
DEVELOPMENT OF ANGLE OF ATTACK (AOA) / STALL WARNING COMPUTER
FUNCTIONS OF A COMBINED AIR DATA

AND AOA COMPUTER

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF ÇANKAYA

UNIVERSITY

BY

MEHMET MUSTAFA KARABULUT

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRONICS AND COMMUNICATIONS ENGINEERING

SEPTEMBER, 2011

iv

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to his supervisor Prof. Dr. Celal

 for his guidance, advice, criticism, encouragements and insight throughout

the research.

The author would also like to thank for his suggestions and comments.

v

 ABSTRACT

DEVELOPMENT OF ANGLE OF ATTACK (AOA) / STALL WARNING COMPUTER
FUNCTIONS OF A COMBINED AIR DATA

AND AOA COMPUTER

KARABULUT, Mehmet Mustafa
M.Sc., Department of Electronics and Communication Engineering

September 2011, 36 Pages

In this thesis, the Angle of Attack (AOA part) of a combined air data system (CADS),

and the CADS software are developed on a standard PC and without real interface.

In its current form, a CADS system on an aircraft is composed of two different

equipments, one is the ADC and the other is the AOA system. Therefore the

developed CADS system combines both functionalities in an integral manner on a

card. This way the volume and cost of the CADS system are reduced.

Keywords: Avionic, System Integration, Flight Simulation, Software, Air Data Calculation

vi

 UYARISI

KARABULUT, Mehmet Mustafa

36 Sayfa

T Hava Veri Sistemi

. Hava a

Sisteminin

Bu ekipmanlardan bi

m gerekl

maliyetten

Anahtar Kelimeler: Aviyonik, Sistem Entegrasyonu, U S Y Hava Veri

H

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM ... iii

ACKNOWLEDGEMENTS ... iv

ABSTRACT ... v

... vi

TABLE OF CONTENTS ...vii

LIST OF TABLES ...ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS ...xi

CHAPTERS:

1. INTRODUCTION .. 1

2. THE FUNCTION OF AOA IN THE COMBINED SYSTEM ... 6

3. DETAILED DESCRIPTION OF THE SYSTEM DEVELOPED 13

4. CADS VERSUS REAL EQUIPMENT .. 17

4.1.Real AOA System .. 17

4.1.1.Functionality and performance standards 17

4.1.2.Environmental standards ... 17

4.2.Differences between the Developed and the Real Equipment 18

5. GENERAL VIEW OF THE CADS SYSTEM SOFTWARE DESIGN 19

5.1.Thread Functions and Their Missions ... 24

5.2.Thread Safe Variables and Their Missions .. 26

6. CONFIGURATION ITEMS ... 29

6.1.Hardware Configuration Items: .. 29

6.2.The Software Configuration Items: .. 30

7. TEST AND VERIFICATION OF THE SYSTEM DEVELOPED 31

8. CONCLUSION .. 34

viii

REFERENCES ... R1

APPENDICES:

A. OS on CADS ... A1

B. SOURCE CODE OF CADS ... A4

C. CURRICULUM VITAE ... A26

ix

LIST OF TABLES

TABLES

Table 1 List of the Inputs of the CADS ... 33

Table 2 List of the Outputs of the CADS software ... 33

x

LIST OF FIGURES

FIGURES

Figure 1 AOA in Typical Avionics Architecture ... 7

Figure 2 Typical Sensor Installation on a Jet Fighter [5] .. 9

Figure 3 Forces on an Airfoil [1] ... 10

Figure 4 AOA versus Lift ... 11

Figure 5 Planform of Airbus A340-600 [7] ... 12

Figure 6 Demonstration of the System Architecture ... 13

Figure 7 GUI and Working Principle of the CADS... 15

Figure 8 Real Equipment versus the CADS developed ... 18

Figure 9 Message Structure Data Type for Reading Simulation Variables 20

Figure 10 The SWCI of the Developed System .. 30

Figure 11 Real CADS System Verification ... 32

Figure 12 High-level View of an RTOS [9] .. A2

Figure 13 Common Components in an RTOS Kernel [9] .. A3

xi

LIST OF ABBREVIATIONS

ADC - air data computer

ANSI - american national standards institute

ARINC - aeronautical radio incorporated

AS - aerospace standard

A/C - aircraft

CADS - combined air data system

CD - compact disc

CL - lift coefficient

CPU - central processing unit

CVI -

DSP digital signal processor

EMI/EMC - electromagnetic interference/electromagnetic compatibility

FAA - federal aviation agency

FPGA - field programmable gate array

FSX - flight simulator x

GPS global positioning system

xii

IAS - indicated airspeed

IDE - integrated development environment

IFF - identification friend or foe

IMA - integrated modular avionics

INS - inertial navigation system

kbps kilo bits per second

LRU - line replaceable unit

MFD multi functional display

NATO - north atlantic treaty organization

OS -

PC - personal computer

RAM random access memory

RTCA - radio technical commission for aeronautics

RTOS - real time operating system

SAE - society of automotive engineers

SC - simulation computer

SDL - software development laboratory

SIL - system integration laboratory

SWCI - software configuration items

xiii

TACAN - tactical air navigation

TAS - true airspeed

TAT - total air temperature

TSO - technical standard order

TSV - thread-safe variable

VHF - very high frequency

1

CHAPTER 1

INTRODUCTION

Avionics is a combined word which is arisen from the integration

the th century, the history of

the 18th century. World War II and the years of Cold War

years revealed the need for scientific research and technology development. These

researches and developments have resulted in a huge growth in avionics.

