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ABSTRACT 

 

 

FAULT-TOLERANT SUPERVISORY CONTROL OF DISCRETE EVENT 

SYSTEMS: METHODS AND EXAMPLES 

 

 

ACAR,  Ayşe Nur 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT 

 

August 2015, 50 pages 

 

 

 

Faults can be considered as uncontrollable events that suddenly happen in a system 

and change the behaviour of the system in a negative way. In particular, in case a 

fault happens in a discrete event system (DES), certain actions or operations might 

no longer be possible. This thesis studies the supervisory control of DES that are 

subject to faults. Hereby, two concepts are employed: Fault-tolerant and fault-

recovery control.   

 

Regarding fault-tolerant control, it is desired to use a controller that works both for 

the system with and without a fault. Hence, we first identify necessary and sufficient 

conditions for the existence of a supervisor that realizes a given behavioral 

specification both in the non-faulty and in the faulty case. We further show that it is 

possible to determine a supremal fault-tolerant sublanguage in case the existence 

condition is violated. Finally, we propose an algorithm for the computation of this 

sublanguage and prove 
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its correctness. Different from existing work, our fault-tolerant supervisor allows 

fault occurrences and system repairs at any time.  

 

Regarding fault-recovery control, we study both the case of operating a DES after a 

fault and after repair. We first develop a new method for the fault-recovery of DES. 

In particular, we compute a fault-recovery supervisor that follows the specified 

nominal system behavior until a fault occurrence, that continues its operation 

according to a degraded specification after a fault and that finally converges to a 

desired behavior after fault. We next show that our method is also applicable to 

system repair and we propose an iterative procedure that determines a supervisor for 

an arbitrary number of fault occurrences and system repairs. 

 

Finally, we extend our fault-recovery and repair method with multiple and different 

faults and repairs. As a result, we obtain a supervisor that follows the specified 

nominal system behavior in the fault-free case, converges to a desired degraded 

behavior for each fault type and recovers the nominal behavior after corresponding 

repair. All developed methods are demonstrated with a small manufacturing system. 

 

 

 

 

 

 

 

 

 

 

Keywords: Discrete Event Systems, Supervisory Control, Fault, Fault-Tolerance, 

Fault-Recovery, Repair. 
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ÖZ 

 

 

AYRIK OLAYLI SİSTEMLER İÇİN HATAYA DAYANIKLI 

DENETLEYİCİ KONTOL:  METODLAR VE ÖRNEKLER 

 

 

ACAR, Ayşe Nur 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç Dr. Klaus Werner SCHMIDT 

Ağustos 2015, 50 sayfa 

 

 

 

Hatalar kontrol edilemeyen olaylardır. Sistemde bir anda meydana gelirler ve 

sistemin çalışma düzenin negatif yönde etkilerler. Genellikle, ayrık olaylı sistemlerde 

(DES) hata olması durumunda, ilgili olayların veya operasyonların bir daha 

oluşmama ihtimali vardır. Bu tezde hata içeren ayrık olaylı sistemlerin denetleyici 

kontrolü çalışılmıştır. Bu vesile ile iki ana konsept incelenmiştir: Hataya dayanıklılık 

ve hata kurtarıcı kontrol.  

 

Hataya dayanıklı kontrole ilişkin, sistemin hem normal durumunda hem de hatalı 

durumda tek bir kontrolör kullanılması amaçlanmıştır. Buradan yola çıkarak, önce 

hem hatalı hem de hatasız durumda verilen tavrı çalıştırabilen bir spesifikasyonun 

gerekli ve uygun koşulları tanımlanmıştır.  Daha sonra gösterilmiştir ki, tanımlanan 

koşulların ihlal edildiği durumlarda supremal bir arızaya dayanıklı alt dil 

belirlenmesi mümkündür. Son olarak bu alt dilin bulunabilmesini sağlayan bir 

algoritma geliştirilmiş ve bunun doğruluğu kanıtlanmıştır. Var olan diğer 
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çalışmalardan farklı olarak, bizim geliştirdiğimiz hataya dayanıklı kontrolör, hatanın 

oluşmasına ve sistemin herhangi bir zamanda tamirine izin vermektedir.  

 

Hata kurtarıcı kontrole ilişkin, ayrık olaylı sistemlerin operasyonunda hem hata 

sonrası durumuna hem de tamir sonrası durumunun kontrolü için çalışılmıştır. 

Öncelikle DES’e yönelik arıza kurtarma için yeni bir model geliştirilmiştir. 

Özellikle, bir arızadan sonra bozuk bir spesifikasyona göre işlemine devam eden ve 

sonunda da arızadan sonra istenen bir davranışa yönelen bir arıza oluşumuna kadar, 

belirtilen nominal sistem davranışını takip eden bir arıza kurtarma denetçisi 

hesapladık. Ardından, yöntemimizin sistem tamirine de uygulanabileceği gösterilmiş 

ve isteğe bağlı sayıda arıza oluşumu ve sistem tamiri durumunu kontrol edebilebilen 

bir denetleyiçi oluşturulmasını sağlayan yinelemeli bir algoritma önerilmiştir. 

 

Son olarak, arıza kurtarma ve tamir yöntemi, birçok ve farklı arıza ve tamirler ile 

birlikte sunulmuştur. Sonuç olarak, arızasız durumlarda belirtilen nominal sistem 

davranışını takip eden, her bir arıza tipi için istenen bozuk davranışa yönelen ve ilgili 

tamir işleminden sonra nominal davranışı kurtaran bir denetçi elde edilmiştir. 

Geliştirilen tüm yöntemler ayrı ayrı oluşturduğumuz bir küçük üretim sistemi 

örneğiyle gösterilmiş ve tüm sonuçlar aynı örnek üzerinde açıklanmıştır. 

 

 

 

 

 

 

 

 
 
 
 
 
Keywords: Ayrık Olaylı Sistemler, Denetleyici Kontrol, Hata, Hata Dayanıklılığı, 
 
Hata Kurtarma, Tamir. 
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CHAPTER 1

INTRODUCTION

Discrete Event Systems (DES) are introduced to model dynamic systems with a dis-

crete state space. DES are characterized by’states’, ’events’, whereby’transitions’

between system states occur instantaneously with the occurrence of events. Faults are

uncontrollable events that suddenly happen in a system and have a negative effect on

the behaviour of the DES. To deal with faults, the first problem to be addressed is

fault diagnosis. Here, diagnosers are used to understand ifand where a fault occurs

[1]. Moreover, fault recovery or fault tolerant control enable operating a system under

potentially relaxed performance specifications, even in case of faults. In this context,

there is a distinction between passive and active approaches to fault tolerance in the

literature [2]. Passive fault tolerance allows using the same controller in both faulty

and non-faulty cases. Active fault-tolerance requires a controller adapting its control

law, in case a fault arouses. Such controller (either explicitly or implicitly) is based on

a fault detection unit in order to make an adjustment on its operation. That is, fault-

recovery control allows maintaining the system operation after an event of fault, while

performing a potentially degraded specification.

The subject of this thesis is the fault-tolerant and fault-recovery control of DES.

Hereby, the thesis has three main contributions:

1. Computation of Fault-Tolerant Supervisors for Discrete Event Systems: The

main idea of this contribution is creating a single supervisor, that makes it pos-

sible to realize a supremal fault-tolerant sublanguage foroperating the system

both in the nominal and in the faulty case. This supervisor also handles system

repair in the sense of returning to the nominal system behavior in case the fault

is repaired.
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2. Computation of Supervisors for Fault-Recovery and Repair for Discrete Event

Systems: For this contribution, we propose a new method for the fault-recovery

of DES. The method computes a fault-recovery supervisor that follows the spec-

ified nominal system behavior until a fault-occurrence, that continues its opera-

tion according to a degraded specification after a fault and that finally converges

to a desired behavior after fault. Also our method is extended to include system

repair such that the system returns to its nominal behavior.

3. Discrete Event Supervisor Design and Application for Manufacturing Systems

with Arbitrary Faults and Repairs: The third contribution extends the method in

second contribution. With the extended method, our fault-recovery supervisor

enables operating a DES with multiple different faults.

Considering the first contribution, we center upon the problem of passive fault

tolerance for discrete event systems (DES). We address faults which disable the op-

eration of some components belonging to the DES plant. In that, our fault model

suggests that a certain set of plant events is no longer possible in case a fault happens.

In turn, it is possible for the plant to return to its nominal operation after repair. In

the described setting, we investigate the existence and synthesis of a fault-tolerant su-

pervisor which accomplishes the desired closed-loop behavior in both non-faulty and

faulty cases. To this end, our first contribution is the derivation of the sufficient and

necessary conditions for the existence of such fault-tolerant supervisor, accompanied

by a polynomial-time verification algorithm. In case these conditions are not achieved,

the determination of fault-tolerant sublanguages of a given specification is required.

The second contribution we carried out is we show that a supremal fault-tolerant sub-

language exists and we develop a polynomial-time algorithmfor its computation. The

main ideas of this contribution are published in the conference paper [3].

Considering the second contribution, we develop a new approach for fault-recovery

of DES, which is also suitable for system repair. We discuss our DES model includ-

ing the occurrence of faults, and we use three language specifications to represent the

desired system behavior in a convenient manner: the desirednon-faulty behavior is

2



provided by a nominal specification; the desired continuation of the system behav-

ior after a fault-occurrence is provided by a degraded specification; and the desired

faulty closed-loop behavior which is required to be achieved finally is represented by

a faulty specification that is more restrictive. As a crucialfeature of our formulation, it

is not assumed that it is required for the closed-loop systemto obey each specification

starting from the initial plant state, but it has to achieve each specification partially,

depending on the presence of a fault. We propose an algorithmfor finding a non-

blocking fault-recovery supervisor which is based on the interleaving composition

operation [4] and uses language convergence [5], in order tosolve the fault-recovery

problem. We further show that it is also possible to apply thedeveloped method to

handle system repair. Then, it is desired to achieve the nominal specification at the

end, after a system repair is performed. Finally, an iterative application of our method

allows computing a fault-recovery supervisor for an arbitrary number of occurrences

of fault and system repairs. The main ideas of this contribution are published in the

conference paper [6].

Considering the third contribution, we extend our fault-recovery control method

to the case of different faults which are possible to occur inan arbitrary order. To

that end, at first we develop a general formulation of the problem setting, and then

suggest a new algorithm for the computation of a fault-recovery and repair supervisor.

