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ABSTRACT

RADIUS OF CURVATURE OF BESSEL-GAUSSIAN BEAM
AKKOYUN, Sidika Tiirkan
M.Sc., Department of Electronic and Communication Engineering
Supervisor: Prof. Dr. Yusuf Z. UMUL
September 2012, 28 pages

In this thesis, for a turbulent atmosphere, the radius of curvature of Bessel-
Gaussian beam is formulated. For various order of Bessel-Gaussian beam of the first
kind, the source size, propagation distance, wavelength, this formula is analyzed
numerically in moderate turbulence, high turbulence and under free space condition.
Results have shown that Bessel-Gaussian beam behaves as Gaussian beam and radius
of curvature of Bessel-Gaussian beam decreases with growing turbulence levels.
Results have also shown that the radius of curvature increases with the increasing

source size and changes slowly with the wavelength.

Keywords: Bessel Gaussian beam, radius of curvature, Gaussian beam, intensity,

Gaussian beam width



OZET

BESSEL-GAUSSIAN ISIK DEMETININ EGRILiK YARICAPI
AKKOYUN, Sidika Tiirkan
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi Bolimii
Yonetici: Prof. Dr. Yusuf Z. UMUL
Eyliil 2012, 28 sayfa

Tezde, tiirbiilansli atmosfer ortaminda Bessel-Gaussian 151k demetinin egrilik
yarigapini veren bir esitlik Onerilmis ve Bessel-Gaussian 1sik demetinin egrilik
yarigapi, Bessel fonksiyonunun ilk tiirinlin farkli dereceleri, kaynak boyutlari,
hiizmenin yayilma mesafesi ve dalga boylar i¢in ortalama tiirbiilans, yiiksek
tirbiilans ve tiirbiilansin olmadig1 seviyelerde analiz edilmistir. Sonuglar Bessel-
Gaussian 151k demetinin Gaussian 151k demeti gibi davrandigini ve Bessel-Gaussian
151k demetinin egrilik yarigapinin artan tlirbiilans seviyeleriyle azaldigimi
gostermistir. Sonuglar ayn1 zamanda egrilik yaricapinin artan kaynak genisligi ile

beraber arttigin1 ve dalga boyuyla yavasca degistigini de gdstermistir.

Anahtar Kelimeler: Bessel Gaussian 151k demeti, egrilik yaricapi, Gaussian 151k

demeti, 151k siddeti, 151k demeti genisligi
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INTRODUCTION

Free space optical communication (FSO) systems operate in the infrared
spectrum [1] and use free space (atmosphere) as transmitting media, in other words
signal is transmitted between receiver and transmitter without cables in these
systems. FSO has been came forward in recent years, since FSO supplies broadband,
high speed data transfer, lower costs and no interference [2]. Against these
advantages, there are disadvantages from atmospheric effects, i.e. fog, rain, solar
warming, absorption from atmospheric gases [3]. In FSO communication, LEDs and
lasers are usually used. So, propagation and properties of laser beam have been
important.

Lasers have optical resonator where amplified, monochromatic, inphase,
linear beam is obtained. This beam propagation usually approximates Gaussian
intensity profile. In this context, Gaussian beam propagation and its optical
properties have been studied often to improve laser communication. Different optical
properties of Gaussian beam have been researched under different conditions. Radius
of curvature is also optical property of the laser beams which is major factor for laser
beam shaping. In the previous studies, the effects of atmospheric turbulence have
been researched on the radius of curvature for hyperbolic, sinusoidal, annular, dark
hollow and flat topped Gaussian beams [4, 5].

The purposes of this study are to obtain radius of curvature of Bessel-
Gaussian beam analytically, examine effects of different turbulence levels on radius
of curvature of Bessel-Gaussian beam numerically, show that Bessel-Gaussian beam
follow trend of Gaussian beam, compare Bessel-Gaussian beam and Gaussian beam.

