FAULT-TOLERANT SUPERVISORY CONTROL OF DISCRETE EVENT
SYSTEMS: METHODS AND EXAMPLES

AYSE NUR ACAR

AUGUST 2015



FAULT-TOLERANT SUPERVISORY CONTROL OF DISCRETE EVENT
SYSTEMS: METHODS AND EXAMPLES

A THESISSUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES OF
CANKAYA UNIVERSITY

BY
AYSE NUR ACAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF
ELECTRONIC AND COMMUNICATION ENGINEERING

AUGUST 2015



Title of the Thesis: Fault-Tolerant Supervisory Control of Discrete Event
Systems: Methods and Examples

Submitted by AYSE NUR ACAR

Approval of the Graduate School of Natural and Applied Sciences, Cankaya
University.

d 7
Prof. Dr. Halil Tan)[; EY)YUBOGLU
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

pad
- .
Prof. Dr. Halil Tanyer EY)YUBOGLU
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

WYer MV

Assoc. Prof. Dr. Klaus Werner SCHMIDT
Supervisor

Examination Date: 12.08.2015

Examining Committee Members ® 5
Assoc. Prof. Dr. Orhan GAZI (Cankaya Univ.) i! z;
Assoc. Prof. Dr. Klaus Werner SCHMIDT (Cankaya Univ.) %{;\ W

Assoc. Prof.‘Dr. Umut ORGUNER (ODTU)



STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name ~ : Aysg Nur ACAR

Signature
Date : 12.08.2015

il




ABSTRACT

FAULT-TOLERANT SUPERVISORY CONTROL OF DISCRETE EVENT
SYSTEMS: METHODS AND EXAMPLES

ACAR, Ayse Nur
M.Sc., Department of Electronic and Communication Engineering
Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT

August 2015, 50 pages

Faults can be considered as uncontrollable events that suddenly happen in a system
and change the behaviour of the system in a negative way. In particular, in case a
fault happens in a discrete event system (DES), certain actions or operations might
no longer be possible. This thesis studies the supervisory control of DES that are
subject to faults. Hereby, two concepts are employed: Fault-tolerant and fault-

recovery control.

Regarding fault-tolerant control, it is desired to use a controller that works both for
the system with and without a fault. Hence, we first identify necessary and sufficient
conditions for the existence of a supervisor that realizes a given behavioral
specification both in the non-faulty and in the faulty case. We further show that it is
possible to determine a supremal fault-tolerant sublanguage in case the existence
condition is violated. Finally, we propose an algorithm for the computation of this

sublanguage and prove



its correctness. Different from existing work, our fault-tolerant supervisor allows

fault occurrences and system repairs at any time.

Regarding fault-recovery control, we study both the case of operating a DES after a
fault and after repair. We first develop a new method for the fault-recovery of DES.
In particular, we compute a fault-recovery supervisor that follows the specified
nominal system behavior until a fault occurrence, that continues its operation
according to a degraded specification after a fault and that finally converges to a
desired behavior after fault. We next show that our method is also applicable to
system repair and we propose an iterative procedure that determines a supervisor for

an arbitrary number of fault occurrences and system repairs.

Finally, we extend our fault-recovery and repair method with multiple and different
faults and repairs. As a result, we obtain a supervisor that follows the specified
nominal system behavior in the fault-free case, converges to a desired degraded
behavior for each fault type and recovers the nominal behavior after corresponding
repair. All developed methods are demonstrated with a small manufacturing system.

Keywords: Discrete Event Systems, Supervisory Control, Fault, Fault-Tolerance,

Fault-Recovery, Repair.
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AYRIK OLAYLI SISTEMLER iCiN HATAYA DAYANIKLI
DENETLEYIiCi KONTOL: METODLAR VE ORNEKLER

ACAR, Ayse Nur
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi Anabilim Dali
Tez Yoneticisi: Dog Dr. Klaus Werner SCHMIDT
Agustos 2015, 50 sayfa

Hatalar kontrol edilemeyen olaylardir. Sistemde bir anda meydana gelirler ve
sistemin c¢alisma diizenin negatif yonde etkilerler. Genellikle, ayrik olayli sistemlerde
(DES) hata olmast durumunda, ilgili olaylarin veya operasyonlarin bir daha
olusmama ihtimali vardir. Bu tezde hata igeren ayrik olayli sistemlerin denetleyici
kontrolii calisiimistir. Bu vesile ile iki ana konsept incelenmistir: Hataya dayaniklilik

ve hata kurtarici kontrol.

Hataya dayanikli kontrole iliskin, sistemin hem normal durumunda hem de hatali
durumda tek bir kontrolor kullanilmasi amaglanmistir. Buradan yola ¢ikarak, once
hem hatali hem de hatasiz durumda verilen tavri ¢alistirabilen bir spesifikasyonun
gerekli ve uygun kosullar1 tanimlanmigtir. Daha sonra gosterilmistir ki, tanimlanan
kosullarin ihlal edildigi durumlarda supremal bir arizaya dayanikli alt dil
belirlenmesi miimkiindiir. Son olarak bu alt dilin bulunabilmesini saglayan bir

algoritma gelistirilmis ve bunun dogrulugu kanitlanmistir. Var olan diger
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caligmalardan farkli olarak, bizim gelistirdigimiz hataya dayanikli kontrolér, hatanin

olusmasina ve sistemin herhangi bir zamanda tamirine izin vermektedir.

Hata kurtaric1 kontrole iliskin, ayrik olayli sistemlerin operasyonunda hem hata
sonrast durumuna hem de tamir sonrasi durumunun kontrolii i¢in caligilmstir.
Oncelikle DES’e yonelik ariza kurtarma i¢in yeni bir model gelistirilmistir.
Ozellikle, bir arizadan sonra bozuk bir spesifikasyona gore islemine devam eden ve
sonunda da arizadan sonra istenen bir davranisa yonelen bir ariza olusumuna kadar,
belirtilen nominal sistem davranmisini takip eden bir ariza kurtarma denetgisi
hesapladik. Ardindan, yontemimizin sistem tamirine de uygulanabilecegi gosterilmis
ve istege bagli sayida ariza olusumu ve sistem tamiri durumunu kontrol edebilebilen

bir denetleyici olusturulmasini saglayan yinelemeli bir algoritma onerilmistir.

Son olarak, ariza kurtarma ve tamir yontemi, birgok ve farkli ariza ve tamirler ile
birlikte sunulmustur. Sonug¢ olarak, arizasiz durumlarda belirtilen nominal sistem
davranigini takip eden, her bir ariza tipi i¢in istenen bozuk davraniga yonelen ve ilgili
tamir igleminden sonra nominal davranisi kurtaran bir denet¢i elde edilmistir.
Gelistirilen tiim yontemler ayr1 ayri1 olusturdugumuz bir kiiciik liretim sistemi

Ornegiyle gosterilmis ve tiim sonuglar ayn1 6rnek iizerinde agiklanmustir.

Keywords: Ayrik Olayli Sistemler, Denetleyici Kontrol, Hata, Hata Dayaniklilig;,
Hata Kurtarma, Tamir.
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CHAPTER 1

INTRODUCTION

Discrete Event Systems (DES) are introduced to model dymaygstems with a dis-
crete state space. DES are characterizettayes’, 'events, whereby'transitions’
between system states occur instantaneously with the recmé of events. Faults are
uncontrollable events that suddenly happen in a system aveldnegative effect on
the behaviour of the DES. To deal with faults, the first problke be addressed is
fault diagnosis. Here, diagnosers are used to understamtlifvhere a fault occurs
[1]. Moreover, fault recovery or fault tolerant control é@operating a system under
potentially relaxed performance specifications, even sea# faults. In this context,
there is a distinction between passive and active apprgaohiult tolerance in the
literature [2]. Passive fault tolerance allows using theesaontroller in both faulty
and non-faulty cases. Active fault-tolerance requiresrdrotler adapting its control
law, in case a fault arouses. Such controller (either eitigliar implicitly) is based on
a fault detection unit in order to make an adjustment on ieyajon. That is, fault-
recovery control allows maintaining the system operatiter an event of fault, while
performing a potentially degraded specification.

The subject of this thesis is the fault-tolerant and faettevery control of DES.
Hereby, the thesis has three main contributions:

1. Computation of Fault-Tolerant Supervisors for DiscreteriE Systems: The
main idea of this contribution is creating a single supamwithat makes it pos-
sible to realize a supremal fault-tolerant sublanguag®parating the system
both in the nominal and in the faulty case. This supervisso dandles system
repair in the sense of returning to the nominal system behavicase the fault
is repaired.



2. Computation of Supervisors for Fault-Recovery and RepaiDfscrete Event
Systems: For this contribution, we propose a new methodofault-recovery
of DES. The method computes a fault-recovery supervisofdiaws the spec-
ified nominal system behavior until a fault-occurrencet tiantinues its opera-
tion according to a degraded specification after a fault hatifinally converges
to a desired behavior after fault. Also our method is extertdenclude system
repair such that the system returns to its nominal behavior.

3. Discrete Event Supervisor Design and Application for Manturing Systems
with Arbitrary Faults and Repairs: The third contributioriends the method in
second contribution. With the extended method, our faedbvery supervisor
enables operating a DES with multiple different faults.

Considering the first contribution, we center upon the pnobtd passive fault
tolerance for discrete event systems (DES). We addresss fahich disable the op-
eration of some components belonging to the DES plant. Ity tha fault model
suggests that a certain set of plant events is no longertpessicase a fault happens.
In turn, it is possible for the plant to return to its nomingleoation after repair. In
the described setting, we investigate the existence antesis of a fault-tolerant su-
pervisor which accomplishes the desired closed-loop behavboth non-faulty and
faulty cases. To this end, our first contribution is the daron of the sufficient and
necessary conditions for the existence of such fault-dolesupervisor, accompanied
by a polynomial-time verification algorithm. In case theseditions are not achieved,
the determination of fault-tolerant sublanguages of argsgecification is required.
The second contribution we carried out is we show that a soglréault-tolerant sub-
language exists and we develop a polynomial-time algorftmiis computation. The
main ideas of this contribution are published in the confeespaper [3].

