static part smaller than the dynamic. Most of result caching was served with 40% for

the static and 60% for the dynamic, with a 30S-70D and for anything lower, the hit

rate becomes lower.

6.2 SSDC Results

After all the results from the SDC, we reach our improved SDC, or what we

called (SSDC). To provide further details of the results from our cache, we present

the results in the tables below with the hits for each part of the cache. For the semi-

dynamic part, we separated the hits into two parts: the hits for the day part and the

hits for the night period.

We started our test by comparing the SDC with 10% of the cache as static and the

remaining as dynamic. Then we compare the result with our cache by giving 10% as

31

a static and 40% as semi-static and the remaining as dynamic. We got a better

amount of hits (Table 6.3) . Also we got a better hit rate that increase whenever we

increase the cache capacity (Fig 6.1).

Table 6.3: SSDC Result (10% Static-40% Semi-Static-50% Dynamic)

Fig 6.1: The Hit Rate for SDC(10% as static, 90% as dynamic) and

SSDC(10% as static, 40% as semi-static and 50% as dynamic)

32

10-40-50 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 379794 133334 141398 669005 1323531 0.481

2% 461026 163094 177102 571515 1372737 0.499

4% 556444 200288 221796 455178 1433706 0.521

8% 661382 255575 281954 314786 1513697 0.550

16% 776824 330684 363465 166015 1636988 0.595

Then we increased the static part and decrease the semi-static in our cache and we
compare it with SDC (20% static and 80% dynamic) see Table(6.4) and fig(6.2). We
got an increasing from the beginning by 2% and with 8% capacity its increase again
with 3%. with 16% we reached an high increment with 5%, which give us a good
improvement comparing with any other enhancement with any other cache.

Table 6.4: SSDC Result (20% Static-30% Semi-Static-50% Dynamic)

Fig 6.2: The Hit Rate for SDC(20% as static, 80% as dynamic) and

SSDC(20% as static, 30% as semi-static and 50% as dynamic)

33

20-30-50 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 461026 92802 100699 668963 1323490 0.481

2% 556444 114819 129792 571638 1372693 0.499

4% 661382 148836 168309 455188 1433715 0.521

8% 776824 198077 219831 323618 1518350 0.552

16% 905187 265018 295227 172049 1637481 0.595

Again, we increased the static and decreased the semi-static and we kept the dynamic

as it. Table (6.5) and the amount of enhanced hit rate can easily recognized with

fig(6.3). Here we got an increment hit rate by 1% with 1% and 2% capacities. At the

4% and 8% the increment increased by 1% to be at total 2%. with 16% capacity we

reach a high hit rate with 4%.

Table 6.5: SSDC Result (30% Static-20% Semi-Static-50% Dynamic)

Fig 6.3: The Hit Rate for SDC(30% as static, 70% as dynamic) and

SSDC(30% as static, 20% as semi-static and 50% as dynamic)

34

30-20-50 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 514789 65664 73384 671912 1325749 0.482

2% 616913 84084 96404 580287 1377688 0.501

4% 728708 111795 127215 472966 1440684 0.524

8% 848318 151299 170756 351320 1521693 0.553

16% 972697 207596 228597 223832 1632722 0.594

By keeping the dynamic size in 50% we gave most of the remaining size to the static

and with 40% and 10% for semi-static. Table (6.6) and fig (6.4). we start with 1%

increment hit rate and its continue from 1% until 8% the increment reached 2% and

with 16%, we got 3% more hit rate than the SDC with 16% capacity.

