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ABSTRACT 

 

Mathematical Modeling of Log Normal Turbulence Channels 

 

GÖRSE, Serkan 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Orhan GAZİ 

 

July 2018, 68 pages 

 

In this thesis work we demonstrated the development of a mathematical model for 

those systems involving complex numerical integration formulas. For this purpose, 

we considered two-hop communication systems. For the two-hop communication 

systems, the end-to-end performance depends on the harmonic mean of hop SNRs. 

For log-normal distributed channels, we considered two-hop communication systems 

and calculated the harmonic mean of two SNRs. The calculated harmonic mean 

value is in integral form and it need to be calculated numerically. We showed that 

such an integral formula can be expressed approximately using simple mathematical 

expressions. For this purpose, we used curve fitting utility of the MATLAB platform 

and approximated the harmonic mean expression by a Gaussian like distribution. 

Using the approximation formula, cumulative distribution function, moments 

generating function, moments, outage probability, amount of fading and transmission 

error probability are calculated in closed forms. The proposed approach presented in 

this thesis work can be used for the systems having long and complex performance 

calculation formulas.  

 

Keywords: Performance of Free Space Optic, Harmonic Mean, Performance 

Analyses, Probability Density Function. 
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ÖZ 

 

Log Normal Türbülans Kanallarının Matematiksel Modellemesi 

 

GÖRSE, Serkan 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Assoc. Prof. Dr. Orhan GAZİ 

 

Temmuz 2018, 68 sayfa 

 

Bu tez çalışmasında karmaşık numerik hesap gerektiren matematiksel bir denklemin 

daha basit ve kapalı formda olan matematiksel bir ifade ile yaklaşık olarak elde 

edilmesine yönelik bir çalışma sunulmaktadır. Bunun için iki atlamalı haberleşme 

sistemleri düşünülmüştür. İki atlamalı haberleşme sistemlerinin uçtan-uca olan 

performansları atlamalardaki SNR değerlerinin harmonik ortalamsına bağlıdır. 

Çalışmamızda iki atlamalı ve Log-normal dağılımına sahip iletişim sistemlerinin 

atlama noktalarındaki SNR dağılımlarının harmonik ortalama değerini integral 

formunda hesapladık. Daha sonra hesaplamış olduğumuz integral formundaki karışık 

matematiksel ifadeyi MATLAB derleyicisinin curve-fitting aracını kullanarak daha 

basit matematiksel ifadelerle yaklaşık olarak hesapladık. Hesapladığımız yaklaşık 

değer formülü kapalı formdadır ve bu formülü kullanarak kümülatif dağılım 

fonksiyonu, moment üretim fonksiyonu, kesinti olasılığı fonksiyonu, gönderim hata 

olasılığı gibi fonksiyonları kapalı formda hesapladık. Son olarak da hesapladığımız 

fonksiyonları kullanarak sistemin performansını gönderim hata olasılığı grafiği ile 

göstermiş olduk. 

 

Anahtar Kelimeler: Serbest Uzay Optik Sistem Performansı, Harmonik Ortalama, 

Performans analizi, Olası yoğunluk fonksiyonu. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

In today's conditions, the need for more favorable opportunities, environment and 

tools in the communication world have increased. Every passing day, the necessity of 

optic communication systems is escalating in various areas such as telephone, 

networks data transmission, integrated optic mechanisms, cable television systems, 

transportation, military and medical applications in the direction of the above-

mentioned requirements. High speed data transmission speed for the optical networks 

is possible. 

In present technology, the optical communication systems are more preferred than 

the other communication systems. Optical communication systems have some 

advantages over the classical communication systems, the existence of the silicium 

which is the raw material of the optical wave guide as a glut in the nature, stoutness 

of the isolation, the velocity head, stableness, being not affected by the 

electromagnetic effects, reliability, cost-efficiency and specifically having a large 

capacity and low transmission loss with high band width. The use of the optical 

fibers which are the dielectric transmission medium is increasing alongside the wired 

communication media such as the copper cable and coaxial cable. Because it has 

much less loss than the free space wireless communication. Its sufficiency to work in 

coordination with the old communication systems is one of the significant 

characteristic of optical fibers.  

Free Space Optic (FSO) systems transmit data for telecommunications or computer 

networks. In contrast to the radio frequency networks, free space optical (FSO) 

communications provide many advantages which cause FSO to become increasingly 

popular and studied over the past decade. Most important advantages of FSO 
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communication systems are transmission rate, low cost, systematical, portability 

security and licensing.  Free space optical systems use light propagation in free 

space. Free space means air, outer space or something similar. Today we use fiber 

optic cables for computer networks or high speed communication. Fiber optic cables 

cannot be useful when the physical connection is not possible. Systems which 

include fiber optic cables have high level cost in some places. For example, fiber 

deployment in urban areas could cost $300000-$700000 per kilometer without other 

installation cost. A FSO system with same transmission rate could be more economic 

at a price of $18000 [4,5]. Although FSO systems can be a good solution to 

overcome these disadvantages, there are limitations as well. The degrading factors 

for optical communication include the fact that rain, dust, snow, fog or smog can 

obstruct the transmission path and these factors can shut down the network.  

Scientists try to improve FSO systems to avoid the air conditions that lead to 

limitations on communication systems. They develop many hardware and 

communication technique to overcome these difficulties. 

 

1.2 Objectives 

 

The main aim of this thesis is to develop a mathematical model for free space optic 

communication systems over log normal turbulence channels. There are many factors 

that affect the optical communication's system performance on atmosphere. Distance, 

temperature, altitude and pressure are some of important factors. Performance of 

FSO systems are analyzed by changing distance. These effects are demonstrated by 

graphs which are plotted by MATLAB in details. Cumulative density function, 

moments generating function, amount of fading and bit error rate are calculated. 

 

1.3 Organization of the Thesis 

 

This thesis is divided into four chapters. All analyses are studied to calculate 

performance of FSO channels over log normal turbulence channels. Results are 

compared with different distance and turbulence strength. 

Chapter-1 covers an introduction and a background for free space optic’s 

communication systems and portrays objectives of this thesis.  
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Chapter-2 involves the mathematical modeling of optic communication channels 

over log normal atmospheric turbulence channels. 

Chapter-3 explains calculation of cumulative density function, moment generation 

function, moments, amount of fading and bit error rate with the mathematical model 

developed in Chapter-2.  