The main idea of the algorithm is to compute supervisors iteratively, which can han-

dle an increasing number of successive faults and repairs, and verify whether a new

behavior is observed in each of the iterations of the algorithm or not. Once no new

behavior is observed, the algorithm terminates with the solution supervisor. We apply

the fault-tolerant method, fault-recovery method, and developed method to a small

manufacturing system example for the purpose of illustration. The main ideas of this

contribution are published in the conference paper [7].

There are different approaches developed for the fault-tolerant control of DES in

the existing literature, under different assumptions. In [8], if a fault occurs, the system

follows a transient mode, and then if the fault is detected, it enters a recovery mode.

It is assumed that it is possible to detect faults within a known bounded delay of

3



event occurrences. In this setting, the paper determines a supervisor which performs

design specifications in different operation modes. Unlikeour approach, the proposed

method requires the closed-loop system to obey each specification, starting from the

initial plant state. Nevertheless, the case of system repair and re-occurrence of faults

are not incorporated by [8].

The work by [9, 10] suggests to detect faults and then to switch to a different su-

pervisor, before the nominal system behavior is violated. This approach is based on

using a diagnoser to detect faults and requires the formulation of a modified system

specification for each system state, where it is possible to detect a fault. Unlike our

fault-tolerant approach, the supervisor in [10] switches to a different operation follow-

ing each separate fault detections. In addition, system repair is not included and the

re-occurrence of faults is not addressed.

[11] studies conditions for the control-reconfiguration incase of faults. After the

fault occurrence, a post-fault specification has to be performed, by means of which

controller reconfiguration is only possible following fault detection. The paper pro-

vides sufficient and necessary conditions for the existenceof controller in this setting.

It also determines the additional conditions under which nocontrol reconfiguration

is required. However, unlike our approach, [11] is only concerned with supervisor

existence, rather than synthesis, and does not support non-blocking supervision. Fur-

thermore, system repair and re-occurrence of faults are notaddressed.

[12] proposes the use of fault-accommodating models. With this approach, inte-

grating the nominal and faulty system behavior and system specification into a single

model is possible. Then, a classical supervisor synthesis problem can be solved un-

der partial observation in order to achieve fault-tolerance. There is no need for an

explicit switching mechanism to implement the designed supervisor. However, unlike

our approach, the paper requires the formulation of a fault-accommodating specifica-

tion which should be met starting from the initial plant state. Moreover, repair and

re-occurrence of faults are not addressed.

A further line of work studies on the robust supervisory control of DES [13, 14,

4



15, 16, 17]. In this setting, different plant models are usedto represent potential plant

behaviors, such as under fault. Unlike our method, it is assumed that one of the models

is active (depending on which fault happens), but it is not captured that a fault might

switch the system behavior from one model to another model. Acertain application

of robust control to fault-tolerance presented by [18] is based on the identification of

tolerable fault sequences. However, that paper only addresses existence conditions

and does not carry out supervisor design.

The idea of convergence is adopted for fault-tolerance in terms of recovering the

nominal system behavior after a fault in [19]. [19] defines fault-tolerance from the

point of view that the system behavior should converge to thenominal system behavior

after a finite number of event occurrences upon the occurrence of any fault. The

paper provides necessary and sufficient conditions for the supervisor existence in this

setting. In addition, [20] proposes a method for the computation of fault-tolerant

supervisors. Unlike our approach, [19, 20] require that a fault must be reversible after

a bounded delay, whereby it is required for the closed-loop system to obey a language

specification starting from the initial plant state. Moreover, system repair and the

re-occurrence of faults are not addressed.

In the recent literature, [21] considers the relaxation of the nominal specification

in order to avoid restricting the system behavior unnecessarily. It is suggested to

allow potentially faulty behavior and handle undesired behavior on an upper level of

the control architecture. Similar to the other related literature, system repair and the

re-occurrence of faults are not addressed in that paper.

The outline of this thesis is as follows. Chapter 2 provides the necessary back-

ground on DES and the supervisory control of DES. In Chapter 3,our new method for

the computation of fault-tolerant supervisors including problem statement, problem

solution and solution algorithm is presented. Our new approach for the computation

of supervisors for fault-recovery and repair is addressed in Chapter 4 and extended

to the case of multiple different faults in Chapter 5. Chapter 6gives conclusions and

points out directions for future work.
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CHAPTER 2

BACKGROUND

2.1 Discrete Event Systems

Discrete Event Systems (DES) represent dynamic systems with a discrete state space.

Here,statesrepresent the passing of time and statetransitionshappen instantaneously

based on the ocurrence of discreteevents. Various human-made systems can be mod-

eled by DES. DES are for example used in computer systems, manufacturing systems,

communication systems, etc. [1].

A small example for DES modeling is a simple fan sytem. The simple fan system

has three discrete states:OFF,LOW,HIGHand three discrete events:stop ,startLow ,

changeHigh . Initially the fan state isOFF. In this state, the eventstartLow can

happen and creates a transition to the stateLOW. In theLOWstate, the fan turns slowly

and works in this situation until a new event happens. In thisstate there are two pos-

sible events:stop andchangeHigh . If stop happens, the system transitions to

OFFagain. Otherwise, the system goes to the stateHIGH and the fan starts to work

faster. Ifstop happens in the stateHIGH, the system goes to the stateOFFagain.

2.2 Formal Language

A language is describing the logical behavior of DES. An alphabet is defined as a

finite set of events and it is denoted byΣ. Every finite event sequence fromΣ is called

as strings. If a string does not have any event, it is an empty string and denoted byε.

|s| defines the length of a strings. It means|s| gives the number of events in a string.

So the length of an empty string is zero,|ε| = 0. A language is defined as a set of
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finite-length strings from events inΣ [1].

For example, the alphabet of the fan isΣ = {stop ,startLow ,changeHigh }.

Some example strings are:s1 = startLow stop , s2 = startLow changeHigh

stop startLow etc. And the length of these strings are|s1| = 2 and|s2| = 4. We

can define a language for the system like:

L = {ε,startLow ,startLow changeHigh stop }.

The set of all finite strings of elements ofΣ is called theKleene-closureand de-

noted byΣ∗. Then we can say thatL is asubsetof Σ∗. As an example,Kleene-closure

of the simple fan system is

Σ∗ ={ε,startLow ,changeHigh ,stop ,startLow stop ,

startLow stop startLow startLow stop changeHigh ,

startLow stop changeHigh stop , ...} (2.1)

Theconcatenationand further string properties are explained as follows:

• Let two stringss1,s2∈ Σ∗. Theconcatenationof these two strings iss= s1s2.

• s1 is called theprefixof strings.

• s2 is called thesuffixof strings.

Theprefix-closureis a language operation. Theprefix-closureof a languageL∈ Σ∗

is denoted byL and it is defined asL := {s1 ∈ Σ∗|∃s∈ L s.t. s1 ≤ s}. If L = L, the

languageL is called asprefix closed.

Another language operation is thenatural projection. Let Σ̂ ⊆ Σ. The natural

projection erases all events inΣ that do not belong to a defined subsetΣ̂ of Σ. This

operation is written asp : Σ∗ → Σ̂∗. Assume thats∈ Σ∗ and σ ∈ Σ. The natural

7



projection is defined such that:

p(ε) =ε

p(σ) =

{

σ if σ ∈ Σ̂
ε otherwise

p(sσ) =p(s)p(σ). (2.2)

The inverse projection is denoted asp−1 : Σ∗ → 2Σ∗
. It is defined such that for

eacht ∈ Σ∗ : p−1(t) = {s∈ Σ∗p(s) = t}.

2.3 Automata

An automaton is used to represent a language and model discrete event systems. An

automaton is denoted byG= (X,Σ,δ ,x0,Xm). G is a fivetuple such that:

• X: finite set of states

• Σ: a finite set of events

• δ : a partial transition function

• x0 ∈ Σ: the initial state

• Xm ⊆ X: the marked states (desired states)

The connection between languages and automata is created bythe state transition

diagram of an automaton. For the state transition diagram ofan automaton; circles

represent states and the diagram starts with the initial state, arrows represent transi-

tions between states and arrows are named by corresponding events. An example of

the state transition diagram for a simple fan system is shownin figure 1.

The closed language L(G) is L(G) := {s∈ Σ∗|∃δ (x0,s)!}. Theclosed language

L(G) contains all possible event sequences starting from initial state ofG to each

8



G

OFF LOW HIGH
stop

stop

startLow

changeHigh

Figure 1: State transition diagram for the simple fan system.

states. Themarked language Lm(G) is Lm(G) := {s∈ L(G)|∃δ (x0,s) ⊂ Xm}. The

marked language Lm(G) contains all possible event sequences starting from initial

state ofG to a marked state.

If Lm(G) = L(G), then the finite state automaton is called asnonblocking. A non-

blocking automaton means that there is a path from every state of G to a marked

(desired) state. IfLm(G) ⊂ L(G), G is blocking. If a string in an automatonG starts

from a state and after some transition goes back to the same state, then the automaton

G has a cycle. If any automaton does not have any cycle, it is called as acyclic.

Let G= (X,Σ,δ ,x0,Xm) andG′ = (X′,Σ,δ ′,x′0,X
′
m) be finite state automata.G′ is

asubautomatonof G, denoted asG′ ⊑ G if eitherG′ is the empty automaton (X′ = /0),

or X′ ⊆ X, and for allx∈ X′ andσ ∈ Σ, it holds thatδ ′(x,σ)! ⇒ δ ′(x,σ) = δ (x,σ).

There is some important automata operations to analyze any DES or modify state

space diagrams:

• Accessible: If all states inX are reachable from the initial statex0, then the

automatonG is accessible:

∀x∈ X,∃s∈ Σ⋆such thatδ (x0,s) = x

The operationAcc(G) makesG accessible by removing all non-accessible states

from X.

• Coaccessible: If each state inX reach to a marked state, the automatonG is

coaccessible:

∀x∈ X,∃s∈ Σ⋆ such thatδ (x,s) ∈ Xm

9



Now, we can say that, if an automaton is coaccessible, it is directly nonblocking.

The operationCoAcc(G) makesG coaccessible by removing all no marked state

reachable states fromX.

• Trim: If an automatonG is both accessible and coaccessible,G is trim.