Table 6.6: SSDC Result (40% Static-10% Semi-Static-50% Dynamic)

Fig 6.4: The Hit Rate for SDC(40% as static, 60% as dynamic) and

SSDC(40% as static, 10% as semi-static and 50% as dynamic)

35

40-10-50 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 556444 39945 45960 689558 1331907 0.484

2% 661613 53513 62562 605691 1383379 0.503

4% 776824 73212 84168 510538 1444742 0.525

8% 905187 98734 114882 399516 1518319 0.552

16% 1033824 139911 156025 291696 1621456 0.590

After that we give the dynamic cache partial increasing with the size and start

with the sane previous size for each of the static and semi-static caches. Table (6.7)

and fig (6.5). with this test we got a small amount of increment with 0.2% at 1%

capacity. With 2% capacity the hit rate almost the same as the SDC, but with 4% we

got exactly the same hit rate with 51.1. with 8% we got also a partial amount of hit

rate. With 16% the increment get more than 1% enhancement by 0.5. with this test

we did not get a high amount of enhancement but still better than the SDC. We make

the test with many cases and we considered even the worst cases to cover all the

cases with both of SDC and SSDC.

Table 6.7: SSDC Result (10% Static-30% Semi-Static-60% Dynamic)

36

10-30-60 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 379794 113212 119744 699611 1312361 0.477

2% 461026 138962 150810 608091 1358889 0.494

4% 556444 171014 190249 498365 1416072 0.515

8% 661382 216937 243011 369632 1490962 0.542

16% 776824 288096 314383 215770 1595073 0.580

Fig 6.5: The Hit Rate for SDC(40% as static, 60% as dynamic) and

SSDC(10% as static, 30% as semi-static and 60% as dynamic)

In this test we give the static and semi-static the same amount of sizes, we get

almost the same amount of hits when we compared it with SDC (40-60) Table(6.8).

and we got a small enhancement better than the SDC fig (6.6). we compare our

cache with SDC (40% static and 60% dynamic). We start the test with very small

amount of decrement which decreased slowly with each new higher capacity. With

8% capacity we reach 1% increment and 2% increment with 16% capacity.

Table 6.8: SSDC Result (20% Static-20% Semi-Static-60% Dynamic)

37

20-20-60 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 461026 72695 79063 699555 1312339 0.477

2% 556444 90786 103518 608924 1359672 0.494

4% 661382 118637 135765 503768 1419552 0.516

8% 776824 159220 177873 381050 1494967 0.544

16% 905187 210811 236841 243904 1596743 0.581

Fig 6.6: The Hit Rate for SDC(40% as static, 60% as dynamic) and

SSDC(20% as static, 20% as semi-static and 60% as dynamic)

also a small enhancement with SSDC (30% as Static, 10% as Semi-Static and 60%

as Dynamic) and SDC (40% as static-60% as dynamic) Table (6.9) and Fig (6.7).

with this test we start with the same amount of hit rate for both of the SDC and

SSDC. Even with high capacities like 8% and 16% we could not get higher than 1%

of increment but Technically still better than the SDC.

Table 6.9: SSDC Result (30% Static-10% Semi-Static-60% Dynamic)

38

30-10-60 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 514789 43319 48308 712085 1318501 0.479

2% 616913 56326 64964 628875 1367078 0.497

4% 728708 75378 86986 535523 1426595 0.519

8% 848318 103264 118212 428892 1498686 0.545

16% 972697 141831 160199 314977 1589704 0.578

Fig 6.7: The Hit Rate for SDC(40% as static, 60% as dynamic) and

SSDC(30% as static, 10% as semi-static and 60% as dynamic)

This time we increased the dynamic part with 70% size and 10% as static with 20%

as a semi-static, the SDC (30% static, 70% dynamic) starts better than ours until we

get better result with the 8% as a capacity. Table (6.10) and Fig (6.8). the conclusion

of this test, that we got the same scenario as the previous test .

