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In this thesis, the Angle of Attack (AOA part) of a combined air data system (CADS), 

and the CADS software are developed on a standard PC and without real interface. 

In its current form, a CADS system on an aircraft is composed of two different 

equipments, one is the ADC and the other is the AOA system. Therefore the 

developed CADS system combines both functionalities in an integral manner on a 

card. This way the volume and cost of the CADS system are reduced. 
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CHAPTER 1 
 

INTRODUCTION 

 

Avionics is a combined word which is arisen from the integration  

the th century, the history of 

the 18th century. World War II and the years of Cold War 

years revealed the need for scientific research and technology development. These 

researches and developments have resulted in a huge growth in avionics. 

Nowadays, avionics systems become key components of aircraft.  

The weather conditions were the main factor affecting the air travels in early times 

of the first quarter of the th century. It was very difficult to travel in  air in closed 

weather. Fog, darkness, rain or snow were nightmares for the pilots and they were 

the main candidates to cause fatal accidents. 

The US Army, which is considered as the ancestor of modern avionics, was so 

concerned about its military operations which may be ceased because of harsh 

weather conditions. Therefore, it started to make an investigation about the basic 

information needed to make a safe flight under any weather conditions. The first 

parameter found in this investigation was altitude. An altimeter of sufficient 

accuracy was critical for a pilot to avoid unseen mainland and for a safer landing. 

The second parameter was the reference to the natural horizon. When fog, clouds 

senses to differentiate up from down. If you stand on the earth, you can easily tell 

closed because you feel the force of gravity on 

your body. In an aircraft, there are a lot of several forces acting on the body. Only if 

the pilot sees the natural horizon can he avoid from being fooled by the force 
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developed as the airplane turns. Therefore, the second requirement was the natural 

horizon to provide visual references to pilot to control the airplane. The final 

parameter was the radio for voice communications. It was very important to make a 

voice communication between pilots and air control stations. 

After these primitive works to resolve the issues related to the parameters defined 

above, the avionics sector gained 

century, the first electronic aids were introduced such as non-directional beacons, 

ground-based surveillance radar, and the single-axis autopilot. In the second 

further 

acceleration, and very high frequency (VHF) communications, identification friend 

or foe (IFF), gyro compass, attitude and heading reference systems, airborne 

intercept radar, early electronic warfare systems, military long-range precision radio 

navigation aids and the two-axis autopilot were introduced. The third quarter of the 

h century was even more brilliant in terms of developments. Tactical Air 

Navigation (TACAN), Doppler radar, terrain-following radar, Mission Computer and 

Inertial Navigation System (INS), integrated electronic warfare systems were 

brought to the flight sector and integrated into the airborne platforms. 

In the past, nearly all of the avionics architecture on the flying platforms was point-

to-point. In point-to-point avionics architecture, all of the data communications 

between the sensor and the control unit or indicator in the cockpit were made 

between source equipment and the destination; there was no bus controller or bus 

master. This method had disadvantages in terms of mainly cabling, power 

consumption, space consumption and weight. Also it was very difficult to make any 

modification to the system if necessary. Approximately each system in this 

architecture had its dedicated subsystems, control panels and displays. The displays 

were electromechanical and prone to break down. Also the use of analog 
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computing techniques did not provide the accuracy and stability offered by the  

digital systems introduced later.  

After a while, when digital computing devices got mature enough and suitable for 

airborne use, distributed digital avionics had arisen. This led to the adoption of 

digital computers to avionics sector which resulted in greater speed of computation, 

accuracy and removal of bias and drift problems which arise in analog systems. In 

the distributed digital avionics architecture, major functional units contained their 

own digital computer and memory. Displays in the cockpit were dedicated to their 

function as for the analog architecture. The displays were still electromechanical 

devices used previously, with the known problems. In later implementations the 

displays become 

be used with distributed digital avionics. The well-known and already used data bus 

Aeronautical Radio Incorporated (ARINC) was introduced at these times. Data 

bus has offered a great deal of flexibility in the signal transmission and led to 

reduction in wiring. This, in turn, led to a reduction in weight, power consumption 

and cost. 

Then, federated digital architectures, in which there is at least one bus 

controller/master came into the avionics world. With this new methodology, the 

avionics architecture became safer and upgradeable. In principle, federated 

architecture relied upon the availability of the extremely widely used military-

standard MIL-STD-1553 data bus. The adoption of the 1553 data bus standard 

offered significant advantages and some drawbacks. One advantage was that this 

standard could be applied across all North Atlantic Treaty Organization (NATO) 

members, offering a data bus standard across a huge market. The federated 

architectures generally use dedicated 1553B-interfaced equipment (line replaceable 

units - LRUs) and subsystems, and are more robust and reliable than the preceding 

architectures. The disadvantage of federated avionics architecture is that the LRUs 
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working with 1553B protocol is generally used in military platforms. Therefore 

federated architecture is not used widely in commercial aircrafts. 