Trim(G) :=CoAcc[Acc(G)] := Acc[CoAcc(G)] (2.3)

• Synchronous Composition: This operation allows to synchronize two different

automata. It makes it possible to model one system by more than one automa-

ton. When sychronous composition operation is applied to twoor more au-

tomata, the output will become a bigger automaton that captures the joint be-

havior of both automata. Now assumeG1 = (X1,Σ1,δ1,x0,1,Xm,1) andG2 =

(X2,Σ2,δ2,x0,2,Xm,2) are two different automata and the synchronous composi-

tion of these two automata is written as:

G1||G2 = G12 = (X12,Σ12,δ12,x0,12,Xm,12) (2.4)

Synchronous composition operation states areX12 = X1 × X2 (the canonical

product of states from X1 and X2), the events areΣ12 = Σ1∪Σ2 (the union of

events inΣ1 andΣ2), the initial state isx0,12 = (x0,1,x0,2), the marked states are

Xm,12 = Xm,1×Xm,2. The transition makes sure that the events inΣ1∩Σ2 that

are shared byG1 andG2 are synchronized. For(x1,x2) ∈ X12 andσ ∈ Σ12:

δ12((x1,x2),σ) =















(δ1(x1,σ),δ2(x2,σ) if σ ∈ Σ1∩Σ2∧δ1(x1,σ)!∧δ2(x2,σ)!

(δ1(x1,σ),x2) if σ ∈ Σ1\Σ2∧δ1(x1,σ)!

(x1,δ2(x2,σ)) if σ ∈ Σ2\Σ1∧δ2(x2,σ)!

(2.5)
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2.4 Supervisory Control

The supervisory control theory is introduced in [22]. The theory is based on creating a

controller called as supervisor which allows or disables corresponding events to reach

the desired behaviour called as specification.

Assume thatG= (X,Σ,δ ,x0,Xm) is a given plant automaton.Σc is thecontrollable

event setand Σu is the uncontrollable event set. Then the alphabet of the plant is

defined as:Σ = Σc ∪ Σu. Controllable events can be disabled by a supervisor, but

uncontrollable events cannot.

The supervisor is denoted bySand it is also defined as a finite state automaton like:

S= (Q,Σ,ν ,q0,Qm). The closed loop behavior is given by the plantG controlled by

the supevisorS and is computed as the synchronous composition of the plantG||S.

The closed language of the closed loop isL(G)||L(S) and the marked language of

the closed loop isLm(G)||Lm(S). S is a nonblocking supervisor ifL(G)||L(S) is non-

blocking. As said before, supervisorScannot disable uncontrollable events inΣu. So,

it must be true for allσ ∈ Σu ands∈ L(G)∩L(S), if sσ ∈ L(G), sσ ∈ L(S).

The specification represents the desired closed-loop behavior and it is also de-

fined by an automaton:C= (Y,Σ,β ,y0,Ym). The specification language is denoted as

K = Lm(C). The specification contains all desired strings and the supervisor disables

undesired strings according to the specification. The specification is called ascontrol-

lable for L(G) andΣu if it does not force the supervisor to disable the uncontrollable

events. A controllable specification fulfills

K = Σu∩L(G)⊆ K (2.6)

If the specificationK is not controllable forL(G) andΣu, the supervisor should im-

plement thesupremal controllable sublanguageof K. There is aSupConalgorithm

which is used to find the supremal controllable largest possible sublangugeKsub∈ K.
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Such that:

Lm(S||G) = SupC(K,L(G),Σu) (2.7)

2.5 Interleaving Composition

We recall theinterleaving compositionfrom [4]. Given two languagesK1,K2 ⊆ Σ⋆

over the same alphabet, it defines a language that contains all possible interleavings of

strings fromK1 andK2. We reformulate the interleaving composition in our notation.

Definition 1. LetΣ be an alphabet and K1,K2⊆Σ⋆ be two languages. Theinterleaving

compositionK1|||K2 of K1 and K2 is defined such that

s∈ K1|||K2 ⇔ s= s1
1s2

1 · · ·s
1
ks2

k for some k∈ N and sj
1sj

2 · · ·s
j
k ∈ K j for j = 1,2.

2.6 Language Convergence

We employ the notion oflanguage convergenceas introduced by [5]. For a string

s∈ Σ⋆, we writesu fi(s) for the string obtained by deleting the firsti events froms.

Specifically,su f0(s) = s andsu f|s|(s) = ε. Then, for a languageL ⊆ Σ⋆, the suffix

closureof L is the subset of all suffixes of strings inL:

su f(L) = {su fi(s)|s∈ L, i ≤ |s|}.

A language is suffix-closed ifsu f(L) = L. Now consider two languagesM,K ⊆ Σ∗. M

is said toconvergeto K, denoted byK ⇐ M, if there is an integern∈N0 such that for

eachs∈ M, there exists ani ≤ n such that sufi(s) ∈ K. The least possiblen is called

theconvergence time.

In the supervisory control context, thecontrolled convergence problem(CCP) is

studied. LetG be a plant automaton over the alphabetΣ, Σu ⊆ Σ be a set of uncon-
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trollable events andK ⊆ Σ∗ specification. A supervisorS is said to solve the CCP

for G, K andΣu if S||G is nonblocking,L(S||G) is controllable forL(G) andΣu, and

K ⇐ Lm(S||G). Assume thatX is the state set ofG andY is the state set of a recog-

nizerC such thatLm(C) = K. It is shown by [5] that the solvability of the CCP can be

decided by an algorithm with complexityO(|X|222|Y|). Whereby it is noted that the

synthesis neither offers a unique nor an optimal solution.

We further extend the notion of language convergence to language convergence

after a given language.

Definition 2. Consider languages M,K,L⊆Σ∗, whereby L⊆M. M is said toconverge

to K after L if K⇐ M/L.

Furthermore, a supervisorS is said to achieve language convergence forK afterL

if

K ⇐ (Lm(S)||M)/L.

An algorithm for the computation of such supervisor is adapted from [5] and imple-

mented in [23]. It runs with the same complexity as the computation of a supervisor

for the CCP. We denote the resulting language asCA(K,M,L,Σu).

2.7 Motivating Example

The main subject of this thesis is fault-tolerant and fault-recovery control of DES.

In this section, we provide a motivating example which is used to explain our study

topics. This is a simple manufacturing system and it has two simple machines and

shown in Fig. 2.

.

The machines are denoted as M1 for the first machine and M2 for the second

machine. Products can enter M1 and M2 with the eventsin1 andin2 , respectively.

The first machine M1 can process products with eventop1 and the second machine

13



M 1

M 2

in1 exit1

in2 exit2

1to2 2to1

Figure 2: Schematic of the example system.

M 2 can process products with eventop2 . Also there is a connection between M1

and M 2 such that products can travel between these two machines with the events

1to2 and2to1 . There are two different exit points for products: one of them is

from M 1 with eventexit1 and the other one is from M2 with eventexit2 . For

a nominal behavior of the system, all the defined events can happen. System works

as the products can enter the system to first or second machineand operated by them

before leaving the system.

While the system is working in a nominal behavior, faults can occur in the system.

When a fault occurs, it is for example the case that an event cannot happen anymore.

Figure 3 shows the example system with a fault.

For the motivating example we define an example faulty behavior. When the fault

occurs,fault event happens. For example, we assume that fault occurs on the first

machine. Thenop1 event disappears and cannot happen anymore. Now the system

has to run in the faulty behavior instead of the nominal behavior and a fault-recovery

supervisor should take care that nothing undesired happens. Assume that fault happens

when a product is on the first machine. The faulty-recovery behavior can be defined

in three different ways. In the first case, the product waits on the first machine until

the fault is repaired and the second machine continues its nominal behavior without

any transition events (1to2 and2to1 ) between first machine. In the second csae,

14



M 1

M 2

in1 exit1

in2 exit2

fault
repair

1to2 2to1

Figure 3: Schematic of the example system with fault events.

M 1 can send the unprocessed product to the outside with eventexit1 and does not

take any more products until the fault is repaired. The system continues to work with

M 2 in its nominal behavior. In the third case, the product is sent from M 1 to M 2

and processed there. After sending the product, M1 does not take any more products

and M 2 continues to work in the nominal bahavior. The first task of this thesis is to

formally design fault-recovery supervisors that realize the appropriate behavior after

a fault.

The repair event happens when the fault is repaired. Therepair event causes

that the behavior that was disabled by the fault is again possible. This means for the

example that M1 can restart processing products by the eventop1 and the system

has to resume its nominal behavior after repair. In the first case discussed above, this

means that the unprocessed product waiting in M1 must be processed and M1 can

take new products again. In the other cases, this means that M1 can take and process

products again and no products need to be sent to M2. The second task of this thesis

is to design fault-recovery and repair superisors that correctly resume the nominal

system operation after repair.
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CHAPTER 3

COMPUTATION OF FAULT-TOLERANT SUPERVISORS FOR DISCRETE

EVENT SYSTEMS

The first objective of this chapter is determining if a given supervisor can tolerate a

given set of faulty events. The second objective is computing fault-tolerant supervisors

that can tolerate a given set of faulty events. The section outline of this chapter is

as follows. Section 3.1 presents a motivating example. Section 3.2 formulizes the

problem statement. Section 3.3 considers the verification of fault-tolerance. Section

3.4 establishes the existence of a supremal fault-tolerantsublanguage. Section 3.5

proposes an algorithm for the computation of this supremal fault-tolerant sublanguage.

We note that the results presented in this chapter are published in the conference paper

[3].

3.1 Motivation

We reconsider the example system in Section 2.7 and a model ofthe system is shown

in Fig. 4.

We first determine component models for the two machines in order to create the

plant model automatonG of the overall system. These modelsG1 andG2 are shown

in Fig. 5. The parallel composition ofG1 andG2 results in the overall system model

G= G1||G2 that is also shown in Fig. 5.

The desired operation of our example system is as follows: Ifa product is pro-

cessed by one of the machines then it should not be processed by the other machine.

In addition, a product should be processed only one time and should not cycle be-
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M 1

M 2

in1 exit1

in2 exit2

1to2 2to1

Figure 4: Schematic of the example system

G1

G2

G= G1||G2

op1
op1

op1

op2

op2
op2

1to21to2

1to2

2to1

2to1

2to1

in1
in1

in1

in2

in2

in2

exit2

exit2

exit2

exit1
exit1

exit1

1

1

1 2

2

2

34

Figure 5: Plant model automata of the example system.

tween the machines. For example, a product can enter the system with in1 andop1

can happen afterwards. Then, the product will not be processed by op2 . On the

other hand, if the product enters the system with eventin1 and is not processed by

op1 , 1to2 andop2 must happen. Fig. 6 shows the four component automata of our

specification. The overall specification isK = Lm(C1||C2||C3||C4).

The maximally permissive supervisor S such that

Lm(G||S) = SupCon(Lm(C),G,Σu) for this specification and plant is shown in Fig.