Nowadays, avionics systems become key components of aircraft.

The weather conditions were the main factor affecting the air travels in early times

of the first quarter of the th century. It was very difficult to travel in air in closed

weather. Fog, darkness, rain or snow were nightmares for the pilots and they were

the main candidates to cause fatal accidents.

The US Army, which is considered as the ancestor of modern avionics, was so

concerned about its military operations which may be ceased because of harsh

weather conditions. Therefore, it started to make an investigation about the basic

information needed to make a safe flight under any weather conditions. The first

parameter found in this investigation was altitude. An altimeter of sufficient

accuracy was critical for a pilot to avoid unseen mainland and for a safer landing.

The second parameter was the reference to the natural horizon. When fog, clouds

senses to differentiate up from down. If you stand on the earth, you can easily tell

closed because you feel the force of gravity on

your body. In an aircraft, there are a lot of several forces acting on the body. Only if

the pilot sees the natural horizon can he avoid from being fooled by the force

2

developed as the airplane turns. Therefore, the second requirement was the natural

horizon to provide visual references to pilot to control the airplane. The final

parameter was the radio for voice communications. It was very important to make a

voice communication between pilots and air control stations.

After these primitive works to resolve the issues related to the parameters defined

above, the avionics sector gained

century, the first electronic aids were introduced such as non-directional beacons,

ground-based surveillance radar, and the single-axis autopilot. In the second

further

acceleration, and very high frequency (VHF) communications, identification friend

or foe (IFF), gyro compass, attitude and heading reference systems, airborne

intercept radar, early electronic warfare systems, military long-range precision radio

navigation aids and the two-axis autopilot were introduced. The third quarter of the

h century was even more brilliant in terms of developments. Tactical Air

Navigation (TACAN), Doppler radar, terrain-following radar, Mission Computer and

Inertial Navigation System (INS), integrated electronic warfare systems were

brought to the flight sector and integrated into the airborne platforms.

In the past, nearly all of the avionics architecture on the flying platforms was point-

to-point. In point-to-point avionics architecture, all of the data communications

between the sensor and the control unit or indicator in the cockpit were made

between source equipment and the destination; there was no bus controller or bus

master. This method had disadvantages in terms of mainly cabling, power

consumption, space consumption and weight. Also it was very difficult to make any

modification to the system if necessary. Approximately each system in this

architecture had its dedicated subsystems, control panels and displays. The displays

were electromechanical and prone to break down. Also the use of analog

3

computing techniques did not provide the accuracy and stability offered by the

digital systems introduced later.

After a while, when digital computing devices got mature enough and suitable for

airborne use, distributed digital avionics had arisen. This led to the adoption of

digital computers to avionics sector which resulted in greater speed of computation,

accuracy and removal of bias and drift problems which arise in analog systems. In

the distributed digital avionics architecture, major functional units contained their

own digital computer and memory. Displays in the cockpit were dedicated to their

function as for the analog architecture. The displays were still electromechanical

devices used previously, with the known problems. In later implementations the

displays become

be used with distributed digital avionics. The well-known and already used data bus

Aeronautical Radio Incorporated (ARINC) was introduced at these times. Data

bus has offered a great deal of flexibility in the signal transmission and led to

reduction in wiring. This, in turn, led to a reduction in weight, power consumption

and cost.

Then, federated digital architectures, in which there is at least one bus

controller/master came into the avionics world. With this new methodology, the

avionics architecture became safer and upgradeable. In principle, federated

architecture relied upon the availability of the extremely widely used military-

standard MIL-STD-1553 data bus. The adoption of the 1553 data bus standard

offered significant advantages and some drawbacks. One advantage was that this

standard could be applied across all North Atlantic Treaty Organization (NATO)

members, offering a data bus standard across a huge market. The federated

architectures generally use dedicated 1553B-interfaced equipment (line replaceable

units - LRUs) and subsystems, and are more robust and reliable than the preceding

architectures. The disadvantage of federated avionics architecture is that the LRUs

4

working with 1553B protocol is generally used in military platforms. Therefore

federated architecture is not used widely in commercial aircrafts.

Nowadays, aircraft manufacturers are trying to make smaller and smaller aircrafts,

or more functionality in less space, which means that there will be fewer places for

the avionics equipment. Therefore, the Integrated Modular Avionics (IMA) concept

was developed. With this concept, "equipment on a card" designs were arisen. By

this way, instead of installing two or more devices for redundancy purposes, the

integrator firms use two cards in a black box by sharing ruggedness of the

hardware, cooling, data bus and electrical pow

In this thesis, it is aimed to make the AOA functionality of a Combined Air Data

System (CADS) as preliminary work for this IMA concept. AOA Computer is very

important equipment in avionics architecture. The basic and necessary parameters

for a safe flight are calculated by the AOA Computer.