Considering the second contribution, we develop a new apprioa fault-recovery
of DES, which is also suitable for system repair. We discuss<OES model includ-
ing the occurrence of faults, and we use three languagef&agicins to represent the
desired system behavior in a convenient manner: the desoedaulty behavior is



provided by a nominal specification; the desired contirmmabf the system behav-
ior after a fault-occurrence is provided by a degraded $pation; and the desired
faulty closed-loop behavior which is required to be achiefieally is represented by
a faulty specification that is more restrictive. As a crutgalture of our formulation, it
is not assumed that it is required for the closed-loop systenbey each specification
starting from the initial plant state, but it has to achieaelespecification partially,
depending on the presence of a fault. We propose an algofahifinding a non-
blocking fault-recovery supervisor which is based on therieaving composition
operation [4] and uses language convergence [5], in ordgolte the fault-recovery
problem. We further show that it is also possible to applydbeeloped method to
handle system repair. Then, it is desired to achieve the mainspecification at the
end, after a system repair is performed. Finally, an iteeapplication of our method
allows computing a fault-recovery supervisor for an adsitrmumber of occurrences
of fault and system repairs. The main ideas of this contidbuare published in the
conference paper [6].

Considering the third contribution, we extend our faultensgry control method
to the case of different faults which are possible to occuannarbitrary order. To
that end, at first we develop a general formulation of the jerbsetting, and then
suggest a new algorithm for the computation of a fault-recpand repair supervisor.
The main idea of the algorithm is to compute supervisorsiitezly, which can han-
dle an increasing number of successive faults and repaidsyerify whether a new
behavior is observed in each of the iterations of the algrior not. Once no new
behavior is observed, the algorithm terminates with thatgm supervisor. We apply
the fault-tolerant method, fault-recovery method, andettgyed method to a small
manufacturing system example for the purpose of illusiratiThe main ideas of this
contribution are published in the conference paper [7].

There are different approaches developed for the fawdtaolk control of DES in
the existing literature, under different assumptions 8lnif a fault occurs, the system
follows a transient mode, and then if the fault is detectednters a recovery mode.
It is assumed that it is possible to detect faults within avkmdoounded delay of



event occurrences. In this setting, the paper determinapergsor which performs
design specifications in different operation modes. Undikeapproach, the proposed
method requires the closed-loop system to obey each s@ific starting from the
initial plant state. Nevertheless, the case of system reypal re-occurrence of faults
are not incorporated by [8].

The work by [9, 10] suggests to detect faults and then to swida different su-
pervisor, before the nominal system behavior is violateklis Bipproach is based on
using a diagnoser to detect faults and requires the forioulaf a modified system
specification for each system state, where it is possibleteatl a fault. Unlike our
fault-tolerant approach, the supervisor in [10] switclwea tifferent operation follow-
ing each separate fault detections. In addition, systemirépnot included and the
re-occurrence of faults is not addressed.

[11] studies conditions for the control-reconfiguratiorcase of faults. After the
fault occurrence, a post-fault specification has to be peréad, by means of which
controller reconfiguration is only possible following fadetection. The paper pro-
vides sufficient and necessary conditions for the existencentroller in this setting.
It also determines the additional conditions under whickcantrol reconfiguration
is required. However, unlike our approach, [11] is only emed with supervisor
existence, rather than synthesis, and does not suppoilooking supervision. Fur-
thermore, system repair and re-occurrence of faults araduressed.

[12] proposes the use of fault-accommodating models. Wighdpproach, inte-
grating the nominal and faulty system behavior and systesnigation into a single
model is possible. Then, a classical supervisor synthesisigm can be solved un-
der partial observation in order to achieve fault-toleeand@here is no need for an
explicit switching mechanism to implement the designecdesupor. However, unlike
our approach, the paper requires the formulation of a @etbmmodating specifica-
tion which should be met starting from the initial plant staMoreover, repair and
re-occurrence of faults are not addressed.

A further line of work studies on the robust supervisory cohof DES [13, 14,

4



15, 16, 17]. In this setting, different plant models are usegkpresent potential plant
behaviors, such as under fault. Unlike our method, it ism&slthat one of the models
is active (depending on which fault happens), but it is ngtwaed that a fault might
switch the system behavior from one model to another modederfain application
of robust control to fault-tolerance presented by [18] isdzhon the identification of
tolerable fault sequences. However, that paper only adésesxistence conditions
and does not carry out supervisor design.

The idea of convergence is adopted for fault-tolerancerimgeof recovering the
nominal system behavior after a fault in [19]. [19] definesltféolerance from the
point of view that the system behavior should converge tmtiminal system behavior
after a finite number of event occurrences upon the occugreh@any fault. The
paper provides necessary and sufficient conditions forupersisor existence in this
setting. In addition, [20] proposes a method for the comriaof fault-tolerant
supervisors. Unlike our approach, [19, 20] require thaudt faust be reversible after
a bounded delay, whereby it is required for the closed-lyspesn to obey a language
specification starting from the initial plant state. Moregvsystem repair and the
re-occurrence of faults are not addressed.

In the recent literature, [21] considers the relaxationhef mominal specification
in order to avoid restricting the system behavior unnecégsadt is suggested to
allow potentially faulty behavior and handle undesiredawebr on an upper level of
the control architecture. Similar to the other relatedditere, system repair and the
re-occurrence of faults are not addressed in that paper.

The outline of this thesis is as follows. Chapter 2 providesnbcessary back-
ground on DES and the supervisory control of DES. In ChapteuBnew method for
the computation of fault-tolerant supervisors includinglgem statement, problem
solution and solution algorithm is presented. Our new aggindor the computation
of supervisors for fault-recovery and repair is addresse@hapter 4 and extended
to the case of multiple different faults in Chapter 5. Chaptgivés conclusions and
points out directions for future work.



CHAPTER 2

BACKGROUND

2.1 Discrete Event Systems

Discrete Event Systems (DES) represent dynamic systerhsavdiscrete state space.
Here,statesepresent the passing of time and staa@sitionshappen instantaneously
based on the ocurrence of discreteents Various human-made systems can be mod-
eled by DES. DES are for example used in computer systemsjfaciaring systems,
communication systems, etc. [1].

A small example for DES modeling is a simple fan sytem. Thepgenfan system
has three discrete stat€3FF, LOWHIGH and three discrete eventsop ,startLow
changeHigh . Initially the fan state i©OFF In this state, the everstartLow can
happen and creates a transition to the dt&&/In theLOWstate, the fan turns slowly
and works in this situation until a new event happens. Ingtase there are two pos-
sible eventsistop andchangeHigh . If stop happens, the system transitions to
OFFagain. Otherwise, the system goes to the dtd@H and the fan starts to work
faster. Ifstop happens in the statélGH, the system goes to the st&€Fagain.

2.2 Formal Language

A language is describing the logical behavior of DES. An alpdt is defined as a
finite set of events and it is denoted byEvery finite event sequence franis called
as strings. If a string does not have any event, it is an empty string ambted bye.

|s| defines the length of a strirgy It meangs| gives the number of events in a string.
So the length of an empty string is zete| = 0. A language is defined as a set of



finite-length strings from events n[1].

For example, the alphabet of the farkis- {stop ,startlow ,changeHigh }.
Some example strings arg; = startLow stop  , s, = startLow changeHigh
stop startLow  etc. And the length of these strings asg = 2 and|s;| = 4. We
can define a language for the system like:

L = {&,startlow ,startLow changeHigh stop }.

The set of all finite strings of elements Bfis called theKleene-closureand de-
noted byz*. Then we can say thatis asubsebf Z*. As an exampleKleene-closure
of the simple fan system is

" ={¢,startLow ,changeHigh ,stop ,startLow stop

Y

startLow stop startLow startLow stop changeHigh

startLow stop changeHigh stop . (2.1)

Theconcatenatiorand further string properties are explained as follows:

e Lettwo stringssl,s2 € ¥*. Theconcatenatiorof these two strings is= s1s2.
e sl is called theprefixof strings.
e S2 is called thesuffixof strings.
Theprefix-closurdas a language operation. Theefix-closureof a languagé. € =*

is denoted byt and it is defined ak := {s; € Z*|Ise L st. 53 < s}. If L=1L, the
languagd. is called agprefix closed

Another language operation is timatural projection Let¥ C . The natural
projection erases all events ithat do not belong to a defined sub&esf =. This
operation is written ap : £* — 3*. Assume thas € ¥* ando € =. The natural



projection is defined such that:

o ifoes
p(o) = .
£ otherwise

p(so) =p(s)p(0). (2.2)

The inverse projection is denoted ps! : =* — 2%, It is defined such that for
eacht € =* : p~1(t) = {s€ Z*p(s) = t}.

2.3 Automata

An automaton is used to represent a language and modeltéiswent systems. An
automaton is denoted iy = (X, Z, 4, %0, Xm). G is a fivetuple such that:

o X: finite set of states

>: afinite set of events

J: a partial transition function

Xp € Z: the initial state

Xm C X: the marked states (desired states)

The connection between languages and automata is creatbd btate transition
diagram of an automaton. For the state transition diagraanaiutomaton; circles
represent states and the diagram starts with the initit¢,starows represent transi-
tions between states and arrows are named by correspongingse An example of
the state transition diagram for a simple fan system is shiodigure 1.