7. Here, we assume thatΣu = /0.
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op1 ,op2
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2to1
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in1
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Figure 6: Components of the specification for the example system.

S

op1

op1op1

op2

op2

op21to2

2to1

in1

in1

in2

in2

exit2

exit2

exit2

exit1

exit1

exit1

1 2 3 4

5 6

7 8 9 10

Figure 7: Maximally permissive supervisorS for the example system.

The supervisorS is designed to control the plant in the nominal case, that is,when

the plant does not exhibit any faulty behavior. Now assume that faults occur in the

plant. Such fault can for example be caused by the failure of atransport or processing

unit. Consider the transport from M1 to M 2 fails, that is, the event1to2 cannot

happen any more. In that case, the closed-loop behavior ofG under supervision byS

is represented by the automatonS1to2 in Fig. 8. It can be seen that, even in the case of

a fault, the closed loop is nonblocking and fulfills the specificationK. For example,

if a fault happens whenS in Fig. 7 is at state 3, the closed loop after the fault can

continue its operation from that state but will not be able toreturn to that state unless

the fault is repaired. That is,Scan tolerate the faulty event1to2 .
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S1to2

op1

op1op1

op2

op2

op2

2to1

in1

in1

in2
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exit2
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exit2
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exit1
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5 6

7 8 9 10

Figure 8: Closed loop with faulty eventAtoB .

In contrast, assume that M1 is faulty such that eventop1 is no longer possible.

Then, the corresponding closed-loop behavior is given by the automatonSop1 in Fig. 9.

It can be seen that the faulty closed loop becomes blocking. Hence,Scannot tolerate

a fault in the eventop1 .

Sop1

op2

op2

op21to2

2to1

in1

in1

in2

in2

exit2

exit2

exit2

exit1

exit1

exit1

1 2 3 4

5 6

7 8 9 10

Figure 9: Closed loop with faulty eventop1 .

In view of the previous discussion, the first objective of this chapter is determining

if a given supervisor can tolerate a given set of faulty events. The second objective is

computing fault-tolerant supervisors that can tolerate a given set of faulty events.
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3.2 Problem Formulation

According to the previous discussion, it is desired to find a supervisor that still fulfills

the specified behavior even if a fault happens. We formalize this requirement by defin-

ing a fault-tolerant supervisor. We assume thatG= (X,Σ,δ ,x0,Xm) is a plant automa-

ton,K ⊆ Lm(G) is a specification andΣu is a set of uncontrollable events. In addition,

we introduce the set of faulty eventsΣf that represents all events that can no longer oc-

cur if a fault happens. Finally, we introduce the faulty plant Gf = (X,Σ,δ f,x0,Xm)⊑G

such thatGf is obtained fromG by removing each transition with an event inΣf .

For eachx ∈ X, we write Gf
x = (X,Σ,δ f,x,Xm) with the initial statex. We denote

the maximally permissive supervisor for the given plantG and specificationK as

S= (Q,Σ,ν ,q0,Qm) and writeSFT = (QFT ,Σ,νFT ,qFT
0 ,QFT

m ) for the fault-tolerant

supervisor.

For the given example in Section 3.1, the plant isG= G1||G1 in Fig. 5 and the set

of uncontrollable events isΣu = /0. The maximally permissive supervisorS in Fig. 7

can be used to mark the specificationK = Lm(S). The supervisor for the given plant

and specification isS that is shown in Fig. 7. A fault tolerant supervisor which is

nonblocking for faulty eventop1 isSFT that is shown in Fig. 10.

We now formalize our notion of fault-tolerance.

Definition 3. Let G,K,Σu,Σf be given as above. The specification K is fault-tolerant

for G,Σu,Σf if

1. K is controllable for G andΣu

2. for all s∈ K

K/s∩Lm(G)/s∩ (Σ\Σf)⋆ = K/s∩Lm(G)/s∩ (Σ\Σf)
⋆.

In words, a fault-tolerant specification has to be controllable for G andΣu accord-

ing to (1) in Definition 3. In addition, it must be fulfilled forany string inK that,
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whenever a fault happens, this means events inΣf are no longer possible, the string

can still be completed to fulfill the specification.

For the example defined in Section 3.1 the supervisorS is blocking if the event

op1 is a faulty event (Σf = {op1}). Fig. 9 shows that ifin2 2to1 happens from

the initial state,S reaches state 7, from where there is no string to a marked state in

S. Hence condition (2) in Definition 3 is violated and the specificationK = Lm(S) is

not fault-tolerant. In contrast, the specificationK = Lm(SFT) for the automatonSFT in

Fig. 10 is fault-tolerant. It is controllable forG,Σu andSFT is still nonblocking even

if op1 is no longer possible because of a fault. It is also readily observed thatSFT can

be used as a fault-tolerant supervisor forΣf = {op1}.

SFT

op1

op1

op2

op2

op21to2

in1

in1

in2

in2

exit2

exit2

exit2

exit1

exit1

exit1

1 2 3 4

5 6

8 9 10

Figure 10: Example for a fault-tolerant supervisor.

Considering the previous discussion, it is desirable to determine a fault-tolerant

specification according to Definition 3 and its associated supervisor whenever such

specification exists. Hence, we intend to solve the following problem:

Problem 1. Let G be a plant automaton, K be a specification,Σu be a set of uncon-

trollable events andΣf be a set of faulty events as introduced before. We want to find

a supervisor SFT for G andΣu such that:

1. Lm(SFT)⊆ K is fault-tolerant for G,Σu,Σf

2. Lm(G||SFT) is as large as possible.
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3.3 Verification of Fault Tolerance

Before solving Problem 1, we outline a procedure for the verification if a given specifi-

cationK is fault-tolerant for a plantG and the alphabetsΣu, Σf, that is, if the conditions

in Definition 3 are fulfilled. Our result is stated in Lemma 1.

Lemma 1. Let G, Σu, S andΣf be given and assume that C= (Y,Σ,γ,y0,Ym) is a

recognizer of K, that is, Lm(C) =K. Also define R=G||C= (Z,Σ,α,z0,Zm) and write

Rf = (Z,Σ,α f,z0,Zm) for the subautomaton of R where all transitions with events in

Σf are removed. K isΣf-tolerant if and only if K is controllable for G andΣu and Rf

is non-blocking.

Rf represents the closed-loop system after a fault happened inthe case thatK is

controllable forG andΣu. Lemma 1 states that it should be possible to reach a marked

state in the faulty closed loop. Formally, Lemma 1 is proved as follows.

Proof. (IF) We assume thatK is controllable forG andΣu andRf is non-blocking. We

have to show that the conditions in Definition 3 are fulfilled.(1) holds by assump-

tion. Regarding (2), assume thats∈ K and letu′ ∈ K/s∩Lm(G)/s∩ (Σ\Σf)
⋆. Write

x= δ (x0,s) andy= γ(y0,s). By definition ofR, s∈ L(R) andα(z0,s) = (x,y). More-

over, by definition ofRf, α f((x,y),u′)! sinceu′ ∈ (Σ \Σf)
⋆. SinceRf is non-blocking

and does not have any transition with events inΣf , there is au ∈ (Σ \Σf)
⋆ such that

α f((x,y),u′u) ∈ Zm. Hence,u′u ∈ K/s∩ Lm(G)/s∩ (Σ \Σf)
⋆. Sinceu′ was chosen

arbitrarily, (2) in Definition 3 is fulfilled.

(ONLY IF) We assume that (1) and (2) in Definition 3 are fulfilled. We show that

the conditions in Lemma 1 also hold.K is controllable forG andΣu by assumption.

Now let (x,y) ∈ Z. Then there is ans∈ Σ⋆ such thatδ (x0,s) = x andγ(y0,s) = y.

Because of (2) in Definition 3, there is au∈ K/s∩Lm(G)/s∩ (Σ\Σf)
⋆. That is,u∈

Lm(C)/s andu∈ Lm(G)/s∩ (Σ \Σf)
⋆, which implies thatα f((x,y),u) ∈ Zm. Hence,

Rf is nonblocking.
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For our example with faulty event1to2 , there is a string to a marked state from

each state ofS1to2 in Fig. 8 that corresponds to the plant in Fig. 5 where transitions

with event1to2 are removed and the specificationK = Lm(S) in Fig. 7. Hence, the

supervisorS in Fig. 7 can be considered as fault-tolerant. However, if the faulty event

is op1 , the situation is different. Consider the faulty closed loopSop1 in Fig. 9 for the

specificationK = Lm(S). It can be seen that there is no string to a marked state if state

7 is reached inSop1 and fault-tolerance as in Definition 3 is violated.

We finally note that the complexity of the verification in Lemma 1 is determined

by computations on the state space ofG||C. Hence, we obtainO(|X| |Y|).

3.4 Supremal Fault-Tolerant Sublanguage

According to the definition, there might be different fault-tolerant supervisors for a

given plantG, specificationK, uncontrollable event setΣu and faulty event setΣf. Our

second result shows that there is a unique supremal such supervisor that realizes the

supremal fault-tolerant sublanguage ofK. In order to establish this result, we first

show that fault-tolerant sublanguages are closed under union.

Lemma 2. Let G, K, Σu and Σf be as introduced before and assume that the two

languages K1,K2 ⊆ Lm(G) are fault-tolerant for G,Σu andΣf . Then, K:= K1∪K2 is

also fault-tolerant for G,Σu andΣf .

Proof. It has to be shown thatK fulfills the conditions in Definition 3. Considering

(1), it follows directly from the union-closure of controllable sublanguages thatK is

controllable forG andΣu.

For (2), we need to show thatK/s∩Lm(G)/s∩ (Σ\Σf)⋆ = K/s∩Lm(G)/s∩ (Σ\

Σf)
⋆. It trivially holds thatK/s∩Lm(G)/s∩ (Σ\Σf)⋆ ⊆ K/s∩ Lm(G)/s∩ (Σ \Σf)

⋆.

In order to show that alsoK/s∩Lm(G)/s∩ (Σ\Σf)⋆ ⊇ K/s∩Lm(G)/s∩ (Σ\Σf)
⋆, let
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u∈ K/s∩Lm(G)/s∩ (Σ\Σf)
⋆.

⇒ u∈K/s= (K1∪K2)/s andu∈ Lm(G)/s∩ (Σ\Σf)
⋆

⇒ u∈K1/s∪K2/s andu∈ Lm(G)/s∩ (Σ\Σf)
⋆

⇒ u∈K1/s∩Lm(G)/s∩ (Σ\Σf)
⋆ and

u∈K2/s∩Lm(G)/s∩ (Σ\Σf)
⋆

⇒ u∈K1/s∩Lm(G)/s∩ (Σ\Σf)⋆ and

u∈K2/s∩Lm(G)/s∩ (Σ\Σf)⋆

⇒ u∈(K1∪K2)/s∩Lm(G)/s∩ (Σ\Σf)⋆

=(K)/s∩Lm(G)/s∩ (Σ\Σf)⋆.