In Chapter I, Gaussian beam and its properties are mentioned for
understanding how a beam, which has a Gaussian beam profile, should behave. It is
mentioned beam parameters of a Gaussian beam such as, field, intensity, power,

beam width, beam divergence, depth of focus, phase and radius of curvature. By this



way, the general information is presented about behavior of Gaussian beams. Radius
of curvature of a Gaussian beam is also plotted in free space by the help of
MATLAB. Bessel-Gaussian beam and Bessel functions are mentioned briefly.

In the first part of Chapter II, Radius of curvature of the Bessel-Gaussian
beam is derived analytically using the previous study. In the second part of Chapter
II, accuracy of the formula for the radius of curvature of Bessel-Gaussian beam is
verified under stated conditions and is commented with the help of MATLAB. In the
last part of Chapter II, radius of curvature of the Bessel-Gaussian beam is obtained
numerically and graphics is plotted. The Bessel-Gaussian and the Gaussian beams
are compared. It is shown that the Bessel-Gaussian beam acts similar as a Gaussian

beam.



CHAPTER
BESSEL-GAUSSIAN BEAM

1.1. GAUSSIAN BEAM AND BEAM PARAMETERS
Gaussian beam is defined as electromagnetic beam by function of Gaussian with
electrical field and intensity. Its mathematical function is a solution of paraxial
Helmholtz equation. Field of Gaussian beam is given in [6] as;
k

U = Uy r (K aZ) gk 1.1
(r,z) = Oﬁexp<—m)exp[—]<z—tan Z)_]ZR(Z)l' (1.1)

where 7 is radial distance, z is axial distance(propagation distance), k = 2w /A is
wave number, A is wavelength, E is the field at the center, zg is the Rayleigh range
which is defined by maZ2 /A, R(z) is radius of curvature, a; is source size and w(z) is
beam width.

Source size ag and beam width w(z) are beam parameters. They are shown

below respectively, which are taken from [7].

2
a, = 2R, (1.2)

(D) = <1+(ZZ—R)2). (13)

Expanse of Gaussian beam is beam width along z propagation direction.
Figure 1.1 is plotted by using equation (1.3) and includes —w(z) for easy to
understand beam parameters. From Figure 1.1 it is clear that the beam width is at its
minimum value at z = 0, which is known as beam waist or source size, after that
beam expands, i.e. the beam width increases. On the other hand spot size is equal to

2a,.
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Figure 1.1 Variations of beam width of Gaussian beam versus propagation distance at fixed

source size and wavelength

In Figure 1.1, @ is the beam divergence, which is another beam parameter. 6
is the angle with z axis of wavefront of the Gaussian beam and can be written by

using paraxial approach as;

tan(f) = 6 = :—;. (1.4)

When Rayleigh range is substituted into equation (1.4), beam divergence is

0 = A : (1.5)
Ta,

From equation (1.5), it is clear that highly directed beam can be obtained by using
short wavelength and thick waist. In other words, if the beam divergence decreases,
the beam will becomes more directed.

Depth of focus is also a beam parameter, which is defined as 2z; long. This
parameter is shown in Figure 1.1 and is expressed by

2na?
A

From equation (1.6), it is seen that the depth focus is inversely proportional with

225 = (1.6)

wavelength and directly proportional with the area of spot size (i.e. ma?). In this
area, Gaussian beam achieves best focus.

From (1.1), the phase of Gaussian beam is



kr?

= — _1£ 1.7
@ = kz —tan ZR+2R(Z)' (1.7)
The phase is on the beam axis

z
@ =kz—tan"1—, (1.8)

ZR
where kz is the phase of plane wave and tan~1(z/z) is the phase retardation, which
causes delay of the wavefront. From z = —oo to z = oo, total phase retardation is T,

which is the Gouy effect.