Chapter-4 is the conclusion part.  
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CHAPTER 2  

 

MATHEMATICAL MODELLING OF LOG NORMAL ATMOSPHERIC 

TURBULANCE CHANNELS 

 

2.1 Probability Density Function of Log Normal Distribution 

 

In this part of thesis, we work on the performance of FSO channels by investigating 

their outage probability and the average capacity, respectively. Thus, we derive 

closed form expressions for the outage probability and the average capacity of 

optical links over atmospheric turbulence induced fading channels modeled by the 

log normal turbulence distribution with respect to the turbulence strength, as well as 

the influence of other important system’s parameters, such as optical link length and 

the receiver’s aperture diameter. 

Firstly, we calculate the probability density function by utilizing the harmonic mean 

of two signals. Given two numbers 𝑋1 and 𝑋2, the harmonic means of 𝑋1 and 𝑋2, is 

defined as [6, 9] 

𝜇𝐻 (𝑋1, 𝑋2) =
2𝑋1𝑋2

𝑋1 + 𝑋2
 (2.1) 

 

We define three parameters (𝑥 𝑧 𝑤) to express this equation more easily. These 

parameters are equal to 

𝑤 = 𝑋1 + 𝑋2                     𝑧 = 2𝑋1𝑋2                     𝑥 =
𝑧

𝑤
 . (2.2) 

 

For the harmonic mean calculation of two random variables, we consider the random 

variables having log-normal distribution. The probability density function equation 

of the log normal turbulence as given by
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𝑝(𝑥) =
1

2𝜇𝜎√2𝜋
exp

(

 −
(ln (

𝜇
𝜇
) + 𝜎2)

2

8𝜎2

)

  (2.3) 

 

where 𝜎 is the standard deviation of the log normal distribution, which depends on 

the channel’s characteristics and it is calculated as [9, 17] 

𝜎2 = exp

[
 
 
 
 

0.49𝛿2

(1 + 0.18𝑑2 + 0.56𝛿
12
5 )

7
6

+
0.51𝛿2

(1 + 0.9𝑑2 + 0.62𝑑2𝛿(
12
5

))

5
6

]
 
 
 
 

− 1 (2.4) 

 

where 

𝑑 = √
𝑘𝐷2

4𝐿
 

and  

𝑘 =
2𝜋

𝜆
 

 is the optical wave number, 𝐿 is the length of the optical link and 𝐷 is the receiver’s 

aperture diameter. The parameter 𝛿 is called Rytov variance and it is defined as  

𝛿2 = 1.23  𝐶𝑛   
2 𝑘

7
6  𝐿

11
6   . (2.5) 

 

where 𝐶𝑛
2 is the altitude which is dependent on the turbulence strength varying from 

10−17 to 10−13 𝑚−2/3 according to atmospheric turbulence conditions [2,8].The 

instantaneous electrical signal to noise ratio (SNR) is given as 

 𝜇 = (
𝜂𝐼2

𝑁0
) =

𝑠2

𝑁0
 

 and the average electrical SNR is calculated as 

𝜇̅ = 𝜂
𝐸[𝐼]

𝑁0
. 

.  

Now we must use error function to define 𝑝𝑑𝑓 equation of log normal model more 

simply.  

The exponential term in log-normal distribution in (2.3) can be expressed as in 
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𝑝(𝑥) = exp (−
(ln(

𝜇

𝜇
)+𝜎2)

2

8𝜎2
) → exp [−(

1

8𝜎2) [ln (
𝜇

𝜇
)]

2

+ 𝜎4 + 2𝜎2 ln (
𝜇

𝜇
)] .  

 

(2.6) 

After this operation, probability density functions of log normal distribution take the 

form 

𝑝(𝑥) =
1

2𝜎√2𝜋
exp [−

𝜎2

8
] 𝜇

−(
1
4
)
 𝜇

1
4    𝑒𝑥𝑝 [−(

1

8𝜎2
) [ln(

𝜇

𝜇
)]

2

] . (2.7) 

 

If we define the constant value 𝐾 as in 

𝐾 =
1

2𝜎√2𝜋
exp [−

𝜎2

8
] 𝜇

−(
1
4
)
   (2.8) 

  

then the log-normal distribution in (2.7) can be written as in (2.9) 

 

At the end of these steps pdf equation transformed to an easier form which is 

expressed as equation(2.9). 

𝑝(𝑥) = 𝐾 ⋅ 𝜇
1
4 ⋅   𝑒𝑥𝑝 [[ln (

𝜇

𝜇
)]

2

]  (2.9) 

 

2.2 Joint Probability Density Function 

 

The joint pdf of the random variables 𝑍,𝑊, i.e., 𝑃𝑧,𝑤(𝑧,𝑤) can be derived using the 

Jacobian transformation. We can write the harmonic mean of 𝑋1 and 𝑋2 as  𝑋 =

𝑍/𝑊 where 𝑋 = 2𝑋1𝑋2 and 𝑊 = 𝑋1 + 𝑋2. Using [12, Sec. 6.2], the PDF of  𝑋 can 

be written as, 

𝑝𝑥(𝑥) = ∫ |𝑤|𝑃𝑧,𝑤(𝑥𝑤, 𝑤)𝑑𝑤
∞

−∞

 (2.10) 

 

which can be evaluated with the help of [7, Eq. (3.383.4)] yielding, 

𝑃𝑧,𝑤 =
1

2∆
 [𝑃𝑥1,𝑥2

(𝑋11, 𝑋21), 𝑃𝑥1,𝑥2
(𝑋12, 𝑋22)] (2.11) 

 

in which we have 



 

7 

 

 𝑋11, 𝑋21 = 𝑤 ±
√𝑤2 − 2𝑧

2
  , 𝑋11, 𝑋21 = 𝑤 ±

√𝑤2 − 2𝑧

2
  , ∆ = √𝑤2 − 2𝑧 (2.12) 

 

Substituting the parameters in (2.11), and the log-normal distribution expression in  

(2.9) into we obtain (2.14). 