The AOA parameter has a crucial role especially in take-off and landing phases of

the flight. It can be considered as the angle between the chord line of the wing and

the vector representing the relative motion between the lifting body and the fluid

through which it is moving [1].

The source of the AOA parameter is the AOA sensor. The sensed AOA value from

the AOA sensor is sent to the AOA computer, in which the aircraft specific

values/charts are stored. The stall is a reduction in the lift coefficient generated by

an airfoil as angle of attack increases. This occurs when the critical angle of attack of

the airfoil is exceeded. The critical angle of attack is typically about 15 degrees, but

it may vary significantly depending on the airfoil [2].

The information calculated by the AOA system is essential for the pilot to fly the

aircraft safely, and is also required by a number of key subsystems in the aircraft

5

such as pilot control panel, audio warning panel, Multi Function Display (MFD) and

etc. Since the AOA parameter is very critical for a safe flight, it should be timely

calculated (real time) at a required rate. The real time concept refers that if latency

or loss occurs in measuring, calculation or delivering etc. of certain information, it

may bring a serious error in completing a task, a mission properly and on time and

may even sometimes be so critical that the consequences can be fatal. Hence, the

CADS software has to be considered as a real time system. Real-time systems are

defined as those systems in which the overall correctness of the system depends on

both the functional correctness and the timing correctness. The timing correctness

is at least as important as the functional correctness.

In this thesis, AOA system field research with CADS software development is

performed. CADS software is developed on a standard personal computer (PC) and

without real interface. In its current form, the functionality provided by the CADS

software is being provided by two different equipment, one is the Air Data

Computer (ADC) and the other is the AOA system. Therefore CADS software

combines both these functionalities in an integral manner on a card. This brings

reduction in the volume and cost. The hardware is implemented on a commercially

available PCI card that can be inserted in a motherboard of a PC.

6

CHAPTER 2

THE FUNCTION OF AOA IN THE COMBINED SYSTEM

The AOA Computer is very important equipment in avionics architecture. There are

some mandatory standards for this equipment to be installed on aircrafts. These are

basically:

Federal Aviation Agency (FAA) Technical Specification Order (TSO) C54 for

TSO-C54 is a minimum performance standard. It is established for stall warning

instrument which specifically is required to be approved for use on civil aircraft of

the United States. New models of stall warning instruments manufactured for

installation on civil aircraft on or after October 15, 1961, shall meet the standards as

set forth in Society of Automotive Engineers (SAE) Aeronautical Standard (AS) 403A,

 [3].

The general avionics architecture around an AOA computer is given in Figure 1.

7

Figure 1 AOA in Typical Avionics Architecture

SAE 403A defines the performance of the designed equipment. It also specifies the

must and optional parameters which will be given by the designed equipment and

their accuracies.

Radio Technical Commission For Aeronautics (RTCA)/Design Order (DO)-160

DO-160, Environmental Conditions and Test Procedures for Airborne Equipment is

a standard for environmental test of avionics hardware published by RTCA,

Incorporated.

This document outlines a set of minimal standard environmental test conditions

(categories) and corresponding test procedures for airborne equipment. The

purpose of these tests is to provide a controlled (laboratory) means of assuring the

performance characteristics of airborne equipment in environmental conditions

similar of those which may be encountered in airborne operation of the equipment.

The standard environmental test conditions and test procedures contained within

the standard may be used in conjunction with applicable equipment performance

8

standards, as a minimum specification under environmental conditions, which can

ensure an adequate degree of confidence in performance during use aboard an air

vehicle [4].

There are two (2) basic parameters calculated by the AOA Computer. These are:

Angle of Attack

Stall Warning.

To calculate these parameters the AOA computer needs information from the AOA

vane. The AOA vane is installed by considering the position of the propeller of the

aircraft (A/C) (if the A/C has a propeller). If the propeller is on the nose of the A/C

the vane is installed on the wing of the A/C to exclude the propeller effect. If the

propeller is on the wing of the A/C, then the vane is installed on the side surfaces of

the A/C. If the A/C has its ignition power at its back like in fighter jets, then the

probe is generally installed on the nose of the A/C. The number of the AOA vanes

basically depends on the avionics architecture, and the redundancy of the AOA

information. Generally, there is one AOA vane for one AOA computer in smaller

A/Cs.

9

Figure 2 Typical Sensor Installation on a Jet Fighter [5]

The AOA is described as the angle between chord line of an airfoil and the vector

representing the relative motion between the lifting body and the fluid (air) through

which it is moving.

AOA Vane

10

Figure 3 Forces on an Airfoil [1]

In Figure 3, an airfoil is the shape of a wing when looked at cross sectional view. The

chord line is a straight line connecting the leading and trailing edges of the airfoil, at

the ends of the mean camber line. Lift is defined to be the component of the force

that is perpendicular to the relative motion vector. Drag is the total of the forces

that oppose the relative motion of an object through a fluid.