Nowadays, aircraft manufacturers are trying to make smaller and smaller aircrafts, 

or more functionality in less space, which means that there will be fewer places for 

the avionics equipment. Therefore, the Integrated Modular Avionics (IMA) concept 

was developed. With this concept, "equipment on a card" designs were arisen. By 

this way, instead of installing two or more devices for redundancy purposes, the 

integrator firms use two cards in a black box by sharing ruggedness of the 

hardware, cooling, data bus and electrical pow  

In this thesis, it is aimed to make the AOA functionality of a Combined Air Data 

System (CADS) as preliminary work for this IMA concept. AOA Computer is very 

important equipment in avionics architecture. The basic and necessary parameters 

for a safe flight are calculated by the AOA Computer. 

The AOA parameter has a crucial role especially in take-off and landing phases of 

the flight. It can be considered as the angle between the chord line of the wing and 

the vector representing the relative motion between the lifting body and the fluid 

through which it is moving [1]. 

The source of the AOA parameter is the AOA sensor. The sensed AOA value from 

the AOA sensor is sent to the AOA computer, in which the aircraft specific 

values/charts are stored. The stall is a reduction in the lift coefficient generated by 

an airfoil as angle of attack increases. This occurs when the critical angle of attack of 

the airfoil is exceeded. The critical angle of attack is typically about 15 degrees, but 

it may vary significantly depending on the airfoil [2]. 

The information calculated by the AOA system is essential for the pilot to fly the 

aircraft safely, and is also required by a number of key subsystems in the aircraft 
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such as pilot control panel, audio warning panel, Multi Function Display (MFD) and 

etc. Since the AOA parameter is very critical for a safe flight, it should be timely 

calculated (real time) at a required rate. The real time concept refers that if latency 

or loss occurs in measuring, calculation or delivering etc. of certain information, it 

may bring a serious error in completing a task, a mission properly and on time and 

may even sometimes be so critical that the consequences can be fatal. Hence, the 

CADS software has to be considered as a real time system. Real-time systems are 

defined as those systems in which the overall correctness of the system depends on 

both the functional correctness and the timing correctness. The timing correctness 

is at least as important as the functional correctness. 

In this thesis, AOA system field research with CADS software development is 

performed. CADS software is developed on a standard personal computer (PC) and 

without real interface. In its current form, the functionality provided by the CADS 

software is being provided by two different equipment, one is the Air Data 

Computer (ADC) and the other is the AOA system. Therefore CADS software 

combines both these functionalities in an integral manner on a card. This brings 

reduction in the volume and cost. The hardware is implemented on a commercially 

available PCI card that can be inserted in a motherboard of a PC. 

 



6 
 

CHAPTER 2 

 

THE FUNCTION OF AOA IN THE COMBINED SYSTEM 

 

The AOA Computer is very important equipment in avionics architecture. There are 

some mandatory standards for this equipment to be installed on aircrafts. These are 

basically: 

Federal Aviation Agency (FAA) Technical Specification Order (TSO) C54 for 

 

TSO-C54 is a minimum performance standard.  It is established for stall warning 

instrument which specifically is required to be approved for use on civil aircraft of 

the United States.  New models of stall warning instruments manufactured for 

installation on civil aircraft on or after October 15, 1961, shall meet the standards as 

set forth in Society of Automotive Engineers (SAE) Aeronautical Standard (AS) 403A, 

 [3]. 

The general avionics architecture around an AOA computer is given in Figure 1. 



7 
 

 

Figure 1 AOA in Typical Avionics Architecture 

SAE 403A defines the performance of the designed equipment. It also specifies the 

must and optional parameters which will be given by the designed equipment and 

their accuracies.  

Radio Technical Commission For Aeronautics (RTCA)/Design Order (DO)-160 

 

DO-160, Environmental Conditions and Test Procedures for Airborne Equipment is 

a standard for environmental test of avionics hardware published by RTCA, 

Incorporated. 

This document outlines a set of minimal standard environmental test conditions 

(categories) and corresponding test procedures for airborne equipment. The 

purpose of these tests is to provide a controlled (laboratory) means of assuring the 

performance characteristics of airborne equipment in environmental conditions 

similar of those which may be encountered in airborne operation of the equipment. 

