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ABSTRACT

Mathematical Modeling of Log Normal Turbulence Channels

GORSE, Serkan
M.Sc., Department of Electronic and Communication Engineering
Supervisor: Assoc. Prof. Dr. Orhan GAZI

July 2018, 68 pages

In this thesis work we demonstrated the development of a mathematical model for
those systems involving complex numerical integration formulas. For this purpose,
we considered two-hop communication systems. For the two-hop communication
systems, the end-to-end performance depends on the harmonic mean of hop SNRs.
For log-normal distributed channels, we considered two-hop communication systems
and calculated the harmonic mean of two SNRs. The calculated harmonic mean
value is in integral form and it need to be calculated numerically. We showed that
such an integral formula can be expressed approximately using simple mathematical
expressions. For this purpose, we used curve fitting utility of the MATLAB platform
and approximated the harmonic mean expression by a Gaussian like distribution.
Using the approximation formula, cumulative distribution function, moments
generating function, moments, outage probability, amount of fading and transmission
error probability are calculated in closed forms. The proposed approach presented in
this thesis work can be used for the systems having long and complex performance

calculation formulas.

Keywords: Performance of Free Space Optic, Harmonic Mean, Performance

Analyses, Probability Density Function.
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Log Normal Tiirbiilans Kanallarinin Matematiksel Modellemesi

GORSE, Serkan
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi Anabilim Dali
Tez Yoneticisi: Assoc. Prof. Dr. Orhan GAZI

Temmuz 2018, 68 sayfa

Bu tez ¢alismasinda karmasik numerik hesap gerektiren matematiksel bir denklemin
daha basit ve kapali formda olan matematiksel bir ifade ile yaklasik olarak elde
edilmesine yonelik bir ¢alisma sunulmaktadir. Bunun i¢in iki atlamali haberlesme
sistemleri diisiiniilmiistiir. ki atlamali haberlesme sistemlerinin uctan-uca olan
performanslar1 atlamalardaki SNR degerlerinin harmonik ortalamsma baghdir.
Calismamizda iki atlamali ve Log-normal dagilimina sahip iletisim sistemlerinin
atlama noktalarindaki SNR dagilimlarmin harmonik ortalama degerini integral
formunda hesapladik. Daha sonra hesaplamis oldugumuz integral formundaki karisik
matematiksel ifadeyi MATLAB derleyicisinin curve-fitting aracini kullanarak daha
basit matematiksel ifadelerle yaklasik olarak hesapladik. Hesapladigimiz yaklasik
deger formiilii kapali formdadir ve bu formiilii kullanarak kiimiilatif dagilim
fonksiyonu, moment iiretim fonksiyonu, kesinti olasilig1 fonksiyonu, gonderim hata
olasilig1 gibi fonksiyonlar1 kapali formda hesapladik. Son olarak da hesapladigimiz
fonksiyonlar1 kullanarak sistemin performansini génderim hata olasilig1 grafigi ile

gostermis olduk.

Anahtar Kelimeler: Serbest Uzay Optik Sistem Performansi, Harmonik Ortalama,

Performans analizi, Olas1 yogunluk fonksiyonu.
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CHAPTER 1

INTRODUCTION

1.1 Background

In today's conditions, the need for more favorable opportunities, environment and
tools in the communication world have increased. Every passing day, the necessity of
optic communication systems is escalating in various areas such as telephone,
networks data transmission, integrated optic mechanisms, cable television systems,
transportation, military and medical applications in the direction of the above-
mentioned requirements. High speed data transmission speed for the optical networks
is possible.

In present technology, the optical communication systems are more preferred than
the other communication systems. Optical communication systems have some
advantages over the classical communication systems, the existence of the silicium
which is the raw material of the optical wave guide as a glut in the nature, stoutness
of the isolation, the wvelocity head, stableness, being not affected by the
electromagnetic effects, reliability, cost-efficiency and specifically having a large
capacity and low transmission loss with high band width. The use of the optical
fibers which are the dielectric transmission medium is increasing alongside the wired
communication media such as the copper cable and coaxial cable. Because it has
much less loss than the free space wireless communication. Its sufficiency to work in
coordination with the old communication systems is one of the significant
characteristic of optical fibers.

Free Space Optic (FSO) systems transmit data for telecommunications or computer
networks. In contrast to the radio frequency networks, free space optical (FSO)
communications provide many advantages which cause FSO to become increasingly

popular and studied over the past decade. Most important advantages of FSO



communication systems are transmission rate, low cost, systematical, portability
security and licensing. Free space optical systems use light propagation in free
space. Free space means air, outer space or something similar. Today we use fiber
optic cables for computer networks or high speed communication. Fiber optic cables
cannot be useful when the physical connection is not possible. Systems which
include fiber optic cables have high level cost in some places. For example, fiber
deployment in urban areas could cost $300000-$700000 per kilometer without other
installation cost. A FSO system with same transmission rate could be more economic
at a price of $18000 [4,5]. Although FSO systems can be a good solution to
overcome these disadvantages, there are limitations as well. The degrading factors
for optical communication include the fact that rain, dust, snow, fog or smog can
obstruct the transmission path and these factors can shut down the network.
Scientists try to improve FSO systems to avoid the air conditions that lead to
limitations on communication systems. They develop many hardware and

communication technique to overcome these difficulties.

1.2 Objectives

The main aim of this thesis is to develop a mathematical model for free space optic
communication systems over log normal turbulence channels. There are many factors
that affect the optical communication’s system performance on atmosphere. Distance,
temperature, altitude and pressure are some of important factors. Performance of
FSO systems are analyzed by changing distance. These effects are demonstrated by
graphs which are plotted by MATLAB in details. Cumulative density function,

moments generating function, amount of fading and bit error rate are calculated.

