
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
. N

O
O

R
U

L
D

E
E

N
                                                                                                   Ç

A
N

K
A

Y
A

 U
N

IV
E

R
S

IT
Y

 

SUPERVISORY CONTROL FOR RECONFIGURABLE 

MANUFACTURING SYSTEMS:  

STRUCTURAL CHANGES AND RE-USABILITY OF 

CONTROLLERS 

 

 

 

 

 

 

 

 

 
ANAS  NOORULDEEN 

 

 

 

 

 

 

 

 

 

 

 

 

 
ANKARA, 2012 



SUPERVISORY CONTROL FOR RECONFIGURABLE 

MANUFACTURING SYSTEMS: STRUCTURAL CHANGES AND  

RE-USABILITY OF CONTROLLERS 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

ANAS  NOORULDEEN 
 

 

 

 

 

 

 

 

 

 

 

 

 

SEPTEMBER, 2012 







iv 
 

 ABSTRACT 

 

 

SUPERVISORY CONTROL FOR RECONFIGURABLE MANUFACTURING 

SYSTEMS: STRUCTURAL CHANGES AND RE-USABILITY OF 

CONTROLLERS  

 

 

NOORULDEEN, Anas 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT  

 

September 2012, 79 Pages 

 

This thesis deals with reconfigurable manufacturing systems (RMS) and 

reconfigurable machine tools (RMT), that are designed to provide flexibility in both 

the variety of products and the configuration of the manufacturing system itself in 

order to quickly adjust to new products and production. In particular, the thesis 

investigates the aspect of reconfigurable manufacturing systems to change their 

structure during run-time. To this end, methods for the synthesis of controllers that 

support structural changes of the RMS are developed. In addition, the topic of re-

usability of previously designed controllers is addressed. The methods are applied to 

a laboratory model of an RMS.  
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ÖZ 

 

 

YENİDEN YAPILANDIRILABİLİR ÜRETİM SİSTEMLERİ İÇİN 

DENETLEYİCİ KONTROLU: YAPISAL DEĞİŞİKLİKLER VE 

KONTROLCULERİN TEKRAR KULLANILABİLİRLİĞİ 

 

 

NOORULDEEN, ANAS 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç. Dr. Klaus Werner SCHMIDT 

 

Eylül 2012, 79 Sayfa 

 

Bu tez yeniden yapılandırılabilir üretim sistemleri (reconfigurable manufacturing 

systems - RMS) ve yeniden yapılandırılabilir makine araçları ile ilgilidir, yeni 

ürünlere ve üretime hızlı bir şekilde uyum sağlamak için ürünlerin çeşitliliğini ve 

üretim sistemlerinin esnekliğini her iki alanda da desteklemek için tasarım edilmiştir. 

Özellikle, bu tez yeniden yapılandırılabilir üretim sistemlerinin yapısını çalışırken 

değiştirilmesini incelemektedir. Bu amaçla, kontrolculerin sentez metodları yeniden 

yapılandırılabilir üretim sistemlerindeki yapısal değişiklikleri desteklemek için 

geliştirilmiştir. Ek olarak, önceden tasarlanmiş olan kontrolculerin yeniden 

kullanılabilirliği örneklenmiştir. Bu metodlar yeniden yapılandırılabilir üretim 

sistemlerine laboratuvar modeli olarak uygulanabilir. 

Anahtar Kelimeler: Yeniden Yapılandırılabilir Uretim Sistemleri, Yeniden 

Yapılandırılabilir Makine Araçları, Ayrık Olay Sisteleri, Kontrolcu Tasarımı, Yapısal 

değişiklikleri, Tekrar Kullanılabilirlik 
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INTRODUCTION

Future manufacturing systems are expected to produce more alternative products

to meet the evolving needs of the market due to progress of academic research and

industrial practice. Traditionally, manufacturing systems are realized as dedicated

manufacturing lines or flexible manufacturing systems in order to either achieve a

high product quality at high volumes and low cost in a dedicated manufacturing

plant or to be able to produce a variety of different products on the same machines.

The common factor for such types of a manufacturing systems is that, they used

fixed structure to produce their product. For this reason, these manufacturing

systems are not keeping pace with the advancement of manufacturing systems

and purpose of the market need. Reconfigurable manufacturing systems (RMS)

were introduced as a new paradigm in manufacturing [4, 5, 6, 10] to address this

problem. The new perspective of RMS is to adapt and respond to changing market

demands quickly and to effectively increase production capacity and functionality

if required. As a result, the purpose of an RMS is to reduce lead-time for launching

new products, the rapid manufacturing modification, the quick integration and

easy adaptation to new functions and technologies.

To this end, RMSs must fulfill several requirements such as:

• the reconfiguration of components of the RMS, denoted as reconfigurable

machine tools (RMT)

• the change of product specifications

• the change of production plans

• the modification of the manufacturing system layout.

The subject of this thesis is the development of methods for the control of RMS

in order to fulfill the stated requirements. First, this thesis studies the applica-
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tion of an existing method [13] for the control of RMTs to a practical example.

This method is based on the supervisory control theory for discrete event systems

(DES) by Ramadge and Wonham [12]. The RMT plant is modeled by a finite

state automaton and each configuration of the RMT is described by a reconfigu-

ration specification language. Each reconfiguration, that is, each change from one

configuration to another configuration, is represented by a reconfiguration event

that can occur at any time. Then, the method allows to fulfill the specification

of the new configuration after a bounded reconfiguration delay, whenever a re-

configuration event occurs. In addition, the thesis develops a new method for the

structural change of RMSs. It combines ideas from [13] and develops new ideas,

that are specific to RMSs. As addition to [13], the new method requires that an

additional specification has to be fulfilled while moving to a new configuration.

In the thesis, this problem is defined as state attraction under language specifi-

cation. The thesis states necessary and sufficient conditions for the solution of

this problem and also presents an algorithm for the computation of a suitable

controller. This algorithm is further applied to a laboratory model of an RMS. It

is also shown in the thesis that controllers for reconfiguration can be re-used if a

new configuration is added to a running RMS.

The thesis is organized as follows. Chapter 1 gives basic notation regarding dis-

crete event systems (DES) in Section 1.1, regarding the supervisory control of

DES in Section 1.2, and regarding state attraction for DES in Section 1.3. Chap-

ter 2 presents the structural changes of reconfigurable manufacturing systems. It

consists of an overview of manufacturing systems in Section 2.1, the description

of reconfigurable manufacturing systems and reconfigurable machine tools in Sec-

tion 2.2, a control method for structural changes of reconfigurable machine tools

in Section 2.3, and the new method for supervisory control of RMS in Section

2.4. Chapter 3 shows a laboratory application example of an RMS. That is, the

modeling of reconfigurable machine tools are presented in Section 3.1, the supervi-

sory control of RMTs are described in Section 3.2, the modeling of reconfigurable

manufacturing systems are presented in Section 3.3, the supervisory control of

RMSs are elaborated in Section 3.4, and Section 3.5 discusses the re-usability of

controller. Finally, Chapter 3.6 contains the conclusions.
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CHAPTER I

BASIC NOTATION

1.1 Discrete Event Systems

The expression ”discrete event system” (DES) was introduced in the early 1980s

to model an increasingly important class of human-made dynamic systems with

a discrete state space, and state transitions that are given by the asynchronous

occurrence of discrete events. Such systems are encountered in a variety of fields

and have been successfully employed in many areas, for example in manufactur-

ing systems and communication networks [3, 18]. The operation of a DES is in

principle governed by sequences of events, whereby the order of events is most

relevant. The exact timing of events is nevertheless not important. A DES model

can hence very well describe systems with activities such as turning some device

”On ,Off”, sending one or multiple message packets, or detecting if an object

arrives at a certain location.

DES can be characterized by the following distinctive properties:

• A DES has a finite or countably infinite number of discrete states

• Each change of state occurs at a discrete time instant. State changes are

called transitions

• Each transition is driven by the occurrence of an event

• A DES spends time only in states. That is, state transitions occur instan-

taneously (they do not need time).
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A simple example of a DES is a light switch. The switch has two discrete states,

which can be identified as ”On” and ”Off”. There are further two possible events

switchOn and switchOff. If the light switch is for example in state ”Off”, the

event switchOn can occur, and the light switch performs an instantaneous tran-

sition to the state ”On”. Analogously, in state ”On”, a transition with event

switchOff leads to state ”Off”.

In the established literature, the behavior of a DES is modeled by a formal lan-

guage [3]. We next introduce the concept of a formal language.

1.1.1 Formal Language

The notion of language is introduced in discrete event systems for modeling the

logical behavior of a DES. Let Σ be the finite set of events, also called alphabet.

This set consists of all the events that can possibly happen in a given DES. A

string (or trace) is a finite sequence of events from Σ. The length of a string s,

denoted by |s| is given by the number of events in s. The empty string, denoted

by ǫ, is the string with zero length (i.e., |s| = 0). The set of all possible finite

strings of events from a finite alphabet Σ (including ǫ) is denoted as Σ⋆, whereby

the ⋆-operation is called Kleene Closure.

Considering the light switch example, the alphabet is given by Σ = {switchOn,

switchOff}. A possible sequence of events is s = switchOn switchOff switchOn

with length |s| = 3. The Kleene closure of Σ in this case is Σ⋆ = {ǫ, switchOn,

switchOff, switchOn switchOn, switchOn switchOff, switchOff switchOn,

switchOff switchOff, . . . , }. Note that not all strings in Σ⋆ must be possible

in the DES.

The concatenation of two strings s1 ∈ Σ⋆ and s2 ∈ Σ⋆ is the string s1 s2 (that

is, s2 is attached to the end of s1). If there exist strings s1, s2 ∈ Σ⋆ such that

s = s1 s2, then we write s1 ≤ s and s1 is called a prefix of s. A subset L ⊆ Σ⋆ is

called a language over Σ. An important language operation is the prefix closure.

The prefix closure of L is written L and contains all prefixes of strings of L. This

4



means

L = {s ∈ Σ⋆|∃t ∈ Σ⋆ such that st ∈ L}

A language L fulfilling L = L is called prefix closed.