 

𝑃𝑧,𝑤(𝑧, 𝑤) =
1

2√𝑤2 − 2𝑧
 [𝑃(𝑥11)𝑃(𝑥21) + 𝑃(𝑥12)𝑃(𝑥22)] (2.13) 

 

 

𝑃𝑧,𝑤(𝑧,𝑤) =
2

2√𝑤2 − 2𝑧

[
 
 
 
 
 
𝐾 (

(𝑤 + ∆)

2
)

1
4

 𝑒𝑥𝑝(
1

8𝜎2
[𝑙𝑛 (

(𝑤 + ∆)

2

1

𝑥
 )]

2

)

 𝐾 (
(𝑤 − ∆)

2
)

1
4

 𝑒𝑥𝑝(
1

8𝜎2
[𝑙𝑛 (

(𝑤 − ∆)

2

1

𝑥
 )]

2

)
]
 
 
 
 
 

. (2.14) 

 

The probability density function of 𝑋 = 𝑍/𝑊 can be calculated using 

𝑃𝑋(𝑥) = ∫ 𝑤𝑃𝑧,𝑤(𝑥𝑤,𝑤)𝑑𝑤
∞

2𝑥

 

leading to 

 

𝑝(𝑥) = 𝐾 ∫ 𝑤−(
3
4
)(𝑤 − 2𝑥)−(

1
2
)𝑒𝑥𝑝(−

1

8𝜎2
[[

𝑤 + ∆

2𝑎
]
2

[
𝑤 − ∆

2𝑎
 ]

2

]) 𝑑𝑤.
∞

2𝑥

 (2.15) 

 

This integration is cannot be expressed in closed form. We write some code in 

MATLAB to calculate this integral and we plot its graph vs. SNR, i.e., vs. 𝑥. The 

graph of this 𝑝(𝑥) is shown on Fig. 1. 
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Figure 1 Probability Density Function to Signal Noise Ratio 

 

2.3 Detection of Best Fitting Curves in MATLAB 

 

MATLAB curve fitting option is used to find the best mathematical expression that 

approximates the probability density function in (2.15) closely. To express the 

integration defined in (2.15) in closed form, different curve fitting models of the 

MATLAB can be utilized. The typical curve fitting models available in MATLAB 

are Gaussian, Fourier, and Polynomial. We decide for Gaussian model with 1𝑠𝑡 

degree. Because, we obtain best fitting performance and simple integration in 

Gaussian model. Performance analysis and coefficients values of Gaussian model are 

shown in Fig. 2, Fourier model is shown in Fig. 3 and Polynomial model is shown in 

Fig. 4.  At the same time, we compare the number of terms, general mode of 

equation, goodness of fit and coefficient values in Fig. 2, 3 and 4.
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Figure 2 Gaussian Equation Model 



 

10 

 

 

Figure 3 Polynomial Equation Model 
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Figure 4 Fourier Equation Model
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After we decide on the 1𝑠𝑡 degree Gaussian equation, instead of the complex 𝑝(𝑥) 

integral equation we use the Gaussian equation obtained from curve fitting utility of 

the MATLAB. That is, 𝑝(𝑥) in (2.15) is closely approximated by 

   

𝑝(𝑥) = 𝐴 ∗ 𝑒𝑥𝑝(−(
(𝑋 − 𝐵)

𝐶
)

2

). (2.16) 

 

Thus using (2.16), we can calculate 𝑝(𝑥) more easily than complex integration form 

defined in equation (2.15). In the simple equation in (2.16), we have some 

coefficients 𝐴, 𝐵, 𝐶. We calculate these coefficients using MATLAB in the next part 

of thesis. 

 

2.4 Coefficient Analyze According to Distance  

 

In pursuit of this process we concentrate on the changes of 𝐴,𝐵, 𝐶 when we change 

distance 𝐿. In order to see this, we wrote a MATLAB code. The range value for 𝐿 is 

500 𝑚 𝑡𝑜 2500 𝑚, and for each 𝐿 value, we calculate the 𝐴, 𝐵, 𝐶 coefficients. After 

that, we plot the graphs of 𝐴,𝐵, 𝐶 with respect to 𝐿 as indicated in Fig. 5, Fig. 6 and 

Fig. 7. 
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Figure 5 Change of A with respect to L 

 

 

 

 

Figure 6 Change of B with respect to L 
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Figure 7 Change of C with respect to L 

 

we inspect the change of the coefficients with distance. When we look at the results, 

𝐴 and 𝐶 are increasing with distance but 𝐵 is increasing until nearly 1500 meter. 

This means that the best distance is between 1000 and 1500 meter for our model. In 

next stage, we analyze how coefficients change with turbulence strength 𝐶𝑛2 whose 

value depends on the 𝜎 variable in equation (2.5). 

 

2.5 Coefficient Analyze According to Turbulence Strength 

 

In this section, we inspect the change of 𝐴, 𝐵, 𝐶 with 𝐶𝑛2 which is the altitude – 

dependent turbulence strength varying from 10−17 to 10−13 𝑚−2/3  according to the 

atmospheric turbulence conditions. Fifty different 𝐶𝑛2 values ranging from  

1.7𝑥10−14 to 1.7𝑥10−13.5 are employed.  We plot graph of  to 𝐴, 𝐵, 𝐶 with respect to 

𝐶𝑛2 as in Fig.8, Fig. 9 and Fig. 10. 
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Figure 8 Change of A with respect to 𝐶𝑛2 

 

 

 

 

Figure 9 Change of B with respect to 𝐶𝑛2 
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Figure 10 Change of C with respect to 𝐶𝑛2 

 

These graphs in Fig. 8, Fig. 9 and Fig. 10 mean that coefficient values increase in a 

regular manner when Cn2 increases. This indicates that it is possible to relate the 

changes in the coefficients to the Cn2 using the curve fitting utility of the MATLAB 

platform. In Table. 1 and Table 2, the coefficient values for different values of Cn2 

are tabulated. 

 

We also inspect the change of the coefficients with regard to the changes in 𝐶𝑛2 

and 𝐿. We use 50 𝐶𝑛2 values ranging from 1.7𝑥10−14 to 1.7𝑥 10−13.5. The 𝐿 values 

are chosen from 500 𝑚 𝑡𝑜 2500 𝑚. We implemented MATLAB’s curve fitting 

options to these graphs. We detected best fitting option which is polynomial fitting in 

6
th
 degree for these graphs. After this fitting process, every graph is expressed via a 

polynomial equation in the form 

 

𝑝1𝑋
6 + 𝑝2𝑋

5 + 𝑝3𝑋
4 + 𝑝4𝑋

3 + 𝑝5𝑋
2 + 𝑝6𝑋

1 + 𝑝7. (2.17) 
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Table 1 Constant Values for 50 Pieces of 𝐶𝑛2  
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Table 2 Constant Values for 50 Pieces of 𝐶𝑛2
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We determined the coefficients of the polynomials for every 𝐶𝑛2. For the calculation 

of 𝑝(𝑥), we need to know 𝐶𝑛2  and 𝐿. If we have these values, we can find the 

coefficient values of the polynomial from the table of Table 1 and Table 2. 