11

Figure 4 AOA versus Lift

As seen in Figure 4, Stall is a condition that the AOA exceeds a certain value after

which lift starts to decrease. The corresponding AOA value from which the lift is

decreasing is A/C-specific and is called the critical angle of attack (stall point in

Figure 4). This critical angle is dependent upon the profile of the wing, its planform,

its aspect ratio, and other factors, but is typically in the range of 8 to 20 degrees

relative to the incoming wind for most subsonic airfoils. Stall is the peak point of the

AOA in Figure 4. The maximum lift coefficient occurs at the critical angle of attack

point [2].

CL may be used to relate the total lift generated by an aircraft to the total area of

the wing of the aircraft. In this application it is called the lift coefficient CL [6].

 (2.1)

12

L is the lift force, is the fluid density, is the true airspeed, q is the dynamic

pressure, and K is the planform area. A planform is the shape and layout of a fixed-

wing aircraft's fuselage and wing. Figure 5 shows the planform of Airbus A340-600.

Figure 5 Planform of Airbus A340-600 [7]

Drag coefficient is the indication of the resistance to an object (drag) in air. Lower

drag coefficient means the object will have less aerodynamic resistance to the flow

through the air. The drag coefficient is associated with a particular surface area. The

drag coefficient cd is defined as

 (2.2)

Fd is the drag force [8].

13

CHAPTER 3

DETAILED DESCRIPTION OF THE SYSTEM DEVELOPED

Simulated
Sensor
Data

GUI

AOA
Functional

Block

DVI

RS 232 USB

AOA Functional
Block of CADS

PC Monitor

USB / RS 232
CONVERTER

Figure 6 Demonstration of the System Architecture

In this thesis a CADS is developed on a card. This CADS combines the ADC and AOA

computers on a card. This way of combining these two subsystems on a card is the

improvement introduced. First of all, the CADS is developed on the card. Then, in

order to test and verify the system developed, simulation computer (SC) is

developed, which provides the necessary inputs, simulated in accordance with a

flight scenario for a certain generic platform, to the CADS.

14

The CADS is the computer which gets the simulated sensor data over serial port,

calculates the required variables and displays them by a refresh rate of at least 8

times in a second. In order to achieve this mission there is a formed infrastructure

including the computer hardware, installed operating system, installed Integrated

Development Environment (IDE) aligned with a program developed. Also in the

program developed there are some special structures used for accomplishing the

mission. In this chapter all of the contents under the infrastructure of this system

will be defined.

The PC card which is used as CADS, has a central processing unit (CPU) of Intel

Pentium 4. The CADS will communicate with the SC via RS 232 serial communication

protocol. The operating system (OS) that is chosen for the CADS is Windows XP.

The details of the OS could be reached in Appendix A1. The application software is

developed with the C programming language.

As can be seen from Figure 7 if the Start Processing button is pressed, then the

CADS starts functioning. It continuously listens to the serial port and when data

arrives it reads the data from serial port buffer into the message structure

mentioned before. After the reading threads fill in the message structure which is a

thread safe variable, it does not reread from the serial port into the message

structure until calculation threads get the related data from the message structure.

After calculation threads receive their parameter calculation related variable from

the message structure, reading thread rereads the new data from serial port and

refreshes the message structure. Then calculation threads again get the related

variables and this continues on until Stop button is clicked. For this process continue

in synchronization, there is another controlling thread named ReadControlThread.

This controlling function makes the value of another thread safe variable called

tsvReadControl 0. The value of the thread safe variable becomes 0 when all the

calculating parameter functions accessed the message structure and read the

15

related simulation variable. Therefore it is the job of the synchronization function

ReadControlThread. Reading thread checks the value of tsvReadControl, when its

value is set to 0, new data from the serial port is read to the message structure and

the tsvReadControl is set to 1. By this logic read synchronization is thread safely

achieved.

Figure 7 GUI and Working Principle of the CADS

Another place that uses synchronization is the display of calculated parameters. The

calculated parameters are displayed only if all the calculating threads completed

calculation and the calculated parameters (processed data) are ready to be filled

into the structure which is also a thread safe variable named tsvReadControl. The

16

thread type structure displaying the calculated parameters in the combined system

is called asynchronous timer. Asynchronous timers are threads that are executed in

given periods of time. In the combined system since there is a limit on refresh rate

such that at least 8 times in a second, the asynchronous timer structure is used.

Therefore it supplies the refresh criteria for a period 0.0625 seconds.

ture, see the code in

Appendix A4.

17

CHAPTER 4

CADS VERSUS REAL EQUIPMENT

4.1. Real AOA System

As mentioned in the previous chapters, there are some standards to be complied

with when designing the equipment. These standards can be grouped as:

Functionality and Performance Standards (TSO C54, SAE AS 8014, SAE AS

403, SAE AS 8046)

Environmental Standards (RTCA/DO-160).

4.1.1. Functionality and performance standards

Equipment manufacturers are trying to comply with TSOs and SAEs related with the

ADC. Since TSOs are giving reference to SAE AS, it is important to understand what

SAE AS 403 is.

SAE AS 403 specifies minimum requirements for stall warning instruments for use in

aircraft. It defines the required performance of the equipment relating it with

environmental conditions. It also states that the warning should be a continuous

warning during conditions under which warning is required.