10-20-70 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 379794 88679 93553 737608 1299634 0.472

2% 461026 110019 119333 653694 1344072 0.489

4% 556444 135553 152439 552471 1396907 0.508

8% 661382 174751 197096 431288 1464517 0.532

16% 776824 229804 255968 290083 1552679 0.565

Table 6.10: SSDC Result (10% Static-20% Semi-Static-70% Dynamic)

39

Fig 6.8: The Hit Rate for SDC(30% as static, 70% as dynamic) and

SSDC(10% as static, 20% as semi-static and 70% as dynamic)

we get better result here than the previous test by increasing the static and decreasing
the semi-static and Table (6.11) shows the amount of hits we got. Fig (6.9) shows
the hit rate. Also, we got the same scenario from previous test. But the problem here
that the SDC start better than our test with 0.1% and with 8% and 16% we only get a
number near the 1% as a hit rate which make it one of worst cases to work with in
SSDC, but also we got better than SDC.

20-10-70 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 461026 47923 52138 741173 1302260 0.473

2% 556444 60701 69593 661824 1348562 0.490

4% 661382 80043 92600 569984 1404009 0.510

8% 776824 108069 122852 463649 1471394 0.535

16% 905187 144456 166339 338380 1554362 0.565

Table 6.11: SSDC Result (20% Static-10% Semi-Static-70% Dynamic)

40

Fig 6.9: The Hit Rate for SDC(30% as static, 70% as dynamic) and

SSDC(20% as static, 10% as semi-static and 70% as dynamic)

Here we give the SSDC the Highest amount of Dynamic than any previous test with

80%. we gave both static and semi-static the same amount of size. Table (6.12) and

Fig (6.10) shows the result and hit rate. Here also the test was not that much better

then the previous cases until the 3% increment with the 16% capacity. At the End we

reached a result that whenever we increase the dynamic with high amount of sizes

the hit rate drop down.

10-10-80 Static Hits Day Hits Night Hits Dynamic Hit Total Hits Hit Rate

1% 379794 56866 60294 786846 1283800 0.467

2% 461026 72695 79063 712835 1325619 0.482

4% 556444 90786 103518 625150 1375898 0.500

8% 661382 118637 135765 521714 1437498 0.523

16% 776824 159220 177873 399229 1513146 0.550

Table 6.12: SSDC Result (10% Static-10% Semi-Static-80% Dynamic)

41

Fig 6.10: The Hit Rate for SDC(20% as static, 80% as dynamic) and

SSDC(10% as static, 10% as semi-static and 80% as dynamic)

From all the tables above, we can observe that we obtain good hit ratios which are
better than the SDC. Moreover, we obtain the best hit ratio, and to make a clear
scene for the hit ratio, we present a baseline for our cache hit rate with the best case
in SDC and the worst case in SDC in (Fig. 6.1).

Fig 6.11: The Hit Rate For Each Cache With Optimal Values For Each Cache

42

CHAPTER 7

Conclusion

In this work, we presented SSDC, an improved version of the state-of-art

SDC in the result caching, by enhancing the caching decisions and by exploiting the

search engine user's query behaviour. We depend on new features within our

research, including query compatibility and modified frequency depending on the

old features from the ordinary query logs. We make a new cache system that aims to

increase the hit rate for the result caching in addition to using a query log called the

AOL data set that made a good choice for our work after we enhanced it by

removing any unnecessary and ambiguous information.

Different models of caching were used in addition to our using the static cache by

selecting the queries with the highest number of occurrences from a previous logs. In

the dynamic case we served the cache depending on the recency of the queries that

submitted to it. We made a simulation of the SDC cache that contained two

segments, namely static and dynamic caches.

We improved the SDC and conducted many experiments with different sizes and

capacities to select the optimal size among them. We aimed to enhance the hit rate in

any possible way and with our new method, the compatibility of the query was to

reduce the financial cost of the caching in WSE.

Our work provides a new strategy with a better hit rate than the SDC and we obtain,

in the best case, an increment of 3%, which is considered to be a good hit rate in

comparison to increments from the previous works from different caching models.

43

REFERENCES

1. Alici, S., Altingovde, I. S., Ozcan, R., Cambazoglu, B. B., Ulusoy, O., (2011),
“Timestamp-based result cache invalidation or web search engines”, ACM SIGIR 11.
ACM, New York. NY, USA, USA, pp. 973-982.