 

In Fig. 11, we plot the graphs of the coefficients with respect to the changes in 𝐶𝑛2. 

We obtained 21 graphs for all coefficient values. In Fig. 11, first row refers to the 

coefficients of the polynomial modeling of 𝐴, i.e., refers to the coefficients 𝐴 −

 𝑝1 𝑡𝑜 𝐴 − 𝑝7, similarly the second row refers to 𝐵 − 𝑝1 𝑡𝑜 𝐵 − 𝑝7 and third row 

refers 𝐶 − 𝑝1 𝑡𝑜 𝐶 − 𝑝7 respectively.  
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Figure 11 Polynomial Equation Coefficient Values to 𝐶𝑛2 Graphs.
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2.6 Comparison MATLAB Model and Integral Form of Probability Density 

Function 

 

Considering all these processes we can claim that our simple equation which is 

expressed in  (2.15) can be used instead of the complex integral equation which is 

defined in (2.16). For this comparison, we wrote a MATLAB code where we 

calculate both equations and plot their graphs as in Fig. 12. It is shown in Fig. 12 that 

our model and the original equation fit to each other very well. 

 

 

 

 

Figure 12 Comparison of Result 

 

 

In Fig. 12, red line was obtained from MATLAB model. Blue line was obtained from 

integral equation. As we see, both lines nearly overlap to each other. That means we 

can use equation  (2.16) instead of equation (2.15). The developed expression is in 

closed form and it can be evaluated more easily.  
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CHAPTER 3 

 

Calculations of Functions 

 

3.1 Cumulative Distribution Function (CDF) 

 

The cumulative distribution function for the log normal distribution model is 

obtained by integrating the probability density function of the log normal model 

(𝑃𝑟𝑜𝑏. (𝑥2 < 𝑥). We obtain probability density function from MATLAB model 

which is given by  (2.16). 

𝐶𝐷𝐹 = ∫ 𝑝(𝑥) 𝑑𝑥 
𝑥

0

 (3.1) 

 

Using equation (2.16) we can calculate the cumulative density function as in (3.2). 

 

𝐶𝐷𝐹 = ∫ 𝐴 𝑒𝑥𝑝− (
𝑋 − 𝐵

𝐶
)

2

 𝑑𝑥 
𝑥

0

 (3.2) 

 

The error function is defined as in (3.3) 

 

∅(𝑢) = erf(𝑢) =
2

𝜋
∫  𝑒−𝑥2

𝑑𝑥
𝑢

0
. (3.3) 

 

We employ the error function in (3.3) for the pdf expression in (2.15) For this 

purpose, we write U instead of X as defined in equation (3.4) and after that we make 

some transformation for simple calculation of error function as in (3.5). 

 

𝐶𝐷𝐹 = ∫ 𝐴 𝑒𝑥𝑝−(
𝑈−𝐵

𝐶
)

2

 𝑑𝑢 
𝑥

0
. (3.4) 
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𝑦 = (𝑈 − 𝐵)/𝐶                                    𝑑𝑦 = (
1

𝑐
)𝑑𝑢. (3.5) 

After transformation of the cumulative distribution function we obtain a simpler 

equation as shown in (3.6). The defined limit of integral is divided into two parts as 

shown in equation (3.7). 

 

𝐶𝐷𝐹 = ∫ 𝐴 𝑒−𝑦2
 𝐶 𝑑𝑦

𝑥−𝐵
𝐶 

− 
𝐵
𝐶
 

 (3.6) 

 

 

𝐶𝐷𝐹 = 𝐴𝐶 [∫ 𝑒−𝑦2
 𝑑𝑦 + ∫ 𝑒−𝑦2

 𝑑𝑦

𝑥−𝐵
𝐶

0

0

(− 
𝐵
𝐶
)

] (3.7) 

 

3.2 Moment Generating Function (MGF) 

 

The 𝑛 degree moment of a random variable 𝑋 is defined as 𝐸[𝑋𝑛]. For example, the 

first moment is the expected value 𝐸[𝑋]. The second central moment is the variance 

of 𝑋. Similar to mean and variance, other moments give useful information about 

random variables. The moment generating function (MGF) of a random variable 𝑋 is 

a function 𝑀𝑋(𝑠) defined as 

𝑀𝑥(𝑠) = 𝐸(𝑒𝑠𝑥) = ∫ 𝑃(𝑥) 𝑒𝑠𝑥𝑑𝑥 
∞

0

 (3.8) 

 

and for our proposed model, the moment generating function is calculated as 

                     𝑀𝑥(𝑠) = 𝐴 𝑒
−(

𝐵2

𝐶2)
∫  𝑒

((−
𝑥2

𝐶2 )+𝑥((
2𝐵
𝐶2)+𝑆))

 𝑑𝑥 
∞

0

 (3.9) 

 

Which can be expressed in closed form using the 𝜙(⋅) function defined in  [7, Eq. 

(3.322.2)] as 

𝑀𝑥(𝑠) = 𝐴𝑒
−(

𝐵2

𝐶2)
√(

𝜋𝐶2

4
)exp (−(

𝐶2

4
))((

2𝐵

𝐶2
) + 𝑆)

2

 [1 − ∅ − ((
2𝐵

𝐶2
)+ 𝑆) √

𝐶2

4
    ] (3.10) 



 

24 

 

3.3 Moments 

 

The “moments” of a random variable (or of its distribution) are expected values of 

powers or related functions of the random variable. Moments of the two signals for 

log normal distribution are calculated in equation (3.11),(3.12), (3.13) and (3.14). 

 

 

𝐸(𝑋𝑛) =
𝑑𝑛

𝑑𝑠𝑛
𝑀(𝑠)|𝑠 =0 (3.11) 

 

 

 ∅(− (
2𝐵

𝐶2 + 𝑆))
𝐶

2
=

2

√𝜋
∫ 𝑒−𝑥2

 𝑑𝑥 
(−(

2𝐵

𝐶2+𝑆))
𝐶

2

0
 (3.12) 

 

 

𝑑

𝑑𝑠
(

2

√𝜋
∫ 𝑒−𝑥2

 𝑑𝑥 
(−(

2𝐵
𝐶2+𝑆))

𝐶
2

0

) = −
2

√𝜋
𝑒

(−(
2𝐵
𝐶2+𝑆)

2
)
𝐶2

4  
𝐶

2
 (3.13) 

 

 

𝑑𝑀(𝑠)

𝑑𝑠
|𝑠 =0 = 𝐴 𝑒

−
𝐵2

𝐶2
√𝜋𝐶2

4
[𝑒𝑥𝑝 (

𝐵2

𝐶2
)𝐵] [1 − ∅(−

𝐵

𝐶
)] + 𝑒𝑥𝑝 (

𝐵2

𝐶2
) (

2

√𝜋

𝐶

2
 𝑒

−
𝐵2

𝐶2)  (3.14) 

 

3.4 Outage Probability 

 

The outage probability is defined as the probability that the SNR at the input of the 

receiver chain is falling below a given threshold value. Outage probability of our 

model is calculated in equation (3.15) and (3.16) . 