Now, Let Σ̂ ⊆ Σ. The natural projection erases all events in Σ \ Σ̂ (\ is the set

difference) from strings s ∈ Σ⋆. This function is defined as p : Σ⋆ → Σ̂ with

p(ǫ) = ǫ

p(σ) =





σ if σ ∈ Σ̂

ǫ otherwise

p(sσ) = p(s)p(σ)

For example, if we are only interested in the event switchOn of the light switch,

we can project each string to the alphabet Σ̂ = {switchOn} and make occurrences

of switchOff invisible. For the string s = switchOn switchOff switchOn, the

projection gives p(s) = switchOn switchOn.

1.1.2 Automata

A very widely used compact model for languages is the automaton. It allows to

describe and study the structural behavior of DES. Usually, a DES is modeled by

a finite state automaton. It is a 5-tuple of the form G = (X,Σ, δ, x0, Xm), where

• X is a finite set of states ;

• Σ is a finite set of events ;

• δ : X × Σ → X is a partial transition function;

• x0 ∈ X is the initial state; It is state where the system begins the process.

• Xm ⊆ X is the set of marked states ; It is desired states that must be reached

after finishing a task.

A finite state automaton G = (X,Σ, δ, x0, Xm), also called generator, is charac-

terized by two subset languages of Σ⋆:

5



• Closed language L(G):

L(G) = {s ∈ Σ⋆|δ(x0, s) exists}

• Marked language Lm(G):

Lm(G) = {s ∈ L(G)|δ(x0, s) ∈ Xm}

The language L(G) contains all event sequences that follow the transitions of G

starting from the initial state. The language Lm(G) contains all strings of events,

starting from the initial state of G and leading to a marked state in Xm.

A finite state automaton G is said to be nonblocking if

Lm(G) = L(G)

This property holds, when every string generated by G can be extended to a

marked (desired) state in G. Finite state automata can be cyclic or acyclic. A

cycle in a finite automaton is a sequence of states x1, x2, . . . , xk (k is a natural

number) such that x1 = xk and for all i = 1, . . . , k − 1, there exists an event

σi ∈ Σ such that δ(xi, σi) = xi+1. This means, it is possible to start at a state x1

of G, follow the transitions in G and return back to x1. Then, an automaton G

without cycles is called acyclic.

Now we introduce several relevant properties and operations for automata:

• Accessible

The automaton G = (X,Σ, δ, x0, Xm) is accessible, if all states in X can be

reached from the initial state x0. Formally, we write

∀x ∈ X, ∃s ∈ Σ⋆ such that δ(x0, s) = x

In addition, we write Acc(G) for the automaton, where all states from G

that are not reachable from x0 are removed. Then, Acc(G) is accessible.

• Coaccessible
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The automaton G = (X,Σ, δ, x0, Xm) is coaccessible, if it is possible to reach

a marked state from any state in X. Formally, we write

∀x ∈ X, ∃s ∈ Σ⋆ such that δ(x, s) ∈ Xm

It holds that a coaccessible automaton is nonblocking: Lm(G) = L(G). In

addition, we write CoAcc(G) for the automaton, where all states from G

that are not coaccessible are removed. Then, CoACC(G) is coaccessible.

• Trim

The automaton G = (X,Σ, δ, x0, Xm) is trim, if it is accessible and coacces-

sible at the same time. We write

Trim(G) = Acc(CoAcc(G)) = CoAcc(Acc(G))

Next, we introduce the notion of subautomaton. Let G = (X,Σ, δ, x0, Xm) and

G′ = (X ′,Σ, δ′, x′
0, X

′
m) be finite state automata. G′ is a subautomaton of G,

if X ′ ⊆ X , x′
0 = x0 and for all x ∈ X ′ and σ ∈ Σ, it holds that δ′(x, σ)! ⇒

δ′(x, σ) = δ(x, σ) [8]. This means, G′ is obtained from G by removing states and

transitions. In this case, we write G′ ⊑ G if G′ is a subautomaton of G. G′ is a

strict subautomaton of G if additionally δ(x, σ) ∈ X ′ ⇒ δ′(x, σ) = δ(x, σ). This

means that only states are removed from G to obtain a strict subautomaton G′.

We use the example automaton G = (X,Σ, δ, x0, Xm) in Fig. 1.1 to explain the

notation introduced before.

Figure 1.1: Example finite state automaton G.

G has 6 states with X = {1, 2, 3, 4, 5, 6} and an alphabet with 4 events Σ =

{a, b, c, d}. The transition relation δ is defined with δ(1, a) = 2, δ(1, b) = 5,
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δ(1, c) = 3, δ(2, b) = 4, δ(4, d) = 3, δ(5, d) = 6. The initial state is x0 = 1

and the set of marked states is Xm = {1, 4, 6}. We can further determine the

closed language L(G) = {ǫ, a, ab, abd, c, b, bd} and the marked language Lm(G) =

{ǫ, ab, bd}. Moreover, the automaton G is accessible because all states in X are

reachable from the initial state 1. Hence, Acc(G) = G. However, G is not

coaccessible because there is no path from the state 3 to a marked state. Hence

CoAcc(G) is obtained by removing state 3 from G. Then, CoAcc(G) is a strict

subautomaton of G. It can also be seen that G is acyclic.

If a DES is modeled by more than one finite state automaton (for example, if the

system has several components with their own automata model), the synchronous

composition operation can be used to obtain a single automaton model of the DES.

Assume two automataG1 = (X1,Σ1, δ1, x0,1, Xm,1 andG2 = (X2,Σ2, δ2, x0,2, Xm,2)

are given. The synchronous composition is written as:

G12 = (X12,Σ12, δ12, x0,12, Xm,12) = G1||G2, and is defined such that

• X12 = X1 ×X2 (canonical product of states from X1 and X2)

• Σ12 = Σ1 ∪ Σ2 (union of events in Σ1 and Σ2)

• x0,12 = (x0,1, x0,2)

• Xm,12 = Xm,1 ×Xm,2

• the transition relation takes care that events in Σ1 ∩ Σ2 that are shared by

G1 and G2 are synchronized. For (x1, x2) ∈ X12 and σ ∈ Σ12:

δ12((x1, x2), σ) =





(δ1(x1, σ), δ2(x2, σ) if σ ∈ Σ1 ∩ Σ2 ∧ δ1(x1, σ)! ∧ δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \ Σ2 ∧ δ1(x1, σ)!

(x1, δ2(x2, σ)) if σ ∈ Σ2 \ Σ1 ∧ δ2(x2, σ)!

That is, the important point of the synchronous composition is that is synchro-

nizes the shared events (events that appear in both automata), whereas all other

events can occur independent of each other.

Until now, we described how a DES can be modeled by formal languages and

finite state automata, respectively. The main task of this thesis is the control of
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such DES, that is the design of a controller such that the DES assumes a pre-

specified desired behavior. In this thesis, two frameworks for the control of DES

are needed. The supervisory control theory for DES is introduced in the next

section and the control for state attraction is explained in Section 1.3.

1.2 Supervisory Control

The supervisory control theory for a DES was first established by Ramadge and

Wonham [12]. It offers a formal framework to design and implement control for

DES. The control of the system is executed by allowing or preventing specific

events from occurring in the plant. Such control is performed by a controller

(or supervisor) while taking into consideration the necessity to ensure the desired

behavior of the system.

Assume G = (X,Σ, δ, x0, Xm) is a finite state automaton DES representing the

plant which must be controlled. Then, the alphabet of the plant is divided into

two disjoint subsets as follows

Σ = Σc ∪ Σu

Here, Σc is the set of controllable events. These events can be disabled by a

controller (supervisor) any time. Examples for controllable events are actuator

events such as turning on a motor or machine. Σu is the set of uncontrollable

events. These events can never be disabled by a supervisor. Examples for un-

controllable events are sensor events such as detecting if a product arrives at a

certain location.

A supervisor for a DES plant G can also be realized by a finite state automaton

S = (Q,Σ, ν, q0, Qm). In that case, the closed loop (controlled) system is given

by the synchronous composition of the plant G and the supervisor S: G||S.

Then, the closed loop languages of G||S are Lm(G)||Lm(S) (marked language)

and L(G)||L(S) (closed language). As remarked before, a supervisor is never

allowed to disable uncontrollable events. Because of this reason, it must hold for

all s ∈ L(G)∩L(S) and σ ∈ Σu with sσ ∈ L(G) that also sσ ∈ L(S). This means,

if an uncontrollable event σ can occur in the plant after a string s, then it must
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also occur in the supervisor after s. A supervisor S is called nonblocking if the

automaton G||S is nonblocking.

The design of the supervisor S is based on the desired behavior of the plant.

This desired behavior is usually given in the form of another automaton C =

(Y,Σ, β, y0, Ym) andK = Lm(C) is called the specification language for the control

problem. The meaning of K is, that it contains all strings that are desirable. On

the other hand, a supervisor should disable all strings in L(G) that do not belong

to K. The question if this task is possible is answered by the controllability

condition. The specification K is controllable with respect to G and Σu ⊆ Σ if it

satisfies

KΣu ∩ L(G) ⊆ K

In this expression, K it is prefix-closure of K and KΣu represents the set of all

strings that start with a prefix in K concatenated with an uncontrollable event

in Σu. In words, K is controllable with respect to G and Σu if, whenever a string

s ∈ K that is allowed by the specification can be extended by an uncontrollable

event in the plant (sσ ∈ L(G)) the extended string must again belong to the

specification (sσ ∈ K). This is necessary, because σ could not be disabled by a

supervisor after s. It is a very basic result from supervisory control theory that

there exists a nonblocking supervisor S such that Lm(G||S) = K if and only if K

is controllable with respect to G and Σu.

In case, the specification K cannot be realized by a supervisor (this means thatK

is not controllable with respect to G and Σu), the supervisory control theory

suggests to find the largest possible sublanguage Ksub ⊆ K such that Ksub is

controllable with respect to G and Σu. The supremal element of all controllable

sublanguages of K is given as:

SupC(K,G,Σu) =
⋃

{K ′ ⊆ K|K ′ is controllable with respect to G and Σu}

That is, SupC(K,G,Σu) includes all sublanguages of K that are controllable

with respect to G and Σu. If Ksub is not empty, there is a supervisor S such that

Lm(G||S) = Ksub that can be computed algorithmically [12] also with existing

software tools [9]. This supervisor is nonblocking and is also called maximally
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permissive, because it enables the largest possible sublanguage of K.

