

i

SPAM FILTERING USING BIG DATA AND DEEP LEARNING

ONUR GÖKER

FEBRUARY 2018

ii

SPAM FILTERING USING BIG DATA AND DEEP LEARNING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

ONUR GÖKER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

FEBRUARY 2018

iii

iii

iv

ABSTRACT

Spam Filtering Using Big Data and Deep Learning

GÖKER, Onur

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Erdoğan DOĞDU

 Co-Supervisor: Assist. Prof. Dr. Roya CHOUPANI

February 2018, 70 pages

Spam e-mails and other fake, falsified e-mails like phishing are considered as spam

e-mails, which aim to collect sensitive personal information about the users via

network or behave against authority in an illegal way. Most of the e-mails around the

Internet contain spam context or other relevant spam like context such as phishing e-

mails. Since the main purpose of this behavior is to harm Internet users financially or

benefit from the community maliciously, it is vital to detect these spam e-mails

immediately to prevent unauthorized access to email users’ credentials. To detect

spam e-mails, using successful machine learning and classification methods are

therefore important for timely processing of emails. Considering the billions of e-

mails on the internet, automatic classification of emails as spam or not spam is an

important problem. In this thesis, we studied supervised machine learning and

specifically “deep learning” methods to classify emails. Our results indicate that deep

learning is very promising in terms of successful classification of emails with an

accuracy of up to 96%.

Keywords: Spam filtering, spam detection, email classification, classification,

supervised learning, deep learning, cybersecurity

v

ÖZ

Büyük Veri ve Derin Öğrenmeyi Kullanarak Spam Filtreleme

GÖKER, Onur

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Prof. Dr Erdoğan DOĞDU

 Eş - Tez Yöneticisi: Yard. Doç. Dr. Roya CHOUPANI

Şubat 2018, 70 sayfa

İstenmeyen (spam) e-postalar veya diğer oltalama (phishing) gibi sahte e-postalar,

küresel ağ aracılığıyla hassas kişisel bilgi toplamayı amaçlayan veya illegal işlem

yapmaya yönelik zararlı e-postalar olarak düşünülür. İnternette dolaşan birçok e-

postanın içinde istenmeyen içerik bulunur ya da bu tür aldatıcı e-postalar oltalama

gibi diğer sahte e-postalara benzer. Bu davranışın asıl amacı kullanıcıya fiilen zarar

vermek veya toplumdan haksız çıkar sağlamak olduğundan, bu istenmeyen e-postalar

aracılığıyla yapılan, kullanıcıların / müşterilerin kimlik bilgilerine yetkisiz erişimin

önlenmesini derhal tespit etmek ve bu tespit için başarılı sınıflandırma yöntemleri

kullanmak önemli rol oynamaktadır. İnternetteki milyarlarca e-postayı göz önünde

bulundurursak, e-postaların temiz ya da sahte olup olmadığının otomatik olarak

sınıflandırılması önemli bir sorundur. Bu tezde, e-postaların sahte olup olmadığıyla

ilgili sınıflandırma yapmak için denetimli makine öğrenmesi ve özel olarak derin

öğrenme metotları kullandık. Sonuçlarımızın da belirttiği gibi, derin öğrenmenin e-

posta sınıflandırması yapmada %96 başarı oranıyla kayda değer bir etkisi vardır.

Anahtar Kelimeler: Spam filtreleme, spam algılama, eposta sınıflandırma,

sınıflandırma, denetimli makina öğrenmesi, derin öğrenme, sibergüvenlik.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Dr. Erdoğan DOĞDU for his

supervision, special guidance, suggestions, and encouragement for my thesis work.

Additionally, thanks for the support of Assist. Prof. Roya CHOUPANI during the

study. I would also like to thank Assoc. Prof. Reza Zare Hassanpour for his valuable

suggestions and comments for this work.

I dedicate this thesis to my family, who are in important part in my life. Without their

support, encouragement, and love, none of this would be possible.

I would like to thank my company, Comodo Inc. for their giving me time and support

during my MS studies. Especially, I would like to thank my colleagues and mentors

Nurettin Mert Aydın, Development Manager in ASLab Project and Hatice Sakarya,

an expert in the R&D Investments Office at Comodo.

I want to thank to my friend Nazlı Nazlı for her cooperation, help, and support during

my thesis studies. I also want to thank my friends Gökhan Tamkoç, Ali Abbasi, and

Negin Bagherzade for their help and support.

vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM PAGE .. iii

ABSTRACT .. iv

ÖZ .. v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ... xiii

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Contributions .. 5

1.4 Thesis Organization ... 6

CHAPTER 2 .. 7

RELATED WORK .. 7

viii

2.1 Rule Based Detection ... 8

2.2 Machine Learning Based Spam Detection ... 9

2.3 Deep Learning-based Spam Detection ... 10

CHAPTER 3 .. 12

DEEP LEARNING-BASED SPAM CLASSIFICATION .. 12

3.1 Data Representation ... 12

3.1.1 Weighted TF-IDF Vectorization ... 13

3.1.2 TF-IDF using SciKit Learn ... 14

3.1.3Word2Vec .. 14

3.2 Machine Learning Based Classification... 15

3.3 Deep Learning-Based Classification .. 16

3.3.1 Multilayer Perceptron.. 16

3.3.2 Logistic Regression ... 17

3.3.3 Keras on TensorFlow .. 17

CHAPTER 4 .. 18

EVALUATION .. 18

4.1 Datasets .. 18

4.2 Tools and Libraries .. 19

4.3 Evaluation Metrics ... 20

4.3.1 Test Plans .. 21

4.3.2 Results ... 22

4.3.2.1 Results with Weighted TF-IDF Vector Representation 22

ix

4.3.2.3 Results with SciKit Learn TF-IDF Vector Representation 33

4.3.2.4 Results with Word2Vec Vector Representation 34

CHAPTER 5 .. 46

CONCLUSION .. 46

REFERENCES ... 47

CURRICULUM VITAE .. 53

x

LIST OF TABLES

1. Table 1- Spam Detection Literature Taxonomy .. 8

2. Table 2- Vector names, generation methods and their sizes 19

3. Table 3- Relationship between scores on results ... 21

4. Table 4- Results for Weighted TF-IDF method on WEKA 23

5. Table 5 – F Measure Results for 300 + 300 and 500 + 500 ham – spam

datasets ... 27

6. Table 6– F Measure Results for 1000 + 1000 and 2000 + 2000 ham – spam

datasets ... 28

7. Table 7– F Measure Results for 5000 + 5000 and 10000 + 10000 ham – spam

datasets ... 29

8. Table 8– 10-Fold Cross Validation Results in TensorFlow + Keras 33

9. Table 9- Test Results for SciKit Learn .. 34

10. Table 10– Weka Results for Word2Vec implementation 35

11. Table 11- F Measure Results for Word2Vec 300 + 300 and 500 + 500

implementation ... 39

12. Table 12- F Measure Results for Word2Vec 1000 + 1000 and 2000 + 2000

implementation ... 40

13. Table 13- F Measure Results for Word2Vec 5000 + 5000 and 10000 + 10000

implementation ... 41

14. Table 14-TensorFlow Results for all data sets with Word2Vec 45

xi

LIST OF FIGURES

1. Figure 1- Phishing E-mail Process [1] ... 2

2. Figure 2- Sample Neural Network including Hidden Layers [14] 5

3. Figure 3- Vectorization of words in Word2Vec [39] 15

4. Figure 4- Multilayer Perceptron with 1-hidden layer 16

5. Figure 5- Accuracy Comparison of Weighted TF-IDF method algorithms for

300 ham + 300 spam datasets. ... 24

6. Figure 6- Accuracy Comparison of Weighted TF-IDF method algorithms for

500 ham + 500 spam datasets. ... 24

7. Figure 7- Accuracy Comparison of Weighted TF-IDF method algorithms for

1000 ham + 1000 spam dataset. ... 25

8. Figure 8- Accuracy Comparison of Weighted TF-IDF method algorithms for

2000 ham + 2000 spam dataset. ... 25

9. Figure 9- Accuracy Comparison of Weighted TF-IDF method algorithms for

5000 ham + 5000 spam datasets. ... 26

10. Figure 10- Accuracy Comparison of Weighted TF-IDF method algorithms for

10000 ham + 10000 spam datasets. ... 26

11. Figure 11- Algorithm Comparison for 300 + 300 Data Set 30

12. Figure 12- Algorithm Comparison for 300 + 300 Data Set 30

13. Figure 13 - Algorithm Comparison for 1000 + 1000 Data Set 31

14. Figure 14- Algorithm Comparison for 2000 + 2000 Data Set 31

15. Figure 15- Algorithm Comparison for 5000 + 5000 Data Set 32

16. Figure 16- Algorithm Comparison for 10000 + 10000 Data Set 32

17. Figure 17- TensorFlow with Keras for all data sets 33

xii

18. Figure 18- Accuracy Results for SciKit Learn ... 34

19. Figure 19 - Success Ratios for Word2Vec 300 + 300 data sets 36

20. Figure 20- Success Ratios for Word2Vec 500 + 500 data sets 36

21. Figure 21- Success Ratios for Word2Vec 1000 + 1000 data sets 37

22. Figure 22- Success Ratios for Word2Vec 2000 + 2000 data sets 37

23. Figure 23- Success Ratios for Word2Vec 5000 + 5000 data sets 38

24. Figure 24- F Measure Graphics for Word2Vec 300 + 300 data sets 42

25. Figure 25 - F Measure Graphics for Word2Vec 500 + 500 data sets 42

26. Figure 26- F Measure Graphics for Word2Vec 1000 + 1000 data sets 43

27. Figure 27- F Measure Graphics for Word2Vec 2000 + 2000 data sets 43

28. Figure 28- F Measure Graphics for Word2Vec 5000 + 5000 data sets 44

29. Figure 29- F Measure Graphics for Word2Vec 10000 + 10000 data sets 44

30. Figure 30- Accuracy Results for Tensorflow with Word2Vec 45

xiii

LIST OF ABBREVIATIONS

ACM Association for Computing Machinery

APWG Anti-Phishing Working Group

BLEU Bilingual Evaluation Understudy

CASSANDRA Collaborative Anti-Spam System Allowing Node-

Decentralized Research Algorithms

CNN Convolutional Neural Network

DBN Deep Belief Network

DL Deep Learning

FN False Negative

FP False Positive

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

IDF Inverse Domain Frequency

IEEE The Institute of Electrical and Electronics Engineers

xiv

IP Internet Protocol

LSTM Long-Short Term Memory

MAAWG Messaging Malware Mobile Anti-Abuse Working Group

MNIST The Mixed National Institute of Standards and Technology

ML Machine Learning

MLP Multi-Layer Perceptron

MAPS Mail Abuse Prevention System

NB Naive Bayes

NLTK Natural Language Toolkit

NN Neural Network

RNN Recurrent Neural Network

SVM Support Vector Machine

TF Term Frequency

TN True Negative

TP True Positive

WWW World Wide Web

1

CHAPTER 1

INTRODUCTION

1.1 Background

Technological developments made our lives easier and brought us convenience.

When considering the Internet of Things, remote management, digital contents (a.k.a.

Multimedia content), online shopping, social media platforms like Facebook,

Twitter, Instagram, cloud systems like Google Drive, Microsoft’s OneDrive,

Dropbox and messaging systems like WhatsApp, Viber, WeChat, it is a great

convenience to include technology in our daily lives. Besides the advantages,

technology also made it easier for the criminals to do their acts online, such as

stealing credit card numbers or sensitive information from users, like e-mail, user ID

and/or passwords, hacking social media accounts, taking control of devices or

integrated systems. With the evolution of technology, cybersecurity became a very

essential problem for everyone. Spam e-mails, including phishing e-mails, are also

part of the cybersecurity issues as well. Spam e-mails are considered a potential

problem all around the world. Spam e-mails especially target people, who are

involved in financial transactions over the internet. Spam e-mails, and phishing e-

mails as well, intend to grab customers’ user credentials, credit card numbers and

more. Clearly, the main purpose of this behavior can be defined as damaging users

financially or resist against public authority in illegal ways. Figure 1 illustrates

phishing process in real world as pointed out in [1]:

2

Figure 1- Phishing E-mail Process [1]

Messaging Malware Mobile Anti-Abuse Working Group (MAAWG) (an industry

association against botnets, malware, spam, viruses, DoS attacks and other online

exploitation) presented a report about spam e-mails. According to the MAAWG’s

report, almost 75%-80% of total e-mails could be counted as spam e-mails [2].

According to Spam Filter Review results, total spam mail count was close to 41

billion per day, which is equal to 40% of the total e-mail in 2003 [3]. And, according

to the same group's latest report
1
 in 2014, 90% of all email is spam. We understand

from these numbers that spam e-mail is becoming a major problem every day.

Therefore, it is vital to detect and stop spreading spam e-mails automatically.

1.2 Problem Statement

With the distribution of broadband and mobile internet around the world, being

online on the network became easier and cheaper. Internet's wide spread usage has

begun with e-mails first and then later with the invention of World Wide Web

(WWW). In 1989, Tim Berners-Lee, a scientist at CERN, invented this technology

and named as “World Wide Web” [4]. People all around the world started to take

part in this new world by first using dial-up connections either 28K or 56K speeds.

When broadband and satellite connections took the charge, internet users became

more active on the internet. They started watching videos, commenting on websites,

shopping online, engaging on social networks and other online processes. With the

usage of these broadband internet culture, Web 2.0 took an important role.

Unfortunately, internet is also a place for criminals and abusers.

1
 https://www.m3aawg.org/for-the-industry/email-metrics-report

3

When considering this kind of complex, global and huge network, it is not easy to

control or even to monitor it. Therefore, internet security became a major problem

for everyone. This is now called "cyber security".

E-mail is a major concern in terms of security. E-mail might be considered as just a

communication tool. But, when dealing with other tools like adding attachments to

emails, using HTML characters in the text, an e-mail is also a potential threat at the

same time. Even when considering the governmental issues, politics and social

movements, spread of unwanted e-mail may cause severe problems in the world as

well [5].

A spam e-mail could best be defined as unsolicited email that include unwelcome

content to benefit financially or cause harm or annoyance to internet users [6]. For

example, it is very common to the following in everyday email traffic for all email

users:

● Multimedia like image, sound, video containing viruses

● Attachments like zip or executable bat files containing malwares

● Links used to redirect users to make phishing

● All sorts of advertisements

It might be easy to detect an e-mail whether it is potentially dangerous or useful with

bare eyes, but when working with billions of emails at the same time, it is not easy to

analyze e-mails automatically and urgently. Since performance and security take

important roles as non-functional requirements in internet systems, an automated

system is needed to make the analysis and classification.

4

To automate the spam and ham classification, analyzing the content is required. All

email content includes the following [7]:

1. Sender

2. Receiver

3. Title

4. Body

5. Header Information

Since the main research problem in this thesis is to determine whether an e-mail is

potentially dangerous (spam) or clean (ham), and it is also important to do this timely

with high performance, we limit the email content analysis to email's title and body

text only.

To classify an email as clean (ham) or spam in a limited time, we need to consider an

automated detection system. And machine learning allows us to make automatic

classification in a limited time by using techniques such as text categorization.

Making text categorization with Machine Learning has started to become popular in

the 1990s [8].

Machine Learning has also been used in the other areas in 2000s. In [9], the authors

have for example researched speech categorization. In [10], authors researched about

image categorization using machine learning.

When applying Machine Learning, defining the methodology takes an important role

when applying an algorithm. These methodologies are defined as follow:

● Supervised

● Unsupervised

● Semi-supervised

These methodologies are categorized regarding to known output Y of a given X. In

case classification is made regarding to known output Y, methodology is referred as

Supervised (a.k.a. labeled). In case of unknown output, methodology is counted as

unsupervised.

In case of some known output Y, methodology could also be counted as Semi-

supervised as well [11]. Following algorithms could be defined as good examples of

5

Machine Learning algorithms: Naive Bayes, Bayesian, SVM and other algorithms

[12].

When considering the Bayesian algorithms on text classification like e-mail body or

e-mail title by using bigger datasets, it might be better to use alternative multi-layer

algorithms.

Deep learning algorithms use such multi layers for transforming the input raw data to

an abstracted form of it. When making a process on semantic texts like words in a

sentence, using deep learning tools might perform with better results. To classify

millions of e-mails, it is better to use deep learning techniques instead of Bayesian

machine learning techniques in the light of the information given in [13]. Figure 2

describes the multiple hidden layers in a sample neural network.

Figure 2- Sample Neural Network including Hidden Layers [14]

1.3 Contributions

Our contributions in this thesis are as follows:

 We preprocessed and sampled Enron email dataset for training and testing

machine learning and deep learning algorithms on alternative data representation

methods.

6

 We developed a TF-IDF based vector representation method for email textual

data with the purpose of identifying spam vs ham emails.

 We compared several machine learning and deep learning algorithms on sampled

email datasets of varying sizes and reported on the performance of different data

representation methods towards a better spam detection method.

1.4 Thesis Organization

This thesis is divided into five chapters:

Chapter 1 is the introduction and background part which contains the definition and

effects of spam filtering. This part also reveals the foundation of some disciplines

that include deep learning, machine learning, neural networks and big data as well.

Chapter 2 is about literature review on email detection and filtering. We also present

the taxonomy of the related work in this area and present a thorough analysis.

Chapter 3 explains our methodology for spam filtering and classification. We define

our data representation method, based on word frequencies and semantic

relationships. Then, deep learning-based classification methods we used are

explained.

Chapter 4 presents the results of our experiments. We first present the datasets we

used, how we obtained, processed and prepared for classification. Then the results

are presented and evaluated in detail.