The closed language (G) is L(G) := {s € Z*|3d(Xo,S)!}. Theclosed language
L(G) contains all possible event sequences starting from lirstate ofG to each

8



Figure 1. State transition diagram for the simple fan system.

states. Themarked language h(G) is Lm(G) := {s € L(G)|3d(x0,S) C Xm}. The
marked language k(G) contains all possible event sequences starting from linitia
state ofG to a marked state.

If Lm(G) = L(G), then the finite state automaton is callechasblocking A non-
blocking automaton means that there is a path from everg sta@G to a marked
(desired) state. Im C L(G), Gis blocking. If a string in an automatda starts
from a state and after some transition goes back to the satee $ten the automaton

G has a cycle. If any automaton does not have any cycle, itlisccak acyclic.

LetG = (X,Z,d,%X, Xm) andG’ = (X', Z, &', x5, X,) be finite state automat&'’ is
asubautomatonf G, denoted a§&' C G if either G’ is the empty automatoiX( = 0),
or X’ C X, and for allx € X" ando € Z, it holds thatd’(x,0)! = &'(x,0) = d(x,0).

There is some important automata operations to analyze &S/dd modify state
space diagrams:

e Accessible If all states inX are reachable from the initial statg, then the
automatorG is accessible

Vx € X,3se Z*such thad(xg,s) = X
The operatiorAcq G) makesG accessible by removing all non-accessible states
from X.

e Coaccessiblelf each state inX reach to a marked state, the automaf®is
coaccessible

Vx € X,3se€ Z* such that(x,s) € Xm



Now, we can say that, if an automaton is coaccessible, itéstly nonblocking.
The operatioilCoAcgG) makesG coaccessible by removing all no marked state
reachable states froix.

e Trim: If an automatorG is both accessible and coaccessifas trim.

Trim(G) := CoAcdAcdq G)] := AcdCoAcdG)| (2.3)

e Synchronous Compositiofhis operation allows to synchronize two different
automata. It makes it possible to model one system by moredha automa-
ton. When sychronous composition operation is applied to dwmore au-
tomata, the output will become a bigger automaton that captthe joint be-
havior of both automata. Now assur@® = (Xi,21,01,%0.1,Xm,1) and Gy =
(X2,22,02,%0.2, Xm 2) are two different automata and the synchronous composi-
tion of these two automata is written as:

G1||G2 = G12 = (X12, 212, 012,X0,12, Xm.12) (2.4)

Synchronous composition operation states Xig—= X1 x Xy (the canonical
product of states from Xand X»), the events ar&i, = 21 U 2, (the union of
events irky andy), the initial state ig 12 = (Xo,1,X02), the marked states are
Xm,12 = Xm,1 X Xm2. The transition makes sure that the event&4{m =, that
are shared b, andG; are synchronized. Fdky,x2) € Xio ando € 237:

(01(X1,0),%(x2,0) if 0€Z1NZpAd(X1,0)! AF(X2,0)!

012((X1,X%2),0) = ¢ (01(X1,0),%2) if €21\ 22N (X1,0)!
(X1,02(%2,0)) if €2\ Z1A % (X,0)!

(2.5)

10



2.4 Supervisory Control

The supervisory control theory is introduced in [22]. Thedty is based on creating a
controller called as supervisor which allows or disablasesponding events to reach
the desired behaviour called as specification.

Assume tha6G = (X, X, d,Xg, Xm) is a given plant automatoi is thecontrollable
event seand %, is the uncontrollable event setThen the alphabet of the plant is
defined as:2 = 2. U Z,. Controllable events can be disabled by a supervisor, but
uncontrollable events cannot.

The supervisor is denoted Band it is also defined as a finite state automaton like:
S=(Q,Z,v,q0,Qm). The closed loop behavior is given by the pl&@tontrolled by
the supevisofS and is computed as the synchronous composition of the @d6t
The closed language of the closed lood-i%)||L(S) and the marked language of
the closed loop i&m(G)||Lm(S). Sis a nonblocking supervisor if(G)||L(S) is non-
blocking. As said before, supervisBicannot disable uncontrollable eventin So,
it must be true for alb € £, andse L(G)NL(S), if so € L(G), so € L(S).

The specification represents the desired closed-loop @hand it is also de-
fined by an automatorC = (Y, %, 3,yo, Ym). The specification language is denoted as
K = Lm(C). The specification contains all desired strings and thersigme disables
undesired strings according to the specification. The fipation is called asontrol-
lable for L(G) andZ, if it does not force the supervisor to disable the uncoraiué
events. A controllable specification fulfills

K=3,nL(G) CK (2.6)

If the specificatiorK is not controllable folL(G) and%,, the supervisor should im-
plement thesupremal controllable sublanguagé K. There is aSupConalgorithm
which is used to find the supremal controllable largest pdssublangug&s,p € K.

11



Such that:

Lm(§|G) = SupQK,L(G), Zu) (2.7)

2.5 Interleaving Composition

We recall theinterleaving compositiofirom [4]. Given two languageK;, Ko, C 2*
over the same alphabet, it defines a language that contapwsalble interleavings of
strings fromK; andK,. We reformulate the interleaving composition in our natati

Definition 1. LetZ be an alphabet and KK, C >* be two languages. Theterleaving
compositionK |||K2 of Ky and K is defined such that

seKy|[[Ky < s=sis? - -sisl for some ke Nand dsb---§ e K for j=1,2

2.6 Language Convergence

We employ the notion ofanguage convergencas introduced by [5]. For a string
se 2*, we writesuf(s) for the string obtained by deleting the fiisevents froms.
Specifically,su(s) = s andsufg(s) = €. Then, for a language C Z*, the suffix
closureof L is the subset of all suffixes of stringslin

suf(L) = {suf(s)|se L,i <|s|}.

A language is suffix-closed §u f(L) = L. Now consider two languagé$, K C =*. M
is said toconvergeo K, denoted byK < M, if there is an integem € Ng such that for
eachs € M, there exists an< n such that sufs) € K. The least possible is called
theconvergence time

In the supervisory control context, tloentrolled convergence proble(@CP) is
studied. LetG be a plant automaton over the alphaket, C % be a set of uncon-
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trollable events and C 2* specification. A supervisd® is said to solve the CCP

for G, K andZ, if §|G is nonblockingL(S||G) is controllable forL(G) andZ,, and

K < Lm(S|G). Assume thaK is the state set o& andY is the state set of a recog-
nizerC such that,,(C) = K. Itis shown by [5] that the solvability of the CCP can be
decided by an algorithm with complexitg(|X|222Y). Whereby it is noted that the

synthesis neither offers a unique nor an optimal solution.

We further extend the notion of language convergence toulage convergence
after a given language.

Definition 2. Consider languages MK, L C =*, whereby LC M. M is said toconverge
to K after L if K< M/L.

Furthermore, a supervis&is said to achieve language convergencadafterL

K < (Lm(S)|[M)/L.

An algorithm for the computation of such supervisor is addgtom [5] and imple-
mented in [23]. It runs with the same complexity as the comipor of a supervisor
for the CCP. We denote the resulting languag€a&, M, L, 2,).

2.7 Motivating Example

The main subject of this thesis is fault-tolerant and faettevery control of DES.
In this section, we provide a motivating example which isduseexplain our study
topics. This is a simple manufacturing system and it has twple machines and
shown in Fig. 2.

The machines are denoted asIMor the first machine and M\ for the second
machine. Products can enter Mand M 2 with the eventenl andin2 , respectively.
The first machine ML can process products with evaml and the second machine
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inl exitl

— M_1 —
1to2 l [ 2tol

in2 exit2

— M_2 —>

Figure 2: Schematic of the example system.

M_2 can process products with evaq2. Also there is a connection betweenM
and M 2 such that products can travel between these two machirtbsivei events
1to2 and2tol . There are two different exit points for products: one ofnthis
from M_1 with eventexitl and the other one is from M with eventexit2 . For
a nominal behavior of the system, all the defined events cppdma System works
as the products can enter the system to first or second maahiheperated by them
before leaving the system.

While the system is working in a nominal behavior, faults cacus in the system.
When a fault occurs, it is for example the case that an evemotdrappen anymore.
Figure 3 shows the example system with a fault.

For the motivating example we define an example faulty bemaWhen the fault
occurs,fault event happens. For example, we assume that fault occursediirgh
machine. Thempl event disappears and cannot happen anymore. Now the system
has to run in the faulty behavior instead of the nominal bairaand a fault-recovery
supervisor should take care that nothing undesired happessime that fault happens
when a product is on the first machine. The faulty-recovehali®r can be defined
in three different ways. In the first case, the product waitghe first machine until
the fault is repaired and the second machine continues itsnab behavior without
any transition eventsl{o2 and2tol ) between first machine. In the second csae,
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fault

repair
inl exitl
— M_1 e
1to2 l I 2tol
in2 exit2
— M_2 —

Figure 3: Schematic of the example system with fault events.

M_1 can send the unprocessed product to the outside with exght and does not
take any more products until the fault is repaired. The systentinues to work with
M_2 in its nominal behavior. In the third case, the product i $&m M_1 to M_2
and processed there. After sending the product, tlbes not take any more products
and M2 continues to work in the nominal bahavior. The first taskhi$ thesis is to
formally design fault-recovery supervisors that realize appropriate behavior after
a fault.