In summary, the supervisory control theory allows to algorithmically compute

a supervisor S for a DES plant G such that a given language specification is

fulfilled, which means that Lm(G||S) ⊆ K. The design problem is summarized in

the following table.

Table 1.1: Design procedure for the supervisory control problem.

Given Desired Solution

Plant G Find supervisor Compute SupC(K,G,Σu)
Specification K S such that Use supervisor S with

Uncontrollable events Σu Lm(G||S) ⊆ K Lm(G||S) = SupC(K,G,Σu)

It has to be noted that the supervisory control problem as described above is

not the only control problem for DES that is relevant in this thesis. The next

section describes the problem of state attraction, which is particularly useful for

reconfiguration control of DES.

1.3 State Attraction

We consider a finite state automaton G = (X,Σ, δ, x0, Xm) as DES plant and

an uncontrollable event set Σu. We call a subset X ′ ⊆ X an invariant set in G

if there is no transition from any state in X ′ to a state outside X ′. Formally,

∀x ∈ X ′ and σ ∈ Σ it must hold that δ(x, σ)! ⇒ δ(x, σ) ∈ X ′ [1].

In addition, we call a set X ′ ⊆ X a weakly invariant set if only transitions

with controllable events leave X ′, that is, ∀x ∈ X ′ and σ ∈ Σu it holds that

δ(x, σ)! ⇒ δ(x, σ) ∈ X ′ [13].

Based on these definitions, we can introduce the notion of strong attraction and

weak attraction from [1, 2].

Definition 1 Let A ⊆ X ′ ⊆ X and assume that A,X ′ are invariant sets in G.

Then, A is denoted as a strong attractor for X ′ in G if

• the strict subautomaton of G with the state set X ′ \A is acyclic
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• ∀x ∈ X ′, there is u ∈ Σ⋆ such that δ(x, u) ∈ A

Moreover, A is denoted as a weak attractor for X ′ in G with Σu if there exists a

state-feedback supervisor S ⊑ G, such that A is a strong attractor for X ′ in S.

In words, A is a strong attractor for X ′ in G if, starting from any state of G, a

finite number of transitions always leads to the invariant set A. Adding control

to the attraction problem, weak attraction is defined such that there must be a

supervisor S such that the closed loop G||S becomes a strong attractor.

Regarding the computation of a supervisor for weak attraction, we refer to [1, 2].

It is shown, that there is a set ΩG(A) ⊆ X , that denotes the supremal subset of

X such that A is a weak attractor for ΩG(A) in G with Σu. The set ΩG(A) can be

computed with complexity O(|X| · |Σ|), whereby |X| and |Σ| denote the number

of states and events of G, respectively. In addition, a supervisor S ⊑ G such that

A is a strong attractor for ΩG(A) in S can be computed by the algorithm in [2]

with complexity O(|X|2).

In summary, the problem of state attraction requires to find a supervisor S such

that the closed loopG||S ensures reaching a desired set of states A after a bounded

number of transitions. Again, the relevant design algorithms are available in

software tools such as [9]. The following table explains the design procedure for

state attraction.

Table 1.2: Design procedure for the supervisory control problem.

Given Desired Solution

Plant G Find supervisor Compute ΩG(A)
Desired states A such that G||S Use supervisor S such
Uncontrollable reaches A after bounded that the state set of G||S

events Σu number of transitions is equal to ΩG(A)
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CHAPTER II

STRUCTURAL CHANGES OF RECONFIGURABLE

MANUFACTURING SYSTEMS

In this chapter, we develop the main results of this thesis for the control of re-

configurable manufacturing systems. Based on background on general manufac-

turing systems, we study two main ideas: the reconfiguration of single machines

by change of system structure and the reconfiguration of an entire manufacturing

system by change of the control algorithm. Regarding the contribution of the

thesis, the first idea is developed in previous work [13] however applied to a large

example in this thesis. The second idea is developed together with application

example in the scope of this thesis and also prepared as a journal paper [11].

The chapter is organized as follows. Section 2.1 gives an overview of manufactur-

ing systems. Section 2.2 introduces reconfigurable manufacturing systems (RMS),

and the reconfigurable machine tool (RMT) as the main component of RMS. In

Section 3.3, we introduce a framework for modeling RMTs and RMSs supported

by an application example. The structural changes of RMTs are considered in

Section 2.3 using the model from Section 3.3. Section 2.4 presents a new method

for the controller design of RMSs.

2.1 Manufacturing System Overview

Traditional manufacturing systems are represented by dedicated manufacturing

lines (DML) or flexible manufacturing systems (FMS). DML are optimized to
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produce a large quantity of a single product. As a result they are efficient in

producing their dedicated product but it is very difficult to change the operation

of a DML for producing different products. FMS are designed to produce dif-

ferent pre-defined products in varying quantities. That is, FMS are flexible in

the sense that they use the same machines for different products. However, since

the products are pre-defined when the FMS is installed, it is again difficult to

change its operation. In summary, the current dominant manufacturing systems

have the disadvantage that they have a fixed structure in order to produce their

pre-defined product(s) and without any support for changes in the system [6, 10].

In the recent years, conventional manufacturers are suffering from a new situation

on the market. It is characterized by the requirement of fast introduction of new

products and quick changes in the product quantity at low cost, while maintaining

the quality of manufacturing. The current manufacturing technologies do not

keep pace with these advanced requirements of the market need since they are

optimized for fixed operation.

In the late 1990s, the concept of reconfigurable manufacturing systems (RMS) was

introduced by Koren et. al. as a solution to the stated problem. We next give a

more detailed description of RMS.

2.2 Reconfigurable Manufacturing Systems and Reconfigurable Ma-

chine Tools

According to Koren et. al. [10],

Changing manufacturing environment characterized by aggressive competition on

a global scale and rapid changes in process technology requires to create production

systems that are themselves easily upgradable and into which new technologies and

new functions can be readily integrated.

Based on this observation, several desired properties of RMS can be listed as

follows:

• It must be possible to quickly change the operation of the system
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• It must be possible to add new different products to the production during

run-time

• It must be possible to vary the production volume and capacity

• It must be possible to rapidly modify the functionality of the system (for

example by adding new machine components)

• It must be possible to easily integrate new functions and technologies

• The cost of the system must be reasonable.

In order to achieve the listed properties, it is necessary to modify or re-arrange

the components of an RMS [10]. Components of an RMS are for example the

machines, conveyors, sensors, machine tools but also the algorithms that control

the operation of the RMS. This means, research on RMS requires mechanical

design (machines and tools), electronic design (sensors and actuators) as well as

software design (controllers and control algorithms).

Regarding the mechanical design, the main building block of an RMS is the

reconfigurable machine tool (RMT). An RMT is designed to be able to perform

different operations by changing its mechanical configuration. RMTs are supposed

to have a modular structure such that components can easily and quickly be added

or modified during system operation. The mechanical design of such RMTs is not

the subject of this thesis. However the thesis will use the concept of RMTs for

system modeling.

Regarding the electronic design, new sensor technologies such as for example

RFID allow to attach product specific information to each individual product

and manufacture the product based on this information. This thesis does not

focus on the electronic design, however uses the features offered by advanced

sensor solutions in the RMS modeling process.

Regarding the control of manufacturing systems, it first has to be mentioned that

manufacturing systems are usually composed of many different manufacturing

components. Each such component (for example a conveyor belt) has its own

functionality that is controlled by a local controller and attached directly to the
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manufacturing component. Such controller is simply responsible for the basic

operation of the component, that is the same controller will be used in a DMS,

FMS or RMS. The interesting control problem for RMS is given by:

• the need to change the basic mode of operation of RMTs in order to man-

ufacture different products

• the need to coordinate the operation of different manufacturing components

of an RMS.

The stated requirements can only be fulfilled if it is possible to change the control

program during system operation, which is the main subject of this thesis. We

next present a small RMS example in order to illustrate the previously presented

ideas. The RMS is shown in Figure 2.1. It consists of an RMT and a so-called

rotary table. The task of the rotary table is to transport products from the input

direction toward the RMT. This is represented by the arrows in and toRMT. In

addition, the rotary table receives products from the RMT (toRT) and can then

move a product either up (out1) or down (out2). The RMT has two modes of

operation. It either receives a product from the rotary table (toRMT), processes

in mode op1 and delivers the product back to the RT (toRT) or it receives a

product, processes in mode op2 and delivers back to the rotary table. In the

Figure 2.1: Overview of a simple RMS with rotary table (RT) and a reconfigurable
machine tool (RMT)

example, the basic property of the RMT is, that can operate in two different

modes. A reconfiguration of the RMT is needed to change the mode of operation.

In addition, the overall system can be considered as an RMS. Just imagine that

different products are produced depending on the mode of operation. Then, it

might be desired to deliver different products to different locations. For example,
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we could have configuration 1, where the product is processed in mode op1 of the

RMT and has to be delivered to out1. In configuration 2, the product has to

be processed in mode op2 of the RMT and delivered to out2. Then, two basic

questions regarding the operation of the RMS can be asked:

1. How to perform the reconfiguration of the RMT in order to change from

op1 to op2 and vice versa?

2. How to perform the reconfiguration of the whole RMS to change from con-

figuration 1 to configuration 2 and vice versa if required?

Regarding question 1, we study the control of structural changes of RMTs for

reconfiguration in Section 2.3. Here, we use the combination of a state attraction

problem as in Section 1.3 (to control the system while changing configuration)

and a classical supervisory control problem as in Section 1.2 (to determine the

control for each fixed configuration). Considering question 2, we study the change

of the desired system operation for RMSs in Section 2.4.

2.3 Structural Changes of Reconfigurable Machine Tools

We describe the reconfiguration problem for RMTs as introduced in [13]. In

principle, it is desired to design a supervisor that can perform fast reconfiguration

of the RMT structure. Furthermore, we point out that the resulting supervisor

enables a modular realization, which makes it possible to add a new configuration

quite easily.