Chapter 5 is the conclusion part. Here we summarize our work and point to future

work in this area.

7

CHAPTER 2

RELATED WORK

Spamming via e-mail started very early in the 1990s, when the commercial side of

Internet is revealed [15]. Although it became popular in 1990s, the first spam e-mail

started in 1978 via ARPANET by Gary Thuerk, who was a marketer for the company

DEC [16]. After the quick increase of volume of the spam e-mails in just a few years

around the world, internet community started to look for a solution and in 1996 Mail

Abuse Prevention System [17] is founded by Dave Rand and Paul Vixie to prevent

spam e-mails by tracking IP Addresses.

Today, spam detection is considered an important precaution for security in all areas

of the Internet. These areas contain especially websites and e-mails servers. Spam

detection and filtering in emails have been studied for quite some time. Our literature

survey found that automatic spam detection is concentrated in three main methods:

rule-based methods, machine learning-based methods, and recently deep learning-

based methods, which is a subdomain of machine learning [18]. In this chapter we

review these works.

Table 1 summarizes the taxonomy of our findings in the literature. It lists the works

we found in three different methodologies along with a summary of algorithms used,

datasets tested, and the success rates obtained.

8

Table 1- Spam Detection Literature Taxonomy

Method Algorithm Data Sets Highest Success

Rate

References

Rule Based Cassandra 99.59% [63], [64]

Machine

Learning

Bayesian Net CSDMC2010, Spam

Assassin, and

LingSpam,1171 raw

phishing emails and

1718 legitimate emails

85.45% [55], [59]

Naive Bayes Discretized, RUL:6000

emails with the spam

rate 37.04%

99.46% [27] , [30],

[48], [54],

[55], [57],

[61]

SVM 1171 raw phishing

emails and 1718

legitimate emails,

Discretized, RUL:6000

emails with the spam

rate 37.04%

96.90% [22], [30]

,[48], [49],

[50], [51],

[52], [54],

[55], [58],

[59], [60],

[61]

J48 4601 messages:1813

(%39) by Hopkins et al

as spam, others are Legal

messages by Forman.

92.6 % [11], [23]

Random

Forest

4601 messages:1813

(%39) by Hopkins et al

as spam, others are Legal

messages by Forman.

93.75% [48], [53],

[56]

Deep

Learning

MLP MNIST handwriting data

set

NORB Dataset

99.04% [22], [62],

[26]

Logistic

Regression

1171 raw phishing

emails and 1718

legitimate emails,

88.59% [19], [59]

2.1 Rule Based Detection

Rule-based detection is considered one of the early methods in spam detection. It is

based on very different rules such as IF 'condition' THEN 'result' type of rules,

considering the source of email, word usage, etc.

9

In [19], authors have proposed a rule-based detection method by using disjunctive

normal form (DNF) decision rules. By using 10-fold cross-validation on 5,000

training cases and 10,000 cases for independent testing, they achieved almost error

rates 0.40 and below.

Wu developed a hybrid method of rule-based techniques and neural networks [48].

Their rule-based method depends on identifying the spamming behaviors observed

from the headers and system logs of emails, which is transformed into a digital

format. Their method is not based on the use of keywords but the spamming

behaviors as features of emails. Then, they use the neural network to classify emails.

Gray and Haahr [64] studied collaborative filtering by designing an architecture for

such an email system, where email is processed in a centralized server and can be

filtered using the users' feedback to the system. This approach assumes that the spam

email is sent to many users on the same server. Therefore, it can be considered a

crowdsourcing approach and the system only facilitates such human filtering.

2.2 Machine Learning Based Spam Detection

There are many recent works in machine learning-based spam detection. Many

different algorithms have been used and tested, including Naïve-Bayes, Bayesian

Net, SVM, decision trees (J48), random forests, and so on, with very high accuracy

results. Therefore, machine learning-based methods are successful in spam

classification. But, these are tested on specific or propriety datasets and therefore

with the spam getting more sophisticated there is always a need for more

sophisticated solutions in automated spam detection. And, currently machine

learning is the only way to do this considering the every increasing email traffic and

web data.

Just to give a few detailed examples from these works, in study [20], the authors used

10-fold cross-validation with 23 features and apply Random Forest, J48 and PART

algorithms. They obtained 98.87%, 98.11% and 98.10% accuracy rates respectively.

In work [21], the authors have tried multiple learning algorithms, as well as different

datasets like 1000 spam and ham e-mails of Enron and Ling Spam Dataset with 95%

success rate, compared to 83% accuracy with Naive Bayes, 86% with LMT, and 78%

10

with J48. In [22], the authors have proposed a different method rather than using

ordinary Support Vector Machines (SVM) or Naive Bayes algorithms, which was

named as “Cumulative Weighted Sum”, to get better success.

2.3 Deep Learning-based Spam Detection

Machine Learning (ML) techniques are being used in every corner of our lives from

web searches, to content filtering, recommendations on e-commerce web sites, to

self-driving cars, and many other operations. ML systems are identifying objects in

images or videos, transcribing speech to text, finding related news items and posts,

and they are used in products depending on past user behaviors [23].

Neural networks-based machine learning is also a type of machine learning

technique, imitating the neural structure of human brain. Artificial Neural Networks

(ANN) enable machines or computers learn from observed data
2
. They are used in

pattern recognition, classification, image recognition, and all sorts of machine

learning problems from the start in the last half of 20
th

 century. Deep learning is later

introduced and applied on neural networks, allowing neural networks to work better

multiple hidden layers. With the evolution of technology, higher computational

power in computers and big data techniques, deep learning and other neural network-

based approaches bring us the opportunity to work with multiple hidden layers on

data. Some of the attempts to use deep learning in spam detection are reviewed in the

following.

Twitter needed to find a better solution for spam detection than machine learning.

Twitter is an expanding social media pioneer, which provides a sharing environment

to post 140-character long short texts to present users’ ideas, emotions or even daily

moments among Twitter network users [24]. This huge network with millions of

users, dealing with big data contains vicious people, who are intended to create

malicious content as well [25]. Unfortunately, spam detection studies with machine

learning for spam drift problem as in Twitter’s unpredictable features of newly

posted tweets are mostly not satisfactory.

2
 http://neuralnetworksanddeeplearning.com

11

By using a deep learning technique like creating word vectors with Word2Vec tool,

they have achieved higher success ratios [26].

In [27], the author introduced a deep learning technique with using SVM. The author

proposes to train all layers of the deep networks by back propagating gradients

through the top level of SVM, learning features of all layers. In [28], the authors

demonstrate the Neural Network-based classification techniques to classify e-mails

by using the initial 6,656 benign emails, 7,714 phishing emails dataset and obtain the

results with 89.9% and 94.4% accuracies, and 10.1% and 5.6% inaccuracies for

benign and phishing email classifications respectively. The overall accuracies and

inaccuracies resulted in 92.2% and 7.8% respectively.

Recurrent Neural Networks (RNN) could be explained as deterministic transitions

between hidden layers in deep learning. LSTM (Long Short-Term Memory) is

considered complicated, because in addition to RNN procedure, it allows us to use

memory data in timestamps. In [29], the authors put a solid RNN work with LSTM

units. The authors have made Machine Translation between English and French

Languages by using 160K English words and 80K French words and got higher

BLEU scores. In [30], the authors have used multilayer perceptron algorithm and

obtained accuracies up to 99.4%. In [31], a proposal of Deep Learning algorithm for

the problem of domain adaptation of sentiment classifiers is made. SVM and Multi-

Layer Perceptron (MLP) algorithms, a feed-forward type ANN, have been applied as

well. In [32], authors have used Restricted Boltzmann Machine and Deep Belief

Network with three different data sets, which are MNIST data set, containing 60k

training and 10k testing samples of 28x28 grayscale handwritten digits [33],

InfiniteMNIST, extended form of MNIST, which contains samples collected by

performing random elastic forms of the real MNIST digits [34] and Shapeset, which

is composed of 50000 training, 10000 validations and 10000 test images. We also

used MLP and Logistic Regression in this work.

12

CHAPTER 3

DEEP LEARNING-BASED SPAM CLASSIFICATION

Spam email classification problem is studied from a number of different

perspectives. Here, our approach is to use the latest approach in the line of

developments. We use machine learning and specifically “deep learning” methods to

classify emails. For this we first need to find a good email representation method that

will numerically represent email instances, which is a “data representation” method.

There are numerous methods in the literature. We have chosen the vector

representation and tried a number of different methods to represent emails as vector

values in some space. Below we first explain the data representation methods we

have chosen. Then we present the deep learning methods that we decided to use to

classify emails (or their vectors).