The repair event happens when the fault is repaired. Téair event causes
that the behavior that was disabled by the fault is againiplessThis means for the
example that M1 can restart processing products by the ewgitand the system
has to resume its nominal behavior after repair. In the fasealiscussed above, this
means that the unprocessed product waiting il Mhust be processed and Mcan
take new products again. In the other cases, this means tiatd take and process
products again and no products need to be sent fh Mhe second task of this thesis
is to design fault-recovery and repair superisors thateobly resume the nominal
system operation after repair.
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CHAPTER 3

COMPUTATION OF FAULT-TOLERANT SUPERVISORS FOR DISCRETE
EVENT SYSTEMS

The first objective of this chapter is determining if a giverpearvisor can tolerate a
given set of faulty events. The second objective is compgutalt-tolerant supervisors
that can tolerate a given set of faulty events. The sectidlineuof this chapter is
as follows. Section 3.1 presents a motivating example. iG&e&2 formulizes the
problem statement. Section 3.3 considers the verificatidauit-tolerance. Section
3.4 establishes the existence of a supremal fault-tolesananguage. Section 3.5
proposes an algorithm for the computation of this supremadttolerant sublanguage.
We note that the results presented in this chapter are peblis the conference paper

3],

3.1 Motivation

We reconsider the example system in Section 2.7 and a motle gfystem is shown
in Fig. 4.

We first determine component models for the two machinesderaio create the
plant model automato@ of the overall system. These modés andG, are shown
in Fig. 5. The parallel composition @, andG; results in the overall system model
G = G;]||Gg that is also shown in Fig. 5.

The desired operation of our example system is as follows: gfoduct is pro-
cessed by one of the machines then it should not be procegdbd bther machine.
In addition, a product should be processed only one time hodlg not cycle be-

16



inl exitl

— M_1 —
1to2 l [ 2tol

in2 exit2

— M_2 —>

Figure 4: Schematic of the example system

2
2tC:)L1 G ilu((%z i P Q
in ,
‘ ( 2

1to2
exitl

opl
exitl
G, 1to2

L (3
exit2 i
op2 opl

opl op2

Figure 5: Plant model automata of the example system.

tween the machines. For example, a product can enter thensygthinl andopl

can happen afterwards. Then, the product will not be preceby op2. On the
other hand, if the product enters the system with eught and is not processed by
opl, 1to2 andop2 must happen. Fig. 6 shows the four component automata of our
specification. The overall specificationds= Ly(Cy||Co||Cs]|Ca).

The maximally permissive supervisor S such that
Lm(G||S) = SupCoriLm(C),G,2,) for this specification and plant is shown in Fig.
7. Here, we assume thag = 0.
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Figure 6: Components of the specification for the example system.

exit2

Figure 7: Maximally permissive supervis@for the example system.

The supervisoSis designed to control the plant in the nominal case, thathgn
the plant does not exhibit any faulty behavior. Now assuna¢ fédwlts occur in the
plant. Such fault can for example be caused by the failureti@resport or processing
unit. Consider the transport from I to M_2 fails, that is, the everitto2 cannot
happen any more. In that case, the closed-loop behavi@rusfder supervision b$
is represented by the automat8¥? in Fig. 8. It can be seen that, even in the case of
a fault, the closed loop is nonblocking and fulfills the sfieationK. For example,
if a fault happens whe® in Fig. 7 is at state 3, the closed loop after the fault can
continue its operation from that state but will not be ablectoirn to that state unless
the fault is repaired. That i§can tolerate the faulty evefito? .
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Figure 8: Closed loop with faulty everitoB .

In contrast, assume that Mis faulty such that everdpl is no longer possible.
Then, the corresponding closed-loop behavior is given bytiiomators®P! in Fig. 9.
It can be seen that the faulty closed loop becomes blockimgcElS cannot tolerate
a fault in the evenopl.

exit2

op2

op2

Figure 9: Closed loop with faulty everapl.

In view of the previous discussion, the first objective o$ttinapter is determining
if a given supervisor can tolerate a given set of faulty eveihe second objective is
computing fault-tolerant supervisors that can toleratevargset of faulty events.
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3.2 Problem Formulation

According to the previous discussion, it is desired to findesvisor that still fulfills
the specified behavior even if a fault happens. We formatzerequirement by defin-
ing a fault-tolerant supervisor. We assume fBat (X,Z, 8, xo, Xn) is a plant automa-
ton,K C Liy(G) is a specification angl,, is a set of uncontrollable events. In addition,
we introduce the set of faulty everEsthat represents all events that can no longer oc-
cur if a fault happens. Finally, we introduce the faulty pléh= (X, Z, &', xo, Xm) C G
such thatG' is obtained fromG by removing each transition with an event In.
For eachx € X, we write Gl = (X,Z, 8", x, X)) with the initial statex. We denote
the maximally permissive supervisor for the given pl&and specificatiorK as
S= (Q,%,v,qo,Qm) and writeSTT = (QFT,=,vFT gf T, Q) for the fault-tolerant
supervisor.

For the given example in Section 3.1, the plaris- G ||G; in Fig. 5 and the set
of uncontrollable events 5, = 0. The maximally permissive supervisBin Fig. 7
can be used to mark the specificatién= L (S). The supervisor for the given plant
and specification i$§ that is shown in Fig. 7. A fault tolerant supervisor which is
nonblocking for faulty evenopl isS™T that is shown in Fig. 10.

We now formalize our notion of fault-tolerance.
Definition 3. Let G K, 2,2 be given as above. The specification K is fault-tolerant
for G, 2, 2 if

1. K is controllable for G and&,

2. forallse K

K /SN Ln(G) /SN (2 \ 21)* = K/SNLm(G) /SN (Z\ ).

In words, a fault-tolerant specification has to be contbdédor G and,, accord-
ing to (1) in Definition 3. In addition, it must be fulfilled fany string inK that,
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whenever a fault happens, this means events iare no longer possible, the string
can still be completed to fulfill the specification.

For the example defined in Section 3.1 the supernsr blocking if the event
opl is a faulty eventI; = {opl}). Fig. 9 shows that ifin22tol happens from
the initial state Sreaches state 7, from where there is no string to a markesl istat
S. Hence condition (2) in Definition 3 is violated and the sfieationK = L(S) is
not fault-tolerant. In contrast, the specificatién= Ly,(S™") for the automato$™" in
Fig. 10 is fault-tolerant. It is controllable fa®,>, andS" is still nonblocking even
if op1 is no longer possible because of a fault. It is also readigeoled thaS™ " can
be used as a fault-tolerant supervisor¥pr= {opl}.

g7 exit2

@ inl N 1to2 ‘@ op2

exit2 inl

op2

Figure 10: Example for a fault-tolerant supervisor.

Considering the previous discussion, it is desirable tordetee a fault-tolerant
specification according to Definition 3 and its associatquestisor whenever such
specification exists. Hence, we intend to solve the follgypnoblem:

Problem 1. Let G be a plant automaton, K be a specificati2p,be a set of uncon-
trollable events and; be a set of faulty events as introduced before. We want to find
a supervisor 8T for G andZ, such that:

1. Lm(S'T) C K is fault-tolerant for GZ, %t

2. Lin(G||S'T) is as large as possible.
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3.3 Verification of Fault Tolerance

Before solving Problem 1, we outline a procedure for the \eaiion if a given specifi-
cationK is fault-tolerant for a plan® and the alphabets,, 2, that is, if the conditions
in Definition 3 are fulfilled. Our result is stated in Lemma 1.

Lemma 1. Let G, Z,;,, S andX; be given and assume that€(Y,Z,y,Yo,Ym) is a
recognizer of K, that is, k(C) = K. Also define R= G||C = (Z,%, a, 29, Zy,) and write

R = (Z,%, af,zo,Zm) for the subautomaton of R where all transitions with events in
¢ are removed. K i€¢-tolerant if and only if K is controllable for G an#l, and R

is non-blocking.

R’ represents the closed-loop system after a fault happente icase thaK is
controllable forG andZ,. Lemma 1 states that it should be possible to reach a marked
state in the faulty closed loop. Formally, Lemma 1 is provedodows.

Proof. (IF) We assume thdf is controllable foiG andZ, andR' is non-blocking. We
have to show that the conditions in Definition 3 are fulfillgd.) holds by assump-
tion. Regarding (2), assume that K and letu’ € K/sNLm(G)/sN (Z\ Zf)*. Write
X = 0(Xo,S) andy = y¥(Yo,S). By definition ofR, s€ L(R) anda(z,s) = (x,y). More-

over, by definition ofR', af((x,y),Uu)! sinceu’ € (Z\ )*. SinceR' is non-blocking
and does not have any transition with event&inthere is au € (X \ Zf)* such that
a’((x,y),uu) € Zm. Hence,u'u € K/sNLn(G)/sN(Z\ Z)*. Sinceu’ was chosen
arbitrarily, (2) in Definition 3 is fulfilled.

(ONLY IF) We assume that (1) and (2) in Definition 3 are fulilléNe show that
the conditions in Lemma 1 also hol& is controllable forG andZ,, by assumption.
Now let (x,y) € Z. Then there is a8 € >* such thatd(xp,s) = x and y(Yo,S) =Y.
Because of (2) in Definition 3, there isuee K/sNLm(G)/sN(Z\ Z)*. Thatis,u €
Lm(C)/sandu € Liy(G)/sN (Z\ Zf)*, which implies thata’((x,y),u) € Zn. Hence,
R is nonblocking. O
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For our example with faulty evertto2 , there is a string to a marked state from
each state o8'°? in Fig. 8 that corresponds to the plant in Fig. 5 where tréorsit
with eventlto2 are removed and the specificatiin= L (S) in Fig. 7. Hence, the
supervisoiSin Fig. 7 can be considered as fault-tolerant. However gfftulty event
isop1, the situation is different. Consider the faulty closed I& in Fig. 9 for the
specificatiorK = Ly (S). It can be seen that there is no string to a marked state & stat
7 is reached ir8°P! and fault-tolerance as in Definition 3 is violated.

We finally note that the complexity of the verification in Lerarh is determined
by computations on the state spaceédfC. Hence, we obtai®(|X||Y]).