1.2. INTENSITY OF THE GAUSSIAN BEAM

The intensity of the Gaussian beam is calculated by the power per unit area [7]
and it is equal to the square of its complex field, which is given in [7] as;
L.(r,z) = [U(r, 2| (1.9)
If equation (1.1) is substituted into equation (1.9), intensity of Gaussian beam would

be
I.(r,z) =1, [ﬁr exp —ﬁ , (1.10)
w(z) w(z)?

where 1, is the intensity at the source. Unit of I.(r,z) is watts/m”. Figure 1.2 is
plotted by using equation (1.10) at r = 0. From Figure 1.2, it is clear that normalized
intensity of Gaussian beam reaches its maximum value at z = 0. At z = zg, the
intensity reaches 1,/2, namely it has half of maximum value . At larger z, the

intensity decreases.
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Figure 1.2 Variations of normalized intensity of the Gaussian beam versus propagation

distance at fixed source size and wavelength

The optical power P, which is carried by Gaussian beam, is integral of

intensity of Gaussian beam. The optical power is given in [7] as;

P=] I.(r,z)2ndr. (1.11)
0

1.3.RADIUS OF CURVATURE OF THE GAUSSIAN BEAM

In general, the radius of curvature is a parameter, which is inversely proportional
to curvature of surfaces. If the radius of curvature increases, surfaces will become
more flat. For example, the radius of earth is 6,371 km and the earth appears to us as
if it is flat. Similarly, for a beam, if the radius of curvature of wavefront deacreses,
the wavefront is more flat.

In equation (1.7), term of kr?/2R(z) causes to curvature of wavefront. This
situation is shown in Figure (1.3). The radius of curvature of the Gaussian beam can

be given in [7] as;

R(2) = z [1 + (%R)Z] (1.12)
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Figure 1.3 Bending of wavefronts with increasing radius of curvature

If the Rayleigh range (zy) is substituted into equation (1.12), the radius of curvature

will become

2\ 2
na
R(z) =z 1+< S) : (1.13)
zA
After some simplifications, the radius of curvature can be written as
R(z) = 0.25z 7 (k%ag + 4z2). (1.14)
20
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Figure 1.4 Variations of radius of curvature versus propagation distance under free space

conditions at fixed source size and wavelength



Figure 1.4 is obtained by using equation (1.14). Figure 1.4 shows that the radius
of curvature is infinite at first, namely there is no wavefront bending and the radius
of curvature reaches minimum value at z = zg. After that point, the radius of

curvature increases with increasing z.

1.4. THE BESSEL FUNCTIONS

The Bessel differential equation is obtained by using cylindrical coordinates
for three dimensional Laplace in Cartesian coordinate, which is given in [8] as;
x2y" +xy' + (x> —n?)y =0 (1.14)
where n is known as order argument and constant. Functions, which are solutions of
equation (1.14), are called n-th order Bessel functions. In Bessel differential
equation, since point of x = 0 is singular, solution of (1.14) is obtained by using

Frobenius method. For solution, this method uses series as;

y = xP Z agxk. (1.15)

If n is a non-integer, equation (1.14) has two solutions as J_,, and J,,, which
are called the Bessel functions of the first kind . Figure 1.5 represents the Bessel
function of the first kind, which is plotted by using MATLAB. These functions are

given in [8] as;
n+2k

(1.16)

=0

WD =) Tt ks D2
k=0

)

where J_,(x) can be obtained by replacing n with —n and I,,(x), which is the
modified Bessel function, can be obtained by replacing x with xi. So, general
solution of the Bessel differential equation can be written as;
y(x) = c1Jn(x) + o) n (X)), (1.17)
where ¢; and c, are arbitrary constants.

If n is a non-integer, general solution of the Bessel differential equation

cannot be written as equation (1.17). Hence, a function is defined as;

_ @) cos(nm) = (@)

sin(nm)

Y, (x) (1.18)



which is called the Bessel function of the second kind and also known as The
Neumann or The Weber function. As a result, for all valid of n, a general solution
can be written as;

y(x) = cJn(x) + 2 (x). (1.19)

where ¢; and c, are arbitrary constants.
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Figure 1.5 Bessel function of the first kind against x-axis for different order (n)

1.5. THE BESSEL-GAUSSIAN BEAM

The Bessel-Gaussian beam follows trend of the Gaussian beam and its field
equation includes Bessel function. On the source plane, its field distribution is given
in (3) of [9] as;
Us(s, ¢s) = exp(—kas?) exp(—jnes)n(azs), (1.20)

where s and ¢ are radial coordinates on a source plane, k = 2/ is wavenumber, 4
is wavelength, a« = 1/(ka?) + j/(2F,) is related to Gaussian beam source size ag
and focusing parameter F,, s is radial distance, j is V—1, ap defines the beam width
and n > 0 is order of the Bessel function of the first kind J,,(ags).