As we mentioned, the described method is based on a DES model of the RMT

plant. The behavior of an RMT is modeled by a finite state automaton G =

(X,Σ, δ, x0, Xm) and a set of uncontrollable events Σu. Different configurations of

the RMT are represented by a set of configurations C, and for each configuration

ρ ∈ C, a configuration specification Kρ ⊆ Σ⋆ and a configuration start state

xst,ρ ⊆ X are introduced. The meaning of Kρ and xst,ρ for some configuration

ρ ∈ C is that the realization of configuration ρ requires to fulfill the specification

Kρ starting from state xst,ρ of the plant G.
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The basic setup is illustrated by the following simplified example of a machine

that can assume two different configurations D and M, that is C = {D,M}. A

schematic of the RMT is shown in Fig. 2.2. In configuration D, the RMT operates

as a drill. A product can enter the RMT, which is associated with the event in.

Then, the machine head (MH) moves down (event toOp) and the RMT performs

the drilling task (process). Afterwards, the machine head moves back to its rest

position (toRest), and the product can leave the RMT (toRT – it is assumed

that the neighboring component is a rotary table). In configuration M the RMT

operates as a mill. In this configuration, the basic operation is analogous to

configuration D, whereby the machine head is now turned to a different position

in order to perform milling.

posM

configuration D configuration M

toM

toM toD

toD

inin outout

toOPtoOP

toResttoRest

opD opM M

M

M

M D

D

D

D

MH

Figure 2.2: Schematic of the example RMT.

The components of the uncontrolled plant model of the RMT are given in Fig.

2.3. GIO describes the input/output of products (toRMT, toRT), GV describes the

vertical motion of the machine head (toOp, toRest), GR describes the rotation

of the machine head (op2, op1) and GM and GD model the milling and drilling

operation, respectively (process). In addition, Fig. 2.3 shows the basic RMT

behavior.

The configurations D and M now look as follows. Configuration D should start

from state 1 of G and requires that process is executed whenever a product
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Figure 2.3: Component models of the example RMT.

arrives. Likewise, configuration M should start from state 4 of G such that opM

happens after product arrival. The configuration specifications KD and KM can

be written down in the form of automata CD and CM in Fig. 2.4 such that

Lm(C
D) = KD and Lm(C

M) = KM. If supervisors for the two configurations
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SM inin

inin

outout
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toOP
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toResttoRest

toResttoRest

opDopD

opMopM
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3

3
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Figure 2.4: Configuration specification and supervisors.

should be computed, we need to fulfill the specification starting from the specified

start state. Because of this reason, the plant automaton for configuration ρ ∈ C

with the initial state xst,ρ is written as Gρ = (X,Σ, δ, xst,ρ, Xm). Using this plant

with modified start state, it is possible to compute the maximally permissive
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configuration supervisor Sρ that achieves the specification for configuration ρ ∈ C

such that Lm(S
ρ) = SupC(Kρ, L(Gρ),Σu).

Figure 2.4 also shows the configuration supervisors SD and SM. Note that these

supervisors are computed using the plants GD (initial state 1) and GM (initial

state 4), respectively.

From the described procedure up to now, it is seen that the operation of each indi-

vidual configuration and the computation of the corresponding supervisor is clear.

Only a classical supervisory control problem has to be solved for this purpose.

However, it is not enough to run the supervisors for the separate configurations. It

also has to be determined how to change from one configuration to the other con-

figuration whenever such reconfiguration is requested. As an important point,it

has to be considered that the new configuration might not be achieved immedi-

ately but only after a reconfiguration delay. In the method of [13], the described

reconfiguration task is formulated and solved as a state attraction problem. We

next describe the solution, since it is most relevant for the application example

in this thesis.

In addition to the previous notation, a reconfiguration start event ρst and a re-

configuration finish event ρfin for each ρ ∈ C is introduced. The new alphabets

Σst =
⋃

ρ∈C{ρst}, Σfin =
⋃

ρ∈C{ρfin}, Σ
rec = Σ ∪ Σst ∪ Σfin and Σrec

u = Σu ∪ Σst

are used, and all new events are added to the plant automaton G in the form of

selfloops. That is, an extended plant Grec = (X,Σrec, δrec, x0, Xm) is defined such

that for each x ∈ X and σ ∈ Σ

δ(x, σ) = x′ ⇒ δrec(x, σ) = x′

and for each x ∈ X and σ ∈ Σst ∪ Σfin

δrec(x, σ) = x

The reconfiguration start events are used to indicate whenever a change of con-

figuration is requested. Since it is desired to allow such request at any time, these

events are uncontrollable. The reconfiguration finish events are introduced to

show when the transition period between two configurations is finished and are
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considered as controllable events. Finally, we introduce the set of plant states Xρ

that are reachable in each configuration as follows:

Xρ ={x ∈ X|∃s ∈ Σ⋆ s.t. x = δ(xst,ρ, s) and s ∈ L(Sρ)}

Using the above notation and recalling the notion of weak attraction in Section

1.3, Theorem 1 states necessary and sufficient conditions for the existence of a

solution to the described reconfiguration problem.

Theorem 1 A solution supervisor Srec for the reconfiguration problem exists if

and only if for each ρ ∈ C and ρ′ ∈ C it holds that Xρ ⊆ ΩG({xst,ρ′}).

In this theorem, ΩG({xst,ρ′}) represents the set of states that are attracted to the

initial state of configuration ρ′. That is, the theorem means that, whenever the

RMT follows a configuration ρ (which means the RMT is in one of the states ofXρ,

then it must be possible to move to the initial state xst,ρ′ of a new configuration

ρ′ in a bounded number of steps (which is true if any state in Xρ is attracted by

xst,ρ′).

[13] not only gives this existence result but also a procedure to construct a suitable

reconfiguration supervisor Srec. Since this supervisor is used to perform structural

changes of RMTs in this thesis, the solution algorithm is presented now. It is sug-

gested to compute the reconfiguration supervisor as the synchronous composition

of one supervisor S
ρ
= (Q

ρ
,Σrec, νρ, q

ρ
0, Q

ρ

m) for each configuration ρ ∈ C and one

coordinating supervisor S = (Q,Σrec, ν, q0, Qm), that is,

Srec = S||(||ρ∈CS
ρ
) (2.1)

For each ρ ∈ C, the supervisor S
ρ
is used to enforce configuration ρ if it is active

and to switch to a waiting state Waitρ otherwise. It is defined by

Q
ρ
= Qρ ∪{Waitρ} and Q

ρ

m = Qρ
m ∪ {Waitρ},

for each q ∈ Qρ and σ ∈ Σ

νρ(q, σ) = q′ ⇒ νρ(q, σ) = q′,
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for each q ∈ Qρ and ρ′ ∈ C

νρ(q, ρ′st) = Waitρ,

for each σ ∈ Σrec \ {ρfin}

νρ(Waitρ, σ) = Waitρ

νρ(Waitρ, ρfin) = q
ρ
0 .

Finally, we set qρ0 = q
ρ
0 if ρ = ρ0 and q

ρ
0 = Waitρ otherwise.

The supervisor S is used to follow the actual state of the plant G and to govern

the change between different configurations. Let T ρ = (W ρ,Σ, ωρ,−,−) be the

minimally restrictive optimal supervisor such that {xst,ρ} is a strong attractor for

W ρ = ΩG({xst,ρ}) in T ρ. Then, we define the state set of S such that it contains

the set X and a copy of each state in W ρ for all ρ ∈ C:

Q = X∪ (
⋃

ρ∈C

{xρ|x ∈ W ρ}) and Qm = Xm,

for each x ∈ X and σ ∈ Σ

δ(x, σ) = x′ ⇒ ν(x, σ) = x′,

for each ρ ∈ C and x ∈ Xρ

ν(x, ρst) = xρ,

for each x ∈ X , ρ ∈ C and ρ′ ∈ C

xρ ∈ Q and xρ′ ∈ Q ⇒ ν(xρ′ , ρst) = xρ,

for each ρ ∈ C

ν(xρ
st,ρ, ρfin) = xst,ρ.

Now, we illustrate the supervisor construction by continuing the previous exam-

ple. To this end, we first evaluate the minimally restrictive optimal supervisors

TD and TM as depicted in Fig. 2.5.
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Figure 2.5: Optimal supervisors for state attraction TD (xD
0 = 1) and TM (xM

0 =
4).

Using the result in Figure 2.5, the components of the supervisor Srec are con-

structed as shown in Fig. 2.6 and 2.7. It should be noted that the transitions

with reconfiguration start events between the states in TD and TM are not shown

in Fig. 2.7 for the sake of clarity. According to (2.1), the overall reconfiguration

supervisor is given by Srec = S||S
D
||S

M
. That is, the resulting supervisor can be

represented by the synchronous composition of modular supervisors that either

perform the task of operating one configuration or switching between configura-

tions.

S
D

S
M

WaitD WaitM
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MfinDfin
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Figure 2.6: Supervisors S
1
and S

2

We now give a brief summary of the reconfiguration supervisor functionality. The

operation of Srec is as follows. If a configuration ρ ∈ C is active, the component S
ρ

follows the configuration supervisor Sρ and switches to the waiting state Waitρ as

soon as the configuration becomes inactive (when a reconfiguration is requested).

During reconfiguration, all supervisors S
ρ
for ρ ∈ C are in their waiting state. The

task of the supervisor S is to follow the current plant state if some configuration
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Figure 2.7: Supervisor S.

is active. In case of reconfiguration to ρ ∈ C, S switches to the optimal supervisor

for state attraction T ρ that moves the plant state to the initial state for the new

configuration as fast as possible. As soon as this initial state is reached, the new

configuration becomes active, and S again follows the current plant state. Hence,

the components of Srec are constructed to clearly separate the task of operating

a certain configuration and the task of reconfiguration.

2.4 Supervisory Control of Reconfigurable Manufacturing Systems

with Structural Changes

The previous section describes how the reconfiguration of RMTs can be performed

by supervisory control. Since an RMS could in principle be considered as an RMT

with many different components, it would be natural to assume that the method
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for RMTs in the previous section can also be applied to RMSs. We show in this

section, that this assumption is generally not true. Because of this reason we

develop a new method for the reconfiguration of RMSs. The identification of the

reconfiguration problem for RMSs and the solution procedure are a contribution

of this thesis, whereas the detailed mathematical formulation and proofs were

prepared in the scope of the journal manuscript [11]. We now explain the recon-

figuration problem for RMSs supported by the small example from Section 2.2 in

Figure 2.1.