3.4 Supremal Fault-Tolerant Sublanguage

According to the definition, there might be different fatdterant supervisors for a
given plantG, specificatiorK, uncontrollable event s&, and faulty event s&f;. Our
second result shows that there is a unique supremal suchvigrehat realizes the
supremal fault-tolerant sublanguagekof In order to establish this result, we first
show that fault-tolerant sublanguages are closed undenuni

Lemma 2. Let G, K, 2, and Z; be as introduced before and assume that the two
languages K K> C Ly(G) are fault-tolerant for G2, and ;. Then, Ki=Ki1UKs is
also fault-tolerant for Gz, and Z;.

Proof. It has to be shown thd{ fulfills the conditions in Definition 3. Considering
(1), it follows directly from the union-closure of contrable sublanguages thitis
controllable forG andZX,,.

For (2), we need to show th&t/sNLm(G)/sN(Z\ Zf)* = K/sNLn(G)/sN(Z\
2)*. It trivially holds thatK/sNLm(G)/sN(Z\ Zf)* € K/sNLm(G)/sN (Z\ Z¢)*.
In order to show that alskd /SN Ln(G)/sN (Z\ Z)* 2 K/sNLm(G)/sN(Z\ Z)*, let
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ueK/sNkm(G)/sN(Z\ Zf)*.

= ueK/s= (KiUKjy)/sandu € Ln(G)/sN (Z\ Z)*

= ueKz/sUKz/sandu € Ly(G)/sN (Z\ Zf)*

= ueKi/sNLm(G)/sN(Z\ Z)* and
ueKa/sNLm(G)/sN(Z\ Z)*

= u€Ky/sNLn(G)/sN(Z\ Z)* and
ueKy/sNLm(G)/sN(Z\ Zf)*

= ue(K1UK2)/sNLm(G)/sN(Z\ Zf)*

=(K)/SNLm(G)/SN (Z\ Z)*.

[

We next define the se¥g(K, 2, %) of all fault-tolerant sublanguages of a given
specificatiorK for G, %, 2.

Fc(K, 2y, Zf)={F C K|F is fault tolerant forG, %, % } .

Using Zc (K, Zy, %) it is now possible to prove the existence of a supremal fault-
tolerant sublanguage.

Theorem 1. Let G, K,Z, and Z; be as introduced before. Then, there is a supremal
element inZg(K, 2, %) and is evaluated as

SUpFTK,G,%, %) = | J{FIF € Zc(K,2y, %)}

Proof. The correctness of Theorem 1 directly follows from Lemma 2. ]
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3.5 Computation of SupConFT

Having established the existence of a supremal faultaatesublanguage, we now
study its computation for a given pla@ specificatiorK with recognizelC, uncon-
trollable events, and faulty event seX;. We propose the following algorithm for
finding SupFTK, G, %, Z5).

Input: C, G, 2, 25
Procedure:

1. Determine the maximally permissive superviSet (Q,, v, do, Qm)
such thal.(S) = SupCoitK, G, %)

2. Compute the subautomat6h_ Sby deleting all transitions with events
in 2 from S,

3. Define the se®’ C Q as the set of states that are not coaccessiti#e in
4. Compute the subautomat8h_ Sby deleting all states i)' from S.

5. Compute an automat@ " = (QFT, %, vFT of T, QRT) such that
Lm(SFT) = SupCOI(ILm(S'),S,Zu).

6. Return the supremal fault-tolerant sublanguiagéS™).

Algorithm 1: Computation oSupFT.

This algorithm determines the supremal fault-toleranfanduage as follows. A
set of bad state®' is identified from where it is not possible to reach a marketest
in the maximally permissive closed loop. Any string thade#o such bad state must
be disabled in order to achieve fault-tolerance accordnDefinition 3. Hence, we
delete these bad states from the maximally permissive gigpeSand use the result-
ing subautomaton as specification for the computation oktlpgemal fault-tolerant
sublanguage. The complexity of the algorithm is determiogdhe computation of
supremal controllable sublanguages in step (1) and (5)céjave obtairD(|X|?|Y|?).

Theorem 2. Assume S is constructed according to Algorithm 1 angh(S™") # 0.
Then, ln(ST) = SupFTK, G, %, %), that is, $T solves Problem 1.
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Proof. Is is clear thalS™" solves Problem 1 it.m(S™T) = SupFTK, G, 2,,3) # 0.
Hence, it is only required to prove thiat,(ST) = SupFT(K,G,%,,3). It has to be
shown that (i)Lm,(ST) is a fault-tolerant sublanguage Kffor G, %, 3 and (ii) for
anyK C K’ O Ly(ST), it holds thatk’ is not fault-tolerant foiG, %, Zs.

Considering (i), it holds thaty,(ST) € K andLy(S™T) is controllable forG and
2y because of (4) and (5) in Algorithm 1. In order to show (2) infiBiéon 3, let
seL(G||ST) andu € Lin(FT)/sNLm(G)/sN (Z\ Z)*. Thatis,se Li(ST) andu’ €
Lm(S)/sN(Z\ Z)* according to the computation 8fT from S. Then, because of (3),
(4), (5) in Algorithm 1, there must bewac (2 \ Zf)* such that/u € L(S7T)/s. Since
Lm(ST) € Lm(G), alsou'u € Li(G)/s. That is, we confirmed thaf € Ly (ST)/sN

Lm(G)/sN(Z\ Z¢)*.

In order to show thatm(ST) is indeed supremal, we assume there is an automaton
Ssuch thak O Lin(S) D Lin(ST) andLm(S) is fault-tolerant foiG, 2, Z;. Then, there
must be a string € Lm(S) \ Lm(ST) = Lm(S) \ SupCortiLm(S),G, %y). That s, there
must be an extensiane X* such thaw(go,su) € Q' leads to a bad state Bibecause
of (4) and cannot be prevented from occurring because of(B)gorithm 1. Hence,

Lm(S) cannot be fault-tolerant fdg, %, 2¢, which contradicts the assumption. Hence,
Lm(S™T) is the supremal fault-tolerant sublanguage. O

Regarding the example in Section 3.1, the autom&®h in Fig. 9 corresponds
to the automato in Algorithm 1. Hence, the bad state 7 has to be removed Bom
in Fig. 7. The resulting automaton is controllable @and>, such thatS™" = S is
obtained in Fig. 10. This supervisor leads to a hon-blockileged-loop both in the
nominal case and in the case of a faulty evant . It also has to be noted that the
closed loop returns to its nominal operation, wheneverdhé fs repaired. Hereby, a
repair is possible any time sinég,(ST) C Lm(9).
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CHAPTER 4

COMPUTATION OF SUPERVISORS FOR FAULT-RECOVERY AND
REPAIR FOR DISCRETE EVENT SYSTEMS

In this chapter, a new method is developed for the faultisregoof DES. According
to this method, a fault-recovery supervisor is given th#ioves the specifiechominal
system behavior until a fault-occurrence, that continteeperation according to a
degradedspecification after a fault and that finally converges to ardd®ehavior af-
ter fault This method can also be applied to system repair and we pecgroiterative
procedure that determines a supervisor for an arbitrarybeuraf fault occurrences
and system repairs.

The outline of this chapter is as follows. Section 4.1 forized the fault-recovery
problem. Section 4.2 constructs a specification languagepaoposes a modified
version of the language convergence problem. Section $\8ssto apply the method
on an example. Section 4.4 proposes the method to systein r&petion 4.5 shows
that the method satisfies the case of multiple fault occagemnd repairs. We note
that the results presented in this chapter are publishdeindnference paper [6].

4.1 Problem Statement

In this section, we formulate the fault-recovery problemdstd in this paper. We
consider that the system is modeled using the alphaha¥, >F ¥,. Hereby,>F
contains fault events whose occurrence indicates the mme of a fault>N con-
tains all events that are not associated to faults Bard>NUZF. 5, is the set of
uncontrollable events. Then, the system behavior is cterraed by the plant model
G = (X,Z,d,x%0,Xm) that includes the potentially faulty system behavior.
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The main objective is to synthesize a supervi§br= (QF, %, vF,gf,QF,) that
achieves fault-recovery in the closed IdB[S™. In order to specify the desired system
behavior, we consider three different specifications. tFire nominal specification
KN C Lm(G) characterizes the desired system behavior in case no $goifesent in
the system. That is, the closed-loop behavior without amyt 'accurrence should
be a subset of the nominal specification and nonblockingatedsin the following
condition.

P1: Lm(G||S) n(=Ny* c KN

Second, we use the degraded specifica®hC =* that represents thadmissible
behavior after a fault occurrence. In principle, we want tha system continues its
operation after any fault while considering the past sysbetmavior until the fault.
That is, a suitable part of the behavior before a fault carated with the behavior
after a fault should belong 6. Formally, we want that

P2: it holds for alls € Li(G||S) N (ZN)*=F(zN)* that there exists a partitiosi=
sis?...sks2f sywith f € 5F,6) € (sN)*fori=1,...,kandj =1,2,s.--st e KN

In words,ﬁ---# e KN requires that one part of the substring before a fault oc-
currence belongs to the nominal behavior, Whelgas §33 € KP requires that the
remaining substring? - - - s2 before the fault occurrence can be continued to a string
in KP. That is, a substring of the non-faulty behavior that shauiginally fulfill KN
is used to complet&P. Note that he conditios} - - - st € KN is introduced in order to
enable system repair as discussed in Section 4.4.

Third, we introduce the faulty behavior specificatiéh C =*. This specification
represents thdesiredsystem behavior after fault. That is, we ideally want to achi
KF after any fault occurrence in the sense of convergirgtafter a bounded number
of event occurrences.
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P3: KF < Lin(G||S) /KNSF,

We next combine the previously introduced conditions ineort formulate the
fault-recovery problem addressed in this paper.