The standard environmental test conditions and test procedures contained within 

the standard may be used in conjunction with applicable equipment performance 
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standards, as a minimum specification under environmental conditions, which can 

ensure an adequate degree of confidence in performance during use aboard an air 

vehicle [4]. 

There are two (2) basic parameters calculated by the AOA Computer. These are: 

Angle of Attack 

Stall Warning. 

To calculate these parameters the AOA computer needs information from the AOA 

vane. The AOA vane is installed by considering the position of the propeller of the 

aircraft (A/C) (if the A/C has a propeller). If the propeller is on the nose of the A/C 

the vane is installed on the wing of the A/C to exclude the propeller effect. If the 

propeller is on the wing of the A/C, then the vane is installed on the side surfaces of 

the A/C. If the A/C has its ignition power at its back like in fighter jets, then the 

probe is generally installed on the nose of the A/C. The number of the AOA vanes 

basically depends on the avionics architecture, and the redundancy of the AOA 

information. Generally, there is one AOA vane for one AOA computer in smaller 

A/Cs. 
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Figure 2 Typical Sensor Installation on a Jet Fighter [5] 

The AOA is described as the angle between chord line of an airfoil and the vector 

representing the relative motion between the lifting body and the fluid (air) through 

which it is moving. 

AOA Vane 



10 
 

 

Figure 3 Forces on an Airfoil [1] 

In Figure 3, an airfoil is the shape of a wing when looked at cross sectional view. The 

chord line is a straight line connecting the leading and trailing edges of the airfoil, at 

the ends of the mean camber line. Lift is defined to be the component of the force 

that is perpendicular to the relative motion vector. Drag is the total of the forces 

that oppose the relative motion of an object through a fluid. 
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Figure 4 AOA versus Lift 

As seen in Figure 4, Stall is a condition that the AOA exceeds a certain value after 

which lift starts to decrease. The corresponding AOA value from which the lift is 

decreasing is A/C-specific and is called the critical angle of attack (stall point in  

Figure 4). This critical angle is dependent upon the profile of the wing, its planform, 

its aspect ratio, and other factors, but is typically in the range of 8 to 20 degrees 

relative to the incoming wind for most subsonic airfoils. Stall is the peak point of the 

AOA in Figure 4. The maximum lift coefficient occurs at the critical angle of attack 

point [2]. 

CL may be used to relate the total lift generated by an aircraft to the total area of 

the wing of the aircraft. In this application it is called the lift coefficient CL [6]. 

      (2.1) 
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L is the lift force,  is the fluid density,  is the true airspeed, q is the dynamic 

pressure, and K is the planform area. A planform is the shape and layout of a fixed-

wing aircraft's fuselage and wing. Figure 5 shows the planform of Airbus A340-600. 

 

Figure 5 Planform of Airbus A340-600 [7] 

Drag coefficient is the indication of the resistance to an object (drag) in air. Lower 

drag coefficient means the object will have less aerodynamic resistance to the flow 

through the air. The drag coefficient is associated with a particular surface area. The 

drag coefficient cd is defined as 

        (2.2) 

Fd is the drag force [8]. 
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CHAPTER 3 

 

 

DETAILED DESCRIPTION OF THE SYSTEM DEVELOPED 

 

 

Simulated
Sensor
Data

GUI

AOA
Functional

Block

DVI

RS 232 USB

AOA Functional
Block of CADS

PC Monitor

USB / RS 232
CONVERTER

 

Figure 6 Demonstration of the System Architecture 

In this thesis a CADS is developed on a card. This CADS combines the ADC and AOA 

computers on a card.  This way of combining these two subsystems on a card is the 

improvement introduced. First of all, the CADS is developed on the card.  Then, in 

order to test and verify the system developed, simulation computer (SC) is 

developed, which provides the necessary inputs, simulated in accordance with a 

flight scenario for a certain generic platform, to the CADS.  
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The CADS is the computer which gets the simulated sensor data over serial port, 

calculates the required variables and displays them by a refresh rate of at least 8 

times in a second. In order to achieve this mission there is a formed infrastructure 

including the computer hardware, installed operating system, installed Integrated 

Development Environment (IDE) aligned with a program developed. Also in the 

program developed there are some special structures used for accomplishing the 

mission. In this chapter all of the contents under the infrastructure of this system 

will be defined. 

The PC card which is used as CADS, has a central processing unit (CPU) of Intel 

Pentium 4. The CADS will communicate with the SC via RS 232 serial communication 

protocol. The operating system (OS) that is chosen for the CADS is Windows XP.  