We next define the setFG(K,Σu,Σf) of all fault-tolerant sublanguages of a given

specificationK for G, Σu, Σf.

FG(K,Σu,Σf)={F ⊆ K|F is fault tolerant forG,Σu,Σf}.

UsingFG(K,Σu,Σf) it is now possible to prove the existence of a supremal fault-

tolerant sublanguage.

Theorem 1. Let G, K,Σu andΣf be as introduced before. Then, there is a supremal

element inFG(K,Σu,Σf) and is evaluated as

SupFT(K,G,Σf,Σu) =
⋃

{F |F ∈ FG(K,Σu,Σf)}.

Proof. The correctness of Theorem 1 directly follows from Lemma 2.
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3.5 Computation of SupConFT

Having established the existence of a supremal fault-tolerant sublanguage, we now

study its computation for a given plantG, specificationK with recognizerC, uncon-

trollable eventsΣu and faulty event setΣf. We propose the following algorithm for

findingSupFT(K,G,Σu,Σf).

1Input: C, G, Σu, Σf
2Procedure:

1. Determine the maximally permissive supervisorS= (Q,Σ,ν ,q0,Qm)

such thatLm(S) = SupCon(K,G,Σu)

2. Compute the subautomatonSf ⊑ Sby deleting all transitions with events

in Σf from S.

3. Define the setQf ⊆ Q as the set of states that are not coaccessible inSf.

4. Compute the subautomatonS′ ⊑ Sby deleting all states inQf from S.

5. Compute an automatonSFT = (QFT ,Σ,νFT ,qFT
0 ,QFT

m ) such that
Lm(SFT) = SupCon(Lm(S′),S,Σu).

6. Return the supremal fault-tolerant sublanguageLm(SFT).

Algorithm 1: Computation ofSupFT.

This algorithm determines the supremal fault-tolerant sublanguage as follows. A

set of bad statesQf is identified from where it is not possible to reach a marked state

in the maximally permissive closed loop. Any string that leads to such bad state must

be disabled in order to achieve fault-tolerance according to Definition 3. Hence, we

delete these bad states from the maximally permissive supervisorSand use the result-

ing subautomaton as specification for the computation of thesupremal fault-tolerant

sublanguage. The complexity of the algorithm is determinedby the computation of

supremal controllable sublanguages in step (1) and (5). Hence, we obtainO(|X|2 |Y|2).

Theorem 2. Assume SFT is constructed according to Algorithm 1 and Lm(SFT) 6= /0.

Then, Lm(SFT) = SupFT(K,G,Σu,Σf), that is, SFT solves Problem 1.
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Proof. Is is clear thatSFT solves Problem 1 ifLm(SFT) = SupFT(K,G,Σu,Σf) 6= /0.

Hence, it is only required to prove thatLm(SFT) = SupFT(K,G,Σu,Σf). It has to be

shown that (i)Lm(SFT) is a fault-tolerant sublanguage ofK for G, Σu, Σf and (ii) for

anyK ⊆ K′ ⊇ Lm(SFT), it holds thatK′ is not fault-tolerant forG, Σu, Σf .

Considering (i), it holds thatLm(SFT) ⊆ K andLm(SFT) is controllable forG and

Σu because of (4) and (5) in Algorithm 1. In order to show (2) in Definition 3, let

s∈ L(G||SFT) andu′ ∈ Lm(SFT)/s∩Lm(G)/s∩ (Σ\Σf)⋆. That is,s∈ Lm(SFT) andu′ ∈

Lm(S)/s∩ (Σ\Σf)
⋆ according to the computation ofSFT from S. Then, because of (3),

(4), (5) in Algorithm 1, there must be au∈ (Σ\Σf)
⋆ such thatu′u∈ Lm(SFT)/s. Since

Lm(SFT) ⊆ Lm(G), alsou′u∈ Lm(G)/s. That is, we confirmed thatu′ ∈ Lm(SFT)/s∩

Lm(G)/s∩ (Σ\Σf)
⋆.

In order to show thatLm(SFT) is indeed supremal, we assume there is an automaton

Ŝsuch thatK ⊇ Lm(Ŝ)⊃ Lm(SFT) andLm(Ŝ) is fault-tolerant forG, Σu, Σf. Then, there

must be a strings∈ Lm(Ŝ)\Lm(SFT) = Lm(Ŝ)\SupCon(Lm(S′),G,Σu). That is, there

must be an extensionu∈ Σ⋆ such thatν(q0,su) ∈ Qf leads to a bad state inSbecause

of (4) and cannot be prevented from occurring because of (5) in Algorithm 1. Hence,

Lm(Ŝ) cannot be fault-tolerant forG, Σu, Σf, which contradicts the assumption. Hence,

Lm(SFT) is the supremal fault-tolerant sublanguage.

Regarding the example in Section 3.1, the automatonSop1 in Fig. 9 corresponds

to the automatonSf in Algorithm 1. Hence, the bad state 7 has to be removed fromS

in Fig. 7. The resulting automaton is controllable forG andΣu such thatSFT = S′ is

obtained in Fig. 10. This supervisor leads to a non-blockingclosed-loop both in the

nominal case and in the case of a faulty eventop1 . It also has to be noted that the

closed loop returns to its nominal operation, whenever the fault is repaired. Hereby, a

repair is possible any time sinceLm(SFT)⊆ Lm(S).
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CHAPTER 4

COMPUTATION OF SUPERVISORS FOR FAULT-RECOVERY AND

REPAIR FOR DISCRETE EVENT SYSTEMS

In this chapter, a new method is developed for the fault-recovery of DES. According

to this method, a fault-recovery supervisor is given that follows the specifiednominal

system behavior until a fault-occurrence, that continues its operation according to a

degradedspecification after a fault and that finally converges to a desiredbehavior af-

ter fault. This method can also be applied to system repair and we propose an iterative

procedure that determines a supervisor for an arbitrary number of fault occurrences

and system repairs.

The outline of this chapter is as follows. Section 4.1 formulizes the fault-recovery

problem. Section 4.2 constructs a specification language and proposes a modified

version of the language convergence problem. Section 4.3 shows to apply the method

on an example. Section 4.4 proposes the method to system repair. Section 4.5 shows

that the method satisfies the case of multiple fault occurrences and repairs. We note

that the results presented in this chapter are published in the conference paper [6].

4.1 Problem Statement

In this section, we formulate the fault-recovery problem studied in this paper. We

consider that the system is modeled using the alphabetsΣ,ΣN,ΣF,Σu. Hereby,ΣF

contains fault events whose occurrence indicates the occurrence of a fault,ΣN con-

tains all events that are not associated to faults andΣ = ΣN ∪̇ΣF. Σu is the set of

uncontrollable events. Then, the system behavior is characterized by the plant model

G= (X,Σ,δ ,x0,Xm) that includes the potentially faulty system behavior.
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The main objective is to synthesize a supervisorSF = (QF,Σ,νF,qF
0,Q

F
m) that

achieves fault-recovery in the closed loopG||SF. In order to specify the desired system

behavior, we consider three different specifications. First, the nominal specification

KN ⊆ Lm(G) characterizes the desired system behavior in case no fault is present in

the system. That is, the closed-loop behavior without any fault occurrence should

be a subset of the nominal specification and nonblocking as stated in the following

condition.

P1: Lm(G||SF)∩ (ΣN)⋆ ⊆ KN

Second, we use the degraded specificationKD ⊆ Σ⋆ that represents theadmissible

behavior after a fault occurrence. In principle, we want that the system continues its

operation after any fault while considering the past systembehavior until the fault.

That is, a suitable part of the behavior before a fault concatenated with the behavior

after a fault should belong toKD. Formally, we want that

P2: it holds for alls∈ Lm(G||SF)∩ (ΣN)⋆ΣF(ΣN)⋆ that there exists a partitions=

s1
1s2

1 · · ·s
1
ks2

kf s3 with f ∈ΣF, sj
i ∈ (ΣN)⋆ for i = 1, . . . ,k and j = 1,2,s1

1 · · ·s
1
k ∈KN

ands2
1 · · ·s

2
ks3 ∈ KD.

In words,s1
1 · · ·s

1
k ∈ KN requires that one part of the substring before a fault oc-

currence belongs to the nominal behavior, whereass2
1 · · ·s

2
ks3 ∈ KD requires that the

remaining substrings2
1 · · ·s

2
k before the fault occurrence can be continued to a string

in KD. That is, a substring of the non-faulty behavior that shouldoriginally fulfill KN

is used to completeKD. Note that he conditions1
1 · · ·s

1
k ∈ KN is introduced in order to

enable system repair as discussed in Section 4.4.

Third, we introduce the faulty behavior specificationKF ⊆ Σ⋆. This specification

represents thedesiredsystem behavior after fault. That is, we ideally want to achieve

KF after any fault occurrence in the sense of converging toKF after a bounded number

of event occurrences.
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P3: KF ⇐ Lm(G||SF)/KNΣF.

We next combine the previously introduced conditions in order to formulate the

fault-recovery problem addressed in this paper.

Problem 2. Assume that G,Σu, Σ, ΣN, ΣF, KN, KD, KF are given as above. We want

to design a nonblocking fault-recovery supervisor SF = (QF,Σ,νF,qF
0,Q

F
m) for G and

Σu such that P1, P2 and P3 hold.

(P1) Lm(G||SF)∩ (ΣN)⋆ ⊆ KN,

(P2) it holds for all s∈ L(G||SF)∩(ΣN)⋆ΣF(ΣN)⋆ that s= s1
1s2

1 · · ·s
1
ks2

kfs3 withf∈ΣF,

sj
i ∈ (ΣN)⋆ for i = 1, . . . ,k and j= 1,2, s1

1 · · ·s
1
k ∈ KN and s21 · · ·s

2
ks3 ∈ KD,

(P3) KF ⇐ Lm(G||SF)/KNΣF.