2. Alici, S., Altingovde, I. S., Ozcan, R., Cambazoglu, B. B., Ulusoy, O. , (2012), “Adaptive
time-to-live strategies for query result caching in web search engines”, 34th European
Conference on Advances in Information Retrieval. ECIR’12. Springer-Verlag, Berlin,
Heidelberg, pp. 401-412.

3. Altingovde, I. S., Ozcan, R., Cambazoglu, B. B., Ulusoy, O., (2011), “Second chance: a
hybrid approach for dynamic result caching in search engines”, 33rd European Conference
on Advances in Information Retrieval. ECIR’11. Springer-Verlag, Berlin, Heidelberg, pp.
510-516.

4. Baeza-Yates, R., Saint-Jean, F., (2003), “A three level search engine index based in query
log distribution”, String Processing and Information Retrieval. Vol. 2857 of Lecture Notes
in Computer Science. Springer Berlin, Heidelberg, pp. 56-65.

5. Blanco, R., Bortnikov, E., Junqueira, F., Lempel, R., Telloli, L., Zaragova, H., (2010),
“Caching search engine results over incremental indices”, 33rd International ACM SIGIR
11. ACM, New York. NY, USA, USA, pp. 82-89.

6. Brotnikov, E., Lempel, R., Vornovitsky, K., (2011), “Caching for realtime search”, 33rd

European Conference on Advances in Information Retrieval. ECIR’11. Springer-Verlag,
Berlin, Heidelberg, pp. 104-116.

7. Cambazoglu, B. B., Varol, E., Kayaaslan, E., Aykanat, C., Baeza-Yates, R., (2010),
“Query Forwarding in Geographically Distributed Search Engines”, ACM SIGIR 10. ACM,
Geneva., Switzerland, pp. 90-97

8. Cambazoglu, B. B., Altingovde, I. S., Ozcan, R., Ulusoy, O., (2012), “Cache-based query
processing for search engines”, ACM Transactions on the Web 6 (4), 1-24.

R1

9. Cambazoglu, B. B., Junqueira, F. P., Plachouras, V., Banachowski, S., Cui, B., Lim, S.,
Bridge, B., (2010), “A refreshing perspective of search engine caching”, 19th International
Conference on World Wide Web. pp. 181-190.

10. Fagni, T., Perego, R., Silvestri, F., Orlando, S., (2006), “Boosting the performance of web
search engines: Caching and prefetching query results by exploiting historical usage data”,
ACM Transactions on Information Systems 24 (1), pp 51-78.

11. Frances, G., Bai, X., Cambazoglu, B. B., Baeza-Yates, R., (2014), “Improving the
Efficiency of Multi-site Web Search Engines”, 7th ACM International Conference on Web
Search and Data Mining. WSDM’14. ACM, New York, USA, pp. 3-12.

12. Hoelscher, C., (1998), “How internet experts search for information on the web”,
International Conference on World Wide Web, Orlando, Florida, USA.

13. Jacobs, T., Longo, S., (2015), “A Study of Caching Strategies for Web Service Discovery”,
IEEE International Conference on Web Services, ICWS., New York, USA, pp. 464-471.

14. Junqueria, F. P., Leroy, V., Morel, M., (2012), “Reactive Index Replication for Distributed
Search Engines”, ACM SIGIR, SIGIR’12, August 12-16. 2012, Portland, Oregon, USA. pp.
831-840.

15. Jonassen, S., Cambazoglu, B. B., Silvestri, F., (2012), “Prefetching query results and its
impact on search engines”, 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 631-640.

16. Kayaaslan, E., Cambazoglu, B. B., Aykanat, C., (2013) “Document replication strategies
for geographically distributed web search engines”, Information Processing and
Management 49, pp. 51-66.