The details of the OS could be reached in Appendix A1. The application software is 

developed with the C programming language.  

As can be seen from Figure 7 if the Start Processing button is pressed, then the 

CADS starts functioning. It continuously listens to the serial port and when data 

arrives it reads the data from serial port buffer into the message structure 

mentioned before. After the reading threads fill in the message structure which is a 

thread safe variable, it does not reread from the serial port into the message 

structure until calculation threads get the related data from the message structure. 

After calculation threads receive their parameter calculation related variable from 

the message structure, reading thread rereads the new data from serial port and 

refreshes the message structure. Then calculation threads again get the related 

variables and this continues on until Stop button is clicked. For this process continue 

in synchronization, there is another controlling thread named ReadControlThread. 

This controlling function makes the value of another thread safe variable called 

tsvReadControl 0. The value of the thread safe variable becomes 0 when all the 

calculating parameter functions accessed the message structure and read the 
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related simulation variable. Therefore it is the job of the synchronization function 

ReadControlThread. Reading thread checks the value of tsvReadControl, when its 

value is set to 0, new data from the serial port is read to the message structure and 

the tsvReadControl is set to 1. By this logic read synchronization is thread safely 

achieved. 

 

 

Figure 7 GUI and Working Principle of the CADS 

Another place that uses synchronization is the display of calculated parameters. The 

calculated parameters are displayed only if all the calculating threads completed 

calculation and the calculated parameters (processed data) are ready to be filled 

into the structure which is also a thread safe variable named tsvReadControl. The 
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thread type structure displaying the calculated parameters in the combined system 

is called asynchronous timer. Asynchronous timers are threads that are executed in 

given periods of time. In the combined system since there is a limit on refresh rate 

such that at least 8 times in a second, the asynchronous timer structure is used. 

Therefore it supplies the refresh criteria for a period 0.0625 seconds. 

ture, see the code in 

Appendix A4. 
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CHAPTER 4 

 

 

CADS VERSUS REAL EQUIPMENT 

 

 

4.1. Real AOA System 

As mentioned in the previous chapters, there are some standards to be complied 

with when designing the equipment. These standards can be grouped as: 

Functionality and Performance Standards (TSO C54, SAE AS 8014, SAE AS 

403, SAE AS 8046) 

Environmental Standards (RTCA/DO-160). 

4.1.1. Functionality and performance standards 

Equipment manufacturers are trying to comply with TSOs and SAEs related with the 

ADC. Since TSOs are giving reference to SAE AS, it is important to understand what 

SAE AS 403 is. 

SAE AS 403 specifies minimum requirements for stall warning instruments for use in 

aircraft. It defines the required performance of the equipment relating it with 

environmental conditions. It also states that the warning should be a continuous 

warning during conditions under which warning is required. 

4.1.2. Environmental standards 

Functionality and performance standards define the minimum performance under 

environmental conditions and when defining the performance it references RTCA  

DO 160. 
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4.2. Differences between the Developed and the Real Equipment 

The system developed within the framework of this thesis provides all of the 

mandatory parameters given by the real equipment. 

The developed system provides whole parameters with a refresh rate of 8 in a 

second. 

The developed system works with 220 VAC power however the real equipment 

works with 28 VDC. 

The developed system works with commercial operating system software 

however real equipment needs to work with a real time operating system. 

Real equipment is qualified to work properly in certain environmental 

conditions however the developed system is established on a commercial 

desktop PC chassis which is not ruggedized. 

All these comparisons are summarized in Figure 8. 

 
 

Figure 8 Real Equipment versus the CADS developed 
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CHAPTER 5 

 

 

GENERAL VIEW OF THE CADS SYSTEM SOFTWARE DESIGN 

 

 

This part contains the software architecture of the system. Firstly general software 

structure will be briefly explained. In accordance with the system design, the CADS 

system software gets simulated sensor data via a serial port.  

The communication is composed of simulation variables sent to the CADS 

computer. One of the specifications is that the CADS system software should 

guarantee that each calculated parameter must be updated at least eight times in a 

second. In order to achieve this, serial port communication settings have a high 

importance. Another issue affecting the serial port communication settings is the 

data size to be transferred.  message structure determines the data 

size. The message structure composes only the simulation variables. For simulation 

variables used data types are double and int. In Figure 9 there are the structures of 

the messages which contain the transferred simulation variables and its data types 

with the reasons why these data types are selected. The name of the structure is 

char and etc.  
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Figure 9 Message Structure Data Type for Reading Simulation Variables 

As one can observe from Figure 9, data other than discrete signals (Landing Gear 

position and AOA Data) are defined as double data type. Discrete signals are 

decided to be implemented as int data types, which are 4-byte (32 bit) data types 

used for representing decimal numbers. Int data type can be examined in Appendix 

A5. The simulation variables defined in double data type could also be defined as 

float but this is not chosen. 