We denote the obtained fault-recovery supervisor asnominally optimalif

Lm(G||SF)∩ (ΣN)⋆ = SupC(KN,L(GN),Σu) (4.1)

and asoptimally recoveringif

Lm(G||SF)∞ = su f(SupC(KF,L(G),Σu). (4.2)

That is,SF is nominally optimal if it realizes the maximally permissive nominal be-

havior before any fault occurrence andSF is optimally recovering if it asymptotically

realizes the maximally permissive faulty behavior.
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4.2 Solution to the Fault-Recovery Problem

In order to solve Problem 2, we first construct a specificationlanguageKA ⊆ Lm(G)

that captures conditions (P1) and (P2). To this end, we first note that

KNΣF∩L(G)

contains all plant strings that follow the nominal specification KN and terminate with

a fault and

KNΣFΣ⋆∩L(G)

contains all plant strings that fulfill the nominal specification until a fault occurrence.

Then, applying the interleaving composition in Definition 1, we define the language

KA = (KNΣF|||KD)∩ (KNΣF(ΣN)⋆∩Lm(G)). (4.3)

KA contains all plant strings such that one substring until a fault occurrence be-

longs toKNΣF, whereas the remaining substring before a fault can be completed to

fulfill the degraded specificationKD. At the same time, all strings inKA before a fault

occurrence belong toKN. Next, we compute the supervisorSA = (QA ,Σ,νA,qA
0 ,Q

A
M)

such that

Lm(S
A) = SupC(KA,L(G),Σu). (4.4)

According to the definition ofKA, SA realizes the maximally permissive closed-

loop behavior such thatG||SA fulfills the nominal specification before any fault occur-

rence and continues following the degraded specification after a fault occurs according

to (P1) and (P2) in Problem 2.

We finally need to account for (P3). To this end, refer to language convergence

introduced in Section 2.6. Using modified language convergence, we propose to com-
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pute the supervisor for fault-recoverySF such that

Lm(SF) = CA(KF,Lm(SA),KNΣF,Σu)∪ (CA(KF,Lm(SA),KNΣF,Σu)∩KN). (4.5)

According to its computation,SF ensures that the closed-loop systemG||SF

1. follows the nominal specificationKN before any fault occurrence,

2. continues meeting the degraded specificationKD after a fault occurs,

3. converges to the faulty behavior specificationKF.

We next confirm that the existence ofSF according to the described computation

in (4.3) to (4.5) is necessary and sufficient for the solutionof Problem 2.

Theorem 3. Consider G,Σu, Σ, ΣN, ΣF, KN, KD, KF as in Problem 2. Then, a solu-

tion to Problem 2 exists if and only if it holds that Lm(SF) 6= /0 for the supervisor SF

according to(4.5). Furthermore, SF solves Problem 2 if Lm(SF) 6= /0.

Proof. (IF) We assume thatLm(SF) according to (4.5) is non-empty and we show that

SF is a solution to Problem.

(P1) It follows from (4.5) thatCA(KF,Lm(SA),KNΣF,Σu) 6= /0. Furthermore,

CA(KF,Lm(S
A),KNΣF,Σu)∩ (ΣN)⋆ ⊆

⊆Lm(S
A)∩ (ΣN)⋆ ⊆ KA ∩ (ΣN)⋆ = /0

Hence,Lm(SF)∩ (ΣN)⋆ =CA(KF,Lm(SA),KNΣF,Σu)∩KN ⊆ KN according to (4.5).

(P2) With (4.4), (4.5), it holds thatLm(SF)∩ (ΣN)⋆ΣF(ΣN)⋆ ⊆ KA. That is,s∈

Lm(G||SF)∩ (ΣN)⋆ΣF(ΣN)⋆ ⇒ s∈ KA ⊆ (KNΣF|||KD). Then, Definition 1 directly

implies thats fulfills (P2).
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(P3) Since /06= CA(KF,Lm(SA),KNΣF,Σu) = Lm(SF)∩ (ΣN)⋆ΣF(ΣN)⋆, it follows

thatKF ⇐ Lm(G||SF)/KNΣF.

(ONLY IF) We assume that a solution supervisorŜF to Problem 2 exists and we

need to show thatLm(SF) according to (4.5) is non-empty.

According to Problem 2,̂SF fulfills (P1) to (P3). In particular, (P3) implies that

/0 6= Lm(ŜF)∩KNΣF(ΣN)⋆ = CA(KF,Lm(ŜF),KNΣF,Σu). In addition, we show that

Lm(G||ŜF)∩KNΣF(ΣN)⋆ ⊆ KA. Let s∈ Lm(G||ŜF)∩KNΣF(ΣN)⋆. Then, by (P2),

s= s1
1s2

1 · · ·s
1
ks2

kf s3 with f ∈ ΣF, sj
i ∈ (ΣN)⋆ for i = 1, . . . ,k and j = 1,2, s1

1 · · ·s
1
k ∈ KN

ands2
1 · · ·s

2
ks3 ∈ KD. Then, Definition 1 implies thats∈ (KNΣF|||KD). Moreover, by

(P1), s1
1s2

1 · · ·s
1
ks2

k ∈ KN ⊆ L(G) and hence,s∈ KNΣF(ΣN)⋆ ∩ L(G). That is, indeed

s∈ KA.

Considering thatCA(KF,Lm(ŜF),KNΣF,Σu) is controllable for L(G) and Σu,

CA(KF,Lm(ŜF),KNΣF,Σu) ⊆ Lm(SA) = SupC(KA ,L(G),Σu). Finally, we conclude

that

/0 6=CA(KF,Lm(Ŝ
F),KNΣF,Σu)

⊆CA(KF,Lm(S
A),KNΣF,Σu)⊆ Lm(S

F).

In order to evaluate the computational complexity of our method, we writeyi for

the state count of canonical recognizers for the specifications K i , i ∈ {N,D,F,A},

|X| for the state count ofG and |QA| for the state count ofSA. Then, the interleav-

ing compositionKNΣF|||KD in (4.3) requiresO(2yN·yD
). Although this complexity is

exponential in the respective state counts, it is observed in our example evaluations

that the intersection with(KNΣF(ΣN)⋆)∩ L(G) mitigates the exponential blow-up.

The evaluation of (4.4) is performed withO(|X|2 · |QA|2) and (4.5) is computed in

O(|QA |2 ·22sF||) according to Section 2.6.
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4.3 Application Example

In order to illustrate the concept of fault-recovery as considered in this chapter, we

apply the proposed method to the example system which is introduced in Section 2.7.

The overview of the system is shown in Figure 11.

M 1

M 2

in1 exit1

in2 exit2

fault
repair

1to2 2to1

Figure 11: Schematic of the example system with fault events.

In this chapter, it is assumed that a fault (f ) that disables the operation of M1

can occur whenever a product is present. Automata models forthe two machines are

shown in Fig. 12 such thatG= G1||G2. Furthermore,ΣF = {f } and it is assumed that

Σu = {f } for this example.

G1 G2
op1 op2

1to2

1to2

1to2

2to1

2to1

2to1

in1

in1 in2

exit2

exit1

exit1
fr r

11 22

3 4

Figure 12: Plant model automata of the example system.

We specify the nominal behavior of the closed-loop system such that only M1
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is used and products that enter M1 are processed before leaving M1. The nominal

specification is given byKN = Lm(CN) in Fig. 13. The degraded specificationKD is

formulated such that products are no longer processed by thefaulty machine M1 but

by the other machine M2. In addition, products in the faulty machine M1 should

remain there. The automataCD
1 andCD

2 in Fig. 13 address these requirements such

thatKD = Lm(CD
1 ||C

D
2 ). Finally, we want to achieve that products directly enter M2

and are processed there in the faulty case. Hence, our faultybehavior specification is

KF = Lm(CF) in Fig. 13.

CN CD
1

CD
2CF

op1 op1

op2 op2
1to2

1to2

in1 in1

in2 in2

exit2 exit2

exit1

1

1

1

1

2

2

2

2

3

3

3

3

Figure 13: Nominal specification automatonCN (alphabetΣ); degraded specification
automataCD

1 (alphabetΣ \ {in2 ,op2 ,exit2 }), CD
2 (alphabetΣ \ {in1 ,op1}) and

faulty specification automatonCF (alphabetΣ).

Using G (without ther -transitions),Σu, KN, KD, KF, ΣF as introduced in this

section, it is possible to evaluate the fault-recovery supervisorSF based on (4.3), (4.4)

and (4.5). The result is shown in Fig. 14. Hereby, the left-hand part ofSF represents

the nominal behavior of the example system, whereby it can beverified thatLm(SF)∩

(ΣN)⋆ ⊆ KN. Moreover, it turns out for this simple example that convergence to the

faulty behavior specification is achieved immediately (right-hand part ofSF).

SF

op1 op2

in1

in2

exit2

exit1 f

f

1 2

3 4

5

6

Figure 14: Fault-recovery supervisorSF.
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4.4 Handling System Repair

We next show that the same computation as in Section 4.2 can beused in order to

handle system repair after a fault. To this end, we define a setof repair eventsΣR and

consider a plant modelG that allows for repair after a fault as is shown in Fig. 12.

In addition, we introduce a repair specificationKR that continues the system behavior

after a repair happened. Using this model, we intend to achieve the following behavior

that is complementary to the behavior specified in Problem 2:

R1: Follow the fault-recovering behavior that is represented by Lm(G||SF) as com-

puted in Section 4.2 until a repair is performed,

R2: Continue the system behavior according to the repair specificationKR after re-

pair,

R3: Finally converge to the nominal specificationKN.

It is readily observed that (R1) to (R3) above are obtained by substitution from

item (P1) to (P3) in the formulation of Problem 2 as follows.KNΣF is replaced by

KDΣR, KD is replaced byKR, KF is replaced byKN andKNΣF(ΣN)⋆ is replaced by

L(G||SF)ΣR(ΣN)⋆. That is, the same solution procedure can be applied, first comput-

ing a specification

KB = [KDΣR|||KR)∩ (L(G||SF)ΣR(ΣN)⋆∩Lm(G))]. (4.6)

Next, the supervisorSB is computed with

Lm(S
B) = SupC(KB,L(G),Σu\ΣF). (4.7)
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Finally, convergence to the nominal behavior is achieved bycomputing a supervisor

for repairSR such that

Lm(SR) =CA(KN,Lm(SB),L(G||SF)ΣF,Σu\ΣF)∪

Lm(G||SF)∩ CA(KN,Lm(SB),L(G||SF)ΣF,Σu\ΣF)
(4.8)

Note that the uncontrollable eventsΣu\ΣF are used in (4.7) and (4.8). Here, we con-

sider the events inΣF as controllable since we compute the supervisorSR for the case

after repair but without additional fault. The possibilityof multiple fault occurrences

is discussed below.