4.1.2. Environmental standards

Functionality and performance standards define the minimum performance under

environmental conditions and when defining the performance it references RTCA

DO 160.

18

4.2. Differences between the Developed and the Real Equipment

The system developed within the framework of this thesis provides all of the

mandatory parameters given by the real equipment.

The developed system provides whole parameters with a refresh rate of 8 in a

second.

The developed system works with 220 VAC power however the real equipment

works with 28 VDC.

The developed system works with commercial operating system software

however real equipment needs to work with a real time operating system.

Real equipment is qualified to work properly in certain environmental

conditions however the developed system is established on a commercial

desktop PC chassis which is not ruggedized.

All these comparisons are summarized in Figure 8.

Figure 8 Real Equipment versus the CADS developed

19

CHAPTER 5

GENERAL VIEW OF THE CADS SYSTEM SOFTWARE DESIGN

This part contains the software architecture of the system. Firstly general software

structure will be briefly explained. In accordance with the system design, the CADS

system software gets simulated sensor data via a serial port.

The communication is composed of simulation variables sent to the CADS

computer. One of the specifications is that the CADS system software should

guarantee that each calculated parameter must be updated at least eight times in a

second. In order to achieve this, serial port communication settings have a high

importance. Another issue affecting the serial port communication settings is the

data size to be transferred. message structure determines the data

size. The message structure composes only the simulation variables. For simulation

variables used data types are double and int. In Figure 9 there are the structures of

the messages which contain the transferred simulation variables and its data types

with the reasons why these data types are selected. The name of the structure is

char and etc.

20

Figure 9 Message Structure Data Type for Reading Simulation Variables

As one can observe from Figure 9, data other than discrete signals (Landing Gear

position and AOA Data) are defined as double data type. Discrete signals are

decided to be implemented as int data types, which are 4-byte (32 bit) data types

used for representing decimal numbers. Int data type can be examined in Appendix

A5. The simulation variables defined in double data type could also be defined as

float but this is not chosen.

Double is an 8-byte (64 bit) data type which is used to represent real numbers. Float

is another data type used for representing real numbers, but float is a 4-byte (32

bit) data type. Therefore, by using double instead of float, larger numbers with

much more precision can be expressed. Also as the number to be stored/displayed

gets bigger in decimal part or floating part, float data type spoils earlier with respect

to double data type. In order to prevent data loss and corruption double data type

21

is used. As it can be observed that double data type allocates more region than float

data type which causes the message structure to get bigger.

Since the CADS system software has a requirement to refresh calculated

parameters eight times in a second, the simulated environment variables should be

supplied at least nine times in a second. Because of this reason, serial port baud

rate must be as fast as possible. But since data corruption via serial port cable is

another performance concern and due to

increases the probability of data corruption increases, it should be compensated. As

it can be observed from program code in Appendix A10

selected as 115200 kilo bits per second (kbps). Message structure size is calculated

to be

(6x size of (double)) + (2x size of (int)) = 56 bytes.

By using a baud rate of 115200 kbps which is 14400 byte per seconds, it can be

calculated that the system is capable of sending the message structure 257 times in

a second. This rate makes the simulation variables seem to be coming continuously

and the CADS system software can successfully fulfill the requirement of refreshing

the calculated parameters in the required rate.

Besides detecting the baud rate of serial port, there also exist other settings for

serial port. These can be listed as; parity bit, data bits and stop bit. In the system

design odd parity, eight data bits and one stop bit are used. The setting for parity

indicates that used parity checking mechanism is odd. Other than odd and even

parity, there exists mark and space parity. In mark parity case there is parity which

is not used and is always 1, whereas in space parity case there exists parity which is

not used and is always 0. Since speed ty, parity is used as

one stage and only error detection mechanism.

22

As general system property, threads are used widely in software architecture for

increasing the processor capability. The formed architecture is a multi-threaded

architecture. Since calculating part is the CADS most important

feature, multi-threading structure is implemented in this software architecture.

Multi-

threads) of a program. In multi-threading, source allocations and thread source

usage interferences should be carefully evaluated. Because wrong source

allocations or source allocation interferences can cause deadlocks, data loss or

evaluation of irrelevant data. In order to prevent these issues in the system design

of the software, special data types are used. Because the designed CADS software is

running on a single processor PC, the type of multi-threading performed on the

system is performed by the time-division multiplexing like multitasking. In this type

of multi-threading context switching is done very fast and frequent, therefore user

perceives that the threads are executed simultaneously.

In summary, multi-threading advantages and disadvantages can be listed as follows.

The advantages of multithreading are:

- Improved performance and concurrency

- Simultaneous access to multiple applications

- Reduced number of required resources

- Increased throughput of data

- Faster applications.

The disadvantages of multithreading are:

- Difficulty of managing resources

- Difficulty of writing code

- Difficulty of testing and debugging

23

- Overhead creation for the processor

- Potential Deadlocks.

Operating system is the last general issue in the software architecture. Operating

system serves as an intermediary between application programs and computer

hardware. Operating systems have common tasks such as process management,

interrupts, memory management, file system, device drivers, networking, security

and I/O operations. Some of the best known operating systems can be listed as

Microsoft Windows, Linux, Mac OS X and UNIX. Operating systems can be grouped

mostly with respect to their determinism (timeliness), and multitasking capacity.