1.3 Organization of the Thesis

This thesis is divided into four chapters. All analyses are studied to calculate
performance of FSO channels over log normal turbulence channels. Results are
compared with different distance and turbulence strength.

Chapter-1 covers an introduction and a background for free space optic’s

communication systems and portrays objectives of this thesis.



Chapter-2 involves the mathematical modeling of optic communication channels
over log normal atmospheric turbulence channels.

Chapter-3 explains calculation of cumulative density function, moment generation
function, moments, amount of fading and bit error rate with the mathematical model
developed in Chapter-2.

Chapter-4 is the conclusion part.



CHAPTER 2

MATHEMATICAL MODELLING OF LOG NORMAL ATMOSPHERIC
TURBULANCE CHANNELS

2.1 Probability Density Function of Log Normal Distribution

In this part of thesis, we work on the performance of FSO channels by investigating
their outage probability and the average capacity, respectively. Thus, we derive
closed form expressions for the outage probability and the average capacity of
optical links over atmospheric turbulence induced fading channels modeled by the
log normal turbulence distribution with respect to the turbulence strength, as well as
the influence of other important system’s parameters, such as optical link length and
the receiver’s aperture diameter.

Firstly, we calculate the probability density function by utilizing the harmonic mean
of two signals. Given two numbers X; and X,, the harmonic means of X; and X,, is
defined as [6, 9]

2X, X,
X, + X,

py (X1, X,) = (2.1)

We define three parameters (x zw) to express this equation more easily. These

parameters are equal to

Z
w = Xl +X2 zZ = 2X1X2 X =—. (2.2)

For the harmonic mean calculation of two random variables, we consider the random
variables having log-normal distribution. The probability density function equation

of the log normal turbulence as given by



/_ (ln (%) * 02)2\ (2.3)
J

where ¢ is the standard deviation of the log normal distribution, which depends on

the channel’s characteristics and it is calculated as [9, 17]

[ ]
| 0.4952 0.5152 |
02 = exp| =+ -1 (24
| 1216 12\\6 |
[(1 +0.18d? + 0.565° ) (1 +0.9d2 + 0.62d25(3 )) J
where
L [k
| 4L
and
r 2T
T2

is the optical wave number, L is the length of the optical link and D is the receiver’s

aperture diameter. The parameter ¢ is called Rytov variance and it is defined as

7 11
62=123 C> k6 L6 . (2.5)

where C2 is the altitude which is dependent on the turbulence strength varying from
1077 to 1073 m~2/3 according to atmospheric turbulence conditions [2,8].The

instantaneous electrical signal to noise ratio (SNR) is given as

(%)%
H =—) = —
No/) N

and the average electrical SNR is calculated as
_El
nu' - 77 NO "

Now we must use error function to define pdf equation of log normal model more

simply.

The exponential term in log-normal distribution in (2.3) can be expressed as in



p(x) = exp (- w%#) - exp [ [ln( )]2 +0*+20%In (%)] . 26)

After this operation, probability density functions of log normal distribution take the

e p[——l )y exp[ ( 3;2) [m(%)ﬂ 2.7)

If we define the constant value K as in

form

p(x) =

2] .
= ex _—— .
2021 Pl s )"
then the log-normal distribution in (2.7) can be written as in (2.9)

At the end of these steps pdf equation transformed to an easier form which is

expressed as equation(2.9).

p(x) =K - ‘u% - exp Hln (%)rl (2.9)

2.2 Joint Probability Density Function

The joint pdf of the random variables Z, W, i.e., P,,,(z,w) can be derived using the
Jacobian transformation. We can write the harmonic mean of X; and X, as X =
Z/W where X = 2X,X, and W = X; + X,. Using [12, Sec. 6.2], the PDF of X can

be written as,

px(x) = foo lw|P,,, Cow, w)dw (2.10)

which can be evaluated with the help of [7, Eq. (3.383.4)] yielding,

Bw = [le_xz (X11, X21), le,xz (X12;X22)] (2.11)

2

in which we have



w? —2z Vw2 — 2z
X11, X1 =W iT ,X11, X1 = WiT A=Jw2 -2z (2.12)

Substituting the parameters in (2.11), and the log-normal distribution expression in
(2.9) into we obtain (2.14).

Pw(z,w) = m [P(x11)P(x21) + P(x12)P(x22)] (2.13)

1

_K (w + A)\* 1 : (w+A)1 2\ |
;) eolamlm ()

P,,(z,W) = —— . (2.14
Z,W( ) Zm 1 ( )

(w — A)\% 1 (w—2A)1\]*
(5 (g (“525)])

The probability density function of X = Z /W can be calculated using

[ee)

Py(x) = WP, , (xw, w)dw
2x

leading to

o)

pe =k |

2x

L 2 a2
W_(%) (w— Zx)_(f)exp <_ 8;2 [ WZ‘;A] WzaA] l) dw. (215)

This integration is cannot be expressed in closed form. We write some code in
MATLAB to calculate this integral and we plot its graph vs. SNR, i.e., vs. x. The
graph of this p(x) is shown on Fig. 1.
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Figure 1 Probability Density Function to Signal Noise Ratio