Problem 2. Assume that G5, =, =N, =F, KN, KP, KF are given as above. We want

to design a nonblocking fault-recovery supervisbr=S(QF, =, vF, of, Qf,) for G and
2, such that P1, P2 and P3 hold.

(P1) Lm(G|IST) N (ZN)* KN,

(P2) itholds for all s2 L(G||S7)N(ZN)*=F (zN)* that s=s}s? - - - siSf s with f € =F,
§ e (=V*fori=1,....kand j=1,2,sl-..ste KN and €. .. s2s3 € KP,

(P3) KF < Ln(G||S)/KNZF.
We denote the obtained fault-recovery supervisan@sinally optimalif

Lm(G[[S) N (ZN)" = SupaK™, L(G"Y), 2,) (4.1)
and asoptimally recoveringf

Lm(G||S)e = suf(SupdKF",L(G),Z,). (4.2)

Thatis,S is nominally optimal if it realizes the maximally permissimominal be-
havior before any fault occurrence agdis optimally recovering if it asymptotically
realizes the maximally permissive faulty behavior.
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4.2 Solution to the Fault-Recovery Problem

In order to solve Problem 2, we first construct a specificatimguage<” C Ly, (G)
that captures conditions (P1) and (P2). To this end, we fot that

KNZFAL(G)

contains all plant strings that follow the nominal speciimaKN and terminate with
a fault and
KNZES*NL(G)

contains all plant strings that fulfill the nominal specifioa until a fault occurrence.
Then, applying the interleaving composition in Definitionnie define the language

KA = (KNZF||[KP) N (KNZF(ZN)* N L (G)). (4.3)

KA contains all plant strings such that one substring untiludt accurrence be-
longs tokKN=F, whereas the remaining substring before a fault can be aistgplo
fulfill the degraded specificatiak®. At the same time, all strings i* before a fault
occurrence belong tN. Next, we compute the supervisgt = (Q*, 2, vA, g5, Q)
such that

Lm(S) = SupGKA,L(G), Z,). (4.4)

According to the definition oK”, " realizes the maximally permissive closed-
loop behavior such tha||S" fulfills the nominal specification before any fault occur-
rence and continues following the degraded specificatitem affault occurs according
to (P1) and (P2) in Problem 2.

We finally need to account for (P3). To this end, refer to laggiconvergence
introduced in Section 2.6. Using modified language convergewe propose to com-

30



pute the supervisor for fault-recove8j such that

Lmn(§) = CAKF,Lm(SY),KNZF, 2,) U(CAKKF, Lin(SA),KNZF 5) nKN).  (4.5)

According to its computatior§™ ensures that the closed-loop syst&iS™

1. follows the nominal specificatiod™N before any fault occurrence,
2. continues meeting the degraded specificatiBrafter a fault occurs,

3. converges to the faulty behavior specificatioh

We next confirm that the existence 8t according to the described computation
in (4.3) to (4.5) is necessary and sufficient for the solugbRroblem 2.

Theorem 3. Consider G5, 2, =N, 5F, KN, KP, KF as in Problem 2. Then, a solu-
tion to Problem 2 exists if and only if it holds that,(S") # 0 for the supervisor 'S
according to(4.5). Furthermore, § solves Problem 2 if }(S) # 0.

Proof. (IF) We assume thaty,(S™) according to (4.5) is non-empty and we show that
S is a solution to Problem.
(P1) It follows from (4.5) thaCA(KF, Li(S*), KN=F 5,) £ 0. Furthermore,

CAKF L (SY),KNZF 5y n(=N)*
CLn(SYHN(ENY cKANEN) =0

Hence Lm(S7) N (ZN)* = CAKKF, Lm(S*),KN=F, 2,,) nKN € KN according to (4.5).

(P2) With (4.4), (4.5), it holds thdtm(S) N (ZN)*=F(zN)* C KA. That is,s €
Lm(G||S) N (EN)*=F(zN)* = s e KA C (KNZF|||KP). Then, Definition 1 directly
implies thats fulfills (P2).
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(P3) Since B% CAKKF,Lin(SY),KNZF 5,) = Lin(§) N (zN)*=F(zN)*, it follows
thatKF < Ly (G||S)/KNZF,

(ONLY IF) We assume that a solution supervi&brto Problem 2 exists and we
need to show thdty,(S7) according to (4.5) is non-empty.

According to Problem 2§ fulfills (P1) to (P3). In particular, (P3) implies that
0 # Ln(§) NKNEF(EN)* = CAKKF, Lin(§),KN=F 5,). In addition, we show that
Lm(G||S) NKNSF(sN)* C KA. Let s e Ly(G||S) NnKNZF(EN)*. Then, by (P2),
s=slg?. . .sl2f sswith f € 5F, ¢l € (EN)*fori=1,... . kandj=1,2,s!--st e KN
ands?---s2s3 € KP. Then, Definition 1 implies tha € (KNZF|||Kp). Moreover, by
(P1),sts}---sks? € KN C L(G) and hences € KNZF(ZN)* N L(G). That is, indeed
se KA,

Considering thatCAKF, L (§),KNZF 5,) is controllable forL(G) and Z,,
CAKKF, Ln(S),KNZF 5,)) C Ln(S") = SupGKA,L(G),Z,). Finally, we conclude
that

0 # CAKF, Lm(S),KNzF 3,
C CAKF, Lim(SY),KN=F, 5,) € Lin(SD).

~—

O

In order to evaluate the computational complexity of ourhmet we writey' for
the state count of canonical recognizers for the specificak’, i € {N,D,F,A},
X| for the state count o6 and|Q”| for the state count o8". Then, the interleav-
ing compositiorkNZF|[|KP in (4.3) requiresO(ZVN'VD). Although this complexity is
exponential in the respective state counts, it is obsememlir example evaluations
that the intersection witfKNzF(=N)*) N L(G) mitigates the exponential blow-up.
The evaluation of (4.4) is performed with(|X|?- |Q*|?) and (4.5) is computed in
O(|QA|2- 225Il) according to Section 2.6.
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4.3 Application Example

In order to illustrate the concept of fault-recovery as ede®d in this chapter, we
apply the proposed method to the example system which mdated in Section 2.7.
The overview of the system is shown in Figure 11.

fault

repair
inl exitl
— M_1 R —
in2 exit2
— M_2 —

Figure 11: Schematic of the example system with fault events.

In this chapter, it is assumed that a faul) that disables the operation of
can occur whenever a product is present. Automata modetaddwo machines are
shown in Fig. 12 such th& = G, ||G,. Furthermorex™ = {f } and it is assumed that
>, = {f } for this example.

2tol opl 1to2
G1 @ inl ‘ 62 |n2 @

2t01
exit2

1to2
exitl

Figure 12: Plant model automata of the example system.

We specify the nominal behavior of the closed-loop systeaih ghat only M1
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is used and products that enter Mare processed before leavingIM The nominal
specification is given bKN = L,(CN) in Fig. 13. The degraded specificatit® is
formulated such that products are no longer processed Hwultg machine M1 but

by the other machine M. In addition, products in the faulty machine_Mshould
remain there. The automa@f andC? in Fig. 13 address these requirements such
thatKP = Ly (CP|CD). Finally, we want to achieve that products directly ente2M
and are processed there in the faulty case. Hence, our taetigvior specification is
KF = Lm(CF) in Fig. 13.

cN in1 opl CP ~" opl
QP QRO
exitl 4102
R0 R0L0K € 100
exit2 exit2

Figure 13: Nominal specification automat@ (alphabet); degraded specification
automateC? (alphabet \ {in2 ,op2,exit2 }), C? (alphabet \ {in1 ,opl}) and
faulty specification automatd®” (alphabet).

Using G (without ther -transitions),>,, KN, KP, KF, =F as introduced in this
section, it is possible to evaluate the fault-recovery siiper S~ based on (4.3), (4.4)
and (4.5). The result is shown in Fig. 14. Hereby, the lefichpart ofS™ represents
the nominal behavior of the example system, whereby it careliéied that,(S7) N
(zNy* € KN. Moreover, it turns out for this simple example that conesaige to the
faulty behavior specification is achieved immediatelytitipand part of").

s

|
|
|
|
|
|
|
Figure 14: Fault-recovery supervis@.
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4.4 Handling System Repair

We next show that the same computation as in Section 4.2 caisdzkin order to
handle system repair after a fault. To this end, we define afsepair event&R and
consider a plant modéb that allows for repair after a fault as is shown in Fig. 12.
In addition, we introduce a repair specificatigii that continues the system behavior
after a repair happened. Using this model, we intend to aehiee following behavior
that is complementary to the behavior specified in Problem 2:

R1: Follow the fault-recovering behavior that is represéig L (G||S7) as com-
puted in Section 4.2 until a repair is performed,

R2: Continue the system behavior according to the repair Spation KR after re-
pair,

R3: Finally converge to the nominal specificatig.

It is readily observed that (R1) to (R3) above are obtained Igtiution from
item (P1) to (P3) in the formulation of Problem 2 as follow§N=F is replaced by
KD3R KP is replaced bykR, KF is replaced bykN andKN=F(N)* is replaced by
L(G||SH)ZR(=N)*. That is, the same solution procedure can be applied, firapat
ing a specification

K® = [KP=R||[KR) 1 (L(G|ISH)Z¥(=")" NLm(G)))- (4.6)
Next, the superviso®® is computed with

Lm(S?) = SupQKB,L(G),z,\ zM). (4.7)
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Finally, convergence to the nominal behavior is achieveddiyputing a supervisor
for repairS® such that

Lm(SY) = CAKN, Ly (SP),L(G||)=F, =, \ =F)u

(4.8)
Lm(G||S)N CAKN, Ly(P),L(G||S)=F, 2, \ =F)

Note that the uncontrollable everig\ =" are used in (4.7) and (4.8). Here, we con-
sider the events iiF as controllable since we compute the superviofor the case
after repair but without additional fault. The possibilaymultiple fault occurrences
is discussed below.