In our example, the modelG in Fig. 12 already includes a system repair (dashed

eventsr ). Furthermore, we would like to achieve the specificationKB that is given in

Fig. 15 after repair is performed. That is, products that areprocessed by M2 should

move to M1 and any new products should enter from M1 and should be processed

there.

CR
1 CR

2

op1

op2

2to1

2to1
in1

in2

exit1
1 12 23 3

Figure 15: Specification automataCR
1 andCR

2 after repair.

Using the computation described in this section, we arrive at the supervisor for

repair SR as shown in Fig. 16. It can be seen that the upper left-hand part of SR

constitutes the nominal behavior, whereas the upper right-hand part represents the

behavior after a fault. The lower part ofSR is is the desired behavior after repair. That

is, products are delivered to and operated at M1 and finally the nominal behavior is

recovered.
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SR

op1

op1

op1

op1

op2 op2

op2

op2

op2

2to1
in1

in1

in2

in2

exit2

exit2

exit1

exit1

exit1

exit1

f

f

rr rrrr

11

1 2 3 4 5

6 7 8 9

10 12 13 14

15 16 17

Figure 16: Supervisor after repairSR.

4.5 Arbitrary Fault Occurrences and System Repairs

The computation ofSR as in (4.8) assumes that no further fault can happen after repair,

since no fault is allowed after repair according to (4.6). Inpractice, this is not a realistic

assumption. In order to determine a fault-recovery supervisor that allows arbitrary

faults and repairs, we propose to iteratively apply the computation for fault-recovery

and repair until no new behavior is added to the resulting supervisor. To this end, we

first write a generalized representation of the computationin (4.3) to (4.5) ((4.6) to

(4.8)) depending on the input languagesK1, . . . ,K4 and alphabetsΣ1,Σ2.

KC =[(K1Σ1|||K2)∩ (K3Σ1(ΣN)⋆∩L(G))], (4.9)

Lm(Ŝ
C) =SupC(KC,L(G),Σu\Σ2), (4.10)

Lm(S
C) =CA(K4,Lm(Ŝ

C),K3Σ2,Σu\Σ2)∪ (4.11)

K3∩CA(K4,Lm(ŜC),K3Σ2,Σu\Σ2)

We define the supervisorsSF
i = (QF

i ,Σ,νF
i ,q

F
0,i,Q

F
m,i) andSR

i = (QR
i ,Σ,νR

i ,q
R
0,i,Q

R
m,i)

in iterationi and writeSF
i,q (SR

i,q) for the supervisorSF
i (SR

i ) starting from stateq∈ QF
i

(q ∈ QR
i ). Then, we initialize the iterative process withi := 1, SF

1 := SF in (4.5) and
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SR
1 := SR in (4.8) and we apply the following steps.

1. i := i+1,

2. ComputeSF
i using (5.1) to (5.3) with the inputsK1 = KR, K2 = KD, K3 =

Lm(G||SR
i−1), K4 = KF, Σ1 = ΣF andΣ2 = ΣR,

3. DefineWF
k := {q∈ QF

i |∃u∈ (Σ\ΣF)⋆[ΣF(Σ⋆ \ΣF)]k such thatq= νF
i (q

F
0,i ,u)},

4. Terminate if for allq∈WF
i , there exists a ˆq∈WF

i−1 such thatLm(SF
i,q)= Lm(SF

i,q̂)∩

(ΣN)⋆. In that case, transitions leading toq in SF
i are lead to the state ˆq instead.

Denote the resulting automaton asS,

5. ComputeSR
i using (5.1) to (5.3) with the inputsK1 = KD, K2 = KR, K3 =

Lm(G||SF
i ), K4 = KN, Σ1 = ΣR andΣ2 = ΣF,

6. DefineWR
k := {q∈QR

i |∃u∈ (Σ\ΣR)⋆[ΣR(Σ\ΣR)⋆]k−1 such thatq= νR
i (q

R
0,i ,u)},

7. Terminate if for allq∈WR
i , there exists a ˆq∈WR

i−1 such thatLm(SR
i,q)= Lm(SR

i,q̂)∩

(ΣN)⋆. In that case, transitions leading toq in SR
i are lead to the state ˆq instead.

Denote the resulting automaton asS,

8. go to 1.

The algorithm repeatedly computes supervisors for fault-recovery and repair analo-

gous to Section 4.2 and 4.4, whereby the algorithm terminates if the newly added

behavior after fault (repair) is identical to the one added in the previous iteration. To

this end, it is checked in steps (4) and (7) if the added behavior obtained in stepi is

identical to the added behavior in stepi −1. In the positive case, it is possible to lead

all incoming transitions of newly added states back to the corresponding state that

was added in the previous iteration. The resulting supervisor after termination of the

described algorithm handles arbitrary numbers of faults and repairs. In addition, the

conditions in Problem 2 are fulfilled for each fault occurrence, whereas the analogous

conditions for system repair are fulfilled for each system repair. Although termina-

tion of the algorithm was observed for all our examples, a formal result regarding the
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termination of our algorithm is subject of future work. As a note, the algorithm is

implemented in [23].

For our example, the algorithm terminates in the second iteration with the supervi-

sorS in Fig. 17. It can be seen by inspection that the desired specifications after fault

and repair are fulfilled.

S

op1

op1

op1

op2op2

op2

op2

op2

2to1

in1

in2

in2

exit2

exit2

exit1

exit1 exit1

exit1

f

f

f

f

f

f

rr
r

r

r

r

11

1 2 3 4

5 6 7 8

9 10 12 13

14 15

Figure 17: SupervisorS that solves the fault-recovery problem with system repair.
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CHAPTER 5

DISCRETE EVENT SUPERVISOR DESIGN AND APPLICATION FOR

MANUFACTURING SYSTEMS WITH ARBITRARY FAULTS AND REPAIRS

This chapter extends the method for the fault-recovery and repair of single faults as

described in Chapter 4 to the case of different faults. As a result, we obtain a supervi-

sor that follows the specified nominal system behavior in thefault-free case, converges

to a desired degraded behavior for each fault type and recovers the nominal behavior

after repair. The chapter is organized as follows. Section 5.1 gives a motivating exam-

ple and Section 5.2 presents the extended problem formulation. Section 5.3 proposes

an algorithm for the supervisor computation. We note that the results presented in this

chapter are published in the conference paper [7].

5.1 Motivating Example

We recall the same example which is introduced in Section 2.7in order to illustrate

the problem setting in this chapter.

We assume that two faults can happen in the system the main difference from the

study in Chapter 4.F1 can occur in M1 whenever a product is present and disables

the operation of M1. Likewise,F2 can occur whenever a product is present in M2

and disables the operation of M2. The corresponding repair events areR1 andR2.

R1 can occur afterF1 andR2 can occur afterF2. When repair events happen, the

correct operation of the respective machine is restored. Automata modelsG1 andG2

for the two machines are shown in Fig. 19. In this chapter, we assume that the two

faults do not happen simultaneously which is captured by theautomatonF in Fig.

19. That is, the overall plant model isG = G1||G2||F. Moreover,ΣF = {F1 ,F2},
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in2 exit2
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F1
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F2
R2

Figure 18: Schematic of the example system

ΣR = {R1,R2} and it is assumed thatΣu = {F1 ,F2}.

We specify the nominal behavior of the closed-loop system such that products

enter one of the machines M1 or M 2 and are processed by the respective machine

before leaving. The nominal specification is given byKN = Lm(CN) in Fig. 19. In

case of a fault in one of the machines, it is desired that the other machine continues

the operation. Different from our previous work, this implies that a different behavior

should be achieved after different faults.

ConsideringF1, it is required that products are no longer processed by the faulty

machine M1 but by the other machine M2. That is, afterF1, unprocessed prod-

ucts in M 1 should be moved to M2 as is modeled by the degraded specification

KD1 = Lm(CD1
1 ||CD1

2 ) in Fig. 19. Finally, products should only be handled by M2

as described byKF1. In case of repair, the operation of M1 should resume and the

system should return to the nominal operation. This behavior is represented by the

repair specificationKR1 = Lm(CR1
1 ||CR1

2 ) in Fig. 19.

ConsideringF2, it is required that products are no longer processed by the faulty

machine M2 but by the other machine M1. The respective specificationsKD2 (de-

graded),KF2 (faulty behavior) andKR2 (repair) are readily obtained fromKD1, KF1,

KR1 due to the symmetry of the problem (Fig. 19).
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Figure 19: Automata models for the example system: PlantG= G1||G2||F; nominal
specificationKN = Lm(CN

1 ||C
N
2 ).
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We note that the described setting resembles the setting in Chapter 4. Nevertheless,

we now consider that a different behavior is required after different faults which is not

captured in Chapter 4.

5.2 Problem Formulation

We next formalize the extended problem setting. The system behavior is characterized

by the plant modelG = (X,Σ,δ ,x0,Xm), assuming that different faults cannot occur

simultaneously. The alphabetsΣu,ΣN ⊆ Σ are used as before. In addition, we write

ΣF = {F1, . . . ,Fn} for the fault events andΣR = {R1, . . . ,Rn} for the repair events.

In order to specify the desired system behavior for our fault-recovery and repair

problem, we consider the nominal specificationKN as in Section 4.1 and three spec-

ifications for each faultFi ∈ ΣF: KDi (degraded specification);KFi (faulty behavior

specification);KRi (repair specification). These specifications have the same meaning

as in Section 4.1 and 4.4 but are now fault-specific.

Using the previously introduced notation, we want to solve the following problem.

Problem 3. Assume that G,Σu, ΣN, ΣF, ΣR, KN, KDi, KFi, KRi for Fi ∈ ΣF are

given as above. We want to design a nonblocking fault-recovery and repair supervisor

S= (Q,Σ,ν ,q0,Qm) for G and Σu such that the below conditions (1) to (3) hold.

Hereby, we define Ll = (ΣN)⋆
(

ΣF(ΣN)⋆ΣR(ΣN)⋆
)l
∩ L(G||S) as the set of all closed-

loop strings with l faults and repairs.

(1) Lm(G||S)∩ (ΣN)⋆ ⊆ KN.