3.1 Data Representation

To be able to classify email as spam or not, we needed to first find a good data

representation method that will be able to represent email as numerical values or

features so that machine learning algorithms can calculate the similarities between

email pairs or groups of emails. Most of the literature utilizes vector representations

for emails or text as in text categorization problems. A vector represents an email as

a set of numerical values, where each value is mapping to a specific feature about the

email text or other features stored in e-mails (like URLs or images). In this thesis, we

have studied three different vector representations for email text. We use only text

13

part of emails in this study. These vector representations are: (1) a weighted vector

representation that we developed based on the term frequencies (TF-IDF) in email

text, (2) a standard vector representation, again based on TF-IDF and used by the

popular SciKit learning library for Python, (3) a recent popular approach for text

vector representation approach called Word2Vec. Below we explain each vector

representation.

3.1.1 Weighted TF-IDF Vectorization

Term Frequency - Inverse Document Frequency (TF-IDF) could be described as the

frequency and importance of a word in a document space. This metric is frequently

used in data mining and text mining tasks, or other natural language processing

problems.

To calculate TF-IDF value wd of a word w in document d, the following formula is

used [35]:

wd = fw,d . log (|D|/fw, D)

where fw,d denotes the number of times word w appears in document d, that is TF, |D|

is the number of document in the set D, which denotes to the size of the corpus, and

fw,D denotes the number of documents in D, in which word w appears. Logarithmic

part the formula is the IDF which represents the relative frequency of a word in all

documents.

We developed the following algorithm to calculate the TF-IDF based vector

representation for email text in a corpus C:

 Calculate dict_ham = { (w,wd) | TF-IDF score wd for each word w in each

ham document d in the corpus C}

 Calculate dict_spam = { (w,wd) | TF-IDF score wd for each word w in each

spam document d in the corpus C}

 dict_common = { (w, s) | where:

s = hs - ss for each (w,hs) ∈ dict_ham and (w,ss) ∈ dict_spam;

s = - ss for each (w,hs) ∉ dict_ham and (w,ss) ∈ dict_spam;

s = hs for each (w,hs) ∈ dict_ham and (w,ss) ∉ dict_spam }

14

 dict_vector ← sort dict_common, take the highest 150 and lowest 150 words

from the list

dict_vector now has a list of the most representative 150 words from the ham email

texts and 150 words from the spam email texts. We then create a vector for each

email using the words from dict_vector corresponding to the frequencies of those

words in each email text. We assume that if the email has more representative words

from the spam words list, then the email can be considered spam.

3.1.2 TF-IDF using SciKit Learn

SciKit Learn is an open source machine learning tool, which is capable of data

mining and data analysis. This tool provides supervised and unsupervised learning

methods with a wide selection of parameter setting options. It is possible to represent

text data as word vectors and execute classification algorithms on them [36]. SciKit

learning tool requires the following [37]:

1. Python (>= 2.7 or >= 3.4)

2. NumPy (>= 1.8.2)

3. SciPy (>= 0.13.3)

We then use Gradient Boosting (GB) to classify email vectors. GB is a machine

learning technique, which is based on regression trees and found by Friedman in

1999.

3.1.3Word2Vec

Word2Vec is a tool, which converts words from a corpus text into word vectors to

represent the semantic relationships between words, such as words being used

together. It is used in many recent natural language processing tasks [38]. To give an

example, considering the word “Sweden” the country as an input, Word2Vec

provides us a vector of words and their distances to Sweden as shown in Figure 3.

15

Figure 3- Vectorization of words in Word2Vec [39]

We ran Word2Vec on our email corpus sets to create word vectors for each email in

the corpus.

3.2 Machine Learning Based Classification

In this thesis we used machine learning and deep learning classification algorithms

for spam detection. These are the newest approaches with higher success rates. We

used one of the best performing standard machine learning algorithms, namely Naive

Bayes (NB) algorithm, for comparative reasons. We then used Multilayer Perceptron

(MLP) and Logistic Regression in deep learning and compared the results with NB

results.

Naive Bayes (NB) is a learning algorithm, which is based on the assumptions by

using attributes to make an independent prediction.

P (c | x) = P (x | c) P (c) / P (x)

In the probability formula for Naive Bayes P(c|x) denotes to posterior probability of

class (target) given predictor (attribute), P(c) is the prior probability of class, P(x|c)

denotes the likelihood that is the probability of predictor given class and P(x) denotes

to prior probability of predictor [42].

16

3.3 Deep Learning-Based Classification

In this section, we defined the deep learning-based classification algorithms we

applied in our work.

3.3.1 Multilayer Perceptron

Multilayer Perceptron (MLP) is a neural network algorithm that contains hidden

layers between input and output layers to make classification. It is a feed-forward

ANN with at least 3 layers. MLP utilizes supervised learning with back propagation

for training. Following figure shows the working principle of this algorithm.

Figure 4- Multilayer Perceptron with 1-hidden layer
3

In Figure 4, [x1, x2, …, xn] denotes the input features. The hidden layer neurons

transform their input from the previous layer with a linear function w1x1 + w2x2 + …

+ wnxn to the next layer [43].

3
 http://scikit-learn.org/stable/modules/neural_networks_supervised.html

17

3.3.2 Logistic Regression

Logistic Regression is a simple classification algorithm, especially to make binary

classifications. Our spam detection problem is therefore a perfect candidate for this

algorithm4 [44]. The binary logistic model is used for the probability estimation of a

two-class response (like ham/spam) based on the input feature values [45].

3.3.3 Keras on TensorFlow

We used TensorFlow
5
 to apply deep learning methods on the vector representations.

Tensorflow, which is an open source software library, provides us numerical

computation by using data flow graphs, implementing deep learning architectures

such as Recurrent Neural Networks (RNN) and Deep Neural Networks (DNN). In

this graph data structure, nodes are equal to mathematical operations and graph edges

are equal to multidimensional data arrays (tensors) and they communicate among

themselves [40].

Besides TensorFlow, Keras is also another library and a neural network API, which

has an ability to work on TensorFlow, CNTK, and Thenao as well. Keras is suitable

to work with Python 2.7 and upper versions [41].

4
 http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression

5
 http://www.tensorflow.org

18

CHAPTER 4

EVALUATION

In this chapter we present the evaluation results. We first explain the datasets we

used in the evaluation. Then the results are presented and analyzed.

4.1 Datasets

For our early tests, we used Comodemia’s Phishing E-mail Set
6
, which is an open

dataset from Comodo Academy [46]. But it is limited in size and context, including

only 100 phishing emails and no ham emails. Therefore, later we started to use

another open dataset from the community, Enron dataset. Enron E-mail Dataset
7
 is

relatively larger in size and context, including 10K ham and spam e-mails. Enron

Corporation is a bankrupted American company, which was a major company in the

areas of energy, commodities, and services in the United States [47]. After

bankruptcy, organization’s all secret and commercial company e-mails spread around

the Internet. We used mainly this dataset for testing out methods.

As we pointed out above, we used only the textual data in emails and specifically

email subject and email body text. Other email parameters are not considered. Enron

emails includes only the textual data; therefore, parsing was easier.

6
 Comodemia, Comodo Academy,

https://comodemia.comodo.com/here_is_what_you_get.php
7
 Enron Dataset of Carnegie Mellon University, School of Computer Science

https://www.cs.cmu.edu/~enron/

19

We sampled the Enron dataset in increasing sizes and tested these subsamples to see

the effect of corpus size in the experiments. We also sampled ham and spam emails

in equal sizes to generate the datasets.

We created word vectors using top 300 most frequently used words (attribute size =

300). Table 2 shows the word vector files generated from ham and spam e-mails and

their sizes regarding the vector generation methods Word2Vec and Weighted TF-

IDF. Word2Vec vectors are larger as expected compared to the TF-IDF vectors.

Table 2- Vector names, generation methods and their sizes

Dataset Vector Method Size (MB)

300 ham + 300 spam Word2Vec 1.3

500 ham + 500 spam Word2Vec 2.2

1k ham + 1k spam Word2Vec 4.4

2k ham + 2k spam Word2Vec 8.9

5k ham + 5k spam Word2Vec 22.2

10k ham + 10k spam Word2Vec 44.4

300 ham + 300 spam Weighted TF-IDF 0.9

500 ham + 500 spam Weighted TF-IDF 1.5

1k ham + 1k spam Weighted TF-IDF 3

2k ham + 2k spam Weighted TF-IDF 6

5k ham + 5k spam Weighted TF-IDF 15

10k ham + 10k spam Weighted TF-IDF 30

4.2 Tools and Libraries

We used following tools, libraries, programming languages and applications to

evaluate the dataset we used and analyze the results.

For development, we used PyCharm 2017.3.3 and Visual Studio Code 1.20.1 as IDE

/ Text Editor. As programming languages, we used only Python and its version 3.5m

and 2.7.

20

As deep learning tools, we used for using vectors as input and algorithms as output

are as follow: TensorFlow
8
 1.0, Keras 2.1.5

9
, SciKit Learn

10
 0.19.1

We also used numerous libraries such as NLTK 3.2.5, Gensim 3.4.0, PIP 9.0.1 and

NumPy 1.14.0 during development phase before vector generation. We used Gensim

to apply Word2Vec, NumPy to make scientific calculations in Python, PIP to

manage installed packages and install package in Python and NLTK to parse, and

semantic reason, wrap for texts in Python.