Main types of operating systems are:

- Real Time

- Multi/Single User

- Multi/Single Tasking

- Distributed

- Embedded.

In this project, software platform is based on Microsoft Windows operating system.

For program development in the C language an integrated development

environment called LabWindows/ (CVI) is used.

LabWindows/CVI is a proven American National Standard Institute (ANSI) C

integrated development environment. It provides many tools for writing control

applications. LabWindows/CVI uses ANSI C as basis. ANSI C is the standard

published by ANSI for C programming language. Moreover, LabWindows/CVI

combines the reusability and longevity of ANSI C with engineering-specific

functionality of instrument control, analysis, data acquisition, and user interface

development.

24

Below there is a short list for the general capabilities and properties of

LabWindows/CVI:

- It is an ANSI C development environment.

- It is an intuitive environment optimized for test and control.

- It has data acquisition assistant and instrument I/O assistant.

- It is an interactive user interface editor. It enables easy creation of

instrument drivers.

- It has built-in comprehensive debugging and remote debugging tools.

- It also has built-in measurement libraries acquisition, analysis and

presentation.

Another issue that should be mentioned in the software architecture is thread-safe

variables. The used threads are in general functions calculating the desired

parameters from simulation variables. The other threads are for continuous reading

from serial port and displaying the results. Before giving detailed information on

thread safe variables thread functions and their missions are explained below.

5.1. Thread Functions and Their Missions

int CVICALLBACK ReadFunc(void *) : Serial port data read function.

int CVICALLBACK ReadControlThread(void *) : Serial port data read synchronization

controlling function.

int CVICALLBACK IasThreadFunc(void *) : Indicated airspeed calculating function.

int CVICALLBACK TasThreadFunc(void *) : True airspeed calculating function.

25

int CVICALLBACK SatThreadFunc(void *) : Static air temperature calculating

function.

int CVICALLBACK TatThreadFunc(void *) : Total air temperature calculating function.

int CVICALLBACK MachNumberThreadFunc(void *) : Mach number calculating

function.

int CVICALLBACK PressureAltitudeThreadFunc(void *) : Pressure Altitude calculating

function.

int CVICALLBACK BaroCorrectedAltitudeThreadFunc(void *) : Baro corrected altitude

calculating function.

int CVICALLBACK AoaDataThreadFunc(void *) : Angle of attack data calculating

function.

int CVICALLBACK LowAltitudeWarningThreadFunc(void *) : Low altitude warning

indicator function.

int CVICALLBACK OverspeedWarningThreadFunc(void *) : Overspeed warning

indicator function.

int CVICALLBACK StallWarningThreadFunc(void *): Stall warning indicator function.

int CVICALLBACK AsyncWrite(int panel, int , int , void *, int , int) : Function which is

called by the periods of 16 times/second and this function displays the calculated

results.

While thread functions are running in parallel, if there is a set of common variables

read and/or changed by different threads, there is always high possibility of data

corruption and data access collisions. Therefore in order to prevent data corruption

and data access collisions, there is a special type variable called thread-safe variable

26

used. Thread-safe variable is a variable type which is used for variables accessed

from different threads in order to change or read. By the use of data type thread-

safe variable (TSV), number of threads simultaneously accessing the variable can be

s means that in the

software thread-safe variable typed variables can be accessed by only 1 thread at a

time. Therefore there cannot be any chance such that while one thread is reading

the variable, the other thread to access and change the variable, that is, an access

to a thread safe variable locks it.

5.2. Thread Safe Variables and Their Missions

DefineThreadSafeScalarVar(int, tsvReadLoop, 0) : Thread safe variable that controls

the continuity of running code.

DefineThreadSafeScalarVar(int, tsvReadControl, 0) : This variable determines the

time that program reads the new serial port sensor data to the global data

structure.

DefineThreadSafeScalarVar(int, tsvWriteControl, 0) : This variable determines the

time that displaying function is permitted to display the calculated global data or

not.

DefineThreadSafeScalarVar(SensorData, tsvSensorData, 0) : Global serial read data

structure typed thread safe variable.

DefineThreadSafeScalarVar(ProcessedData, tsvProcessedData, 0) : Global

calculated/displayed data structure typed thread safe variable.

DefineThreadSafeScalarVar(int, tsvIasFuncRead, 0) : This variable determines the

indicated air speed function serial port data read status.

27

DefineThreadSafeScalarVar(int, tsvTasFuncRead, 0) : This variable determines the

true air speed function serial port data read status.

DefineThreadSafeScalarVar(int, tsvSatFuncRead, 0) : This variable determines the

static air temperature function serial port data read status.

DefineThreadSafeScalarVar(int, tsvTatFuncRead, 0) : This variable determines the

total air temperature function serial port data read status.

DefineThreadSafeScalarVar(int, tsvMachFuncRead, 0) : This variable determines the

mach number function serial port data read status.

DefineThreadSafeScalarVar(int, tsvPressureAltitudeFuncRead, 0) : This variable

determines the pressure altitude function serial port data read status.