2.3 Detection of Best Fitting Curves in MATLAB

MATLAB curve fitting option is used to find the best mathematical expression that
approximates the probability density function in (2.15) closely. To express the
integration defined in (2.15) in closed form, different curve fitting models of the
MATLAB can be utilized. The typical curve fitting models available in MATLAB
are Gaussian, Fourier, and Polynomial. We decide for Gaussian model with 15t
degree. Because, we obtain best fitting performance and simple integration in
Gaussian model. Performance analysis and coefficients values of Gaussian model are
shown in Fig. 2, Fourier model is shown in Fig. 3 and Polynomial model is shown in
Fig. 4. At the same time, we compare the number of terms, general mode of

equation, goodness of fit and coefficient values in Fig. 2, 3 and 4.
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Probability Density Function
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After we decide on the 15° degree Gaussian equation, instead of the complex p(x)
integral equation we use the Gaussian equation obtained from curve fitting utility of
the MATLAB. That is, p(x) in (2.15) is closely approximated by

p(x) = Axexp <— <(X ; B)> ) (2.16)

Thus using (2.16), we can calculate p(x) more easily than complex integration form
defined in equation (2.15). In the simple equation in (2.16), we have some
coefficients 4, B, C. We calculate these coefficients using MATLAB in the next part
of thesis.

2.4 Coefficient Analyze According to Distance

In pursuit of this process we concentrate on the changes of A, B, C when we change
distance L. In order to see this, we wrote a MATLAB code. The range value for L is
500 m to 2500 m, and for each L value, we calculate the A4, B, C coefficients. After
that, we plot the graphs of A, B, C with respect to L as indicated in Fig. 5, Fig. 6 and
Fig. 7.

12
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Figure 7 Change of C with respect to L

we inspect the change of the coefficients with distance. When we look at the results,
A and C are increasing with distance but B is increasing until nearly 1500 meter.
This means that the best distance is between 1000 and 1500 meter for our model. In

next stage, we analyze how coefficients change with turbulence strength Cn? whose

value depends on the o variable in equation (2.5).
2.5 Coefficient Analyze According to Turbulence Strength

In this section, we inspect the change of A4, B, C with Cn? which is the altitude —
dependent turbulence strength varying from 10717 to 10~13 m~2/3 according to the
atmospheric turbulence conditions. Fifty different Cn? values ranging from

1.7x1071* to 1.7x107135 are employed. We plot graph of to 4, B, C with respect to
Cn? as in Fig.8, Fig. 9 and Fig. 10.

14
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Figure 10 Change of C with respect to Cn?

These graphs in Fig. 8, Fig. 9 and Fig. 10 mean that coefficient values increase in a
regular manner when Cn? increases. This indicates that it is possible to relate the
changes in the coefficients to the Cn? using the curve fitting utility of the MATLAB

platform. In Table. 1 and Table 2, the coefficient values for different values of Cn?

are tabulated.

We also inspect the change of the coefficients with regard to the changes in Cn?
and L. We use 50 Cn? values ranging from 1.7x107%* to 1.7x 1073, The L values
are chosen from 500 mto 2500 m. We implemented MATLAB’s curve fitting
options to these graphs. We detected best fitting option which is polynomial fitting in
6" degree for these graphs. After this fitting process, every graph is expressed via a

polynomial equation in the form

D1 X6 + 0, X5 + P Xt + pu X3 + psX? + p X + p,. (2.17)