The uncontrolled plant operation of the RMS components is modeled by the

automata as shown in Fig. 2.8. GRT describes the entry and exit of products from

and to RT, which happens with the events (out1, out2, in1, and toRMT). GRMT

shows different processing operations for products of the RMT as follows. After

a product passes from RT to RMT, it is processed (process) and returns back

to RT with event toRT. Reconfiguration with operations (op1 or op2 are possible

in the idle state and after processing. This means, the RMT performs processing

according to its current configuration. The overall uncontrolled behavior of the

plant G = GRT||GRMT is also shown in Fig. 2.8.
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in inin
out1 out1out1

out2 out2out2
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Figure 2.8: Plant automata for the small RMS example.

As was previously explained in Section 2.2, we suppose two types of operation

of the RMT to process two types of products. One of the operations is labeled
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as configuration 1 – processing by RMT, whereby the last reconfiguration event

was op1. The other operation is labeled as configuration 2 – processing by RMT,

whereby the last reconfiguration event was op2. Fig. 2.9 described the two differ-

ent operations.
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Figure 2.9: Configurations of the RMS.

Similar to the reconfiguration problem for RMTs, the operation of the different

configurations is clear and the main question is how to perform the reconfigura-

tion. In Section 2.3, the reconfiguration for RMTs could be solved by moving

the state of the system to a state, where the new configuration could start its

operation. According to Theorem 1, this problem corresponds to a state attrac-

tion problem. We now show that the situation is different in the case of RMSs.

Consider again the example plant model in Figure 2.8. When reconfiguring from

configuration 1 to configuration 2, we would want to move the system state to

the initial state as fast as possible in order to start configuration 2. This is still

in line with the previously discussed reconfiguration for RMTs. However, at the

same time, we would want that the event op2 occurs, such that the RMT changes

its structure for the new mode of operation. This is a new requirement of the

design problem in the form of a language specification, that has to be fulfilled

while moving to the initial state. Together, the reconfiguration needs:

1. to move to a desired subset on the state space of the DES plant with a

bounded number of event occurrences as fast as possible

2. to fulfill the desired language specification while moving to the desired sub-

set.

Problem 1 is again a state attraction problem, whereas problem 2 is a classical
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supervisory control problem. That is, for the first time in the literature, we need

to solve the combination of a state attraction problem (reconfiguration must start

from initial state of new configuration) and a classical supervisory control problem

(reconfigure the structure of the RMT by the occurrence of op1 or op2).

We formulated the requirements for the problem solution by the concepts of strong

attraction under language specification in the following definition.

Definition 2 Let G = (X,Σ, δ, x0, X2) be an automaton, A ⊆ X and assume that

A is an invariant set in G. In addition, let K ⊆ Σ⋆ be a specification language

and x ∈ X be a state. Write Gx = (Xx,Σ, δ, x,X2,x) for the automaton G, where

the initial state is replaced by x, Xx is the set of states reachable from x and

X2,x = A ∩Xx. Then, A is denoted as a strong attractor for x in G with K if

1. the strict subautomaton of Gx with the state set Xx \Xm,x is acyclic

2. ∀x ∈ Xx, there is a u ∈ Σ⋆ such that δ(x, u) ∈ Xm,x

3. ∀u ∈ Σ⋆ such that δ(x, u) ∈ Xm,x and δ(x, u′) 6∈ Xm,x for u′ < u, it holds

that u ∈ K.

This means, starting from x, we reach the set Xm,x ⊆ A in a finite number of

steps and fulfill the specification K when reaching A. For example, consider Fig.

2.10. The state set AS3
= {7} is a strong attractor for state 1 in S3 with the

specification K = Lm(C): S3 is acyclic in {1, 2, 3, 4, 5, 6} and on every path from

state 1 to state 7, the event op1 occurs once, whereas op2 does not happen.

Figure 2.10: Example for strong attraction under language specification.
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Now, we plan to apply the supervisory control for satisfying the conditions in Def-

inition 2. Suppose that Sx = (Qx,Σ, νx, q0,x, Qm,x) is a supervisor for Gx and Σu.

We also introduce the closed-loop automaton Rx = (Zx,Σ, αx, z0,x, Zm,x) = Gx||Sx

of the system and the invariant state set ARx
= {(x′, q′) ∈ Zx|x

′ ∈ A and q′ ∈

Qm,x} ⊆ Zx. If Rx reaches a state in the set ARx
, then, at the same time Gx

reaches a state in the invariant ste A. We now formulate the supervisory control

problem using these notions.

Problem 1 Assume that Gx, A and K are given as in Definition 2. Let Σu be a

set of uncontrollable events. We want to find a supervisor Sx for Gx and Σu such

that ARx
is a strong attractor for Zx in the closed-loop automaton Rx with K.

Problem 1 captures what we want to achieve in the motivating example. It

requires that the invariant set A is reached after a bounded number of transitions

(which happens if ARx
is reached), whereby the specificationK is fulfilled. That is,

Sx ensures reaching invariant set while satisfying K. S3 in Fig. 2.10 achieves this

task for state x = 3 of the plant G in Fig. 2.8 with the invariant set A = {1} ⊆ X ,

the specification K = Lm(C) in Fig. 2.10 and the set of uncontrollable events

Σu = {process}. The closed-loop automaton R3 = G3||S3 is shown in Fig. 2.11.
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Figure 2.11: Example solution supervisor for Problem 1.

We would like to use the solution in [1, 2, 7] to compute the supervisor in Problem

1. However this is not possible. The state attraction solution assumes that the
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closed-loop system Rx has the same state space as the plant Gx. This means that

the supervisor Sx should be a subautomaton of Gx. It can be seen for example

in Figure 2.11 that this need not be the case. Hence, a new algorithm for state

attraction under language specification is needed.

As we mentioned, Problem 1 requires the combination of a supervisory control

problem (in order to fulfill K) and a state attraction problem (in order to move to

A). Accordingly, we solve Problem 1 in two steps. First, we develop an algorithm

to construct a supervisor, that only fulfills 2 & 3 in Definition 2. Then, we remove

potential cycles in this supervisor such that also 1) in Definition 2 is fulfilled.

We develop our algorithm for an arbitrary plant state x ∈ X . In order to address

the first step of the problem solution, we define the language Kx of all strings that

lead from x to A and such that the shortest prefix of each string in Kx fulfills K:

Kx := {s ∈ L(Gx)|δ(x, s) ∈ A and s ∈ K but δ(x, s′)

6∈ A or s′ 6∈ K for all s′ < s}.Σ⋆

Kx contains all shortest possible strings that lead to the invariant set A and at

the same time fulfill K. It follows that Problem 1 cannot have a solution if Kx

is empty. This means that the solution of Problem 1 – if it exists – must enable

a subset of Kx that is controllable for Gx and Σu. In particular, this implies

that SupC(Kx, Gx,Σu) 6= ∅. We can formulate this observation in the following

lemma. Note that the proof of this Lemma is found in [11].

Lemma 1 Let Gx, A, Σu, Kx be given as defined above. Assume that the super-

visor Sx solves Problem 1. Then, it holds that SupC(Kx, Gx,Σu) 6= ∅.

Lemma 1 confirms that Problem 1 can have a solution only if SupC(Kx, Gx,Σu) 6=

∅.

Since the condition in Lemma 1 is necessary for the existence of a solution for

Problem 1, it would be nice to have an algorithm that checks the condition. To

this end, we first represent Kx by a finite state automaton. We assume that the

automaton C = (Y,Σ, β, y0, Y2) is chosen such Lm(C) = K. Then, we apply

a modified synchronous composition operation to Gx and C. This operation is
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defined in Algorithm 1. In principle, it follows that classical synchronous compo-

sition operation, however terminates if a state is found both in A and Ym starting

from the initial state (x, y0). The result of the computation is an automaton

C ′
x = (Y ′

x,Σ, β
′
x, y

′
0,x, Y

′
m,x) such that Lm(C

′
x) = Kx.

Algorithm 1 Input: Gx, A, C; Output: C ′
x

1. Initialize: Wait = {(x, y0)}, Done = ∅; Y ′
x = {(x, y0)}, y

′
0,x = (x, y0), β

′
x is

empty

2. Take some state (x′, y′) from Wait and insert in Done

3. Compute the set S of one-step successor states of (x′, y′) according to the

classical synchronous composition

4. Insert the states in S and the transitions from (x′, y′) to states in S into the

result generator C ′
x

5. Set each state (x′′, y′′) ∈ S such that x′′ ∈ A and y′′ ∈ Y2 marked in C ′
x;

introduce a selfloop with all events in Σ for all such states.

6. Insert all states in S \ (Done ∪ Y ′
m,x) into Wait

7. If Wait 6= ∅, go back to 2

8. Terminate with the result C ′
x.

That is, Algorithm 1 starts from the initial state of the parallel composition Gx||C

and terminates at all states that correspond to strings which lead to the invariant

set A and at the same time fulfill the specification K. All such terminal states

are marked in C ′
x, and after reaching such terminal state, all strings in Σ⋆ are

allowed. It is readily observed that Lm(C
′
x) = Kx.

After applying Algorithm 1 to the plant G in Fig. 2.8 with the starting state

x = 3, the invariant set A = {1} and the specification K = Lm(C) (Figure 2.10),

we get automaton C ′
3 in Fig. 2.12. We see that every path from the initial state

(3,1) can be extended to the marked (terminate) state and each path that leads

to the marked state fulfills the specification K, That is, any string from the initial
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state (3, 1) to (1,2) contains the event op1. (1,2) is the only marked state of C ′
x

and receives a selfloop with all events in Σ.

Using Gx and C ′
x, the condition in Lemma 1 can be easily verified by computing

SupC(Lm(C
′
x), Gx,Σu). Considering that C ′

x has a state space that is a subset

of the state space of Gx||C, the computational complexity for this verification is

O(|X|M · |Y |M).
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Figure 2.12: Automaton C ′
3 according to Algorithm 1.