When the Bessel-Gaussian beam propagates at distance z from the source

plane, the field is given in (4) of [9] as;



exp(jkz) _ jaiz + 2ak?r?
U, (r, r) = T 5 - r - -
r(rér) 1+ 2jaz exp(=jn¢ )exp< 2k(1 + 2jaz)
« ( agr ) (1.21)
"\1+ 2jaz

where r and ¢, are radial coordinates on a receiver plane.

10



CHAPTER 11
RADIUS OF CURVATURE BESSEL GAUSSIAN BEAM

2.1. DEVELOPMENT OF FORMULATION
From (3) of [10], at a distance of z from the source plane on a receiver plane, the
radius of curvature is;

a;(2)

R(z) = —a3¢ @)

@.1)

where a?(z) and afd, (z) are respectively radial and radial-angular second moments.

From (4a) and (4b) of [10], the numerator and the denominator of (2.1) are;

2

4n
a?(z) = a?(0) + 2a7,(0)z + a5 (0)z* + THZ3, (2.2a)

aty(2) = aly(0) + a3 (0)z + 2m2Hz?, (2.2b)
where at source plane, a2(0), afd, (0) and aé (0) are respectively radial, radial-

angular and angular second moments. H represents an integration over the spatial

frequencies of the spectrum function ¢,, (k) and is given in (5) of [5] as;
H= J. k3¢, (k) dk, (2.3)
0

where k is the scalar spatial frequency. For ¢, (k), modified von Karman spectrum is
applied in developing formulation, which includes inner and outer scale parameters.

So ¢, (k) is given in [11] as;
%
2 _ 2
0,033Cnexpl <5,92> K l

s (i_j)z]“/ ¢

Pn(K) = 24

11



where C?2 is a measure of strength of the fluctuations in the refractive index and is
known as structure constant. Also, [y and L are respectively inner and outer scales.
So, expression (2.3) can be written with expression (2.4) and condition of Ly — o

o) ) lo 2
Kk~ /3exp l— (5 92> Kzl dk. (2.5)

H= 0,033C,%f
0

As aresult, H becomes (2.6) by use of Eq. (3.478.1) of [10].

2

Cy

H = 0.1661 VR (2.6)
| /3 '
0

For calculation of the radius of curvature, it is necessary to obtain afsr (z), which is

free space equivalence of a?(L). From (6) of [5]

2 2 an’ 27
a7 (z) = afs(z2) + — Hz". (2.7

3
At a distance of z from the source plane on a receiver plane, afsr (z) can be adapted
from (7) of [4], which is;
fooo 3 s (r)dr
fooo rlsr (r)dr

afsr(2) = (2.8

In equation (2.8), I¢s,-(7) is the free space receiver intensity of the Bessel-Gaussian

Beam and given in (6) of [12] as;

Lo () = b? a + 4b?r?
fsri = ea — by (ka* + jb) P | ™ 2a2(ka — jb)(ka* + jb)
jagr —jagr (2.9)
*Jn (ka —jb)]” (ka* +jb)'

where 7 is radial distance, @ is the Gaussian source size, &« = 1/(ka?2) + j/(2F,) is

related to the Gaussian source size, a* is conjugate of a, k = 2w /A is wavenumber,

b is k/(2z) and j is V—1. If numerator and denominator of (2.8) are respectively

called as A and B, numerator of (2.8) is;

12



A= ke = ke +75) P | 2a2(ka = jb)(ka* + jb)

(o) 4b27"2
y _ 2.10
fo rexp[ 2a2(ka — jb)(ka" + jb)l (2.10)

jagr —jagr
X Jn (ka —jb)J" (ka* +jb> dr.