To execute the ML and DL Algorithms as Machine Learning Application with GUI,

we also used WEKA
11

 tool with the following components:

● WEKA 3.6.3, GUI Application

● WEKA 3.9.2 Developer Edition

4.3 Evaluation Metrics

F-measure is used for the evaluation of tests. For F-measure scores, the following

scores are calculated: True Positive, True Negative, False Positive and False

Negative.

 True Positive (TP): Refers to the test result that defines a given condition exists,

when it does.

 True Negative (TN): Refers to test result that defines that a condition does not

take place, although in fact it does not.

 False Positive (FP): Refers to test result that defines a given condition exists,

although it does not.

8
 Tensorflow, https://www.tensorflow.org/

9
 Keras, https://keras.io/

10
 SciKit Learn, http://scikit-learn.org/

11
 WEKA, https://www.cs.waikato.ac.nz/ml/weka/

21

 False Negative (FN): Refers to test result that defines that a condition does not

take place, although in fact it does.

The following table summarized the relationships between these scores on the

observations of the results.

Table 3- Relationship between scores on results

Accuracy, precision and F-measures are then calculated as follows:

Accuracy = TP+TN/TP+FP+FN+TN

Precision = TP/TP+FP

Recall = TP/TP+FN

F1 Score = 2 * (Recall * Precision) / (Recall + Precision)

Precision measures the ratio of correctly predicted positive results to the total

positive predictions. Recall is the ratio of correctly predicted results to all

observations in a specific class. F-measure is then a weighted average of Precision

and Recall.

4.3.1 Test Plans

During learning/testing process, we tested the following test options as provided in

WEKA tool:

● 66 Percentage: In this test option, 66% of data (emails) are used for training

the model and 34% is used for testing (validation).

● 80 Percentage: In this test option, 80% of data is used training and 20% is

used for testing.

22

● K-Folds: In this test option, data is divided into k equal parts. For each part,

the other parts (k - 1 parts) are used for training and the selected part is used

for testing. The average of all k test results is calculated as the result of

testing. We set k to 10 and hence 10% of dataset is used for testing in every

fold.

4.3.2 Results

We tested with several different train/test ratios on the datasets. These are explained

below.

4.3.2.1 Results with Weighted TF-IDF Vector Representation

4.3.2.1.1 WEKA Results

Accuracy results for all datasets and test methods using WEKA tool and 3 different

ML algorithms (NB, MLP, LR) are shown in Table 4.

23

Table 4- Results for Weighted TF-IDF method on WEKA

Data Sets

(Ham + Spam)
Process

Naive Bayes

(%)

Multilayer

Perceptron (%)

Logistic

Regression (%)

300+300

10 Folds 62 54 61.83

%66 Percentage 61.76 63.23 68.62

%80 Percentage 65 45.83 63.33

500+500

10 Folds 59.9 50.8 59.2

%66 Percentage 61.47 54.41 55.58

%80 Percentage 63.5 44.5 50.5

1000+1000

10 Folds 53.1 50.1 57.1

%66 Percentage 54.55 52.2 58.23

%80 Percentage 52.5 50.25 56.25

2000+2000

10 Folds 53.45 50.12 54.75

%66 Percentage 54.92 50.8 55.36

%80 Percentage 52.25 48.37 52.5

5000+5000

10 Folds 53.12 50.01 53.29

%66 Percentage 53.17 50.17 54.08

%80 Percentage 53.45 49.9 53.8

10000+10000

10 Folds 50.38 50 52.98

%66 Percentage 50.75 50.08 52.83

%80 Percentage 50.05 50.47 53.52

24

The accuracy results in Table 3 are shown as bar graphs for comparison in the

following figures (Figure 5-10 for datasets 300+300, 500+500, 1k+1k, 2k+2k,

5k+5k, 10k+10k).

Figure 5- Accuracy Comparison of Weighted TF-IDF method algorithms for 300

ham + 300 spam datasets.

As seen on Figure 5, for 10 Folds method, best result is obtained by using Naive

Bayes algorithm. For 66% method, best score is obtained by Logistic Regression and

for 80% method, best score is obtained using Naive Bayes with 300 ham + 300 spam

data.

Figure 6- Accuracy Comparison of Weighted TF-IDF method algorithms for 500

ham + 500 spam datasets.

As seen on Figure 6, for 10 Folds method, best result is obtained by using Naive

Bayes algorithm. For 66% method, best score is obtained by Naive Bayes and for

80% method, best score is obtained by Naive Bayes with 500 ham + 500 spam data.

Naïve Bayes performs the best in all three test cases.

25

Figure 7- Accuracy Comparison of Weighted TF-IDF method algorithms for 1000

ham + 1000 spam dataset.

As seen on Figure 7, for 10 Folds method on 1000+1000 dataset, the best result is

obtained by using Logistic Regression algorithm. For 66% method, best score is

obtained by Logistic Regression and for 80% method, best score is obtained by

Logistic Regression with 1000 ham + 1000 spam data. In all test cases Logistic

Regression performs the best.

Figure 8- Accuracy Comparison of Weighted TF-IDF method algorithms for 2000

ham + 2000 spam dataset.

Figure 8 shows the results for 2000+2000 dataset, Figure 9 shows the results for

5k+5k dataset and Figure 10 shows the results for 10k+10k dataset. In all cases and

in all test cases Logistic Regression performs the best against Naïve Bayes and MLP.

We expected LR to perform the best in binary classification with limited datasets.

26

Figure 9- Accuracy Comparison of Weighted TF-IDF method algorithms for 5000

ham + 5000 spam datasets.

Figure 10- Accuracy Comparison of Weighted TF-IDF method algorithms for 10000

ham + 10000 spam datasets.

Table 5 lists the F-measure results for datasets 300+300 and 500+500.

27

Table 5 – F Measure Results for 300 + 300 and 500 + 500 ham – spam datasets

Data

Sets
Test Type Naive Bayes Logistic Regression Multilayer Perceptron

300+300

Cross

Validation

(10 Folds)

SPAM HAM

0.620

SPAM HAM

0.618

SPAM HAM

0.540 240 60 SPAM 145 155 SPAM 132 168 SPAM

168 132 HAM 74 226 HAM 108 192 HAM

Percentage

(%66)

SPAM HAM

0.618

SPAM HAM

0.686

SPAM HAM

0.632 82 18 SPAM 55 45 SPAM 31 69 SPAM

60 44 HAM 19 85 HAM 6 98 HAM

Percentage

(%80)

SPAM HAM

0.650

SPAM HAM

0.625

SPAM HAM

0.458 46 10 SPAM 23 33 SPAM 54 2 SPAM

32 32 HAM 11 53 HAM 63 1 HAM

500+500

Cross

Validation

(10 Folds)

SPAM HAM

0.599

SPAM HAM

0.592

SPAM HAM

0.508 452 48 SPAM 187 313 SPAM 247 253 SPAM

353 147 HAM 95 405 HAM 239 261 HAM

Percentage

(%66)

SPAM HAM

0.615

SPAM HAM

0.556

SPAM HAM

0.544 171 12 SPAM 67 116 SPAM 182 1 SPAM

119 38 HAM 35 122 HAM 154 3 HAM

Percentage

(%80)

SPAM HAM

0.635

SPAM HAM

0.505

SPAM HAM

0.445 103 8 SPAM 38 73 SPAM 0 111 SPAM

65 24 HAM 26 63 HAM 0 89 HAM

Table 6 lists the F-measure results for datasets 1k+1k and 2k+2k.

28

Table 6– F Measure Results for 1000 + 1000 and 2000 + 2000 ham – spam datasets

Data Sets Test Type Naive Bayes Logistic Regression Multilayer Perceptron

1000+1000

Cross

Validation

(10 Folds)

SPAM HAM

0.531

SPAM HAM

0.571

SPAM HAM

0.501 79 921 SPAM 267 733 SPAM 398 602 SPAM

17 983 HAM 125 875 HAM 396 604 HAM

Percentage

(%66)

SPAM HAM

0.546

SPAM HAM

0.582

SPAM HAM

0.522 40 301 SPAM 95 246 SPAM 316 25 SPAM

8 331 HAM 38 301 HAM 300 39 HAM

Percentage

(%80)

SPAM HAM

0.525

SPAM HAM

0.563

SPAM HAM

0.503 15 185 SPAM 53 147 SPAM 200 0 SPAM

5 195 HAM 28 172 HAM 199 1 HAM

2000+2000

Cross

Validation

(10 Folds)

SPAM HAM

0.535

SPAM HAM

0.548

SPAM HAM

0.501 998 1002 SPAM 340 1660 SPAM 1199 801 SPAM

860 1140 HAM 150 1850 HAM 1194 806 HAM

Percentage

(%66)

SPAM HAM

0.549

SPAM HAM

0.554

SPAM HAM

0.508 655 28 SPAM 118 565 SPAM 660 23 SPAM

585 92 HAM 42 635 HAM 646 31 HAM

Percentage

(%80)

SPAM HAM

0.523

SPAM HAM

0.525

SPAM HAM

0.484 346 41 SPAM 345 42 SPAM 387 0 SPAM

341 72 HAM 338 75 HAM 413 0 HAM

Table 7 lists the F-measure results for datasets 5k+5k and 10k+10k.