Since we want to solve Problem 1, we have to assume that the condition in

Lemma 1 is fulfilled, that is, there is a supervisor S ′
x such that Lm(Gx||S

′
x) =

SupC(Kx, Gx,Σu). If we have such supervisors, two properties of the closed loop

Gx||S
′
x can be concluded as shown in the following lemma. The proof of the

lemma is given in [11].

Lemma 2 Assume that S ′
x is a supervisor such that Lm(Gx||S

′
x) =

SupC(Kx, Gx,Σu) and write R′
x = (Z ′

x,Σ, α
′
x, z

′
0,x, Z

′
m,x) := Gx||S

′
x. Then, it

holds that

1. s ∈ Lm(R
′
x) ⇒ δ(x, s) ∈ A

2. s ∈ Lm(R
′
x) and s′ 6∈ Lm(R

′
x) for all s′ < s ⇒ s ∈ K.

That is, any string that leads to a marked state in the closed loop R′
x leads to

the invariant set A in Gx. In addition, any string that first enters the marked

states of R′
x also belongs to K. Using Lemma 2, we can directly conclude that the
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conditions 2 & 3 in Definition 2 are already fulfilled by R′
x. Condition 2) follows

from the fact that R′
x = Gx||S

′
x is nonblocking by construction. Then, for any

state z ∈ Z ′
x, there is a string u ∈ Σ⋆ such that α′

x(z, u) ∈ AR′

x
= Z ′

m,x. Condition

3 holds because of 2 in Lemma 2.

We now look at our example again to illustrate the previous statements. R′
3 in

Fig. 2.13 is found using C ′
3 in Fig. 2.12. It can be seen that all strings that lead

to the marked state (1, 2) in R′
3 lead to the invariant set A = {1} in G3. In

addition, the specification K is fulfilled for all strings that lead to (1, 2). This

confirms also for the example that conditions 2 & 3 in Definition 2 are already

fulfilled. Unfortunately, it can also be observed that R′
3 still contains cycles

outside the attractive set AR′

3
= {(1, 2)}. This contradicts the first condition in

Definition 2. To resolve this problem, we now find a state-feedback supervisor

Sx = (Qx,Σ, νx, q0,x, Qm,x) ⊑ R′
x such that Z ′

m,x is a strong attractor for Qx =

ΩR′

x
(Z ′

m,x) ⊆ Z ′
x in Sx using the algorithms in [1, 7]. It is then sufficient to check

if the initial state (x, q′0,x) of R
′
x belongs to Qx.
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Figure 2.13: Automaton R′
3 such that Lm(R

′
3) = SupC(K3, G3,Σu).

Theorem 2 Let G be an automaton, A ⊆ X an invariant set in G, x ∈ X

a state, and Σu a set of uncontrollable events. In addition, let K ⊆ Σ⋆ be a

specification language with its recognizer C such that Lm(C) = K. Assume that C ′
x

is constructed according to Algorithm 1 and S ′
x is a supervisor such that Lm(R

′
x) =

SupC(Lm(C
′
x), Gx,Σu) for R′

x = Gx||S
′
x. Problem 1 has a solution if and only if

z′0,x = (x, q′0,x) ∈ Qx = ΩR′

x
(Z ′

m,x). In that case, any state-feedback supervisor
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Sx ⊑ R′
x such that Qx = ΩR′

x
(Z ′

m,x) and Z ′
m,x is a strong attractor for Qx in Sx

can be used.

Hence, the basic procedure to compute a suitable supervisor for the solution of

Problem 1 is to first determine the automaton C ′
x as described in Algorithm 1.

Then, the classical supervisory control theory is used to find a supervisor S ′
x.

The last step is the solution of a state attraction problem for the resulting closed

loop Rx = Gx||S
′
x. The first two steps are done with a computational complexity

of O(|X|2 · |Y |2) (see previous discussion). The last step has a computational

complexity of O(|X|2 · |Y |2) as can be seen from Section 1.3. Hence, the overall

complexity is O(|X|2 · |Y |2). It is very important to note that the result in

Theorem 2 and the related Algorithm 1 are entirely new.

It is now possible to apply the results in Theorem 2 to our RMS example. We

need to find the supremal set ΩR′

3
(Z ′

2,3) for the automaton R′
3 in Fig. 2.13 and

the invariant set Z ′
2,3 = {(1, 2)}. It turns out that all states are attractable, that

is, ΩR′

3
(Z ′

2,3) = Z ′
3. As well, we find a state-feedback supervisor S3 according to

2, that moves the plant state to the invariant set while fulfilling the specification

K. It is shown in Fig. 2.14 (see shaded states). The final supervisor for imple-

mentation in Problem 1 is equal to S3 in Fig. 2.11 that was found by intuition

before.
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Figure 2.14: State-feedback supervisor S3 according to Theorem 2.
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CHAPTER III

APPLICATION EXAMPLE

In this section, we apply the methods introduced in Section 2 to a laboratory

model of a RMS. We first develop a detailed model of a RMT in Section 3.1. This

model is then used to apply the supervisory control solution presented in Section

2.3. Next, we extend the RMT model in order to form a RMS in Section 3.3.

Finally, we use the method in Section 2.4 for the controller design of the studied

RMS.

3.1 Modeling of Reconfigurable Machine Tools

DES as introduced in Section 1.1 are suitable for modeling elementary operations

and the interaction behavior of technical machine processes such as reconfigurable

manufacturing tools (RMTs). We now model the RMT in Figure 3.1. It is part

of a laboratory model that was acquired in the scope of a TÜBİTAK project at

Çankaya University [14].

Looking at the figure, the main components of our example RMT are:

• a conveyor belt for transporting products

• a machine head that can move up and down and turn to different positions

• three machine tools that can perform different operations.

We next develop finite automata models of the RMT components, that are then
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Figure 3.1: RMT with three different modes of operation.

assembled to form a model of the overall RMT.

3.1.1 Conveyor Belt

The conveyor belt is used to transport products to and from the RMT. Fig. 3.2

shows a picture of such conveyor belt.

Figure 3.2: Picture of a conveyor belt.

The conveyor belt is actuated by a motor that is supposed to move a product

from left to right or stop. The related events are sf-rmt SW (start the motor)1

and rmt boff (stop). Since these events can be directly influenced by an operator

(it is possible to switch on/off the motor on demand), these events are considered

1 The name of the event is given under the assumption that there is a component with the name
SF next to the RMT (see Section 3.3)
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as controllable events. In addition, there is a sensor in the middle of the conveyor

belt to detect the presence/absence of a product. It is assumed that the conveyor

belt is stopped whenever the product reaches the sensor or leaves the conveyor

belt. The automaton model Gcb is depicted in Fig. 3.3.

Figure 3.3: Conveyor belt model Gcb.

3.1.2 Machine Head

The machine head has two main functionalities. On the one hand, it can move

vertically and stop at an upper and a lower position. Both positions are detected

by sensors. On the other hand, it can turn to three different positions, which char-

acterize the three different configurations of the RMT. Again, there are sensors

that indicate the different positions.

Considering the vertical motion, the machine head is initially in the upper po-

sition. If the event rmt pm+ happens, a motor is switched on, and the machine

head moves toward the lower position. As soon, as the lower sensor is reached,

the event rmt poff happens and the motor is stopped. After that, the event

rmt pm- can happen to move back to the upper position until the upper sensor

is reached. Then, again rmt poff stops the motion of the machine head. The

automata model Gmh of the machine head is shown in Figure 3.4.

Figure 3.4: Machine head model Gmh.

Considering the rotation of the machine head, each position of the machine head
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corresponds to one of its operations. ”drilling”, ”polishing” and ”milling”. We

assume that the machine head is initially in the drilling position (D). From there,

the machine head can turn to the polishing position (rmt D-P SW) or to the milling

position (rmt D-M SW) until it stops at the respective position with rmt toff.

Similar changes of position are possible from the polishing and milling position.

The automaton model Gt of the turning action of the machine head is shown in

Figure 3.5.

Figure 3.5: Model of the turning operation of the machine head.

3.1.3 Machine Tools

RMTs are designed to perform different operations in different configurations.

The RMT in Figure 3.1 is designed to have three different configurations that are

represented by the operations of ”drilling!”, ”polishing” and ”milling”. We model

the behavior of each operation by a finite state automaton. In principle, each of

the operations starts with an initiating event. For example, the drilling operation

starts with rmt don. If the operation is finished, it acknowledges its completion.

For example, the event rmt dack happens after drilling is finished. After that, the

drill is switched off with rmt dtoff. The corresponding automaton Gd is shown

in Figure 3.6. The operation of polishing and milling are analogous.

3.1.4 Overall Model

Now that the models of each components of RMTs have been derived, we get

the overall model of the RMT from the parallel composition of the component

models:
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Figure 3.6: Models of the RMT operation.

GRMT = Gop‖Gmh‖Gt‖Gcb.

The resulting automation GRMT is not shown since it has 768 states.

3.1.5 Safety Specifications for the RMT

The next step in the control of the RMT is the realization of so-called safety

specifications. These specifications restrict the behavior of the RMT such that

certain unwanted event sequences will never happen. We now explain the required

restrictions.

• Spec1: If the conveyor belt is moving, the machine head must not move down

and the machine must not operate. Otherwise products can be damaged.

The automaton CSpec1 for Spec1 is shown in Fig. 3.7.

• Spec2:

– If the machine head is in the upper position and does not move, then

the conveyor belt is allowed to move but the machine must not operate.

Operation of the machine is only possible if the machine head is in the
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lower position. This part of the specification is represented by state 1

of CSpec2 in Figure 3.7.

– If machine head is moving, then the conveyor belt must not move

and machine head must not operate. This part of the specification is

represented by state 2.

– If the machine head is in the lower position and not moving, then the

machine is allowed to operate (state 3), and afterwards, the machine

head is moving to upper position and stops (state 1).

• Spec3: The machine head is only allowed to move down if a product is

present on the conveyor belt. The automaton CSpec3 is shown in Fig. 3.7.

Figure 3.7: Specification automata: CSpec1, CSpec2 and CSpec3.