16



Cn"2=1.7000e-14 Cn"2=1.7750e-14 Cn"2=1.8500e-14 Cn"2=1.9251e-14 Cn"2=2.0001e-14
al bl cl al bl cl al bl cl al bl cl al bl cl
P1 -0.01664 | 0.006776 | 0.005109 0.142 0.005455 | 0.003926 0.3267 |0.003664 | 0.00245%9 0.5338 | 0.001471 | 0.0007687 0.7585 -0.00104 | -0.001076
P2 -2.035 0.02323 | 0.01297 -2.171 0.02663 | 0.01493 -2.258 0.02963 | 0.01655 -2.291 0.03216 0.01781 -2.265 0.03415 0.0187
P3 -1.327 -0.04495 | -0.02925 [ -2.576 -0.03472 | -0.02191 -3.949 -0.02203 | -0.01317 -5.419 -0.00725 | -0.00336 -6.953 0.009148 | 0.007177
P4 21.46 -0.2162 -0.0873 22.29 -0.2368 | -0.09648 22.85 -0.2551 -0.1041 23.13 -0.2709 -0.11 23.12 -0.2839 -0.1142
P5 67.97 0.1561 0.1826 75.2 0.1196 0.1702 82.58 0.07893 0.1559 90.05 0.03498 0.1402 97.53 -0.01146 0.1237
P6 115.6 0.562 4316 126.3 0.5887 4434 137.7 0.6106 4.548 1485 0.6276 4.658 161.8 0.6399 4.765
P7 96.62 17.68 9.132 103.3 17.72 8.374 110.2 17.75 9.613 1175 17.78 S.848 125.1 17.81 10.08
CnA2=2.0751e-14 Cn"2-2.1501e-14 Cn"2=2.2251e-14 Cn"2-2.3001e-14 Cn"2-2.3752e-14
al bl cl al bl cl al bl cl al bl cl al bl cl
P1 0.9967 | -0.003789|-0.003016] 1.244 -0.006694 | -0.004993 1.496 -0.009676/ -0.006957 175 -0.01266 | -0.008864 2.001 -0.0156 | -0.01068
P2 -2.177 0.03559 0.0192 -2.026 0.03646 | 0.01932 -1.81 0.03677 | 0.01908 -1.531 0.03653 0.0185 -1.187 0.03577 | 0.01761
P3 -8.519 0.02675 | 0.01814 -10.09 0.04513 | 0.02926 -11.63 0.0639 0.04027 -13.13 0.0827 0.05096 -14.54 0.1012 0.06116
P4 22.82 -0.2942 | -0.1167 22.26 -0.3016 | -0.1175 21.43 -0.3063 -0.1169 20.35 -0.3084 -0.1147 19.04 -0.308 -0.1113
P5 105 -0.0597 0.1067 112.4 -0.1091 | 0.08972 119.6 -0.159 0.073 126.7 -0.2089 0.05686 133.6 -0.2584 0.04151
P6 1747 0.6476 4.868 188 0.6508 4.968 201.7 0.6498 5.064 215.7 0.6448 5.158 230.1 0.6361 5.245
P7 132.9 17.84 10.31 141.1 17.87 10.53 149.6 17.9 10.75 158.4 17.93 10.96 167.5 17.96 11.18
Cn"2=2.4502e-14 Cn"2=2.5252e-14 Cn"2-2.6002¢e-14 Cn"2=2.6752e-14 Cn"2=2.7502e-14
al bl cl al bl cl al bl cl al bl cl al bl cl
P1 2.247 -0.01842 | -0.01237 2.485 -0.02107 | -0.01391 2.713 -0.02353 | -0.01528 2.931 -0.02575 | -0.01647 3.136 -0.02772 | -0.01748
P2 -0.7806 0.03453 | 0.01643 | -0.3125 0.03284 | 0.01499 0.2161 0.03075 | 0.01332 0.8039 0.02829 | 0.01145 1.45 0.02551 0.00941
P3 -15.86 0.1192 0.0707 -17.05 0.1363 0.07947 -18.11 0.1525 0.08739 -19.02 0.1675 0.09438 -19.77 0.1813 0.1004
P4 17.53 -0.3053 -0.1066 15.83 -0.3005 -0.101 13.97 -0.2937 | -0.09434 11.97 -0.2851 | -0.08693 9.855 -0.2749 -0.07886
P5 140.2 -0.3069 0.02718 146.6 -0.3541 0.01401 152.7 -0.3999 | 0.002096 158.6 -0.4438 | -0.008482 164.2 -0.486 -0.01768
P6 2447 0.6238 5.338 259.6 0.6084 5.424 2747 0.59 5.508 290.1 0.5689 5.59 305.6 0.5454 5.671
P7 176.8 17.98 11.39 186.6 18.01 11.59 196.5 18.03 11.8 206.7 18.05 12 217.2 18.07 12.19
Cn"2-2.8253e-14 Cn"2-2.9003e-14 Cn"2=2.9753e-14 Cn"2=3.0503e-14 Cn"2=3.1253e-14
al bl cl al bl cl al bl cl al bl cl al bl cl
P1 3.33 -0.02943 | -0.0183 3.511 -0.03085 | -0.01892 3.682 -0.03199 | -0.01936 3.842 -0.03284 | -0.01961 3.9%4 -0.0334 | -0.01968
P2 2.153 0.02245 | 0.007222 2.913 0.01915 | 0.00491% 3.728 0.01567 0.00252 4.599 0.01202 [ 4.954e-05 5.527 0.008246 | -0.002473
P3 -20.35 0.1938 0.1055 -20.74 0.2048 0.1095 -20.95 0.2145 0.1126 -20.96 0.2227 0.1147 -20.79 0.2295 0.1158
P4 7.641 -0.2633 | -0.07022 5.36 -0.2505 | -0.06115 3.03 -0.2366 | -0.05176 0.6708 -0.2218 | -0.04213 -1.697 -0.2063 | -0.03236
P5 169.5 -0.5261 | -0.02548 174.4 -0.564 -0.03187 179.2 -0.5997 | -0.03687 183.6 -0.6333 -0.04052 187.8 -0.6646 | -0.04285
P6 321.2 0.5196 5.748 336.9 0.4918 5.827 352.8 0.4621 5.903 368.7 0.4309 5.977 3846 0.3982 6.051
P7 2279 18.09 12.39 238.8 18.1 12.58 250 18.12 12.77 261.4 18.13 12.96 273 18.14 13.14