And denominator of (2.8) is;

b? I az

b? a3
B = - —exp |— - 5 ;
(ka — jb)(ka* + jb) 2a2(ka — jb)(ka* + jb)
oo 4b27"2
x 3 _ 2.11
fo TP T 202 (ka — jb) (ka” + jb)l @1
jagr —jagr
X Jn (ka —jb)jn (ka:* +jb> r.
For solution of (2.10), derivation of Eq. (6.633.2) of [10] with respect p is used,
which is;
” l+p v*+B*\, (VB
3 242 = —
[ expprat o =| (S Lo )1 (32)
) 5 (2.12)
vB vB Y- +B
W p+1 2—p2 exp | — 4p2 |
If equation (2.10) is adapted to equation (2.12), related parameters are
4h?
p? = : — (2.13a)
2a2(ka — jb)(ka* + jb)

_ j2eb 2.13b
_ b 2.13
ﬁ_ ]ka*+]b' ( . C)
p=n, (2.13d)

13



and numerator of (2.8) is;

b? as
A= - —exp | — - & ;
(ka — jb)(ka* + jb) 2a2(ka — jb)(ka* + jb)

1
X l 2(4+77;2(2a52(ka — jb)(ka* + jb))"

aib? azb?
B (_ (ka —jb)? ~ (ka* +jb)2>
8(4b?)3
2 | s o (2.14)

X (Zas (ka — jb)(ka +]b)) I, ((ka = by (ke +jb)>

a2b?(2a2(ka — jb)(ka* + jb))’ a2 ]

4(4b2)3(ka — jb)(ka* + jb) ™1 ((ka — jb)(ka* + jb) J
azb? azb? ) .

y B (_ (kaB_jb)z + (ka*B+ jb)z) 2aé(ka — jb)(ka* + jb)

exp 4(4b2)

For solution of denominator of (2.8), Eq. (6.633.2) of [10] is used, which is

” 1 v2+B*], (VB
fo x exp(—=p?x?) J,(yx)],(Bx)dx = ﬁexp l— 152 l L, (sz) (2.15)

And denominator of (2.8) is

bZ 2
B = : —exp | — .aB .
(ka — jb)(ka* + jb) 2a2(ka — jb)(ka* + jb)

2a2(ka — jb)(ka* + jb) a3
2(4b?%) n <(ka — jb)(ka* +jb)>

(2.16)

(— agh® _ __agh’ )2 2(ka — jb)(ka* + jb)
(ka — jb)2 " (ka® + jp)?) “%s V& —JP)NE@ TJ
xXexp| — 4(4b)
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Finally, equation (2.8) becomes to
2(1 + n)a?(ka — jb)(ka* + jb)
(4b?)
N atad((ka —jb)? + (ka* + jb)?)
4(4b?) (2.17a)

afs (z) =

agag

aiad(ka — jb)(ka* + jb) Insa ( 4 >
2(4b?) | (aﬁa?) '
n

4

For using of afsr (2) in a?(z), the coefficient of afsr (z) must be associated with the
coefficient of a?(z). b = k/(2z) is used for associating equations and j(a — a*) =

(—1/F,) for the sake of simplicity, so afsr (z) is given by;

2 2
aia
o2 (z):(l-l_n)as2 agas In“( 43)_
fsr 2 8 | aza?
n\ 4
2 2
aia
+2 ( (A+mei  agas I"“( 45) 1\
z 2F, 8F, | aza?
n\ 4

(2.17b)
atat(a® +a*’) ajataa*

2(21 2aa”
+z (1 +n)ataa™ + 2 >

agag
Lnia (PEES

aza?
In( B4 S)
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When af;,.(2) is written in (2.7), a7 (z) is

| (adad
5 (1+n)a? aial|n+1\" 4
ar(z) = + o 1
2 8 (%%
n\ 4
2 2
aga
+22(_(l+n)a§_a}‘;a;* ’"+1( 45)_1 \\
2F, 8F, | aza?
. (2 /

2
atat(a?+a*”) aiataa’