 

𝑃𝛾 = 2𝑃(2𝑥)               𝑃(𝑥) = 𝐴 𝑒𝑥𝑝(−(𝑥 − 𝐵)/𝐶2) (3.15) 

 

 

   𝑃𝛾 = 2𝐴 𝑒𝑥𝑝(−(2𝑥 − 𝐵)/𝐶2) (3.16) 
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3.5 Amount of Fading 

 

The amount of fading is an important measure for severity of fading and it is defined 

as [10, Eq. (2.5)] 

𝐴𝐹 =
(𝐸(𝜏2) − (𝐸(𝜏))

2
)

𝐸(𝜏2)
  (3.17) 

 

For the calculation of (3.17), we first compute 𝐸(𝜏2) as outlined in 

(3.19), (3.20) and (3.21). 

 

𝐸(𝜏2) =  ∫ 𝜏2 𝑃(𝜏) 𝑑𝜏 → 𝑃(𝜏) =
∞

0

 𝐴 ∗ 𝑒𝑥𝑝(−(
(𝜏 − 𝐵)

𝐶
)

2

) (3.18) 

 

 

𝑘 =
(𝜏 − 𝐵)

𝐶
  →   𝜏 = 𝐶𝑘 + 𝐵   →   𝑑𝜏 = 𝐶𝑑𝑘 (3.19) 

 

 

𝐸(𝜏2) = ∫ (𝐶𝑘 + 𝐵)2𝐴 𝑒−𝑘2
𝐶 𝑑𝑘

∞

0

 (3.20) 

 

 

𝐸(𝜏2) = ∫ 𝐴𝐶3𝑘2𝑒−𝑘2
 𝑑𝑘 + ∫ 2𝐴𝐵𝐶2𝑘𝑒−𝑘2

 𝑑𝑘 +
∞

0
∫ 𝐴𝐵2𝐶𝑒−𝑘2

 𝑑𝑘
∞

0

∞

0
  (3.21) 

 
𝑊
⇔ 

𝑋
⇔    

𝑌
⇔ 

 

∫  𝑒−
𝜏2

2 𝑑𝑦
∞

−∞
= √2𝜋     →  −

𝜏2

2
= 𝑥2  → 𝑥 =

𝜏

√2
   →   𝑑𝑥 = 1/√2𝑑𝜏   (3.22) 

 

 

𝐸(𝜏2) = ∫ 𝑒−𝑥2
√2𝑑𝑥 = √2𝜋  →  ∫ 𝑒−𝑥2

𝑑𝑥 = √𝜋   
∞

−∞

∞

−∞

 (3.23) 

Integration by parts is a technique for performing indefinite integration ∫ 𝑢 𝑑𝑣  or 

definite integration 
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∫ 𝑢 𝑑𝑣
𝑏

𝑎

 

by expanding the differential of a product of functions 𝑑(𝑢, 𝑣) and expressing the 

original integral in terms of a known integral ∫ 𝑣 𝑑𝑢 . We made this transformation 

in equation (3.25) and (3.27). 

 

For the 𝑊 part of equation (3.21), we have 

 

∫ 𝐴𝐶3𝑘2𝑒−𝑘2
𝑑𝑘

∞

0

= 𝐴𝐵2𝐶 √𝜋 (3.24) 

For the 𝑋 part of equation (3.21), 

 

∫ 2𝐴𝐵𝐶2𝑘𝑒−𝑘2
 𝑑𝑘 → −𝑘2 = 𝑢         𝑑𝑢 = −2𝑘𝑑𝑘

∞

0

 (3.25) 

 

 

−∫ 𝐴𝐵𝐶2𝑒−𝑢 𝑑𝑢 = −𝐴𝐵𝐶2𝑒
−(

(𝜏−𝐵)
𝐶

)
2

 
∞

0

 (3.26) 

 

For the 𝑌 part of equation (3.21), we have 

 

∫ 𝐴𝐶3𝑘2𝑒−𝑘2
𝑑𝑘 → 𝑘2 = 𝑢 → 𝑘 = √𝑢 → 𝑑𝑢 = 2𝑘𝑑𝑘 → 𝑒−𝑘2

𝑑𝑘 = 𝑑𝑣
∞

0

→ 𝑣 = √𝜋 

(3.27) 

 

 

∫
1

2𝑘
𝐴𝐶3𝑢 𝑒−𝑢 𝑑𝑢 = 𝑘2√𝜋 − ∫ 2√𝜋𝑘𝑑𝑘 = 0   

∞

0

∞

0

 (3.28) 

 

At the end of transformation and calculation we can calculate 𝐸(𝜏2) as shown 

in(3.29). 
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𝐸(𝜏2) = 𝐴𝐵2𝐶 √𝜋 − 𝐴𝐵𝐶2𝑒−(
𝜏−𝐵
𝐶

)
 (3.29) 

 

 

Second, we calculate 𝐸(𝜏) for the amount of fading as in equation (3.31), 

 (3.32),(3.33),(3.34). 

 

𝐸(𝜏) = ∫  𝜏 𝐴 𝑒
−(

√𝜏−𝐵
𝐶

)

2

  
∞

0

 (3.30) 

 

 

𝐸(𝜏) = ∫  (𝐶2𝑘2 + 2𝐵𝐶𝑘 + 𝐵2) 𝐴 𝑒−𝑘2
(2𝐶2𝑘 + 2𝐵𝐶)𝑑𝑘  

∞

0

 (3.31) 

 

 

(
√𝜏 − 𝐵

𝐶
) = 𝑘     →  𝜏 = 𝐶2𝑘2 + 2𝐵𝐶𝑘 + 𝐵2   → 𝑑𝜏 = 2𝐶2𝑘 + 2𝐵𝐶𝑑𝑘 (3.32) 

 

 