Double is an 8-byte (64 bit) data type which is used to represent real numbers. Float 

is another data type used for representing real numbers, but float is a 4-byte (32 

bit) data type. Therefore, by using double instead of float, larger numbers with 

much more precision can be expressed. Also as the number to be stored/displayed 

gets bigger in decimal part or floating part, float data type spoils earlier with respect 

to double data type. In order to prevent data loss and corruption double data type 
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is used. As it can be observed that double data type allocates more region than float 

data type which causes the message structure to get bigger. 

Since the CADS system software has a requirement to refresh calculated 

parameters eight times in a second, the simulated environment variables should be 

supplied at least nine times in a second. Because of this reason, serial port baud 

rate must be as fast as possible. But since data corruption via serial port cable is 

another performance concern and due to 

increases the probability of data corruption increases, it should be compensated. As 

it can be observed from program code in Appendix A10

selected as 115200 kilo bits per second (kbps). Message structure size is calculated 

to be  

(6x size of (double)) + (2x size of (int)) = 56 bytes. 

By using a baud rate of 115200 kbps which is 14400 byte per seconds, it can be 

calculated that the system is capable of sending the message structure 257 times in 

a second. This rate makes the simulation variables seem to be coming continuously 

and the CADS system software can successfully fulfill the requirement of refreshing 

the calculated parameters in the required rate. 

Besides detecting the baud rate of serial port, there also exist other settings for 

serial port. These can be listed as; parity bit, data bits and stop bit. In the system 

design odd parity, eight data bits and one stop bit are used. The setting for parity 

indicates that used parity checking mechanism is odd. Other than odd and even 

parity, there exists mark and space parity. In mark parity case there is parity which 

is not used and is always 1, whereas in space parity case there exists parity which is 

not used and is always 0. Since speed ty, parity is used as 

one stage and only error detection mechanism. 
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As general system property, threads are used widely in software architecture for 

increasing the processor capability. The formed architecture is a multi-threaded 

architecture. Since calculating part is the CADS  most important 

feature, multi-threading structure is implemented in this software architecture.  

Multi-

threads) of a program. In multi-threading, source allocations and thread source 

usage interferences should be carefully evaluated. Because wrong source 

allocations or source allocation interferences can cause deadlocks, data loss or 

evaluation of irrelevant data. In order to prevent these issues in the system design 

of the software, special data types are used. Because the designed CADS software is 

running on a single processor PC, the type of multi-threading performed on the 

system is performed by the time-division multiplexing like multitasking. In this type 

of multi-threading context switching is done very fast and frequent, therefore user 

perceives that the threads are executed simultaneously. 

In summary, multi-threading advantages and disadvantages can be listed as follows. 

The advantages of multithreading are: 

- Improved performance and concurrency 

- Simultaneous access to multiple applications 

- Reduced number of required resources 

- Increased throughput of data 

- Faster applications. 

The disadvantages of multithreading are: 

- Difficulty of managing resources 

- Difficulty of writing code 

- Difficulty of testing and debugging 
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- Overhead creation for the processor 

- Potential Deadlocks. 

Operating system is the last general issue in the software architecture. Operating 

system serves as an intermediary between application programs and computer 

hardware. Operating systems have common tasks such as process management, 

interrupts, memory management, file system, device drivers, networking, security 

and I/O operations. Some of the best known operating systems can be listed as 

Microsoft Windows, Linux, Mac OS X and UNIX. Operating systems can be grouped 

mostly with respect to their determinism (timeliness), and multitasking capacity.  

Main types of operating systems are: 

- Real Time 

- Multi/Single User 

- Multi/Single Tasking 

- Distributed 

- Embedded.  

In this project, software platform is based on Microsoft Windows operating system. 

For program development in the C language an integrated development 

environment called LabWindows/  (CVI) is used. 

LabWindows/CVI is a proven American National Standard Institute (ANSI) C 

integrated development environment. It provides many tools for writing control 

applications. LabWindows/CVI uses ANSI C as basis. ANSI C is the standard 

published by ANSI for C programming language. Moreover, LabWindows/CVI 

combines the reusability and longevity of ANSI C with engineering-specific 

functionality of instrument control, analysis, data acquisition, and user interface 

development.  



24 
 

Below there is a short list for the general capabilities and properties of 

LabWindows/CVI: 

- It is an ANSI C development environment. 