Table 1 Constant Values for 50 Pieces of Cn?
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Cn"2=3.5754e-14 Cn"2=3.6505e-14 Cn"2=3.7255e-14 Cn"2=3.8005e-14 Cn"2=3.8755e-14
al bl cl al bl cl al bl cl al bl cl al bl cl
P1 4.8503 -0.03135 | -0.01688 5.093 -0.03022 | -0.01597 5.308 -0.02891 -0.01495 5.556 -0.02743 -0.01385 5.845 -0.02581 -0.01266
P2 12.42 -0.01532 | -0.01776 13.83 -0.01919 | -0.02021 15.33 -0.02298 | -0.02259 16.93 -0.02669 | -0.02491 18.65 -0.0303 -0.02716
P3 -15.77 0.2427 0.1049 -14 31 0.2408 0.1006 -12.69 0.238 0.0955%8 -10.92 0.2343 0.09006 -9.008 0.2297 0.08402
Pq -15.16 -0.1041 0.02506 -17.17 -0.08648 | 0.03387 -19.08 -0.06895 0.04232 -20.89 -0.05155 0.05039 -22.6 -0.03431 0.05804
P5 208 -0.8084 -0.03265 210.7 -0.8256 -0.02756 2133 -0.8411 -0.02169 2159 -0.855 -0.01512 218.4 -0.8673 -0.007923
P& 480.7 0.1806 6.474 496.7 0.1418 6.542 512.7 0.1027 6.609 528.6 0.0633 6.676 5445 0.0236 6.743
P7 346.4 18.19 142 359.2 18.19 14.37 372.1 18.2 1454 385.2 18.2 147 398.3 18.2 14.87
Cn"2=3.9505e-14 Cn"2=4.0256e-14 Cn"2=4.1006e-14 Cn"2=4.1756e-14 N2=4.2506e-14
al bl cl al bl cl al bl cl al bl cl al bl cl
P1 6.183 -0.02404 -0.0114 6.58 -0.02214 | -0.01008 7.048 -0.02014 | -0.008702 7.598 -0.01805 | -0.007279 8.243 -0.01588 -0.005807
P2 20.48 -0.0338 -0.02933 22.46 -0.03718 | -0.03143 24.59 -0.04046 -0.03343 26.89 -0.04359 -0.03534 29.39 -0.0466 -0.03714
P3 -6.97 0.2244 | 0.07752 -4.814 0.2183 0.0706 -2.562 0.2117 0.06329 -0.2288 0.2045 0.05565 2.168 0.1968 0.04766
Pq -24.22 -0.01729 0.06525 -25.74 -0.000524§ 0.07201 -27.18 0.01594 0.07826 -28.54 0.03207 0.08401 -29.83 0.04788 0.0892
P5 220.8 -0.8782 |-0.0001735 223.2 -0.8877 | 0.008073 225.7 -0.896 0.01674 228.2 -0.9031 0.02576 230.7 -0.909 0.03511
P56 560.4 -0.01629 6.809 576.3 -0.05636 6.874 592.2 -0.08645 6.894 608.1 -0.1366 7.005 624 -0.1767 7.069
P7 411.6 18.2 15.03 425 18.2 15.19 438.4 18.18 15.35 452 18.1¢ 15.51 465.6 18.19 15.66
Cnn2=4.3256e-14 Cn"2=4.4006e-14 Cn"2=4.4757e-14 Cn"2=4.5507e-14 Cn"2=4.6257e-14
al bl cl al bl cl al bl cl al bl cl al bl <l
P1 5.001 -0.01365 | -0.004319 9.886 -0.01136 | -0.002802 1092 -0.009023| -0.001259 12.12 -0.006664 | 0.0002957 13.52 -0.004286 0.00186
P2 321 -0.04946 | -0.03886 35.06 -0.05218 | -0.04048 38.3 -0.05477 -0.042 41.83 -0.05721 | -0.04341 45.72 -0.05951 -0.04471
P3 4.604 0.1887 0.03546 7.057 0.1802 0.03101 9.502 0.1714 0.02233 118 0.1624 0.01348 1422 0.1531 0.004511
Pq -31.09 0.0633 0.09391 -32.32 0.07833 0.09806 -33.56 0.09299 0.1017 -34.84 0.1072 0.1047 -36.2 0.1211 0.1071
P5 2334 -0.814 0.04466 236.3 -0.9179 0.0544 2384 -0.9211 0.06429 2426 -0.9233 0.07424 246.2 -0.8248 0.08421
P56 639.9 -0.2167 7.133 655.9 -0.2566 7.197 672 -0.2965 7.261 688.1 -0.3361 7.324 7043 -0.3756 7.387
P7 4783 18.18 15.82 493.1 18.17 15.97 507 18.17 16.12 520.8 18.16 16.27 5348 18.15 16.42
Cn"2=4.7007e-14 Cn"2=4.7757e-14 Cn"2=4.8507e-14 Cn"2=4.9258e-14 N2=5.0008¢e-14
al bl cl al bl cl al bl cl al bl cl al bl cl
P1 15.13 -0.001898 | 0.003429 17 0.0004902| 0.004999 19.15 0.002871 | 0.006564 21.62 0.005239 | 0.008125 24.47 0.0075839 0.009664
P2 49.89 -0.06166 | -0.04591 54.6% -0.06367 -0.047 59.88 -0.06554| -0.04799 65.63 -0.06728 -0.04887 71.99 -0.06887 -0.04865
P3 16.41 0.1437 -0.004591 18.44 0.1341 -0.01379 20.25 0.1245 -0.02305 21.77 0.1149 -0.03238 2293 0.1052 -0.0417
Pg -37.68 0.1345 0.10%8 -39.35 0.1475 0.1103 -41.27 0.16 0.1111 -43.51 0.1722 0.1113 -46.15 0.184 0.110°9
P5 250.1 -0.9257 0.09417 254.4 -0.926 0.1041 259.1 -0.9256 0.1139 264.2 -0.9248 0.1235 270 -0.8234 0.133
P56 720.7 -0.4148 7.448 737.2 -0.4538 7.512 754 -0.4827 7.574 7709 -0.5313 7.636 788.2 -0.5696 7.697
P7 548.8 18.14 16.57 562.9 18.14 16.72 577 18.13 16.86 581.1 18.12 17.01 605.2 18.1 17.15
Cn"2=5.0758e-14 Cn"2=5.1508e-14 Cn"2=5.2258e-14 Cn"2=5.3009e-14 N2=5.3759¢e-14
al bl cl al bl cl al bl cl al bl cl al bl cl
P1 27.73 0.009501 0.0112 31.46 0.01218 0.01272 35.73 0.01441 0.01422 40.61 0.01659 0.01571 46.19 0.01873 0.01716
P2 79.04 -0.07033 | -0.05031 86.87 -0.07167 | -0.05086 95.58 -0.07288| -0.05131 105.3 -0.07397 -0.05166 116.1 -0.07493 -0.0519
P3 23.65 0.09555 -0.05105 23.83 0.08598 -0.06039 23.37 0.0765 -0.0697 22.13 0.06715 -0.07901 19.98 0.05791 -0.08821
Pq -49.31 0.1953 0.11 -53.08 0.2063 0.1084 -57.62 0.2169 0.1064 -63.08 0.2271 0.1037 -69.63 0.2369 0.1006
P5 276.4 -0.9217 0.1422 283.4 -0.8195 0.1512 291.3 -0.917 0.1599 300.1 -0.8142 0.1684 309.9 -0.9112 0.1764
P56 805.7 -0.6076 7.758 823.7 -0.6454 7.819 8421 -0.6828 7.88 861 -0.72 7.84 880.5 -0.7568 8
P7 615.4 18.09 17.29 633.5 18.08 17.43 647.7 18.07 17.57 661.9 18.06 17.71 676 18.04 17.85