𝐸(𝜏) = ∫  2𝐴𝐶4𝑘3𝑒−𝑘2
𝑑𝑘 + ∫  2𝐴𝐶4𝑘3𝑒−𝑘2

𝑑𝑘 + 
∞

0

∫  2𝐴𝐶4𝑘3𝑒−𝑘2
𝑑𝑘 + 

∞

0

∫  2𝐴𝐶4𝑘3𝑒−𝑘2
𝑑𝑘

∞

0

∞

0

 (3.33) 

A  B   C  D 

For the 𝐴 part of equation (3.33), 

 

∫ 2𝐴𝐶4𝑘3𝑒−𝑘2
 𝑑𝑘 = 0

∞

0

 (3.34) 

 

For the 𝐵 part of equation (3.33), 

 

∫ 6𝐴𝐵𝐶3𝑘2𝑒−𝑘2
 𝑑𝑘 = 0

∞

0

 (3.35) 

 

For the 𝐶 part of equation (3.33), we have 
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∫ 6𝐴𝐵2𝐶2𝑘𝑒−𝑘2
𝑑𝑘 = −3𝐴𝐵2𝐶2𝑒−(

𝜏−𝐵
𝐶

)
2∞

0

 (3.36) 

 

For the 𝐷 part of equation (3.33), 

∫ 2 𝐴 𝐵3𝐶 𝑒−𝑘2
𝑑𝑘 = 2𝐴𝐵3𝐶√𝜋

∞

0

 (3.37) 

 

At the end of the all calculation 𝐸(𝜏) is equal to, 

 

𝐸(𝜏) = 2𝐴𝐵3𝐶√𝜋 − 3𝐴 𝐵2𝐶2𝑒−(
𝜏−𝐵

𝐶
)
2

. (3.38) 

 

Now, we have all parameters to calculate the amount of fading which is expressed in 

(3.17). If we apply our calculated parameters to formula (3.17), amount of fading 

formula becomes as in (3.39). 

 𝐴𝐹 =
[𝐴𝐵2𝐶 √𝜋−𝐴𝐵𝐶2𝑒

−(
𝜏−𝐵
𝐶

)
 ]−[2𝐴𝐵3𝐶√𝜋−3𝐴 𝐵2𝐶2𝑒

−(
𝜏−𝐵
𝐶

)
2

]

[2𝐴𝐵3𝐶√𝜋−3𝐴 𝐵2𝐶2𝑒
−(

𝜏−𝐵
𝐶

)
2

]

 (3.39) 

 

 

3.6 Probability of Transmission Error Rate 

 

In the last stage of thesis work, we calculate the probability of transmission error rate 

performance of the log-normal channels using our model. The modeling of the 

probability density function is done with  𝜇 = 15. Now we consider the values of  𝜇 

from 5 up to 40 with incremental amount of 5. We perform the same steps until Fig. 

7. We calculate 𝑝(𝑥) of the harmonic mean and we plot its graph. Then, using 

MATLAB, we model the change of coefficients 𝐴, 𝐵, 𝐶 for all  𝜇 values. We plot the 

graphs of 𝐴, 𝐵, 𝐶 coefficients with respect to 𝐿. Then, we use curve fitting option of 

MATLAB again and calculate polynomial coefficient for these graphs. The best 

fitting curve is achieved using a 6𝑡ℎ degree polynomial. Polynomial equations of 

𝐴, 𝐵, 𝐶 graphs become as in (3.39) after fitting operation. 
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𝑝1𝑋
6 + 𝑝2𝑋

5 + 𝑝3𝑋
4 + 𝑝4𝑋

3 + 𝑝5𝑋
2 + 𝑝6𝑋

1 + 𝑝7 (3.39) 

 

This is a general polynomial equation with constant coefficients. We obtain these 

equations for each  𝜇 value. Subsequently, we compare the models which are 

expressed by equation (2.15) and (2.16). We plot graphs for both equations with 

different  𝜇 values on the same figure. Blue line is obtained from integral equation 

and red line is generated from our model. 

 

For  𝜇 = 5, coefficients of polynomial equations are given in (3.42). Graphs of 𝐴, 𝐵 

and 𝐶 coefficents with respect to length are depicted in Fig. 13, 14 and 15. We plot 

the pdf obtained using the numerical integration and the one obtained using the 

modeling technique presented in this thesis work for  𝜇 = 5 in Fig. 16. 

 

 

 

Figure 13 Change of 𝐴 with respect to 𝐿 for 𝜇 = 5  

  

𝑝1𝑋6 + 𝑝2𝑋5 + 𝑝3𝑋4 + 𝑝4𝑋3 + 𝑝5𝑋2 + 𝑝6𝑋1 + 𝑝7. 

 

 

A► P1 

-0.1913 

P2 

-0.5432 

P3 

3.294 

P4 

17.11 

P5 

33.33 

P6 

38.05 

P7 

23.5 

 

B► P1 

0.00034 

P2 

0.03009 

P3 

0.01087 

P4 

-0.278 

P5 

0.088 

P6 

1.312 

P7 

8.45 

 

C► P1 

0.00996 

P2 

0.02523 

P3 

-0.0743 

P4 

-0.159 

P5 

0.369 

P6 

5.539 

P7 

12.0 (3.42) 
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Figure 14 Change of 𝐵 with respect to 𝐿 for  𝜇 = 5 

 

 

 

 

 

 

 

 

Figure 15 Change of 𝐶 with respect to 𝐿 for  𝜇 = 5 
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Figure 16 Comparisons of Results for  𝜇 = 5 

 

For  𝜇 = 10, coefficients of polynomial equations are given in (3.43). Graphs of 𝐴, 

𝐵 and 𝐶 coefficents with respect to length are depicted in Fig. 17, 18 and 19. We plot 

the pdf obtained using the numerical integration and the one obtained using the 

modeling technique presented in this thesis work for  𝜇 = 10 in Fig. 20. 

 

 

 

 

  

𝑝1𝑋6 + 𝑝2𝑋5 + 𝑝3𝑋4 + 𝑝4𝑋3 + 𝑝5𝑋2 + 𝑝6𝑋1 + 𝑝7. 