29

Table 7– F Measure Results for 5000 + 5000 and 10000 + 10000 ham – spam

datasets

#Data Sets Test Type Naive Bayes Logistic Regression Multilayer Perceptron

5000+5000

Cross

Validation

(10 Folds)

SPAM HAM

0.531

SPAM HAM

0.533

SPAM HAM

0.500 4968 32 SPAM 4787 213 SPAM 1000 4000 SPAM

4656 344 HAM 4458 542 HAM 999 4001 HAM

Percentage

(%66)

SPAM HAM

0.318

SPAM HAM

0.541

SPAM HAM

0.502 1679 15 SPAM 1645 49 SPAM 0 1674 SPAM

1577 129 HAM 1512 194 HAM 0 1706 HAM

Percentage

(%80)

SPAM HAM

0.535

SPAM HAM

0.538

SPAM HAM

0.499 990 12 SPAM 961 41 SPAM 0 1002 SPAM

919 79 HAM 883 115 HAM 0 998 HAM

10000+10000

Cross

Validation

(10 Folds)

SPAM HAM

0.504

SPAM HAM

0.530

SPAM HAM

0.500 121 9879 SPAM 9754 246 SPAM 5000 5000 SPAM

44 9956 HAM 9157 843 HAM 5000 5000 HAM

Percentage
(%66)

SPAM HAM

0.508

SPAM HAM

0.528

SPAM HAM

0.501 63 3331 SPAM 3316 78 SPAM 0 3394 SPAM

18 3388 HAM 3129 277 HAM 0 3406 HAM

Percentage

(%80)

SPAM HAM

0.501

SPAM HAM

0.535

SPAM HAM

0.505 29 1990 SPAM 1972 47 SPAM 2018 1 SPAM

8 1973 HAM 1812 169 HAM 1980 1 HAM

F-Measure comparisons for Weighted TF-IDF data representation and WEKA tests

for all algorithms are shown in Figure 11-16. There are varying results here. For

example, for 300+300 dataset (Figure 11), NB performs better in 10-fold test, LR

performs better in 66% test, and NB performs again better in 80% test. But as the

dataset gets larger (to 10k+10k) it is clear LR performs better than NB and MLP

(Figure 12-16).

30

Figure 11- Algorithm Comparison for 300 + 300 Data Set

Figure 12- Algorithm Comparison for 300 + 300 Data Set

31

Figure 13 - Algorithm Comparison for 1000 + 1000 Data Set

Figure 14- Algorithm Comparison for 2000 + 2000 Data Set

32

Figure 15- Algorithm Comparison for 5000 + 5000 Data Set

Figure 16- Algorithm Comparison for 10000 + 10000 Data Set

4.3.2.1.2 TensorFlow

We have also test our datasets with TensorFlow. The neural network’s hidden layer

is set to 10 neurons with input dimension 300 using Adam gradient optimizer (Keras

interface). The results show that as the dataset gets larger Tensorflow gives worse

results from 63% to 53% accuracy levels (Figure 17 and Table 7).

33

Figure 17- TensorFlow with Keras for all data sets

10-Fold Cross Validation Results for Weighted TF-IDF is as follows:

Table 8– 10-Fold Cross Validation Results in TensorFlow + Keras

Data Sets (Ham + Spam) Cross Validation 10-Fold

300+300 63

500+500 59.8

1000+1000 57.05

2000+2000 54.1

5000+5000 53

10000+10000 53.09

4.3.2.3 Results with SciKit Learn TF-IDF Vector Representation

By using SciKit Learn tool, we obtained the following results with SVM-based

classification.

34

Table 9- Test Results for SciKit Learn

Data Set (Ham + Spam) SciKit Learn

300 92

500 93

1000 93.25

2000 95.33

5000 96.31

10000 96.845

Accuracy result graphics for SciKit Learn are shown in Figure 18 for all data sets.

Figure 18- Accuracy Results for SciKit Learn

4.3.2.4 Results with Word2Vec Vector Representation

Here we present the ML results for Word2Vec data representation, first with WEKA

tool and then with Keras on Tensorflow.

35

4.3.2.4.1 WEKA Results

Following Tables demonstrates the success ratios of algorithms, Accuracy Results

regarding to Word2Vec implementation. For all algorithms, best score is highlighted

with bold text for each data set.

Table 10– Weka Results for Word2Vec implementation

Datasets

(Ham +

Spam)

Process

Naive

Bayes

(%)

Multilayer

Perceptron (%)

Logistic

Regression

(%)

300+300

10 Folds 75.16 93.66 91.33

%66 Percentage 78.92 95.58 85.78

%80 Percentage 71.66 97.5 91.66

500+500

10 Folds 69.4 94.2 84.2

%66 Percentage 68.52 89.7 88.82

%80 Percentage 69 94 89.5

1000+1000

10 Folds 72.5 95.1 89.35

%66 Percentage 70.14 96.17 85.29

%80 Percentage 69.75 96.5 90.75

2000+2000

10 Folds 75.2 94.72 92.95

%66 Percentage 77.5 95.66 91.61

%80 Percentage 76.75 94.87 93.37

5000+5000

10 Folds 74.5 95.64 95.81

%66 Percentage 74.82 96.02 95.5

%80 Percentage 73.75 95.6 95.85

10000+10000

10 Folds 75.77 96.83 96.18

%66 Percentage 75.63 96.39 95.88

%80 Percentage 76.37 96.85 96.15

36

For all datasets MLP performs better in all 3 test plans (Figure 19-23). This was

expected since Word2Vec is close to deep learning solutions as semantic relations in

documents are captured in vector representation.

We could not test WEKA with 10k+10k dataset since the test taking too long and the

tests crashed on the machine we were testing.

Figure 19 - Success Ratios for Word2Vec 300 + 300 data sets

Figure 20- Success Ratios for Word2Vec 500 + 500 data sets

37

Figure 21- Success Ratios for Word2Vec 1000 + 1000 data sets

Figure 22- Success Ratios for Word2Vec 2000 + 2000 data sets

38

Figure 23- Success Ratios for Word2Vec 5000 + 5000 data sets

F Measure Results for Word2Vec implementation are as follow. For all algorithms,

best score is highlighted with bold text for each data set:

39

Table 11- F Measure Results for Word2Vec 300 + 300 and 500 + 500

implementation

Data

Sets
Test Type Naive Bayes Logistic Regression Multilayer Perceptron

300+300

Cross

Validation

(10 Folds)

SPAM HAM

0.752

SPAM HAM

0.913

SPAM HAM

0.937 187 113 SPAM 274 26 SPAM 284 16 SPAM

36 264 HAM 26 274 HAM 22 278 HAM

Percentage

(%66)

SPAM HAM

0.789

SPAM HAM

0.858

SPAM HAM

0.956 65 35 SPAM 85 15 SPAM 97 3 SPAM

8 96 HAM 14 90 HAM 6 98 HAM

Percentage

(%80)

SPAM HAM

0.717

SPAM HAM

0.917

SPAM HAM

0.975 31 25 SPAM 51 5 SPAM 55 1 SPAM

9 55 HAM 5 59 HAM 2 62 HAM

500+500

Cross

Validation

(10 Folds)

SPAM HAM

0.694

SPAM HAM

0.842

SPAM HAM

0.942 276 224 SPAM 417 83 SPAM 477 23 SPAM

82 418 HAM 75 425 HAM 35 465 HAM

Percentage

(%66)

SPAM HAM

0.682

SPAM HAM

0.888

SPAM HAM

0.897 95 88 SPAM 161 22 SPAM 165 18 SPAM

19 138 HAM 16 141 HAM 17 140 HAM

Percentage

(%80)

SPAM HAM

0.690

SPAM HAM

0.895

SPAM HAM

0.940 58 53 SPAM 99 12 SPAM 106 5 SPAM

9 80 HAM 9 80 HAM 7 82 HAM

40

Table 12- F Measure Results for Word2Vec 1000 + 1000 and 2000 + 2000

implementation

Data Sets Test Type Naive Bayes Logistic Regression Multilayer Perceptron

1000+1000

Cross

Validation

(10 Folds)

SPAM HAM

0.725

SPAM HAM

0.894

SPAM HAM

0.951 593 407 SPAM 901 99 SPAM 955 45 SPAM

143 857 HAM 114 886 HAM 53 947 HAM

Percentage

(%66)