DefineThreadSafeScalarVar(int, tsvBaroCorrectedAltitudeFuncRead, 0) : This

variable determines the baro corrected altitude function serial port data read

status.

DefineThreadSafeScalarVar(int, tsvAoaDataFuncRead, 0) : This variable determines

the angle of attack data function serial port data read status.

DefineThreadSafeScalarVar(int, tsvLowAltitudeWarningFuncRead, 0) : This variable

determines the low altitude warning function serial port data read status.

DefineThreadSafeScalarVar(int, tsvOverspeedWarningFuncRead, 0) : This variable

determines the overspeed warning function serial port data read status.

DefineThreadSafeScalarVar(int, tsvStallWarningFuncRead, 0) : This variable

determines the stall warning function serial port data read status.

DefineThreadSafeScalarVar(int, tsvIasFuncWritten, 0) : This variable determines the

indicated air speed function calculated data display status.

28

DefineThreadSafeScalarVar(int, tsvTasFuncWritten, 0) : This variable determines the

true air speed function calculated data display status.

DefineThreadSafeScalarVar(int, tsvSatFuncWritten, 0) : This variable determines the

static air temperature function calculated data display status.

DefineThreadSafeScalarVar(int, tsvTatFuncWritten, 0) : This variable determines the

total air temperature function calculated data display status.

DefineThreadSafeScalarVar(int, tsvMachFuncWritten, 0) : This variable determines

the mach number function calculated data display status.

DefineThreadSafeScalarVar(int, tsvPressureAltitudeFuncWritten, 0) : This variable

determines the pressure altitude function calculated data display status.

DefineThreadSafeScalarVar(int, tsvBaroCorrectedAltitudeFuncWritten, 0) : This

variable determines baro corrected altitude function calculated data display status.

DefineThreadSafeScalarVar(int, tsvAoaDataFuncWritten, 0) : This variable

determines the angle of attack data function calculated data display status.

DefineThreadSafeScalarVar(int, tsvLowAltitudeWarningFuncWritten, 0) : This

variable determines the low altitude warning function calculated data display

status.

DefineThreadSafeScalarVar(int, tsvOverspeedWarningFuncWritten, 0) : This variable

determines the overspeed warning function calculated data display status.

DefineThreadSafeScalarVar(int, tsvStallWarningFuncWritten, 0) : This variable

determines the stall warning function calculated data display status.

29

CHAPTER 6

CONFIGURATION ITEMS

6.1. Hardware Configuration Items:

The CADS system performs the calculations for two systems namely the AOA and

the ADC. Therefore, in listing hardware configuration items for the CADS it contains

both of these systems. As before mentioned, CADS as a system takes the AOA data,

static pressure, outside temperature and total pressure as input data. By using the

data taken the CADS calculates AOA, indicated airspeed (IAS), true airspeed (TAS),

SAT, total air temperature (TAT), Mach Number, Pressure Altitude and Baro

Corrected Altitude. Along with the calculation, the CADS also provides Over Speed

Warning, Low Altitude Warning and Stall Warning. In this design, the CADS including

both AOA and ADC functionality is embedded in a PC of the hardware specifications

below:

Intel Pentium 4 Processor 1.3 gigahertz

Serial Communication(RS232) Port

Motherboard

Hard disk

1 GB Random Access Memory (RAM)

Compact Disc (CD) Player.

30

6.2. The Software Configuration Items:

As one can observe from Figure 10 the CADS software configuration items (SWCI)

contains Platform, Development Environment, and Software items.

Figure 10 The SWCI of the Developed System

The CADS Software Configuration Item parts are listed below:

Microsoft Windows XP SP3 (Platform)

Lab Windows CVI 9.0 (ANSI C IDE)

CADS System Software Developed in C (Software).

31

CHAPTER 7

TEST AND VERIFICATION OF THE SYSTEM DEVELOPED

The AOA sensors are potentiometers actually. Therefore, there should be a

mechanism to measure the voltage drop on the AOA

voltage measurement, only thing that should be done is to make a look-up-table

which shows the relation between voltage and corresponding angle. After collecting

all of these inputs, required calculations should be made and the calculated

parameters should be sent to the MFD in the flying platform.

As can be seen from Figure 11, the verification of the real system should be made

via real sensors. AOA sensor should be put in motion and the verification should be

made via controlling the output of the CADS. Stall warning should also be controlled

by this manner.

32

Figure 11 Real CADS System Verification

Since real sensors could not be generated, simulated sensor data is used in this

project. Therefore in the system, the verification is made by comparing the CADS

calculations with Microsoft flight simulator X (FSX) . The full list and

ranges of the inputs of the system are given in Table 1.