17. Lempel, R., Moran, S., (2003), “Predictive Caching and prefetching of query results in
search engines”, 12th International Conference on World Wide Web, ACM Press, pp.19-28.

18. Li, H., Lee, W. C., Sivasubramaniam, A., Giles, C. L., (2007), “A Hybrid cache and
prefetch mechanism for scientific literature search engines”, 7th International Conference on
Web Engineering, ICWE’07, Springer-Verlag, Berlin, Heidelberg, pp. 121-136.

19. Long, X., Suel, T., (2005), “Three-level caching for efficient query processing in large web
search engines”, 14th International Conference on World Wide Web., ACM, New York, NY,
USA, pp. 257-266.

R2

20. Markatos, E. P., (2000), “On Caching search engine results”, 5th International Web Caching
and Content Delivery Workshop.

21. Markatos, E. P., (2001), “On Caching search engine query results”, Computer
Communications 24 (2), pp. 137-143.

22. Marin, M., Gil-Costa, V., Gomez-Pantoja, C., (2010), “New Caching Techniques For web
search engines”, 19th ACM International Symposium on High Performance Distributed
Computing, HPDC’10, ACM, New York, NY, USA, pp. 215-226.

23. O’Neil, E. J., O’Neil, P. E., Weikum, G., (1993), “The lru-k page replacement algorithm
for database disk buffer”, ACM SIGMOD International Conference On Management Of
Data, pp. 297-306.

24. Ozcan, R., Altingovde, I. S., Cambazoglu, B. B., Junqueira, F. P., Ulusoy, O., (2012), “A
five-level static architecture for web search engines”, information processing and
Management 48 (5), 828-840.

25. Ozcan, R., Altingovde, I. S., Cambazoglu, B. B., Ulusoy, O., (2013), “Second Chance: A
hybrid approach for dynamic result caching and prefetching in web search engines”, ACM
Transactions of the Web 8 (1), 3:1-3:22.

26. Prokhorenkova, L. O., Ustinovskiy, Y., Samosvat, E., Lefortier, D., Serdyukov, P. M.,
(2014), “Adaptive Caching of Fresh Web Search Results”, Advances In Information
Retrieval, 37th European Conference on IR Research, ECIR 2015, Vienna, Austria, March 29
– April 2, 2015. pp. 110-122.

27. Puppin, D., Silvestri, F., Perego, R., Baeza-Yates, R., (2010), “Tuning the capacity of
search engines: load-driven routing and incremental caching to reduce and balance the
load”, ACM Transactions on Information Systems 28 (2), 5:1-5:36.

28. Silversten, C., Henzinger, M., Marais, H., Moricz, M., (1999), “Analysis of a very large
web search engine query log”, ACM SIGIR Forum, pp. 6-12.

29. Sazoglu, F. B., Ulusoy, O., Altingovde, I. S., Ozcan, R., Cambazoglu, B. B., (2015),
“Propagating Expiration Decisions in a search engine Result Cache”, 24th Internatinal
Conference on World Wide Web, WWW’15, ACM, New York, NY, USA. pp. 107-108.

R3

30. Saravia, P. C., Silva de Moura, E., Ziviani, N., Meira, W., Fonseca, R., Riberio-Neto, B.,
(2001), “Rank-preserving two-level caching for scalable search engines”, 24th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’01. ACM, New York, NY, USA, pp. 51-58.

31. Skobeltsyn, G., Junqueria, F., Plachouras, V., Baeza-Yates, R., (2008), “a Combination
of results caching and index pruning for high-performance web search engines”, 31th

Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. pp. 131-138.

32. Tolosa, G., Becchetti, L., Feuerstein, E., Marchetti-Spaccalema, A., (2014),
“Performance Improvements for Search Systems using an Integrated Cache of
Lists+Intersections” In: String Oricessing and Information Retrieval Lecture Notes in
Computer Science, Edition: Volume 8799, Springer International Publishing, pp. 227-235.

R4