SPAM HAM

0.701

SPAM HAM

0.853

SPAM HAM

0.962 204 137 SPAM 284 57 SPAM 327 14 SPAM

66 273 HAM 43 296 HAM 12 327 HAM

Percentage

(%80)

SPAM HAM

0.698

SPAM HAM

0.908

SPAM HAM

0.965 115 85 SPAM 182 18 SPAM 192 8 SPAM

36 164 HAM 19 181 HAM 6 194 HAM

2000+2000

Cross

Validation

(10 Folds)

SPAM HAM

0.752

SPAM HAM

0.930

SPAM HAM

0.947 1268 732 SPAM 1866 134 SPAM 1890 110 SPAM

260 1760 HAM 148 1852 HAM 101 1899 HAM

Percentage

(%66)

SPAM HAM

0.775

SPAM HAM

0.916

SPAM HAM

0.957 435 248 SPAM 619 64 SPAM 659 24 SPAM

58 619 HAM 50 657 HAM 35 642 HAM

Percentage

(%80)

SPAM HAM

0.768

SPAM HAM

0.934

SPAM HAM

0.949 241 146 SPAM 357 30 SPAM 376 11 SPAM

40 373 HAM 23 390 HAM 30 383 HAM

41

Table 13- F Measure Results for Word2Vec 5000 + 5000 and 10000 + 10000

implementation

Data Sets Test Type Naive Bayes Logistic Regression Multilayer Perceptron

5000+5000

Cross

Validation
(10 Folds)

SPAM HAM

0.745

SPAM HAM

0.958

SPAM HAM

0.956 3099 1901 SPAM 4804 196 SPAM 4786 214 SPAM

649 4351 HAM 223 4777 HAM 222 4778 HAM

Percentage

(%66)

SPAM HAM

0.748

SPAM HAM

0.955

SPAM HAM

0.960 1059 635 SPAM 1623 71 SPAM 1627 67 SPAM

221 1485 HAM 82 1624 HAM 68 1638 HAM

Percentage

(%80)

SPAM HAM

0.738

SPAM HAM

0.959

SPAM HAM

0.956 619 383 SPAM 965 37 SPAM 970 32 SPAM

142 856 HAM 46 952 HAM 56 942 HAM

10000+10000

Cross
Validation

(10 Folds)

SPAM HAM

0.758

SPAM HAM

0.962

SPAM HAM

0.968 6350 3650 SPAM 9670 330 SPAM 9702 298 SPAM

1196 8804 HAM 433 9567 HAM 335 9665 HAM

Percentage

(%66)

SPAM HAM

0.756

SPAM HAM

0.959

SPAM HAM

0.964 5143 2136 SPAM 3277 117 SPAM 3257 137 SPAM

6800 399 HAM 163 3243 HAM 108 3298 HAM

Percentage

(%80)

SPAM HAM

0.764

SPAM HAM

0.962

SPAM HAM

0.969 1304 715 SPAM 1956 63 SPAM 1970 49 SPAM

230 1751 HAM 91 1860 HAM 77 1904 HAM

F-measure results are also shown comparatively in Figures 24-29 for all datasets with

Word2Vec representations. Clearly MLP performs better in all cases, sometimes

with up to 20% better F-measure values in comparison to NB.

42

Figure 24- F Measure Graphics for Word2Vec 300 + 300 data sets

Figure 25 - F Measure Graphics for Word2Vec 500 + 500 data sets

43

Figure 26- F Measure Graphics for Word2Vec 1000 + 1000 data sets

Figure 27- F Measure Graphics for Word2Vec 2000 + 2000 data sets

44

Figure 28- F Measure Graphics for Word2Vec 5000 + 5000 data sets

Figure 29- F Measure Graphics for Word2Vec 10000 + 10000 data sets

4.3.2.4.2 TensorFlow

By using TensorFlow with Keras, we also obtained the following results for 10-Fold

Cross Validation in all datasets. MLP with Adam optimizer and 10 neuron hidden

layer are used in the tests. Clearly as the dataset gets larger the accuracy goes up to

97.37% (Table 14 and Figure 30).

45

Table 14-TensorFlow Results for all data sets with Word2Vec

Data Sets Cross Validation 10-Fold

300+300 94.17

500+500 94.30

1000+1000 95.40

2000+2000 95.83

5000+5000 96.80

10000+10000 97.37

Figure 30- Accuracy Results for Tensorflow with Word2Vec

46

CHAPTER 5

CONCLUSION

In this thesis, we used three different methods to generate word vectors as input for

machine learning algorithms. These vector representations are Weighted TF-IDF,

TF-IDF using SciKit Learn, and Word2Vec. After generation of word vectors, we

applied machine learning algorithms Naive Bayes (NB), SVM, Logistic Regression

(LR), and deep learning algorithms, based on Multilayer Perceptron (MLP). Vector

representation makes a big difference in the performance of ML algorithms. Our

results show that Word2Vec data representation and MLP deep learning algorithm

performs the best with big data on spam detection.

For future work, more tests with deep learning architectures (RNN, CNN, DBN)

should be conducted. Vector representation using Word2Vec with better and larger

training corpuses should also be done.

47

REFERENCES

1. Zareapoor, M., & Seeja, K. R. (2015). Feature extraction or feature

selection for text classification: A case study on phishing email detection.

International Journal of Information Engineering and Electronic Business,

7(2), 60.

2. MAAWG. Messaging anti-abuse working group. Email metrics report.

Third & fourth quarter 2006. Available at http://www.maawg.org/about/

MAAWGMetric 2006 3 4 report.pdf Accessed: 04.06.07, 2006

3. Morimoto, M., & Chang, S. (2006). Consumers’ attitudes toward

unsolicited commercial e-mail and postal direct mail marketing methods:

intrusiveness, perceived loss of control, and irritation. Journal of Interactive

Advertising, 7(1), 1-11.

4. History of WWW, W3 Organization. https://www.w3.org/History.html

5. Marmura, S. (2008). A net advantage? The internet, grassroots activism and

American Middle-Eastern policy. New Media & Society, 10(2), 247-271.

6. Saab, S. A., Mitri, N., & Awad, M. (2014, April). Ham or Spam? A

comparative study for some Content-based Classification Algorithms for

Email Filtering. In Electrotechnical Conference (MELECON), 2014 17th

IEEE Mediterranean (pp. 339-343). IEEE.

7. E-mail, Wikipedia. https://en.wikipedia.org/wiki/Email.

8. Sebastiani, F. (2002). Machine learning in automated text categorization.

ACM computing surveys (CSUR), 34(1), 1-47.

9. Myers, K., Kearns, M., Singh, S., & Walker, M. A. (2000). A boosting

approach to topic spotting on sub dialogues. Family Life, 27(3), 1.

48

10. Sable, C. L., & Hatzivassiloglou, V. (2000). Text-based approaches for non-

topical image categorization. International Journal on Digital Libraries, 3(3),

261-275.

11. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining:

Practical machine learning tools and techniques. Morgan Kaufmann.

12. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian

optimization of machine learning algorithms. In Advances in neural

information processing systems (pp. 2951-2959).

13. Hu, Y. T., & Schwing, A. G. (2017). An Elevator Pitch on Deep Learning.

Get Mobile: Mobile Computing and Communications, 21(1), 14-18.

14. Why are deep neural networks hard to train? Neural Networks and Deep

Learning. http://neuralnetworksanddeeplearning.com

15. Harris, S. R., & Gerich, E. (1996). Retiring the NSFNET backbone service:

Chronicling the end of an era. ConneXions, 10(4), 2-11.

16. Reaction to the DEC Spam of 1978, Brad Templetons.

http://www.templetons.com/brad/spamreact.html

17. Mail Abuse Prevention System (MAPS).

https://en.wikipedia.org/wiki/Mail_Abuse_Prevention_System

18. Castillo, C., Donato, D., Gionis, A., Murdock, V., & Silvestri, F. (2007,

July). Know your neighbors: Web spam detection using the web topology. In

Proceedings of the 30th annual international ACM SIGIR conference on

Research and development in information retrieval (pp. 423-430). ACM.

19. Weiss, S. M., & Indurkhya, N. (1995). Rule-based machine learning

methods for functional prediction. Journal of Artificial Intelligence Research,

3, 383-403.

20. Smadi, S., Aslam, N., Zhang, L., Alasem, R., & Hossain, M. A. (2015,

December). Detection of phishing emails using data mining algorithms. In

Software, Knowledge, Information Management and Applications (SKIMA),

2015 9th International Conference on (pp. 1-8). IEEE.

49

21. Shams, R., & Mercer, R. E. (2016). Supervised classification of spam

emails with natural language stylometry. Neural Computing and

Applications, 27(8), 2315-2331.

22. Sen, D., Das, C., & Chakraborty, S. A New Machine Learning based

Approach for Text Spam Filtering Technique, (2017).

23. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,

521(7553), 436.