+z%| 21 + n)ataa* +

4 2
2,2
aia
I <—4 S) 2.1857C27°
2,2 + 1/ '
n 4 0

By use of same coefficients between (2.2a) and (2.2b), afd, (L) will become

2 2
(1+n)a? aial In+a (%)
2 S S 2 *
= - — -1+ 21 +n)ataa
g (2) 2F, 8Fy | | (aha? z| 20+ njas
n 4
2.2
aia
atat(a? +a*’)  diataa* 1n+1( 45) 5z’
— | |+32786 2.
4 2 I <aBas) 1 /3
n 4 0

(2.18)

(2.19)
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Finally, from (2.1), radius of curvature of Bessel-Gaussian beam will become

2 2
aia
_[(1+n)asz agag I"“( 45)
R(z) = 2 8 aza?\
I BYsS
[ ()
2.2
aia
\ o, _Qtma djal ’n+1( 45)
z 2F, 8F, \ | (a3
n 4
a2a4(a2+a*2) aiataa*
2 2 1 2 % B"s BY%s
+z 1+ n)ataa” + 2 + 5
2.2
aia \
y In+1<TS> +2.18576,%z4
a2l ) 7, J (2.20)
n 4 0
[ ata?
(1+n)a? afat ’n+1< 345)
2F, 8F, I <a§a52)
n 4
a2at(a? +a?) adataa’
+z| 21 + n)alaa* + 5 5(4 )+ 5 ;
-1
aza? ]
In+1< B4_ S) CTZLZZ
x| —5—=2| [ +32786 2
I (aBaS> 1 /3
n 4 0

2.2. ACCURACY OF FORMULATION
If the Bessel-Gaussian beam follows trend of the Gaussian beam, radius of

curvature of the Gaussian beam can be obtained in free space by eliminating
parameters, which include Bessel functions and turbulence effects in the formula of

the radius of curvature for Bessel-Gaussian beam. In other words, the order of the

17



Bessel function of the first kind n, the width parameter ag and the structure constant
CZ2 must be equal to zero. So, in free space, equation (2.20) will be equal to the radius

of curvature of the pure Gaussian beam.

20 ¥ T T T T

b --e-- Bessel-Gaussian Beam
18- Y —— Gaussian Beam R

R(z) (Radius of Curvature) in km

| | | | | | | | \ |
1 2 3 4 5 6 7 8 9 10
z (Propagation Distance) in km

Figure 2.1 Radius of curvature of Bessel-Gaussian and Gaussian beams versus propagation
distance z. For radius of curvature of Bessel-Gaussian beam, order n, the width parameter

ag and the structure constant C? is taken zero.

ag, n and C2 are eliminated in formula for the radius of curvature of the Bessel-
Gaussian beam. So, as expected, the radius of curvature of the pure Gaussian beam is
obtained. In Figure 2.1, this situation is shown. Radii of curvatures for the Bessel-
Gaussian and Gaussian beams overlap and are equal to each other under stated

conditions. Accuracy of formula (2.20) can be ensured by this way.

2.3. NUMERICAL ANALYSIS OF FORMULATION

Commonly, in free space optical systems, a; is used as 5 cm and A is used as
1.55 um. Hence, in this study, when source size and wavelength are taken as
constant, these parameters are used as stated above. Additionally, all plots are scaled
to analyze all graphics easily. And maximum value of order for Bessel-Gaussian
beam is taken as 4. Because, for the values n is bigger than 4, all plots approximate

each other and overlap.
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as=5cm

2 = 1015 m2/3
C,=10"m

4=1.55,m

a =40 m’

- Gaussian Beam
n=3 n=0,a;=0

R(z) (Radius of Curvature) in km

1 2 3 4 5 6 7 8 9 10
z (Propagation Distance) in km

Figure 2.2 Variations of radius of curvature versus propagation distance at fixed source size,

moderate turbulence level, wavelength and width parameter

In Figure 2.2, for varied orders of the Bessel function of the first kind,
variations of radius of curvature of Bessel-Gaussian beam are displayed versus
propagation distance at fixed source size, wavelength, width parameter and moderate
turbulence level (C? = 10715 m~2/3). Figure 2.2 indicates that radius of curvature of
Bessel-Gaussian beam is infinite at first, and then the radius of curvature decreases
with increasing propagation distance and reaches finite value. Finally the radius of
curvature reaches its minimum value and subsequently increases with increasing
propagation distance. For the bigger orders of the Bessel function of the first kind,

the radius of curvature will be greater.
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Beam Type ag inm’ n Zg in km