• Spec4: If some machine tool is operating, then the machine head must

not move. Otherwise the product will be damaged. Figure 3.8 shows the

automaton CSpec4.

• Spec5: A machine tool is only allowed to operate if the machine head is in

the lower position. Figure 3.8 shows the automaton CSpec5.
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Figure 3.8: Specification automata CSpec4 and CSpec5.

• Spec6: Each machine tool is only allowed to operate if the machine head is

turned to the correct position. This means

– the drilling operation is only allowed if the machine head is in drilling

position

– the polishing operation is only allowed if the machine head is in the

polishing position

– the milling operation is only allowed if the machine head is in the

milling position

The automaton CSpec6 for Spec6 is shown in Fig. 3.9.

Figure 3.9: Specification automaton CSpec6.

• Spec7: If the machine head is moving, then the machine head must not

turn. The automaton CSpec7 for Spec7 is shown in Fig. 3.10.

• Spec8: If the machine head is turning, then the machine head must not

move. The automaton CSpec8 for Spec8. is shown in Fig. 3.10.
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• Spec9: If the machine head is turning, then the conveyor belt of the RMT

must not move. The automaton CSpec9 for Spec9 is shown in Fig. 3.10.

• Spec10: If the conveyor belt of the RMTs is moving, then the machine head

must not turn. The automaton CSpec10 for Spec10 is shown in Fig. 3.10.

Figure 3.10: Specification automata CSpec7, CSpec8, CSpec9 and CSpec10.

Together, we get the overall specification as the parallel composition of all speci-

fication automata:

CSpec=CSpec1||CSpec2||CSpec3||CSpec4||CSpec5||CSpec6||CSpec7||CSpec8||CSpec9||CSpec10.
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Based on the classical supervisory control theory [12], we can now compute a

supervisor SRMT for the overall RMT by applying the function SupConNB (see

Section 1.2): SupC(CSpec, GRMT ,Σu). By definition, the supervisor SRMT is non-

bloking and fulfills the specification CSpec. Considering that the plant model

GRMT already has 768 states and the specification CSpec has 30 states, it turns

out that the supervisor SRMT has 30 states. Hence the automaton SRMT is too

large to be shown. However, according to the hierarchical supervisory control

theory as presented in [15, 17], it is possible to compute a hierarchical abstraction

by applying the natural projection to SRMT . The abstraction has a smaller num-

ber of states and can be used for the next steps in the reconfiguration controller

design. It is shown in Figure 3.11.

Figure 3.11: High-level abstraction S
high
RMT of the RMT.

3.2 Supervisory Control of RMTs

We now apply the controller design methods for RMTs as described in Section 2.3

to the RMT example considered in the previous section. That is, we use the

abstracted closed-loop system shown in Figure 3.11 as the plant G for the re-

configuration controller computation. From the previous discussion, we already

know that the RMT can operate in three different configurations – drilling (D),

polishing (P) and milling (M). Hence, our set of configurations is C = {D,P,M}.

We first determine the configuration supervisor Sρ for each configuration ρ ∈
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C. Considering drilling, it is desired to start from state 1 of G. Whenever a

product enters the system (sf-rmt SW), the drilling operation should be performed

(rmt don) and the product should exit the system (rmt-rb SW). This operation

is specified in the automaton CD in Figure 3.12. Polishing should start in state

7 of G, where the machine head is turned to the polishing configuration. Then,

polishing (rmt pon) should be performed after arrival (sf-rmt SW) and before

departure (rmt-rb SW) of a produce. The same idea is applied for the milling

operation (rmt mon). It starts in state 4 of G. All specification automata CD

(drilling), CP (polishing) and CM (milling) are shown in Figure 3.12.

Figure 3.12: Specification per configurations of RMT.

Figure 3.13: Supervisor per configurations of RMT.

As described in Section 2.3, the supervisor Sρ for each ρ ∈ C is computed as

Lm(S
ρ) = SupC(Kρ, L(Gρ),Σu). Here, the specification Kρ = Lm(C

ρ) and the

plant Gρ starting from the iniital state of configuration ρ are used. For ρ = D,

we use GD (initial state 1) and KD = Lm(C
D), for ρ = P, we use GP (initial
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state 7) with KP = Lm(C
P), and for ρ = M, we use GM (initial state 4) with

KM = Lm(C
M). The resulting supervisors for the three configurations of our

RMT are depicted in Fig. 3.13.

Until now, we introduced the elementary operations for each component of the

RMT with its controller supervisor for separate configuration but not for re-

configuration between the different configurations. Based on these previous no-

tions we use the algorithm in Section 2.3 to construct supervisors for reconfig-

uration (change the configuration from one configuration to another configura-

tion). We introduce new events as a reconfiguration start event ρst, such that

Σst =
⋃

ρ∈C{ρst}, where Σst = {D st,P st,M st}, also we enter the reconfiguration

finish event ρfin such that Σfin =
⋃

ρ∈C{ρfin}, where Σfin = {D fin,P fin,M fin}.

Figure 3.14: Reconfiguration supervisor S
D
.
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Now, we can directly apply the algorithm in Section 2.3 to compute the recon-

figuration supervisor of the RMT Srec = S||S
D
||S

P
||S

M
. The supervisors per

configuration S
ρ
for ρ ∈ C are shown in Fig. 3.14, 3.15 and 3.16. They are con-

structed such that, if a configuration ρ ∈ C (for ρ = D) is active, the component

S
D
follows the configuration supervisor SD as long as it is active and switches to

the waiting state (Wait) as soon as the configuration becomes inactive and a dif-

ferent configuration becomes active. During reconfiguration, all other supervisors

S
P
and S

M
for P,M ∈ C are in their waiting state. The behavior of S

P
and S

M
is

analogous.

Figure 3.15: Reconfiguration supervisor S
P
.

In addition, there is one coordinator supervisor S. The task of the supervisor

S is to follow the current plant state if some configuration is active. In case
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Figure 3.16: Reconfiguration supervisor S
M
.

of reconfiguration to ρ ∈ C, S moves the plant state to the initial state of the

new configuration as fast as posible. Hence, S allows to switch between different

configuration. Since S has 60 states, it is too large to be shown in this thesis. As

is mentioned in Section 3.1, it is possible to compute a hierarchical abstraction

by applying the natural projection to S. The abstraction of S is shown in Figure

3.17.

As we said, the overall reconfiguration supervisor is given by Srec = S||S
D
||S

P
||S

M
.

Again Srec is too large to be shown because it has 75 states. We compute the

abstraction of Srec on the event set {M st, D st, P st, sf-rmt SW, rmt-rb SW} to

be used as new plant model Shi of the RMT. It is shown in Figure 3.18.
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Figure 3.17: Abstaction of S of RMT.

Figure 3.18: Reconfiguration supervisor Srec, high plant of RMT GRMTplant.
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3.3 Modeling of Reconfigurable Manufacturing Systems

Our example RMS consists of different manufacturing components:

• one stack feeder (SF)

• one reconfigurable machine tool (RMT )

• one rotary table (RT )

• three exit slides (XS).

A schematic of the RMS is shown in the following figure.

Figure 3.19: Diagram of the example RMS.

The description of the desired operation of the RMS example is as follows. The

process begins from the stack feeder, where products enter the RMS. From there,

products are moved to the RMT and are processed according the current RMT

configuration. After leaving the RMT, products are transported to different exit

slides (XS) by the rotary table (RT). The exit slides represent storage units, from

where the ready product can be taken.

It is our goal to apply the controller design method, that is developed in Sec-

tion 2.4, to this RMS example. The first task is hence, to obtain an automata

model of the whole RMS. Considering that a model of the RMT was already found
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in the previous section, it remains to model the remaining components: SF, RT

and XS.

3.3.1 Stack Feeder

The stack feeder consists of a tower that can hold unprocessed products, and a belt

with a vertical bar for pushing the workpieces to the neighboring component (in

our case, the neighbor is the RMT). The position of the vertical bar is detected by

a magnetic sensor. If the bar is next to the sensor, we say it is in its rest position.

In addition, there is a photoelectric barrier, that sees if a product is currently

present in the SF. The motion of the SF’s belt is controlled from a motor that

can be switched on and off. Fig. 3.20 shows a picture of the stack feeder.

Figure 3.20: Picture of the stack feeder.

The operation of the SF is as follows. The sensor in the middle of the belt

detects when a workpiece (product) arrives on the SF, which is shown by the

event sf wpar. The operation of the SF can then be started (sf-rmt SW) and the

belt is switched on with the event sf fdon. The bar on the belt leaves the rest

position (sf nr) and returns to the rest position after one round (sf r). While

moving, the bar pushes the workpiece away (sf wplv). Then, the motor will stop

again (sf fdoff) when the bar is at the rest position.

The automaton model of the stack feeder is shown in Figure 3.21. This model

exactly represents the SF operation as described before. In the overall RMS, we

want to use small models of the different components. Because of this reason,
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we again use the idea of abstraction as developed in [16] and obtain a high-level

antomaton model of the stack feeder as shown in Fig. 3.22. As can be seen in the

figure, it is only required to keep the event sf-rmt SW in the model.

Figure 3.21: An automaton model Gsf for the stack feeder.

Figure 3.22: High level stack feeder model Gsf .

3.3.2 Rotary Table

The rotary table consists of a conveyor belt and a table, that can rotate in clock-

wise and counter-clockwise direction. As a result, the rotary table can send and

receive workpieces to and from four direction – north, south, east and west. Fig.

3.23 shows the rotary table.

Figure 3.23: Picture of the rotary table.

In order to keep the discussion simple, we only present an already abstracted

model of the rotary table. It describes moving workpieces to the rotary table,
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removing workpieces from the rotary table as well as turning the rotary table.

Considering the usage of the rotary table in our RMS in Figure 3.19, we know

that the rotary table is located among the RMT and three exit slides. Workpieces

can enter from the RMT (rmt-rb SW) but not from the exit slides. In addition,

workpieces can leave the RB toward the RMT (rb-rmt SW), and each of the exit

slides (rb-xs1 SW, rb-xs2 SW, rb-xs3 SW). The orientation of the RB is changed

by turning the table. The related events are rb tcw (turn clockwise) and rb tccw

(turn counter-clockwise).