Table 2 Constant Values for 50 Pieces of Cn?

18



We determined the coefficients of the polynomials for every Cn?2. For the calculation
of p(x), we need to know Cn? and L. If we have these values, we can find the
coefficient values of the polynomial from the table of Table 1 and Table 2.

In Fig. 11, we plot the graphs of the coefficients with respect to the changes in Cn?.
We obtained 21 graphs for all coefficient values. In Fig. 11, first row refers to the
coefficients of the polynomial modeling of 4, i.e., refers to the coefficients A —
plto A — p7, similarly the second row refers to B — p1 to B — p7 and third row
refers C — p1 to C — p7 respectively.
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2.6 Comparison MATLAB Model and Integral Form of Probability Density

Function

Considering all these processes we can claim that our simple equation which is
expressed in (2.15) can be used instead of the complex integral equation which is
defined in (2.16). For this comparison, we wrote a MATLAB code where we
calculate both equations and plot their graphs as in Fig. 12. It is shown in Fig. 12 that

our model and the original equation fit to each other very well.

® 2 =]
& 3 S

Probability Density Function
=23

o 5 10 16 20 25 30 35 40

SNR

Figure 12 Comparison of Result

In Fig. 12, red line was obtained from MATLAB model. Blue line was obtained from
integral equation. As we see, both lines nearly overlap to each other. That means we
can use equation (2.16) instead of equation (2.15). The developed expression is in

closed form and it can be evaluated more easily.
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CHAPTER 3
Calculations of Functions

3.1 Cumulative Distribution Function (CDF)

The cumulative distribution function for the log normal distribution model is
obtained by integrating the probability density function of the log normal model
(Prob. (x? < x). We obtain probability density function from MATLAB model
which is given by (2.16).

CDF = pr(x) dx (3.1
0

Using equation (2.16) we can calculate the cumulative density function as in (3.2).

* X — B\’
CDF =f Aexp— (T) dx (3.2)
0

The error function is defined as in (3.3)

O(u) = erf(u) = %fou e™*" dx. (3.3)

We employ the error function in (3.3) for the pdf expression in (2.15) For this
purpose, we write U instead of X as defined in equation (3.4) and after that we make

some transformation for simple calculation of error function as in (3.5).
N2
CDF = fgcA exp— (U B) du . (3.4)

c
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1
y = (U - B)/C dy = () du. (3.5)
After transformation of the cumulative distribution function we obtain a simpler
equation as shown in (3.6). The defined limit of integral is divided into two parts as

shown in equation (3.7).

x—B
C
CDF = f , A e Cdy (3.6)
- C
0 x-B
C
CDF = AC j 5 e’ dy+J e’ dy (3.7)
= 0

3.2 Moment Generating Function (MGF)

The n degree moment of a random variable X is defined as E[X"]. For example, the
first moment is the expected value E[X]. The second central moment is the variance
of X. Similar to mean and variance, other moments give useful information about
random variables. The moment generating function (MGF) of a random variable X is

a function My (s) defined as

o)

M,(s) = E(e5*) = f P(x) eS*dx (3.8)

0

and for our proposed model, the moment generating function is calculated as

X

M,(s) = A (%) f B e((—c—§)+x((§_’§)+s>> do (3.9)

Which can be expressed in closed form using the ¢ () function defined in [7, Eq.

(3.322.2)] as
M,(s) = Ae_(g_i) (ﬂTCZ> exp (— (%)) ((26—?) + S)Z 1-0¢-— ((zc—lj) + S) J%T ‘ (3.10)
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3.3 Moments

The “moments” of a random variable (or of its distribution) are expected values of
powers or related functions of the random variable. Moments of the two signals for
log normal distribution are calculated in equation (3.11),(3.12), (3.13) and (3.14).

EGM) = S M9l (3.11)
o(-(%+5))s= %fo( G it g (3.12)

2B, \\C 2\ ~2
e \/_f (& 5)> y 4 _%e<—(i—§+s) )CT g (313)

s _B? Jmc? B2
WO oo = Ae @ [exp (5) B] [1 - 0= D) + exp (&) (%% ¢ CZ) (314)
3.4 Outage Probability
The outage probability is defined as the probability that the SNR at the input of the
receiver chain is falling below a given threshold value. Outage probability of our

model is calculated in equation (3.15) and (3.16) .

P, = 2P(2x) P(x) =Aexp(—(x —B)/C?) (3.15)

P, = 2A exp(—(2x — B)/C?) (3.16)

24



3.5 Amount of Fading

The amount of fading is an important measure for severity of fading and it is defined
as [10, Eq. (2.5)]
2
(Ea» - (E@))

_ 3.17
AF = ) (3.17)

For the calculation of (3.17), we first compute E(z2) as outlined in
(3.19), (3.20) and (3.21).