- It is an intuitive environment optimized for test and control. 

- It has data acquisition assistant and instrument I/O assistant. 

- It is an interactive user interface editor. It enables easy creation of 

instrument drivers. 

- It has built-in comprehensive debugging and remote debugging tools. 

- It also has built-in measurement libraries acquisition, analysis and 

presentation. 

 

Another issue that should be mentioned in the software architecture is thread-safe 

variables. The used threads are in general functions calculating the desired 

parameters from simulation variables. The other threads are for continuous reading 

from serial port and displaying the results. Before giving detailed information on 

thread safe variables thread functions and their missions are explained below. 

5.1. Thread Functions and Their Missions 

 

int CVICALLBACK ReadFunc(void *) : Serial port data read function. 

int CVICALLBACK ReadControlThread(void *) : Serial port data read synchronization 

controlling function. 

int CVICALLBACK IasThreadFunc(void *) : Indicated airspeed calculating function. 

int CVICALLBACK TasThreadFunc(void *) : True airspeed calculating function. 
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int CVICALLBACK SatThreadFunc(void *) : Static air temperature calculating 

function. 

int CVICALLBACK TatThreadFunc(void *) : Total air temperature calculating function. 

int CVICALLBACK MachNumberThreadFunc(void *) : Mach number calculating 

function. 

int CVICALLBACK PressureAltitudeThreadFunc(void *) : Pressure Altitude calculating 

function. 

int CVICALLBACK BaroCorrectedAltitudeThreadFunc(void *) : Baro corrected altitude 

calculating function. 

int CVICALLBACK AoaDataThreadFunc(void *) : Angle of attack data calculating 

function. 

int CVICALLBACK LowAltitudeWarningThreadFunc(void *) : Low altitude warning 

indicator function. 

int CVICALLBACK OverspeedWarningThreadFunc(void *) : Overspeed warning 

indicator function. 

int CVICALLBACK StallWarningThreadFunc(void *): Stall warning indicator function. 

int CVICALLBACK AsyncWrite(int panel, int , int , void *, int , int) : Function which is 

called by the periods of 16 times/second and this function displays the calculated 

results. 

While thread functions are running in parallel, if there is a set of common variables 

read and/or changed by different threads, there is always high possibility of data 

corruption and data access collisions. Therefore in order to prevent data corruption 

and data access collisions, there is a special type variable called thread-safe variable 
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used. Thread-safe variable is a variable type which is used for variables accessed 

from different threads in order to change or read. By the use of data type thread-

safe variable (TSV), number of threads simultaneously accessing the variable can be 

s means that in the 

software thread-safe variable typed variables can be accessed by only 1 thread at a 

time. Therefore there cannot be any chance such that while one thread is reading 

the variable, the other thread to access and change the variable, that is, an access 

to a thread safe variable locks it. 

5.2. Thread Safe Variables and Their Missions 

 

DefineThreadSafeScalarVar(int, tsvReadLoop, 0) : Thread safe variable that controls 

the continuity of running code.  

DefineThreadSafeScalarVar(int, tsvReadControl, 0) : This variable determines the 

time that program reads the new serial port sensor data to the global data 

structure. 

DefineThreadSafeScalarVar(int, tsvWriteControl, 0) : This variable determines the 

time that displaying function is permitted to display the calculated global data or 

not. 

DefineThreadSafeScalarVar(SensorData, tsvSensorData, 0) : Global serial read data 

structure typed thread safe variable. 

DefineThreadSafeScalarVar(ProcessedData, tsvProcessedData, 0) : Global 

calculated/displayed data structure typed thread safe variable. 

DefineThreadSafeScalarVar(int, tsvIasFuncRead, 0) : This variable determines the 

indicated air speed function serial port data read status. 
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DefineThreadSafeScalarVar(int, tsvTasFuncRead, 0) : This variable determines the 

true air speed function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvSatFuncRead, 0) : This variable determines the 

static air temperature function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvTatFuncRead, 0) : This variable determines the 

total air temperature function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvMachFuncRead, 0) : This variable determines the 

mach number function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvPressureAltitudeFuncRead, 0) : This variable 

determines the pressure altitude function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvBaroCorrectedAltitudeFuncRead, 0) : This 

variable determines the baro corrected altitude function serial port data read 

status. 

DefineThreadSafeScalarVar(int, tsvAoaDataFuncRead, 0) : This variable determines 

the angle of attack data function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvLowAltitudeWarningFuncRead, 0) : This variable 

determines the low altitude warning function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvOverspeedWarningFuncRead, 0) : This variable 

determines the overspeed warning function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvStallWarningFuncRead, 0) : This variable 

determines the stall warning function serial port data read status. 