33

Table 1 List of the Inputs of the CADS

No Parameter Name Range

1 Angle of Attack - 15 to + 50 degrees

2 Weight on Wheels Discrete

The full list and ranges of the outputs of the system are given in Table 2:

Table 2 List of the Outputs of the CADS software

No Parameter Name Range
Refresh Rate

(Hertz)

1 Pressure Altitude
-1871 to +36,089

feet
8

2
Baro Corrected

Altitude
-1871 to +36,089

feet
8

3 IAS 0 to +510 knots 8

4 TAS 0 to +510 knots 8

5 Mach Number 0.200 to 0.999 8

7 TAT - 60 to + 99 degrees 8

8 SAT - 99 to + 60 degrees 8

9 Overspeed Warning Discrete -

10 Low Altitude Warning Discrete -

11 AOA 0 to + 20 degrees 8

12 Stall Warning Discrete -

34

CHAPTER 8

CONCLUSION

In this thesis, software of the CADS is developed and demonstrated on a PC card,

which is not on-the-shelf right now. The CADS software designed combines the ADC

functionality and the AOA functionality on a single box, actually on a card. Normally

functions of these two systems are available as two different instruments in the

market and on the flying platforms.

The functionalities fulfilled by the CADS software are among the most important

issues for a flying system. They provide very critical flight parameters to the users

of the platforms (pilots and ground control stations etc.). Since the CADS software

in this thesis is developed for demonstration purposes, the criteria needed for a real

system is not followed. The complicated and strict environmental standarts and

safety specifications have not been applied. Therefore, for the CADS software to be

applicable for real systems, a real time operating system (RTOS) in the software that

satisfies all the timing requirements of the operation must be used. The application

software to generate the required functions for these systems should be developed

under a very tightly controlled environment and tested and verified rigorously.

Beside, the laboratory tests for the software, integration tests with hardware must

be performed in the laboratory with a software development laboratory (SDL) first

using some simulated environment and emulators, and then in the system

integration laboratory (SIL) utilizing mostly the real equipment and wirings, power

35

and cooling and minimum number of simulators and emulators. The developed

system is then tested in real flight testings and when passed such tests it is certified

by the certain authorities as flyable.

Not only the software but the hardware on which the CADS software runs should

meet very strict and detailed environmental tests and standards. They should

operate under extreme ranges of pressure, temperature, vibration, humidity and

the like. The integrated system, hardware and software together, is subject to very

rigorous and detailed tests before certified as flyable.

The CADS software in this thesis is developed and built on a commercial hardware

and tested by commercial flight simulator software for a generic platform.

Therefore, it is not safe for flight, or in other words it cannot fly. Furthermore it

even can not be run on a real platform. Aim in this thesis is to demonstrate that

such very important instruments can be combined and integrated in one instrument

and nearly all of the functions can be obtained by software.

In this thesis a commercial flight simulator is used for a generic flying platform.

Flight data is obtained based on a flight scenario of this flying platform. The

calculated output information from the CADS software developed is compared with

the data in the flight simulator. It is observed that there is a very good agreement

between them. For a better verification of the system, of course, a real flight data

of a certain platform should be used. However, this type of data is generally

restricted, very expensive, and in not the detail required [10].

Although, working on a commercial hardware and built on a commercial operating

system software, nevertheless, the CADS developed here calculates all of the

necessary parameters mentioned by related standards. Of course, the system has

36

no environmental or electromagnetic interference/electromagnetic compatibility

(EMI/EMC) qualifications.

Running the CADS software on an RTOS could be a one step further in the project.

It was impossible to use an RTOS as their licenses and development tools are very

expensive. However, a future work may be to develop the system on a specific

hardware, not a generic PC card as used in this project, and utilize an RTOS on this

hardware. The application software could also be developed based on real time

restriction by using the required software languages such as Ada, C, C++ etc., and

also in accordance with a system and software development standards.

A further improvement in the future could be to develop the hardware on a

ruggedized system to satisfy the flight environmental conditions and tests as

required. The developed system with RTOS and software standards could be tested

first on a real SDL and SIL for a certain specific flying platform and also certified by

the flight tests.

Another development in the future could be adding some new functionality such as

INS/Global Positioning System (GPS). The GPS position, pitch, roll and yaw data

could be get from a peripheral system and after making required calibration to

these data they could be shown to the user also.

Actually, not all of the equipment producers use an RTOS. Some of them use field

programmable gate array (FPGAs), digital signal processors (DSPs) and

microprocessors to fulfill the real time compability of the system. Therefore,

developing the CADS software on such kind of boards without any OS could also be

implemented.

R1

REFERENCES

[1] http://en.wikipedia.org/wiki/Airfoil

[2] http://en.wikipedia.org/wiki/Stall_(flight)

[3].http://rgl.faa.gov/Regulatory_and_Guidance_Library%5CrgTSO.nsf/0/E74EF22C

8BCEF3B386256DC1006E015D?OpenDocument

[4]. http://en.wikipedia.org/wiki/DO-160

[5] Myron Kayton , Walter R. Fried, John Wiley & Sons, Inc. (1997), Avionics

Navigation Systems Second Edition.

R2

[6] http://en.wikipedia.org/wiki/Lift_coefficient

[7] http://en.wikipedia.org/wiki/File:Virgin_a340-600_g-vmeg_planform_arp.jpg

[8] http://en.wikipedia.org/wiki/Drag_coefficient

[9].http://www.engineersgarage.com/contribution/porting-of-microc-os-2-kernel-

in-arm-powered-microcontroller

[10] , R., 2011, Development of Air Data Computation Function of a Combined

Air Data and AOA Computer