24. About, Twitter. https://about.twitter.com/

25. Benevenuto, F., Magno, G., Rodrigues, T., & Almeida, V. (2010, July).

Detecting spammers on twitter. In Collaboration, electronic messaging, anti-

abuse and spam conference (CEAS) (Vol. 6, No. 2010, p. 12).

26. Wu, T., Wen, S., Liu, S., Zhang, J., Xiang, Y., Alrubaian, M., & Hassan,

M. M. (2017). Detecting spamming activities in twitter based on deep‐

learning technique. Concurrency and Computation: Practice and Experience,

29(19).

27. Tang, Y. (2013). Deep learning using linear support vector machines. arXiv

preprint arXiv:1306.0239.

28. Moradpoor, N., Clavie, B., & Buchanan, B. (2017, July). Employing

machine learning techniques for detection and classification of phishing

emails. In Computing Conference, 2017 (pp. 149-156). IEEE.

29. Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural

network regularization. arXiv preprint arXiv:1409.2329.

30. Tang, J., Deng, C., & Huang, G. B. (2016). Extreme learning machine for

multilayer perceptron. IEEE transactions on neural networks and learning

systems, 27(4), 809-821.

31. Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-

scale sentiment classification: A deep learning approach. In Proceedings of

the 28th international conference on machine learning (ICML-11) (pp. 513-

520).

50

32. Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., &

Bengio, S. (2010). Why does unsupervised pre-training help deep learning?

Journal of Machine Learning Research, 11(Feb), 625-660.

33. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11),

2278-2324.

34. Loosli, G., Canu, S., & Bottou, L. (2007). Training invariant support vector

machines using selective sampling. Large scale kernel machines, 301-320.

35. Ramos, J. (2003, December). Using TF-IDF to determine word relevance in

document queries. In Proceedings of the first instructional conference on

machine learning (Vol. 242, pp. 133-142).

36. SciKit Learn, Machine Learning in Python. http://scikit-learn.org/

37. SciKit Learn, GitHub. https://github.com/scikit-learn/scikit-learn

38. Word2Vec, Google Code Archive.

https://code.google.com/archive/p/word2vec/

39. Word2Vec, Deep Learning for Java.

https://deeplearning4j.org/word2vec.html

40. About TensorFlow, TensorFlow. https://www.tensorflow.org/

41. Homepage, Keras. https://keras.io/

42. Naive Bayes, Web Page of Dr. Saed Sayad.

http://www.saedsayad.com/naive_bayesian.htm

43. Ruck, D. W., Rogers, S. K., & Kabrisky, M. (1990). Feature selection using

a multilayer perceptron. Journal of Neural Network Computing, 2(2), 40-48.

44. Kleinbaum, D. G., & Klein, M. (2010). Introduction to logistic regression.

In Logistic regression (pp. 1-39). Springer, New York, NY.

45. Press, S. J., & Wilson, S. (1978). Choosing between logistic regression and

discriminant analysis. Journal of the American Statistical Association,

73(364), 699-705.

46. Here is What You Get, Comodemia. https://comodemia.comodo.com/

51

47. Davis, J., Hossain, L., & Murshed, S. H. (2007). Social network analysis

and organizational disintegration: the case of Enron corporation. ICIS 2007

Proceedings, 5.

48. Chandrasekaran, M., Narayanan, K., & Upadhyaya, S. (2006, June).

Phishing email detection based on structural properties. In NYS Cyber

Security Conference (Vol. 3).

49. Parsons, K., McCormac, A., Pattinson, M., Butavicius, M., & Jerram, C.

(2015). The design of phishing studies: Challenges for researchers.

Computers & Security, 52, 194-206.

50. Adewumi, O. A., & Akinyelu, A. A. (2016). A hybrid firefly and support

vector machine classifier for phishing email detection. Kybernetes, 45(6),

977-994.

51. Moghimi, M., & Varjani, A. Y. (2016). New rule-based phishing detection

method. Expert systems with applications, 53, 231-242.

52. Diale, M., Van Der Walt, C., Celik, T., & Modupe, A. (2016, November).

Feature selection and support vector machine hyper-parameter optimization

for spam detection. In Pattern Recognition Association of South Africa and

Robotics and Mechatronics International Conference (PRASA-RobMech),

2016(pp. 1-7). IEEE.

53. Agarwal, D. K., & Kumar, R. (2016). Spam Filtering using SVM with

different Kernel Functions. International Journal of Computer Applications,

136(5).

54. Jain, G (2016). A Study of Bayesian Classifiers Detecting Gratuitous Email

Spamming. Communications on Applied Electronics6(2):26-30.

55. Hashemi, S. M, (2015). Detection and Filtering Spam using Feature

Selection and Learning Machine Methods. Journal of Academic and Applied

Studies (Special Issue on Engineering & Applied Sciences) Vol. 5(4) April

2015, pp. 14-30

56. Al Sarhan, A., Jabri, R., & Sharieh, A. (2017). Website Phishing Detection

Using Dom-Tree Structure and Cant-MinerPB Algorithm. American Journal

of Computer Science and Information Engineering, 4(4), 38-42.

57. Altaher, A. (2017). Phishing websites classification using hybrid svm and

knn approach. Int J Adv Comput Sc, 421, 8.

58. Abu-Nimeh, S., Nappa, D., Wang, X., & Nair, S. (2007, October). A

comparison of machine learning techniques for phishing detection. In

Proceedings of the anti-phishing working groups 2nd annual eCrime

researchers summit (pp. 60-69). ACM.

59. Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G.,

Spyropoulos, C. D., & Stamatopoulos, P. (2000). Learning to filter spam e-

52

mail: A comparison of a naive Bayesian and a memory-based approach.

arXiv preprint cs/0009009.

60. Awad, W. A., & ELseuofi, S. M. (2011). Machine Learning methods for E-

mail Classification. International Journal of Computer Applications, 16(1).

61. Lai, C. C., & Tsai, M. C. (2004, December). An empirical performance

comparison of machine learning methods for spam e-mail categorization. In

Hybrid Intelligent Systems, 2004. HIS'04. Fourth International Conference on

(pp. 44-48). IEEE.

62. Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied

logistic regression (Vol. 398). John Wiley & Sons.

63. Wu, C. H. (2009). Behavior-based spam detection using a hybrid method of

rule-based techniques and neural networks. Expert Systems with

Applications, 36(3), 4321-4330.

64. Gray, A., & Haahr, M. (2004, July). Personalized, Collaborative Spam

Filtering. In CEAS.

53

APPENDICES A

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Onur Göker

Nationality: Turkish (TC)

Date and Place of Birth: 14/04/1989

Marital Status: Single

Phone: +90 555 299 29 00

Email: onurgoker89@gmail.com

EDUCATION

Degree Institution Year of Graduation

MSc
Çankaya Univ., Computer

Engineering
2014-2018

B.Sc.
TOBB ETU, Computer

Engineering
2006-2011

54

WORK EXPERIENCE

Year Place Enrollment

2017- Comodo Inc. Software Team Lead

2015-2017 Comodo Inc.
Senior Software

Developer

2014-2015 Sentim Bilişim A.Ş. PHP Software Dev.

2013-2014 Genel Bilgi Teknolojileri Web Developer

2013-2013 Positive - A Digital Approach Web Developer

2011-2013 Beril Teknoloji Web Developer

2010 Kasırga Bilişim Ltd. Şti. Intern

2008 Library, TOBB ETÜ Intern

2007 IT Centers, TOBB ETÜ Intern

FOREIGN LANGUAGES

Turkish : Native

English : Professional

German : Elementary

Portuguese : Beginner

PROJECTS

1. Comodo One Remote IT Management Tools - Service Desk

2. Comodo One Remote IT Management Tools - CRM

3. Comodo One Remote IT Management Tools - ITSM

4. Ministry of Health’s Prescription Information System

5. Hisarlar Corporate Website

6. Tepe Savunma Corporate Website

7. Turkar Corporate Website

8. Toyzzshop Corporate Web Site

9. Petlas Corporate Website

10. Starmaxx Corporate Website

11. Kürk İnşaat Corporate Web Site

55

12. Üzümcü Corporate Website

13. Vamos Sports Complex Corporate Website

14. Şirketçe Classified Advertising Project

15. Tulpar JAVA Compiler

16. Uygulamam.com Mobile Application Project

CERTIFICATE

Bilge Adam MCSD Program

C#, .Net Framework, SQL, ASP.Net, Azure, Windows Phone technologies

PUBLICATIONS

1. Goker, O., Nazli, N., Dogdu, E., Choupani R., Erol, M.M., (2018). A Robust

Watermarking Scheme Over Quadrant Medical Image in Discrete Wavelet

Transform Domain. International Conference on Control, Decision and

Information Technologies 2018 (CODIT’18).

2. Hassanpour R., Dogdu E, Choupani R, Goker O, Nazli N, (2018). Phishing E-

mail Detection by Using Deep Learning Algorithms. Poster, supplemental

material(s). ACM SE '18: Southeast Conference Proceedings.