In our example, the modé& in Fig. 12 already includes a system repair (dashed
eventsr ). Furthermore, we would like to achieve the specificatiéhthat is given in
Fig. 15 after repair is performed. That is, products thatmoeessed by M should
move to M1 and any new products should enter fromIMand should be processed

there.
inl
@ opl

Figure 15: Specification automataR andCR after repair.

Using the computation described in this section, we arrivihe supervisor for
repair X as shown in Fig. 16. It can be seen that the upper left-handohas?
constitutes the nominal behavior, whereas the upper hightt part represents the
behavior after a fault. The lower part 8f is is the desired behavior after repair. That
is, products are delivered to and operated at lnd finally the nominal behavior is
recovered.
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Figure 16: Supervisor after repai®.

4.5 Arbitrary Fault Occurrences and System Repairs

The computation of? as in (4.8) assumes that no further fault can happen aftairrep
since no fault is allowed after repair according to (4.6)ptactice, this is not a realistic
assumption. In order to determine a fault-recovery supervihat allows arbitrary
faults and repairs, we propose to iteratively apply the aatiaipon for fault-recovery
and repair until no new behavior is added to the resultingsugor. To this end, we
first write a generalized representation of the computatiof#.3) to (4.5) ((4.6) to
(4.8)) depending on the input languagdés. . ., K4 and alphabet&q, 2.

K® =[(K1Z4]||K2) N (KsZ1(ZN)* NL(G))], (4.9)
Lm(&%) =SupGKC,L(G), 2\ %2), (4.10)
Lim(S") =CA(Ka,Lin(S"), KaZ2, 2y \ Z2)U (4.12)

Kz NCA(Kg, Lm(SF), K322, 34\ 22)
We define the superviso§ = (Qf,Z, vf,qf;,Qh;) and S = (QF, Z, v, of;, Q1)

in iterationi and writeS, () for the supervisof () starting from state € QF
(g € Q). Then, we initialize the iterative process with= 1, S := S in (4.5) and
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St :=SRin (4.8) and we apply the following steps.

1.i:=i+1,

2. ComputeS using (5.1) to (5.3) with the input&; = KR, K, = KP, K3 =
Lm(G||S 1), Ka = KF, 51 = 5F and3, = 3R,

3. DefineW := {qe QF3u e (2\ ZF)*[zF(z*\ £F)]* such thaty = v (qf;,u)},

4. Terminate if for allj € W™, there exists g &€ W' ; such thatm(S;) = Lm(Sg) N
(ZN)*. In that case, transitions leadingdan § are lead to the staifistead.
Denote the resulting automaton3s

5. ComputeS® using (5.1) to (5.3) with the inputk; = KP, Ky = KR, K3 =
Lm(G||S), Kg = KN, 53 = R ands, = 5F,

6. DefineW := {ge QF[Tue (Z\ZR)*[ZR(2\ ZR)*|** such thaty= v} (qf;, u)},

7. Terminate if for al € W, there exists g & W, such that m(S,) = Lm(S%) N
(zNY*. In that case, transitions leadingdan $R are lead to the stagiristead.
Denote the resulting automaton@s

8. gotol.

The algorithm repeatedly computes supervisors for fadovery and repair analo-
gous to Section 4.2 and 4.4, whereby the algorithm termsnéitthe newly added
behavior after fault (repair) is identical to the one addethe previous iteration. To
this end, it is checked in steps (4) and (7) if the added behabtained in stepis
identical to the added behavior in step 1. In the positive case, it is possible to lead
all incoming transitions of newly added states back to theesponding state that
was added in the previous iteration. The resulting supendgter termination of the
described algorithm handles arbitrary numbers of faults r@pairs. In addition, the
conditions in Problem 2 are fulfilled for each fault occucenwhereas the analogous
conditions for system repair are fulfilled for each systepare Although termina-
tion of the algorithm was observed for all our examples, an@iresult regarding the
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termination of our algorithm is subject of future work. As at@, the algorithm is
implemented in [23].

For our example, the algorithm terminates in the secondtitar with the supervi-
sorSin Fig. 17. It can be seen by inspection that the desired Bpaions after fault
and repair are fulfilled.

Figure 17: SupervisoiSthat solves the fault-recovery problem with system repair.
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CHAPTER 5

DISCRETE EVENT SUPERVISOR DESIGN AND APPLICATION FOR
MANUFACTURING SYSTEMS WITH ARBITRARY FAULTS AND REPAIRS

This chapter extends the method for the fault-recovery apdir of single faults as

described in Chapter 4 to the case of different faults. As @t,ese obtain a supervi-

sor that follows the specified nominal system behavior irfdlé-free case, converges
to a desired degraded behavior for each fault type and restive nominal behavior

after repair. The chapter is organized as follows. Sectitmgles a motivating exam-
ple and Section 5.2 presents the extended problem forronla8ection 5.3 proposes
an algorithm for the supervisor computation. We note tharésults presented in this
chapter are published in the conference paper [7].

5.1 Motivating Example

We recall the same example which is introduced in Sectionir2ofder to illustrate
the problem setting in this chapter.

We assume that two faults can happen in the system the ménedi€e from the
study in Chapter 4F1 can occur in M1 whenever a product is present and disables
the operation of M1. Likewise,F2 can occur whenever a product is present ir2M
and disables the operation of ®1 The corresponding repair events &&andR2.

R1 can occur afteF1 andR2 can occur afteF2. When repair events happen, the
correct operation of the respective machine is restoredorAata model$s; and G,
for the two machines are shown in Fig. 19. In this chapter, ssu@e that the two
faults do not happen simultaneously which is captured byatltematonF in Fig.
19. That is, the overall plant model @ = G, ||G,||F. Moreover,5" = {F1 ,F2},
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F1

R1
inl exitl
—r M_1 —
1to2 l I 2tol
in2 exit2
— M. 2 —
F2
R2

Figure 18: Schematic of the example system

>R = {R1,R2} and it is assumed that, = {F1 ,F2}.

We specify the nominal behavior of the closed-loop systeoh shat products
enter one of the machines Mor M_2 and are processed by the respective machine
before leaving. The nominal specification is givenKy = Lm(CN) in Fig. 19. In
case of a fault in one of the machines, it is desired that therahachine continues
the operation. Different from our previous work, this ingdithat a different behavior
should be achieved after different faults.

ConsideringrF1l, it is required that products are no longer processed byahkyf
machine M1 but by the other machine M. That is, afterfF1, unprocessed prod-
ucts in M1 should be moved to M as is modeled by the degraded specification
KPL = Lm(CPY|CPY) in Fig. 19. Finally, products should only be handled by2M
as described biKF1. In case of repair, the operation of Mshould resume and the
system should return to the nominal operation. This behasicepresented by the
repair specificatiolR! = Ly, (CRY||CRY) in Fig. 19.

ConsideringF2, it is required that products are no longer processed byahkyf
machine M2 but by the other machine MI. The respective specificatiod®? (de-
graded) K2 (faulty behavior) and&R? (repair) are readily obtained fromP?, KF1,
KR! due to the symmetry of the problem (Fig. 19).
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C in1

CDl exitl
Ln(CP*C2 »Qw
D2 to

C1 |n2 op2 D2 _ D2 opl
K e T B @ LG
cr = in2 5\ op2 Fi o inl 5\ 0 1XI
W KF = Ln(©™) D@2 (3

R1 exit?2 exitl

CI :
@ inl @ opl- 3) KRl = CR1|’CR1)© in2 op2 3

CR2 exitl

>—(2)-°P
1@ in2 @ 002. 3) KR2 — CR2||CR2 O\d\/@

exit2

Figure 19: Automata models for the example system: Plant G1||G;||F; nominal
specificatiorkKN = Ly (CY[|CY).
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We note that the described setting resembles the settingapt€h4. Nevertheless,
we now consider that a different behavior is required aftéernt faults which is not
captured in Chapter 4.

5.2 Problem Formulation

We next formalize the extended problem setting. The systgmavior is characterized
by the plant modeG = (X, Z, d,Xp, Xm), assuming that different faults cannot occur
simultaneously. The alphabefg, >N C X are used as before. In addition, we write
>F = {F1,...,Fn} for the fault events an&R = {R1,...,Rn} for the repair events.

In order to specify the desired system behavior for our feagdbvery and repair
problem, we consider the nominal specificatioh as in Section 4.1 and three spec-
ifications for each faulFi < =F: KP' (degraded specificationi™ (faulty behavior
specification)KR! (repair specification). These specifications have the sagamimg
as in Section 4.1 and 4.4 but are now fault-specific.

Using the previously introduced notation, we want to sohesfollowing problem.

Problem 3. Assume that Gg,, N, =F, sR KN kP KF | KR for Fi € =F are
given as above. We want to design a honblocking fault-regaed repair supervisor
S=(Q,Z,v,00,Qm) for G and %, such that the below conditions (1) to (3) hold.
Hereby, we define|l= (ZN)*(ZF(ZN)*ZR(ZN)*)' NL(G||9) as the set of all closed-
loop strings with | faults and repairs.

(1) Lm(Gl|S) N (ZN)* CKN.