The automaton model Grb of the rotary table is shown in Fig. 3.24. It can be seen

that workpieces, which arrive at the RB can be placed in one of the three storage

areas (events rb-xs1 SW, rb-xs2 SW and rb-xs3 SW) by changing the direction

of rotary table with the events rb rcw and rb rccw.

Figure 3.24: Rotary table model Grb.

3.3.3 Exit Slides

Through the exit slides the workpieces can leaves the manufacturing system, there

is also a sensor to indicate the present of workpieces. The exit slides represent as

deposit area for processed workpieces (can host up until four workpieces). Fig.

3.25 represents the exit slide.

The automaton models of the three exit slides are shown in Fig. 3.26.
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Figure 3.25: Picture of the exit slide.

Figure 3.26: Exit slide models Gxs1, Gxs2 and Gxs1.

3.4 Supervisory Control of RMS

We now want to apply the controller design method developed in Section 2.4 to

the RMS example. The plant DES is represented by the parallel composition of

the component automata. We compute the overall RMS model GRMS as:

GRMS = GRMTplant‖Gsf‖Grb‖Gxs1‖Gxs2‖Gxs3

The automaton GRMS is shown in Fig. 3.27.

In our example, we first want to realize two configurations of the RMS. In the first

configuration, workpieces enter the RMS from the SF, are drilled by the RMT

and then move to exit slide XS1. In the second configuration, workpieces should

be polished and leave the system on exit slide XS2. The specifications Cconf1 and

Cconf2 in Figure 3.28 describe the desired operation.

Using these specifications, it now possible to compute the supervisors Sconf1 and

Sconf2 for the different configurations. They are computed such that Lm(Sconf1) =

SupC(Lm(Cconf1), GRMS,Σu) and Lm(Sconf2) = SupC(Lm(Cconf2), GRMS,Σu). The

operation of the different configurations is depicted in Figure 3.29.
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Figure 3.27: RMS system plant GRMS.

It has to be noted that the supervisors in Figure 3.29 assume that the RMT

is already in the correct configuration. Moreover, each supervisor is designed

for separate configurations without taking care about reconfigurations. In the

next step, we compute a reconfiguration supervisor for the RMS. In analogy to

the method for RMTs in Section 2.3, we use two supervisors Sconf1 and Sconf2

for the different configurations. They either follow the respective configuration

or remain in an inactive state ”Wait” as shown in Figure 3.30 and Figure 3.31.

Considering the notation, we use the new events for starting and finishing the

reconfiguration. The reconfiguration start events are Σst = {conf1 st,conf2 st}

and the reconfiguration finish events are Σfin = {conf1 fin,conf2 fin}.

It remains to find the supervisor S that changes between configurations. Here,

the new technique as developed in Section 2.4 is used. In principle, the task of S

is to move the state of GRMS to the initial state 1 such that a new configuration

can start its operation. However, considering that a new configuration also needs

a reconfiguration of the RMT, it must be guaranteed that the RMT is in the

correct configuration when the new configuration of the RMS starts. This means

for example if a reconfiguration to conf2 is required, S has to move GRMS to state

1 and at the same make sure that the event P st (reconfiguration of the RMT

to polishing operation) must happen. That is, instead of computing optimal
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Figure 3.28: Configurations specification of RMS.

supervisors for state attraction as in Section 2.3, we now use supervisors for state

attraction under language specification for S. The language specifications for

conf1 and conf2 are shown in Figure 3.32.

The coordinating part S of the reconfiguration supervisor is constructed analogous

to Section 2.3. Hence, the automaton of the supervisor S is large to be shown

(S has 104 states), So, a part of S is shown in Figure 3.33, we choose some

states from the RMS plant in Fig. 3.27 we relate this, to supervisors for state

attraction under language specification. In case of reconfiguration, if the plant is

in state 2 and we reconfigure to configuration 1, S moves the plant state to the

initial state as fast as possible and should fulfill the reconfiguration specification

language represented by reconfiguration start event D st while moving to state 1.

The reconfiguration to configuration 2 is analogous to previous reconfiguration,

whereby the event P st must happen on the path to state 1.

Together, the reconfiguration supervisor of the RMS is the parallel composition

of the supervisors for each configuration and the coordinating supervisor. We

obtain

Srec = Sconf1||Sconf2||S.

Srec with two configurations has 110 states.
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Figure 3.29: Supervisor per configuration specification of RMS.

55



Figure 3.30: Components Sconf1 of the reconfiguration supervisor.
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Figure 3.31: Components Sconf2 of the reconfiguration supervisor.

Figure 3.32: Language specifications for reconfiguration.
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Figure 3.33: Supervisors for state attraction under language specification.

3.5 Re-usability of Controllers

We now discuss how the previously designed controllers can be re-used if a new

configuration of the RMS is added. We consider adding a new configuration ρnew

to the RMT during operation. In that case, it is only required to compute a

supervisor Sρnew and to re-compute the supervisor S including the new configura-

tion. The existing supervisors Sρ for ρ ∈ C do not have to be changed, since their

transitions do not depend on the individual events of the new configuration. They

only depend on their own reconfiguration events and on the overall set of recon-

figuration events. For example, considering conf1 in the example in Section 3.4,

the supervisor Sconf1 in Figure 3.30 only needs to know that a configuration start

event different from conf1 st happened in order to transition to the state ”Wait”.

Likewise, it only needs to see its own reconfiguration finish event conf1 fin in

restart operation of conf1. Hence, it is possible to add a new configuration during

operation. It is only required to load the new (inactive) supervisor Sρnew and the

supervisor S (that is in a well-defined plant state) on the controller device.

We next relate the previous discussion to our example in Section 3.4. We want

to add the new configuration conf3. In this configuration, workpieces should be

milled and leave the system on exit slide XS3. The configuration specification

Cconf3 and the corresponding configuration supervisors Sconf3 in Figure 3.34 de-

scribe the desired operation for this configuration.

58



Figure 3.34: Specification and supervisor for milling configuration of RMS.

As mentioned above, it is now only required to compute a reconfiguration super-

visor Sconf3 for conf3. Again, it either follows the corresponding configuration or

remains in an inactive state ”Wait” as shown in Figure 3.35.

The automaton of the supervisor S is too large to be shown; already it has 152

states. We take part of the automaton S as shown in Figure 3.36. Hence, the

basic operation of S is analogous to S with two configurations as illustrated in

Figure 3.33. Figure 3.36 shows the subautomaton of S with three configurations.

Finally, the overall reconfiguration supervisor of the RMS with three configura-

tions is the parallel composition of the supervisors for the separate three config-

urations and the coordinating supervisor. We obtain

Srec = Sconf1||Sconf2||Sconf3||S.

Hence, Srec with three configurations has 166 states.
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Figure 3.35: Components Sconf3 of the reconfiguration supervisor.
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Figure 3.36: Coordinator of RMS.

3.6 RMS Simulation

Our experimental example setup consists of a total number of 6 electro-mechanical

components including 1 Stack Feeder (SF), 1 processing machine represented by

a reconfigurable machine tool (RMT), 1 Rotary Table (RB), and 3 Exit Slides

(XS). In a practical experiment, the operation of such components is indicated

by switch-keys & inductive sensors (uncontrollable events) and Dc motors (con-

trollable events). Since there was no practical setup available for this thesis, we

now describe how to perform simulation experiments of our example system.

A schematic of such simulation setup is shown in Figure 3.37. It shows the

required infrastructure, which consists of a plant simulation that is connected

to a controller simulation. Together, this establishes a closed-loop system in

which plant dynamics interact with controller dynamics to satisfy a closed-loop

specification. The plant and the controller interact by virtual external actuator

and sensor signals, The actuator signals are generated by the controller simulation

and the sensor signals are generated by the plant simulation.

In our simulation we use two different simulation tools for the plant and the con-

troller. The controller is realized by a software called DESTOOL. It is a graphical

software for controller synthesis and analysis methods for discrete event systems
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Figure 3.37: Schematic of the RMS setup.

(DES) based on the open source C++ software library libfaudes. We use the

DES simulation feature of DESTOOL. A more detailed about DESTOOL is found

in [9]. The plant simulation is realized by a software FlexFact. It is characterized

as graphical environment for visualizing and simulating manufacturing compo-

nents without having to construct a real system. A more detailed about software

FlexFact in [9].

We verified our RMS design using the combination of DESTOOL and FlexFact. A

screenshot of the setup is shown in Figure 3.38. The upper left-hand part shows

the arrangement of our RMS in FlexFact, whereas the upper right-hand part

shows the controller simulation in DESTOOL. The automata graph in Figure 3.38

represents the component Sconf2 of our reconfiguration supervisor.

Figure 3.38: Simulation by controller synthesis.
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CONCLUSIONS

This thesis investigates the supervisory control of reconfigurable manufacturing

systems (RMS). Such RMS are a new manufacturing paradigm for the product

types and quantities. The main contribution of the thesis is the formulation of

the supervisory control problem using discrete event system (DES) models and

a new controller synthesis algorithm. This new algorithm differs from existing

work on this topic: we address both switching between different configurations

and impose additional behavioral specifications during reconfiguration. In this

thesis, this allows to automatically reconfigure an RMS and at the same time

change the operation of reconfigurable machine tools (RMT).

In the formulation of this thesis, the new algorithm solves a problem defined

as state attraction under language specification. This definition achieves the

requirements for two different problems at the same time. The first problem

corresponds to a state attraction problem, which requires that, after a bounded

number of transitions, we reach a desired state of the plant state space as fast

as possible. The second problem corresponds to a classical supervisory control

problem in the form of a language specification. It requires to find a controller

such that a given language specification must be fulfilled. Together, the solution

of both problems allows to move the plant to a desired state and, on the way to

the desired state, we fulfill a language specification. The thesis also provides a

computational procedure to solve the stated problem.

In addition to the theoretical formulation, the reconfiguration supervisor design

is applied to a laboratory example of an RMS that incorporates an RMT. First, a

detailed model of RMS and RMT are obtained. Then, the developed algorithm is

applied to find a reconfiguration supervisor. Finally, it is shown that the designed

supervisors can be re-used in case a new configuration is added to the RMS.
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