(2) it holds for allFi ∈ ΣF and l∈ N0:

a)∀s∈ Lm(G||S)∩LlFi(ΣN)⋆, there exists a partition s= s1
1s2

1 · · ·s
1
ks2

kFis3, sj
i ∈

Σ⋆ for i = 1, . . . ,k and j= 1,2, s1
1 · · ·s

1
k ∈ Ll and s21 · · ·s

2
ks3 ∈ KDi.

b) KFi ⇐ [Lm(G||S)/(L(G||S)∩LlFi)]∩ (ΣN)⋆
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(3) it holds for allRi ∈ ΣR and l∈ N0:

a)∀s∈ Lm(G||SF)∩LlFi(ΣN)⋆Ri(ΣN)⋆, there exists a partition s= s1
1s2

1 · · ·s
1
ks2

kFis3,

sj
i ∈Σ⋆ for i = 1, . . . ,k and j= 1,2, s1

1 · · ·s
1
k ∈ L(G||S)∩LlFi(ΣN)⋆ and s21 · · ·s

2
ks3∈

KRi.

b) KN ⇐ [Lm(G||S)/(L(G||S)∩LlFi(ΣN)⋆Ri)]∩ (ΣN)⋆

The three conditions in Problem 2 can be explained as follows: (1) requires that

the closed-loop system fulfills the nominal specificationKN in case no fault occurred.

(2) states that the closed-loop system should a) continue its operation while fulfilling

the corresponding degraded specificationKDi and b) converge to the corresponding

faulty behavior specificationKFi after each fault occurrenceFi . Analogously, (3)

states that the closed-loop system should a) continue its operation while fulfilling the

corresponding repair specificationKRi and b) converge to the nominal specification

KN after each repairRi .

5.3 Supervisor Computation for Different Faults

This section presents our algorithm for the computation of fault-recovery and repair

supervisors that handle arbitrary occurrences of different faults as the main contribu-

tion of this thesis. To this end, we first provide a generalized representation of the

computation in (4.3) to (4.5) and ((4.6) to (4.8)) dependingon the input languages

K1, . . . ,K4 and alphabetsΣ1,Σ2:

KC =[(K1Σ1|||K2)∩ (K3Σ1(ΣN)⋆∩L(G))], (5.1)

Lm(Ŝ
C) =SupC(KC,L(G),Σu\Σ2), (5.2)

Lm(S
C) =CA(K4,Lm(Ŝ

C),K3Σ2,Σu\Σ2)∪K3∩CA(K4,Lm(ŜC),K3Σ2,Σu\Σ2)

(5.3)

Using this representation, we propose to iteratively compute the supervisorS=

(Q,Σ,ν ,q0,Qm) in Problem 3. In this computation, we use intermediate supervisors
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denoted asS(r), wherebyr ∈ (ΣFΣR)⋆(ε +ΣF). For exampleS(r) for r = F1R1F2

denotes a supervisor that is computed for the successive occurrence of faultF1, repair

R1 and faultF2. Furthermore, writingr = σ1σ2 · · ·σk, we defineW(r) = {q∈ Q|∃u∈

(ΣN)⋆σ1(ΣN)⋆σ2(ΣN)⋆ · · ·(ΣN)⋆σk such thatq= ν(q0,u)} as the set of states inSthat

are reachable after a sequence of faults and repairs given byr.

Based on this notation, we propose Algorithm 2.

This algorithm repeatedly computes supervisors for fault-recovery and repair fol-

lowing the tree in Fig. 20. We note that the tree is shown for the case of two faults

for ease of representation. We believe that the general representation for an arbitrary

number of faults is straightforward. This tree captures allcombinations of successive

fault occurrences and repairs, respecting the assumption that different faults do not

occur simultaneously. Hereby, the setA keeps track of the supervisors that belong

to the leaves of the tree. This set is initialized with the supervisors for one fault and

one repair in line 1 to 3 of Algorithm 2. The algorithm then successively takes su-

pervisors fromA (line 7) and computes new supervisors according to (5.1) to (5.3).

For example, the supervisorS(F1 R1 F2) is computed fromS(F1 R1) using (5.1) to

(5.3) with the specificationsK1 = KR1, K2 = KD2, K3 = Lm(G||S(F1 R1)), K4 = KF2

and the alphabetsΣ1 = {F2} andΣ2 = {R1}. This computation is performed in line 8

in Algorithm 2. The overall supervisor is then updated by adding the newly found

behavior (line 9). In the next step, it is checked if really new behavior is found

in the current iteration (line 10 to 15). For example, again considerS(F1 R1 F2).

Then,W(F1 R1 F2) represents the states inSafter the occurrence ofF2 andLm(Sq)

for eachq ∈ W(F1 R1 F2) represents the possible behavior afterF2 from stateq.

If this behavior is also obtained afterF2 in the supervisorS(F2), this implies that

S(F1 R1 F2) does not realize any new behavior afterF2. Hence, it is possible to dis-

cardS(F1 R1 F2) and continue the behavior afterF2 with the previously computed

S(F2) instead andS(F1 R1 F2) is not inserted inA (line 12). If new behavior is

found, S(F1 R1 F2) is inserted as a new leaf inA . After that, the same procedure

is performed for the case of a repair in line 16 to 23. The algorithm terminates if no

more leaves are inserted inA , which happens as soon as no new behavior is found.
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input : G, Σu, KN, ΣF, KDi , KFi , Fi ∈ ΣF, ΣR, ΣRi , Ri ∈ ΣR

output: S
1 ComputeS(Fi ) for eachFi ∈ ΣF (as in Section??)
2 ComputeS(Fi Ri ) for eachRi ∈ ΣR (as in Section 4.4)
3 A =

⋃

Fi ∈ΣF{S(Fi ),S(Fi Ri )}

4 ComputeSsuch thatLm(S) =
⋃

Ŝ∈A
Lm(Ŝ)

5 while A 6= /0 do
6 for Fi ∈ ΣF and S(rFjRj) ∈ A do
7 RemoveS(rFjRj ) from A

8 ComputeS(rFjRjFi ) using (5.1) to (5.3) withK1 = KRj ,
K2 = KDi , K3 = Lm(G||S(rRj )), K4 = KFi , Σ1 = {Fi } and
Σ2 = {Rj }

9 Compute newSsuch thatLm(S) = Lm(S)∪Lm(S(rFjRjFi ))
10 ComputeW(rFi ) andW(rFjRjFi )
11 if ∀q∈W(rFjRjFi), ∃q̂∈W(rFi) such that

Lm(Sq) = Lm(Sq̂)∩ (ΣN)⋆ then
12 Connect transitions leading toq in S to the state ˆq instead
13 else
14 A = A ∪{S(rFjRjFi )}
15 end
16 ComputeS(FjRjFiRi ) using (5.1) to (5.3) with the inputs

K1 = KDi , K2 = KRi , K3 = Lm(G||S(FjRjFi ), K4 = KN,
Σ1 = {Ri } andΣ2 = {Fi }

17 Compute newSsuch that
Lm(S) = Lm(S)∪Lm(S(rFjRjFiRi )

18 ComputeW(rFiRi ) andW(rFjRjFiRi ).
19 if ∀q∈W(rFjRjFiRi), ∃q̂∈W(rFiRi) such that

Lm(Sq) = Lm(Sq̂)∩ (ΣN)⋆ then
20 Connect transitions leading toq in S to the state ˆq instead
21 else
22 A = A ∪{S(rFjRjFiRi )}
23 end
24 end
25 end

Algorithm 2: Computation ofS for different repeated faults.
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The resulting supervisor after termination of Algorithm 2 handles arbitrary numbers

and sequences of faults and repairs.

We next briefly outline that the conditions of Problem 3 are fulfilled by Scomputed

in Algorithm 2. (1) follows from the initialization in line 1and 2. (2) is addressed in

line 8 and 9 and is preserved by the re-connection of transitions in line 12. Similarly,

(3) is addressed in line 16, 17 and 20. Finally, it has to be noted that we do not

have a formal result regarding the termination of the algorithm at the current stage of

our research. Nevertheless, we note that termination was achieved in all our example

evaluations.

N

F1

F1F1F1F1

F1

F1

F2 F2 F2 F2

F2F2

F2

R1R1

R1

R2R2

R2
S(F1 R1)

S(F1 R1 F2)

S(F2)

Figure 20: Tree for the computation ofS.

We applied Algorithm 2 to the example with two faults in Section 5.1. The result-

ing tree is shown in Fig. 21. That is, no new behavior is obtained when computing

S(F1 R1 F1) (compared toS(F1), S(F1 R1 F2) (compared toS(F2), S(F2 R2 F1)

(compared toS(F1) andS(F2 R2 F2) (compared toS(F2). The final supervisorS for
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our example has 79 states and is too large to be shown in this thesis.

N

F1F1

F1

F2F2

F2

R1 R2

Figure 21: Tree obtained for the example system. Termination is achieved after
F1 R1 F1, F1 R1 F2, F2 R2 F1 andF2 R2 F2.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The occurrence of a fault indicates the deviation of a dynamic system’s behavior from

its desired (nominal) behavior and usually has a negative impact. In this context,

fault-tolerant and fault-recovery control are concerned with designing controllers that

enable the operation of a system even in case of faults. The computation of fault-

tolerant supervisors for discrete event systems (DES) and the fault-recovery and repair

of discrete event systems (DES) are the main subjects of the thesis.

Regarding fault-tolerance, we address faults modeled by faulty events, the occur-

rence of which is no longer possible in case of a fault and we want the closed-loop

system to fulfill a given specification even in case of fault. In this modeling frame-

work, an algorithm for the verification of fault tolerance ofa given specification is

our first contribution. Second, we prove the existence of a supremal fault-tolerant

sublanguage, in case a given specification is not fault-tolerant. As the third contri-

bution, we suggest a polynomial-time algorithm for the computation of the supremal

fault-tolerant sublanguage.

Regarding fault-recovery and repair, we first propose a new method for the design

of fault-recovery supervisors based on the concepts such asinterleaving composition

and language convergence. Our fault-recovery supervisor follows the nominal sys-

tem behavior as long as no fault occurs, and switches to a degraded behavior once

a fault occurs. Afterwards, the closed-loop behavior converges to a desired specifi-

cation under fault in a bounded number of transitions. Unlike the existing literature,

the computational method for our fault-recovery supervisor can also be used to con-
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duct system repair. Finally, an iterative application of our method enables computing

supervisors for the repetitive occurrence of faults and system repairs.

In addition, this thesis addresses the case where, after each fault, different faults

can occur and a different behavior is required after each fault. To this end, we pro-

pose a new algorithm that iteratively computes a fault-recovery and repair supervisor

following a tree of the possible sequences of fault and repair. After termination, the

computed supervisor allows arbitrary sequences of faults and repairs. All methods and

algorithms are illustrated by small manufacturing system examples.

6.2 Future Work

The work presented in this thesis assumes full event observation, that is, all events

can directly be observed/measured. In faulty systems, it can be expected that some

events cannot be directly observed. Hence, an interesting subject for future work is

the extension of the proposed methods to the case of DES underpartial observation.
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