4 4.4

3 4.1
Bessel-Gaussian Beam 40 2 3.8

1 3.2

0 2.2
Gaussian Beam 0 0 4.2

R(z) in km

6.560
6.102
5.492
4.618
3.250
4.762

Table 2.1 In moderate turbulence level (CZ = 10~° m~2/3), comparison of the radii of

curvatures and Rayleigh ranges of Bessel-Gaussian beam and Gaussian beam

In Table 2.1, it is obviously seen that Rayleigh ranges of Bessel-Gaussian

beam increase with increasing order under condition of moderate turbulence level.

When Bessel-Gaussian and Gaussian beams are compared with each other, it is seen

that Bessel-Gaussian beam propagates farther than Gaussian beam before spreading

out for order n = 4.

R(z) (Radius of Curvature) in km

1 2 3 4 5 6 7 8
z (Propagation Distance) in km

Figure 2.3 Variations of radius of curvature versus propagation distance under free space

conditions at fixed source size, wavelength and width parameter

In Figure 2.3, for varied orders of the Bessel function of the first kind,

variations of radius of curvature of Bessel-Gaussian beam are displayed versus
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propagation distance at fixed source size, wavelength, width parameter and under

free space condition (C2 = 0). Figure 2.3 indicates that there is no turbulence where

radius of curvature is longer and for the higher orders of the Bessel function of the

first kind, the radius of curvature will be greater. Likewise, for lower orders of the

Bessel function of the first kind, the radius of curvature will be smaller.

Beam Type aginm’ n Zp in km R(z) in km

4 4.2 8.308

3 4 7.913
Bessel-Gaussian Beam 40 2 3.7 7.305

1 3.1 6.270

0 2.2 4.329
Gaussian Beam 0 0 5.1 1.013

Table 2.2 In free space (C2 = 0), comparison of the radii of curvatures and Rayleigh ranges

of Bessel-Gaussian beam and Gaussian beam

In Table 2.3, under condition of free space, Gaussian beam propagates farther

than Bessel-Gaussian beam. But, in practice, there is always atmospheric turbulence.

Gaussian Beam
n=0,a;=0

R(z) (Radius of Curvature) in km

as=5cm

2 = 4014 213
C"-10 m

1 2 3 4 5 6 7 8
z (Propagation Distance) in km

Figure 2.4 Variations of radius of curvature versus propagation at fixed

turbulence level, wavelength and width parameter

source size, high
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In Figure 2.4, for varied orders of the Bessel function of the first kind,
variations of radius of curvature of Bessel-Gaussian beam are displayed versus
propagation distance at fixed source size, wavelength, width parameter and high
turbulence level (C? = 10~'* m~2/3). Figure 2.4 indicates that high turbulence levels
suppress radii of curvatures for all orders.

For Figures 2.2, 2.3 and 2.4, it is seen that radii of curvatures of Bessel-
Gaussian beam show the same behavior. For all orders of Bessel-Gaussian beam,
radii of curvatures decrease with growing turbulence levels. It is also clear that

Bessel-Gaussian beam follows the trend of Gaussian beam.

Beam Type aginm’ n Zg in km R(z) in km

4 3.2 3.558

3 29 3.255
Bessel-Gaussian Beam 40 2 2.6 2.885

1 2.2 2.399

0 1.5 1.706
Gaussian Beam 0 0 2.2 2.250

Table 2.3 In high turbulence level (C2 = 10~1* m~2/3), comparison of the radii of

curvatures and Rayleigh ranges of Bessel-Gaussian beam and Gaussian beam

Under condition of high turbulence level, Table 2.2 shows that Bessel-
Gaussian beam propagates farther than Gaussian beam before spreading out for order
n > 1. Rayleigh range and radius of curvature of Bessel-Gaussian beam deacrese

with increasing turbulence levels.
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z=5km