DefineThreadSafeScalarVar(int, tsvIasFuncWritten, 0) : This variable determines the 

indicated air speed function calculated data display status. 
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DefineThreadSafeScalarVar(int, tsvTasFuncWritten, 0) : This variable determines the 

true air speed function calculated data display status. 

DefineThreadSafeScalarVar(int, tsvSatFuncWritten, 0) : This variable determines the 

static air temperature function calculated data display status. 

DefineThreadSafeScalarVar(int, tsvTatFuncWritten, 0) : This variable determines the 

total air temperature function calculated data display status. 

DefineThreadSafeScalarVar(int, tsvMachFuncWritten, 0) : This variable determines 

the mach number function calculated data display status. 

DefineThreadSafeScalarVar(int, tsvPressureAltitudeFuncWritten, 0) : This variable 

determines the pressure altitude function calculated data display status. 

DefineThreadSafeScalarVar(int, tsvBaroCorrectedAltitudeFuncWritten, 0) : This 

variable determines baro corrected altitude function calculated data display status. 

DefineThreadSafeScalarVar(int, tsvAoaDataFuncWritten, 0) : This variable 

determines the angle of attack data function calculated data display status. 

DefineThreadSafeScalarVar(int, tsvLowAltitudeWarningFuncWritten, 0) : This 

variable determines the low altitude warning function calculated data display 

status. 

DefineThreadSafeScalarVar(int, tsvOverspeedWarningFuncWritten, 0) : This variable 

determines the overspeed warning function calculated data display status. 

DefineThreadSafeScalarVar(int, tsvStallWarningFuncWritten, 0) : This variable 

determines the stall warning function calculated data display status. 
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CHAPTER 6 

 

 

CONFIGURATION ITEMS 

 

 

6.1. Hardware Configuration Items: 

The CADS system performs the calculations for two systems namely the AOA and 

the ADC. Therefore, in listing hardware configuration items for the CADS it contains 

both of these systems. As before mentioned, CADS as a system takes the AOA data, 

static pressure, outside temperature and total pressure as input data. By using the 

data taken the CADS calculates AOA, indicated airspeed (IAS), true airspeed (TAS), 

SAT, total air temperature (TAT), Mach Number, Pressure Altitude and Baro 

Corrected Altitude. Along with the calculation, the CADS also provides Over Speed 

Warning, Low Altitude Warning and Stall Warning. In this design, the CADS including 

both AOA and ADC functionality is embedded in a PC of the hardware specifications 

below: 

Intel Pentium 4 Processor 1.3 gigahertz 

Serial Communication(RS232) Port 

Motherboard 

Hard disk 

1 GB Random Access Memory (RAM) 

Compact Disc (CD) Player. 
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6.2. The Software Configuration Items: 

As one can observe from  Figure 10 the CADS software configuration items (SWCI) 

contains Platform, Development Environment, and Software items. 

 

Figure 10 The SWCI of the Developed System 

The CADS Software Configuration Item parts are listed below: 

Microsoft Windows XP SP3 (Platform) 

Lab Windows CVI 9.0 (ANSI C IDE) 

CADS System Software Developed in C (Software). 
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CHAPTER 7 

 

 

TEST AND VERIFICATION OF THE SYSTEM DEVELOPED 

 

 

The AOA sensors are potentiometers actually. Therefore, there should be a 

mechanism to measure the voltage drop on the AOA 

voltage measurement, only thing that should be done is to make a look-up-table 

which shows the relation between voltage and corresponding angle. After collecting 

all of these inputs, required calculations should be made and the calculated 

parameters should be sent to the MFD in the flying platform. 

As can be seen from Figure 11, the verification of the real system should be made 

via real sensors. AOA sensor should be put in motion and the verification should be 

made via controlling the output of the CADS. Stall warning should also be controlled 

by this manner. 
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Figure 11 Real CADS System Verification 

 

Since real sensors could not be generated, simulated sensor data is used in this 

project. Therefore in the system, the verification is made by comparing the CADS 

calculations with Microsoft flight simulator X (FSX) . The full list and 

ranges of the inputs of the system are given in Table 1. 
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Table 1 List of the Inputs of the CADS 

No Parameter Name Range 

1 Angle of Attack - 15 to + 50 degrees 

2 Weight on Wheels Discrete 
 

The full list and ranges of the outputs of the system are given in Table 2: 

Table 2 List of the Outputs of the CADS software 

No Parameter Name Range 
Refresh Rate 

(Hertz) 