 

 

A► P1 

0.5269 

P2 

-1.274 

P3 

-2.794 

P4 

23.59 

P5 

79.26 

P6 

110.5 

P7 

72.91 

 

B► P1 

-0.0099 

P2 

0.0334 

P3 

0.0736 

P4 

-0.297 

P5 

-0.150 

P6 

0.985 

P7 

13.27 

 

C► P1 

-0.0017 

P2 

0.0184 

P3 

0.0117 

P4 

-0.123 

P5 

0.1307 

P6 

5.432 

P7 

12.2 (3.43) 
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Figure 17 Change of 𝐴 with respect to 𝐿 for  𝜇 = 10 

 

 

 

 

 

 

 

Figure 18 Change of 𝐵 with respect to 𝐿 for  𝜇 = 10 
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Figure 19 Change of 𝐶 with respect to 𝐿 for  𝜇 = 10 

 

 

 

 

Figure 18 Comparisons of Results for  𝜇 = 10 

 

For  𝜇 = 15, coefficients of polynomial equations are given in (3.44). Graphs of 𝐴, 

𝐵 and  𝐶 coefficents with respect to length are depicted in Fig. 21, 22 and 23. We 

plot the pdf obtained using the numerical integration and the one obtained using the 

modeling technique presented in this thesis work for  𝜇 = 15 in Fig. 24. 
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Figure 19 Change of 𝐴 with respect to 𝐿 for  𝜇 = 15 

 

 

Figure 20 Change of 𝐵 with respect to 𝐿 for  𝜇 = 15 

  

𝑝1𝑋6 + 𝑝2𝑋5 + 𝑝3𝑋4 + 𝑝4𝑋3 + 𝑝5𝑋2 + 𝑝6𝑋1 + 𝑝7. 

 

 

A► P1 

2.131 

P2 

1.015 

P3 

-15.16 

P4 

7.957 

P5 

142.6 

P6 

0.508 

P7 

18.07 

 

B► P1 

-0.0196 

P2 

0.0183 

P3 

0.1415 

P4 

-0.223 

P5 

-0.4255 

P6 

0.508 

P7 

18.07 

 

C► P1 

-0.0124 

P2 

0.0067 

P3 

0.0792 

P4 

-0.064 

P5 

-0.0183 

P6 

5.27 

P7 

12.19 (3.44) 
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Figure 21 Change of 𝐶 with respect to 𝐿 for  𝜇 = 15 

 
 

 

 

 

Figure 22 Comparisons of Results for  𝜇 = 15 

 

 

For  𝜇 = 20, coefficients of polynomial equations are given in (3.45). Graphs of 𝐴, 

𝐵 and 𝐶 coefficents with respect to length are depicted in Fig. 25, 26 and 27. We plot 

the pdf obtained using the numerical integration and the one obtained using the 

modeling technique presented in this thesis work for  𝜇 = 20 in Fig.28. 
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Figure 23 Change of 𝐴 with respect to 𝐿 for  𝜇 = 20 

 

 

 

 

Figure 24 Change of 𝐵 with respect to 𝐿 for  𝜇 = 20 

  

𝑝1𝑋6 + 𝑝2𝑋5 + 𝑝3𝑋4 + 𝑝4𝑋3 + 𝑝5𝑋2 + 𝑝6𝑋1 + 𝑝7. 

 

 

A► P1 

0.8672 

P2 

9.388 

P3 

-7.229 

P4 

-50.57 

P5 

144.6 

P6 

614.3 

P7 

601.7 

 

B► P1 

-0.0177 

P2 

-0.008 

P3 

0.149 

P4 

-0.080 

P5 

-0.5987 

P6 

-0.110 

P7 

22.74 

 

C► P1 

-0.0043 

P2 

-0.008 

P3 

0.0380 

P4 

0.0259 

P5 

0.0389 

P6 

5.059 

P7 

12.03 (3.45) 
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Figure 25 Change of 𝐶 with respect to 𝐿 for  𝜇 = 20 

 

 

 

 

 

Figure 26 Comparisons of Results for  𝝁 = 𝟐𝟎 

For  𝜇 = 25, coefficients of polynomial equations are given in (3.46). Graphs of 𝐴, 

𝐵 and 𝐶 coefficents with respect to length are depicted in Fig. 29, 30 and 31. We plot 

the pdf obtained using the numerical integration and the one obtained using the 

modeling technique presented in this thesis work for  𝜇 = 25 in Fig.32. 
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Figure 27 Change of 𝐴 with respect to 𝐿 for  𝜇 = 25 

 

 

 

 

 

 

Figure 28 Change of 𝐵 with respect to 𝐿 for  𝜇 = 25 

 𝑝1𝑋6 + 𝑝2𝑋5 + 𝑝3𝑋4 + 𝑝4𝑋3 + 𝑝5𝑋2 + 𝑝6𝑋1 + 𝑝7.  

 

A► P1 

-7.749 

P2 

11.57 

P3 

61.63 

P4 

-90.19 

P5 

-68.04 

P6 

1020 

P7 

1483 

 

B► P1 

0.0010 

P2 

-0.0298 

P3 

0.0506 

P4 

0.0608 

P5 

-0.548 

P6 

-0.821 

P7 

27.15 

 

C► P1 

0.0070 

P2 

-0.0185 

P3 

-0.031 

P4 

0.1034 

P5 

0.180 

P6 

4.813 

P7 

11.75 (3.46) 
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Figure 29 Change of 𝐶 with respect to 𝐿 for  𝜇 = 25 

 
 

 

 

 

 

Figure 30 Comparisons of Results for  𝜇 = 25 

For  𝜇 = 30, coefficients of polynomial equations are given in (3.47). Graphs of 𝐴, 

𝐵 and C coefficents with respect to length are depicted in Fig. 33, 34 and 35. We plot 

the pdf obtained using the numerical integration and the one obtained using the 

modeling technique presented in this thesis work for  𝜇 = 30 in Fig.36. 
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Figure 31 Change of 𝐴 with respect to 𝐿 for  𝜇 = 30 

 

 

 

 

 

Figure 32 Change of 𝐵 with respect to 𝐿 for  𝜇 = 30 

 𝑝1𝑋6 + 𝑝2𝑋5 + 𝑝3𝑋4 + 𝑝4𝑋3 + 𝑝5𝑋2 + 𝑝6𝑋1 + 𝑝7.  