E(t?) = foorz P(1)dt » P(1) = Axexp <— <(T _ B)> ) (3.18)
. C
k=(T;B) o t=Ck+B A dr = cdk (3.19)
E(1?) = foo(Ck +B)2A e C dk (3.20)
0

E(?) = [ AC3k?e ™ dk + [ 24BC?ke™ dk + [, AB*Ce™ dk  (3.21)

& & (g
w X Y

2
(o] = T2 T
=+ N SN
Jo, e zdy=+2n —=x? ox=

— = 3.22
5 O dx = 1//2dt ( )

E(?) = f°° e *’\2dx =21 - fwe‘xzdx =+r (3.23)

Integration by parts is a technique for performing indefinite integration [ u dv or

definite integration
25



b
fudv

by expanding the differential of a product of functions d(u, v) and expressing the
original integral in terms of a known integral [ v du . We made this transformation
in equation (3.25) and (3.27).

For the W part of equation (3.21), we have

f AC3k%e~**dk = AB*CVr (3.24)
0

For the X part of equation (3.21),

f 2ABC?*ke™*" dk » —k? =u  du = —2kdk (3.25)
0

2

) _((‘E—B))
—f ABC?¢ % du = —ABC?% \ € (3.26)
0
For the Y part of equation (3.21), we have
f AC3k2e ¥ dk » k2 =u - k = Vu - du = 2kdk - e *’dk = dv
0 (3.27)
-V = \/E
[o.0] 1 (ee)
f ﬁAC3u e %du=k3\m— f 2\/rkdk = 0 (3.28)
0 0

At the end of transformation and calculation we can calculate E(tr?) as shown
in(3.29).
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‘L'—B)

E(1?) = AB*C V7 — ABC2e (T (3.29)

Second, we calculate E(r) for the amount of fading as in equation (3.31),
(3.32),(3.33),(3.34).

[oe)

x/?—B>2

A e_< C (3.30)

m@:L

E(T)=.f (C?K? + 2BCk + B?) A e~¥*(2C2k + 2BC)dk (3.31)
0

(=5

C >=k - 7=C%*k?+2BCk + B> - dt =2C*k +2BCdk (3.32)

3} 3} [e3)

2AC4k3e‘k2dk+f 24C*KPe™dk  (3.33)

E(7) =f 2Ac4k3e—k2dk+f
0 0 0

2AC*K3e M dk + f
0

A B C D
For the A part of equation (3.33),

f 2A4C*k3e~ ¥ dk =0 (3.34)
0
For the B part of equation (3.33),
f 6ABC3k%e ™% dk =0 (3.35)
0

For the C part of equation (3.33), we have
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(o] 5 _(ﬂ)Z
f 6AB2C%ke ¥ dk = —3AB%*C%e \'¢C (3.36)
0
For the D part of equation (3.33),
f 2 AB3C e ¥ dk = 2AB3CVrn (3.37)
0
At the end of the all calculation E (1) is equal to,
T-B 2
E(r) = 24B3Cr — 34 B2C%e () . (3.38)

Now, we have all parameters to calculate the amount of fading which is expressed in
(3.17). If we apply our calculated parameters to formula (3.17), amount of fading

formula becomes as in (3.39).

(=B) _(ﬂ)z
[ABZC\/E—ABCZe C }—2AB3C\/E—3ABZCZe C ]

AF = (3.39)

T—B 2
2AB3C\n—-34A BZCZe_( C ) ]

3.6 Probability of Transmission Error Rate

In the last stage of thesis work, we calculate the probability of transmission error rate
performance of the log-normal channels using our model. The modeling of the
probability density function is done with u = 15. Now we consider the values of u
from 5 up to 40 with incremental amount of 5. We perform the same steps until Fig.
7. We calculate p(x) of the harmonic mean and we plot its graph. Then, using
MATLAB, we model the change of coefficients A, B, C for all 7« values. We plot the
graphs of A, B, C coefficients with respect to L. Then, we use curve fitting option of
MATLAB again and calculate polynomial coefficient for these graphs. The best
fitting curve is achieved using a 6t" degree polynomial. Polynomial equations of

A, B, C graphs become as in (3.39) after fitting operation.
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D1XC + X% + p3 Xt + pu X3 + ps X2 + peXt + g (3.39)

This is a general polynomial equation with constant coefficients. We obtain these
equations for each "u value. Subsequently, we compare the models which are
expressed by equation (2.15) and (2.16). We plot graphs for both equations with
different "u values on the same figure. Blue line is obtained from integral equation

and red line is generated from our model.

For "u = 5, coefficients of polynomial equations are given in (3.42). Graphs of 4, B
and C coefficents with respect to length are depicted in Fig. 13, 14 and 15. We plot
the pdf obtained using the numerical integration and the one obtained using the

modeling technique presented in this thesis work for ‘7 = 5 in Fig. 16.

p1X® + p2X> + p3X* + p4X3 + p5X? + p6X! + p7.

AD» P1 P2 P3 P4 PS P6 P7
-0.1913  -0.5432 3.294 1711 33.33 38.05 235

By P1 P2 P3 P4 PS P6 P7
0.00034 0.03009 0.01087 -0.278 0.088 1.312 8.45

Ccr» P1 P2 P3 P4 PS P6 P7

0.00996 0.02523 -0.0743 -0.159 0.369 5539 120 (3.42)
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Figure 13 Change of A with respectto L foru =5
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Figure 16 Comparisons of Results for © = 5

For u = 10, coefficients of polynomial equations are given in (3.43). Graphs of 4,

B and C coefficents with respect to length are depicted in Fig. 17, 18 and 19. We plot

the pdf obtained using the numerical integration and the one obtained using the

modeling technique presented in this thesis work for ‘u = 10 in Fig. 20.

pl1X® + p2X> + p3X* + p4X3 + p5X% + p6X! + p7.