c2 =105 m23

n

4=1.55,um

R(z) (Radius of Curvature) in km

ag (Source Size) in cm
Figure 2.5 Variations of radius of curvature versus source size at fixed propagation distance,

moderate turbulence level, wavelength and width parameter

In Figure 2.5, for varied orders of the Bessel function of the first kind,
variations of radius of curvature of Bessel-Gaussian beam are displayed versus
propagation distance at fixed source size, wavelength, width parameter and moderate
turbulence level (C? = 10715 m~2/3). Figure 2.5 indicates that at smaller source
sizes, radius of curvature is around propagation distance and at bigger source sizes,
radius of curvature increases sharply with growing orders of the Bessel function of

the first kind.

241 4
z=5km
22 i
n
£ 20F -
2=1.55m
£ 18 1 i
4 a, =40 m’
= B
5 161 B
g
3 14r R
-
o 12F R
3
® 10F -
3
R 8 i
4
6f i
4+ 4
L L L L L L L L L L
1 2 3 4 6 7 8 9 10

5
a, (Source Size) in cm
Figure 2.6 Variations of radius of curvature versus source size under free space conditions at

fixed propagation distance, wavelength and width parameter
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In Figure 2.6, for varied orders of the Bessel function of the first kind,
variations of radius of curvature of Bessel-Gaussian beam are displayed versus
propagation distance at fixed source size, wavelength, width parameter and under
free space condition (C2 = 0). Figure 2.6 indicates that at smaller source sizes,
radius of curvature is around propagation distance but because of there is no
turbulence, at bigger source sizes, radius of curvature rises more sharply with
growing orders of the Bessel function of the first kind.

The comparison of Figures 2.5 and 2.6 shows that again, for all orders of
Bessel-Gaussian beam, radii of curvatures are decreased by growing turbulence

levels.

as=5cm

R(z) (Radius of Curvature) in km

0.5 1 1.5 2
4 (Wavelength) in um

Figure 2.7 Variations of radius of curvature versus wavelength at fixed propagation

distance, source size, moderate turbulence level and width parameter

In Figure 2.7, for varied orders of the Bessel function of the first kind,
variations of radius of curvature of Bessel-Gaussian beam are displayed versus
wavelength at fixed source size, propagation distance, width parameter and moderate
turbulence level (CZ = 107%°> m~2/3). Figure 2.7 indicates that radius of curvature
decreases with increasing wavelength except the condition of lowest order of Bessel-

Gaussian beam.
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CONCLUSION

With the help of previous studies, the radius of curvature of the Bessel-
Gaussian beam has been developed and its accuracy has been verified. Effects of
atmospheric turbulence on the radius of curvature of Bessel-Gaussian beam are
analyzed. The radius of curvature of the Bessel-Gaussian beam versus the
propagation distance, source size and wavelength graphs show that the radii of
curvatures of the Bessel-Gaussian beam act as the Gaussian beam under different
conditions. In all plotted figures, radii of curvatures decrease with growing
turbulence effect. Especially, in the radius of curvature of Bessel-Gaussian beam
versus the propagation distance graph, radii of curvatures are infinite at the source,
and then decrease until they reach a minimum value. After they reach their
minimum, the radii of curvatures approximate to infinity for very large propagation
distances. This minimum value is determined always as their Rayleigh range zp.

As it is known, in the optical systems, a beam can propagate to distance of the
Rayleigh range before it spreads out in free space [13]. Also, in the optical systems,
it is important to transmit a signal to the farthest point with minimum loss. If these
two cases are taken into account, the beam, which has the highest Rayleigh range,
can be selected. From tables, according to distance, where data is desired to be sent,
beam type or order can be selected. It must be taken into account that increasing
radius of curvature with increasing propagation distance causes the beam width to
expand.

In addition, the radius of curvature of Bessel-Gaussian beam increases with
increasing source size and increasing order (n) of the Bessel function at a fixed
propagation distance. Also, when wavelength is increased, the radius of curvature
stays same for lowest order of Bessel-Gaussian beam and the radius of curvature

decreases for other orders.
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