1 Pressure Altitude 
-1871 to +36,089 

feet 
8 

2 
Baro Corrected 

Altitude 
-1871 to +36,089 

feet 
8 

3 IAS 0 to +510 knots 8 

4 TAS 0 to +510 knots 8 

5 Mach Number 0.200 to 0.999 8 

7 TAT - 60 to + 99 degrees 8 

8 SAT - 99 to + 60 degrees 8 

9 Overspeed Warning Discrete - 

10 Low Altitude Warning Discrete - 

11 AOA 0 to + 20 degrees 8 

12 Stall Warning Discrete - 
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CHAPTER 8 

 

 

CONCLUSION 

 

 

In this thesis, software of the CADS is developed and demonstrated on a PC card, 

which is not on-the-shelf right now. The CADS software designed combines the ADC 

functionality and the AOA functionality on a single box, actually on a card. Normally 

functions of these two systems are available as two different instruments in the 

market and on the flying platforms. 

The functionalities fulfilled by the CADS software are among the most important 

issues for a flying system.  They provide very critical flight parameters to the users 

of the platforms (pilots and ground control stations etc.). Since the CADS software 

in this thesis is developed for demonstration purposes, the criteria needed for a real 

system is not followed. The complicated and strict environmental standarts and 

safety specifications have not been applied. Therefore, for the CADS software to be 

applicable for real systems, a real time operating system (RTOS) in the software that 

satisfies all the timing requirements of the operation must be used.  The application 

software to generate the required functions for these systems should be developed 

under a very tightly controlled environment and tested and verified rigorously. 

Beside, the laboratory tests for the software, integration tests with hardware must 

be performed in the laboratory with a software development laboratory (SDL) first 

using some simulated environment and emulators, and then in the system 

integration laboratory (SIL) utilizing mostly the real equipment and wirings, power 
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and cooling and minimum number of simulators and emulators. The developed 

system is then tested in real flight testings and when passed such tests it is certified 

by the certain authorities as flyable. 

Not only the software but the hardware on which the CADS software runs should 

meet very strict and detailed environmental tests and standards.  They should 

operate under extreme ranges of pressure, temperature, vibration, humidity and 

the like.  The integrated system, hardware and software together, is subject to very 

rigorous and detailed tests before certified as flyable. 

The CADS software in this thesis is developed and built on a commercial hardware 

and tested by commercial flight simulator software for a generic platform.  

Therefore, it is not safe for flight, or in other words it cannot fly. Furthermore it 

even can not be run on a real platform. Aim in this thesis is to demonstrate that 

such very important instruments can be combined and integrated in one instrument 

and nearly all of the functions can be obtained by software.   

In this thesis a commercial flight simulator is used for a generic flying platform.  

Flight data is obtained based on a flight scenario of this flying platform. The 

calculated output information from the CADS software developed is compared with 

the data in the flight simulator. It is observed that there is a very good agreement 

between them.  For a better verification of the system, of course, a real flight data 

of a certain platform should be used.  However, this type of data is generally 

restricted, very expensive, and in not the detail required [10]. 

Although, working on a commercial hardware and built on a commercial operating 

system software, nevertheless, the CADS developed here  calculates all of the 

necessary parameters mentioned by related standards. Of course, the system has 
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no environmental or electromagnetic interference/electromagnetic compatibility 

(EMI/EMC) qualifications. 

Running the CADS software on an RTOS could be a one step further in the project.  

It was impossible to use an RTOS as their licenses and development tools are very 

expensive.  However, a future work may be to develop the system on a specific 

hardware, not a generic PC card as used in this project, and utilize an RTOS on this 

hardware.  The application software could also be developed based on real time 

restriction by using the required software languages such as Ada, C, C++ etc., and 

also in accordance with a system and software development standards. 

A further improvement in the future could be to develop the hardware on a 

ruggedized system to satisfy the flight environmental conditions and tests as 

required.  The developed system with RTOS and software standards could be tested 

first on a real SDL and SIL for a certain specific flying platform and also certified by 

the flight tests. 

Another development in the future could be adding some new functionality such as 

INS/Global Positioning System (GPS). The GPS position, pitch, roll and yaw data 

could be get from a peripheral system and after making required calibration to 

these data they could be shown to the user also. 

Actually, not all of the equipment producers use an RTOS. Some of them use field 

programmable gate array (FPGAs), digital signal processors (DSPs) and 

microprocessors to fulfill the real time compability of the system. Therefore, 

developing the CADS software on such kind of boards without any OS could also be 

implemented. 
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