 

A► P1 

-0.8659 

P2 

-21.56 

P3 

80.18 

P4 

89.19 

P5 

-410.4 

P6 

1103 

P7 

3078 

 

B► P1 

0.01401 

P2 

-0.023 

P3 

-0.056 

P4 

0.1009 

P5 

-0.3466 

P6 

-1.52 

P7 

31.24 

 

C► P1 

0.00560 

P2 

-0.018 

P3 

-0.039 

P4 

0.1423 

P5 

0.2551 

P6 

4.585 

P7 

11.43 (3.47) 
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Figure 33 Change of 𝐶 with respect to 𝐿 for  𝜇 = 30 

 

 

 

 

Figure 34 Comparisons of Results for  𝜇 = 30 

 

For  𝜇 = 35, coefficients of polynomial equations are given in (3.48). Graphs of 𝐴, 

𝐵 and 𝐶 coefficients with respect to length are depicted in Fig. 37, 38 and 39. We 

plot the pdf obtained using the numerical integration and the one obtained using the 

modeling technique presented in this thesis work for  𝜇 = 35 in Fig.40. 
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Figure 35 Change of A with respect to L for  𝜇 = 35 

 

 

 

Figure 36 Change of B with respect to L for  𝜇 = 35 

 

 𝑝1𝑋6 + 𝑝2𝑋5 + 𝑝3𝑋4 + 𝑝4𝑋3 + 𝑝5𝑋2 + 𝑝6𝑋1 + 𝑝7.  

 

A► P1 

25.87 

P2 

-25.26 

P3 

-110 

P4 

342.9 

P5 

-318.1 

P6 

549.9 

P7 

5111 

 

B► P1 

0.0021 

P2 

0.0026 

P3 

-0.050 

P4 

0.0310 

P5 

-0.1771 

P6 

-2.129 

P7 

34.98 

 

C► P1 

-0.0022 

P2 

-0.011 

P3 

-0.010 

P4 

0.1516 

P5 

0.2688 

P6 

4.36 

P7 

11.14 (3.48) 
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Figure 37 Change of C with respect to L for   𝜇 = 35 

 

 

 

 

 

Figure 38 Comparisons of Results for   𝜇 = 35 

 

 

 

For  𝜇 = 40, coefficients of polynomial equations are given in (3.49). Graphs of 𝐴, 

𝐵 and 𝐶 coefficients with respect to length are depicted in Fig. 41, 42 and 43. We 

plot the pdf obtained using the numerical integration and the one obtained using the 

modeling technique presented in this thesis work for  𝜇 = 40 in Fig.44. 
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Figure 39 Change of A with respect to L for   𝜇 = 40 

 

Figure 40 Change of B with respect to L for   𝜇 = 40 

 

 

 

  

𝑝1𝑋6 + 𝑝2𝑋5 + 𝑝3𝑋4 + 𝑝4𝑋3 + 𝑝5𝑋2 + 𝑝6𝑋1 + 𝑝7. 

 

 

A► P1 

-16.04 

P2 

50.97 

P3 

-19.14 

P4 

88.65 

P5 

53.49 

P6 

144.3 

P7 

6533 

 

B► P1 

-0.0075 

P2 

0.0097 

P3 

-0.005 

P4 

-0.040 

P5 

-0.030 

P6 

-2.71 

P7 

38.42 

 

C► P1 

-0.005 

P2 

-0.0063 

P3 

0.010 

P4 

0.146 

P5 

0.2789 

P6 

4.122 

P7 

10.89 (3.49) 
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Figure 41 Change of C with respect to L for   𝜇 = 40 

 

 

 

 

 

 

Figure 42 Comparisons of Results for   𝜇 = 40 
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3.7 Average Probability of Transmission Error Rate 

 

In this section, we calculate A, B and C coefficient values for 8   𝜇  values ranging 

from 0 to 40. For the calculation of coefficient values we use MATLAB curve fitting 

option for 𝑝(𝑥) equation which is defined in expression (2.16). Coefficient values 

are tabulated in Fig. 45. 

 

 

Table 3 List of Coefficients for Different  𝜇  Values 

 

After calculation of coefficient values, we compute probability of average 

transmission error with respect to average signal to noise ratio (SNR). We use the 

equation in (3.50) to calculate 𝑃𝑒  values  

 

𝑃𝑒 = (
1

𝜋
∫ 𝑀𝑠 (

Ѱ

sin2 Ѳ
)𝑑

𝜋
2

0

Ѳ ). (3.50) 

 

In (3.50) 𝑀𝑠 represents the moment generating function defined in (3.8). We 

assign sin2 Ѳ = 𝑆 , Ѱ = 1/2. After these assignments equation (3.50) becomes as in 

(3.51). 

𝑃𝑒 = (
1

𝜋
∫ 𝑀𝑠 (

1

2𝑆
) 𝑑

𝜋
2

0

𝑠 ) (3.51) 

 



 

47 

 

We calculate all 𝑃𝑒  values with respect to SNR ranging from 0 to 40 in steps of 5. 

We plot transmission error probability 𝑃𝑒  with respect to Signal to noise ratio (SNR) 

in Fig. 45. 

 

 

Figure 43 Average Probability of Transmission Error Rate to SNR 

 

From this Fig. 45, it is obvious that as the average SNR increases, probability of 

transmission error decreases rapidly. Thus for   𝜇 = 40 dB the probability of 

transmission error is less than 10−12
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CHAPTER 4 

 

CONCLUSION 

 

In this thesis study, we demonstrated how to develop a mathematical model in closed 

form for those systems having performance expressions in numerical integration 

form. For this purpose, we considered two-hop communication systems whose end-

to-end performance depends on the harmonic mean of the hop SNRs. We considered 

two-hop systems with log-normally distributed optical communication channels. We 

derived an expression for the harmonic mean of two-hop systems employing log-

normally distributed channels. Later, for the derived expression, using the curve 

fitting utility of the MATLAB compiler, we developed a simple Gaussian like 

expression for the derived harmonic mean expression, and using the developed 

approximate expression we calculated the cumulative distribution function, moment 

generating function, and transmission error probability, for two-hop communication 

systems with log-normal channels.  

 

FSO offers many advantages over existing techniques which can be either optical or 

radio or microwave. Less cost and time to setup are the main attraction of FSO 

system. Optical equipment can be used in FSO system with some modification. 

Merits of FSO communication system and its application area make it a hot 

technology but there are some problems arising due to the attenuation caused by 

medium. FSO system poses some problem like attenuation in medium that can affect 

the performance of transmission as power loss would be there. But extra care and 

restudy of the medium can guide what type of parameters to be considered before 

setting up the system. 

In this work, we have derived closed-form expression for the evaluation of the 

average capacity and the outage probability of a typical two-hop FSO
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communication system over turbulence atmospheric conditions modeled by log 

normal distribution respectively. We studied the dependence of the reliability and the 

performance of a system as a function of the principal parameters of such a link, 

being the length of the link, aperture diameter of the receiver and the atmospheric 

turbulence conditions between transmitter and receiver. If we know the value of 

length between transmitter and receiver and turbulence strength according to 

atmospheric conditions, we can calculate performance of channels easily thanks to 

our model which is explained in this thesis. 
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