(2) it holds for allFi € =" and | € Ny:

a)Vs€ Li(G||S)NLiFi (N)*, there exists a partition s sls? - - - sLs2Fi s3, §/ €
> fori=1,....,kand j=1,2,st---steLjand - -sfsg € KD

b) K7 = [Lm(G[9)/(L(G]|S) NLiFi )] N (ZN)*
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(3) it holds for allRi € >R and | e Ny:

a)Vse Lm(G||S)NLFi (ZN)*Ri (2N)*, there exists a partitions sts? - - - st2Fi sg,
s es*fori=1,....kand j=1,2,s--st e L(G||SNLFi (sN)*and §---2sz €
KR,

b) KN <= [Lm(G[|9)/(L(G|I9 NLiFi (ZN)*Ri )] (ZN)*

The three conditions in Problem 2 can be explained as foll@dsrequires that
the closed-loop system fulfills the nominal specificatiohin case no fault occurred.
(2) states that the closed-loop system should a) contisuepieration while fulfilling
the corresponding degraded specificatidi and b) converge to the corresponding
faulty behavior specificatiok™ after each fault occurrendd . Analogously, (3)
states that the closed-loop system should a) continue ésatpn while fulfilling the
corresponding repair specificatia¢R' and b) converge to the nominal specification
KN after each repaiRri .

5.3 Supervisor Computation for Different Faults

This section presents our algorithm for the computatioraoftfrecovery and repair
supervisors that handle arbitrary occurrences of diffiefauits as the main contribu-
tion of this thesis. To this end, we first provide a generalizepresentation of the
computation in (4.3) to (4.5) and ((4.6) to (4.8)) dependimgthe input languages
Ki,...,Kq and alphabet&,, 25:

K® =[(K1Z1]||K2) N (KsZ1(ZN)* NL(G))], (5.1)
Lm(&%) =SupGKC,L(G), 2\ %2), (5.2)
Lim(S%) =CA(Kg, Lin(S%), K322, 4\ Z2) UKz NCA(Ky, Lin(SF), K322, 54\ 22)

(5.3)

Using this representation, we propose to iteratively camploe supervisos =
(Q,Z,Vv,0do,Qm) in Problem 3. In this computation, we use intermediate supers
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denoted as(r), wherebyr € (ZF=R)*(e + =F). For exampleS(r) for r = FIR1F2
denotes a supervisor that is computed for the successivereoce of faulF1, repair
R1and faultF2. Furthermore, writing = 0107 - - - 0, we defineV(r) = {ge Q|Fu e
(ZN)* o1 (ZN)Y*ao(ZN)* - - - (ZNY* gy such thalg = v(qo, u) } as the set of states Bithat
are reachable after a sequence of faults and repairs given by

Based on this notation, we propose Algorithm 2.

This algorithm repeatedly computes supervisors for feadbvery and repair fol-
lowing the tree in Fig. 20. We note that the tree is shown ferdhse of two faults
for ease of representation. We believe that the genera¢septation for an arbitrary
number of faults is straightforward. This tree capturesathbinations of successive
fault occurrences and repairs, respecting the assumptairdifferent faults do not
occur simultaneously. Hereby, the sé&tkeeps track of the supervisors that belong
to the leaves of the tree. This set is initialized with theesusors for one fault and
one repair in line 1 to 3 of Algorithm 2. The algorithm then sessively takes su-
pervisors frome7 (line 7) and computes new supervisors according to (5.15.8) (
For example, the supervis&F1R1F2) is computed fron5F1 R1) using (5.1) to
(5.3) with the specification; = KR, K, = KP2, K3 = Liy(G||S(F1R1)), K4 = KF?
and the alphabets; = {F2} andX; = {R1}. This computation is performed in line 8
in Algorithm 2. The overall supervisor is then updated byiagdhe newly found
behavior (line 9). In the next step, it is checked if reallyvneehavior is found
in the current iteration (line 10 to 15). For example, agansiderS(F1 R1F2).
Then,W(F1R1F2) represents the states $uafter the occurrence ¢f2 andLm (&)
for eachq € W(F1R1F2) represents the possible behavior af@ from stateq.

If this behavior is also obtained afté® in the supervisoS(F2), this implies that
S(F1R1F2) does not realize any new behavior aff&. Hence, it is possible to dis-
cardS(F1R1F2) and continue the behavior afte@ with the previously computed
S(F2) instead andS(F1 R1F2) is not inserted ineZ (line 12). If new behavior is
found, SF1R1F2) is inserted as a new leaf iw. After that, the same procedure
is performed for the case of a repair in line 16 to 23. The atlgor terminates if no
more leaves are inserted.id, which happens as soon as no new behavior is found.
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input : G, 2, KN, =F KP' KF  Fi e3F 2R 3R Ri e 3R

output: S

1 ComputeS(Fi ) for eachFi € =F (as in Sectior??)
2 ComputeS(FiRi ) for eachRi € R (as in Section 4.4)
3 & =Up exr{S(Fi ), S(FiRi )}

N

5
6
7
8

10
11

12
13
14
15
16

17

18
19

20
21
22
23

A

ComputeSsuch thatm(S) = Us.,, Lm(S)
while <7 # 0 do
for Fi ¢z and SrFj Rj ) € &7 do

RemoveS(rFjRj ) from &7
ComputeS(rFjRjFi ) using (5.1) to (5.3) wittkK; = KRI |
Ko =KP' K3 =Ln(G||S(rRj)), Ks =KF , 51 = {Fi } and
Z2={Rj}
Compute newS such thalm(S) = Lm(S) ULm(S(rFRjFi ))
ComputeW(rFi ) andW(rFjRjFi )
if vge W(rFj Rj Fi ), 3G € W(rFi ) such that
Lin(Sg) = Lm(Sg) 0 (ZN)* then
\ Connect transitions leading tpin Sto the statey instead
else
| o = U{S(rFRjFi )}
end
ComputeS(FjRjFiRi ) using (5.1) to (5.3) with the inputs
Ky =KD Ko =KR K3 = Lin(G||S(FIRjFi ), K4 = KN,
21 = {Ri } ande = {Fi }
Compute news such that
Lm(S) = Lm(S) ULm(S(rFRjFIRI )
ComputeW(rFiRi ) andW(rFjRjFiRi ).
if vaoe W(rFj Rj Fi Ri ), 3§ € W(rFi Ri ) such that
Lin(Sy) = Lm(Sg) N (ZN)* then
\ Connect transitions leading tpin Sto the statey instead
else
| o = U{S(rFRJFIRI )}
end

24 end

25 end

Algorithm 2: Computation ofSfor different repeated faults.
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The resulting supervisor after termination of Algorithm @nldles arbitrary numbers
and sequences of faults and repairs.

We next briefly outline that the conditions of Problem 3 atélfed by Scomputed
in Algorithm 2. (1) follows from the initialization in line &nd 2. (2) is addressed in
line 8 and 9 and is preserved by the re-connection of tramsitin line 12. Similarly,
(3) is addressed in line 16, 17 and 20. Finally, it has to bedahat we do not
have a formal result regarding the termination of the atbariat the current stage of
our research. Nevertheless, we note that termination was\ad in all our example
evaluations.

N
F1 F2
L—
/
R S(F1R1) S(F2) R
m
S(FIR1F2)
F1 F2 F1 F2
//
R1 R2 R2

F1 \F2 F1 \F2  Fl \\F2 F1 N

Figure 20: Tree for the computation &.

We applied Algorithm 2 to the example with two faults in Sentb.1. The result-
ing tree is shown in Fig. 21. That is, no new behavior is ol@diwhen computing
S(F1R1F1) (compared todS(F1), S(F1R1F2) (compared tdS(F2), S(F2R2F1)
(compared t&&(F1) andS(F2 R2 F2) (compared t&S(F2). The final supervisos for

a7



our example has 79 states and is too large to be shown in #gssth

N
F1 F2

R1 R2

F1 F2 F1 F2

Figure 21: Tree obtained for the example system. Termination is aeliefter
F1IR1F1,F1R1F2, F2R2F1 andF2 R2 F2.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The occurrence of a fault indicates the deviation of a dycaystem’s behavior from
its desired (nominal) behavior and usually has a negatiygaan In this context,
fault-tolerant and fault-recovery control are concerndth wesigning controllers that
enable the operation of a system even in case of faults. Thguwt@tion of fault-
tolerant supervisors for discrete event systems (DES)lantault-recovery and repair
of discrete event systems (DES) are the main subjects oh#sast

Regarding fault-tolerance, we address faults modeled W{yfauents, the occur-
rence of which is no longer possible in case of a fault and wetwee closed-loop
system to fulfill a given specification even in case of fauit.this modeling frame-
work, an algorithm for the verification of fault tolerance afgiven specification is
our first contribution. Second, we prove the existence of @esual fault-tolerant
sublanguage, in case a given specification is not faultdote As the third contri-
bution, we suggest a polynomial-time algorithm for the catagon of the supremal
fault-tolerant sublanguage.

Regarding fault-recovery and repair, we first propose a nethadefor the design
of fault-recovery supervisors based on the concepts suttieateaving composition
and language convergence. Our fault-recovery supervilmwfs the nominal sys-
tem behavior as long as no fault occurs, and switches to adedrbehavior once
a fault occurs. Afterwards, the closed-loop behavior coyee to a desired specifi-
cation under fault in a bounded number of transitions. Untte existing literature,
the computational method for our fault-recovery supenviam also be used to con-
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duct system repair. Finally, an iterative application of method enables computing
supervisors for the repetitive occurrence of faults andesygepairs.

In addition, this thesis addresses the case where, aftarfaalt, different faults
can occur and a different behavior is required after each. fdo this end, we pro-
pose a new algorithm that iteratively computes a faultwvecpand repair supervisor
following a tree of the possible sequences of fault and regdter termination, the
computed supervisor allows arbitrary sequences of fantisepairs. All methods and
algorithms are illustrated by small manufacturing systeangples.

6.2 Future Work

The work presented in this thesis assumes full event obsanydhat is, all events
can directly be observed/measured. In faulty systems nitbeaexpected that some
events cannot be directly observed. Hence, an interestibga for future work is
the extension of the proposed methods to the case of DES padé&l observation.
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