A» P1 P2 P3 P4
0.5269 -1.274 -2.794  23.59

B> P1 P2 P3 P4
-0.0099 0.0334 0.0736  -0.297

Chr P1 P2 P3 P4
-0.0017 0.0184 0.0117 -0.123

P5 P6 P7
79.26 1105 72.91

P5 P6 P7
-0.150  0.985 13.27

P5 P6 P7
01307 5432 122 (3.43)
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For “u = 15, coefficients of polynomial equations are given in (3.44). Graphs of 4,
B and C coefficents with respect to length are depicted in Fig. 21, 22 and 23. We
plot the pdf obtained using the numerical integration and the one obtained using the

modeling technique presented in this thesis work for ‘u = 15 in Fig. 24.
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A»

B>

Ccr»

p1X® + p2X> + p3X* + p4X3 + p5X? + p6X! + p7.

P1 P2 P3 P4 P5 P6  P7
2131 1015 -1516 7.957 1426 0508 18.07
P1 P2 P3 P4 P5 P6  P7

-0.0196 0.0183 0.1415 -0.223 -0.4255 0.508 18.07

P1 P2 P3 P4 P5 P6  P7

-0.0124 0.0067 0.0792 -0.064 -0.0183 527 12.19 (3.44)
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35 40

For “u = 20, coefficients of polynomial equations are given in (3.45). Graphs of 4,

B and C coefficents with respect to length are depicted in Fig. 25, 26 and 27. We plot

the pdf obtained using the numerical integration and the one obtained using the

modeling technique presented in this thesis work for u = 20 in Fig.28.
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A»

B>

Ccr»

p1X® + p2X> + p3X* + p4X3 + p5X? + p6X! + p7.

P1 P2 P3 P4 P5 P6 P7
08672 9.388 -7.229 -50.57 1446 6143 6017
P1 P2 P3 P4 P5 P6 P7
-0.0177 -0.008 0.149 -0.080 -0.5987 -0.110 22.74
P1 P2 P3 P4 P5 P6 P7

-0.0043 -0.008 0.0380 0.0259 0.0389 5.059 12.03 (3.45)
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For “u = 25, coefficients of polynomial equations are given in (3.46). Graphs of 4,
B and C coefficents with respect to length are depicted in Fig. 29, 30 and 31. We plot
the pdf obtained using the numerical integration and the one obtained using the

modeling technique presented in this thesis work for ‘u = 25 in Fig.32.
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A»

B>

Ccr»

p1X® + p2X> + p3X* + p4X3 + p5X? + p6X! + p7.

P1 P2 P3 P4 P5 P7
-7.749 11.57 61.63 -90.19 -68.04 1020 1483
P1 P2 P3 P4 P5 P7
0.0010 -0.0298 0.0506 0.0608 -0.548 -0.821 27.15
P1 P2 P3 P4 P5 P7

0.0070 -0.0185 -0.031 0.1034 0.180 4.813 11.75 (3.46)
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For “u = 30, coefficients of polynomial equations are given in (3.47). Graphs of 4,
B and C coefficents with respect to length are depicted in Fig. 33, 34 and 35. We plot
the pdf obtained using the numerical integration and the one obtained using the

modeling technique presented in this thesis work for ‘7z« = 30 in Fig.36.
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A»

B>

Ccr»

p1X® + p2X> + p3X* + p4X3 + p5X? + p6X! + p7.

P1 P2 P3 P4 P5 P6  P7

-0.8659 -21.56 80.18  89.19  -410.4 1103 3078
P1 P2 P3 P4 P5 P6  P7

0.01401 -0.023 -0.056 0.1009 -0.3466 -1.52 31.24
P1 P2 P3 P4 P5 P6  P7

0.00560 -0.018 -0.039 0.1423 0.2551 4.585 1143 (3.47)
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For “u = 35, coefficients of polynomial equations are given in (3.48). Graphs of 4,
B and C coefficients with respect to length are depicted in Fig. 37, 38 and 39. We
plot the pdf obtained using the numerical integration and the one obtained using the

modeling technique presented in this thesis work for ‘. = 35 in Fig.40.

41



p1X® + p2X> + p3X* + p4X3 + p5X? + p6X! + p7.

A» Pl P2 P3 PA  P5  P6  P7
2587 2526  -110 3429 -3181 5499 5111
B P1 P2 P3 A P5  P6  P7
00021 00026 -0.050 00310 -0.1771 -2.129 34.98
c» Pl P2 P3 A P5  P6  P7
00022 -0011 -0.010 01516 02688 436 1114 (3.48)
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For “u = 40, coefficients of polynomial equations are given in (3.49). Graphs of 4,
B and C coefficients with respect to length are depicted in Fig. 41, 42 and 43. We
plot the pdf obtained using the numerical integration and the one obtained using the

modeling technique presented in this thesis work for ‘u = 40 in Fig.44.
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A»

B>

Ccr»

p1X® + p2X> + p3X* + p4X3 + p5X? + p6X! + p7.

P1 P2 P3 P4 PS5  P6  P7
-16.04 50.97 -19.14 88.65 53.49 144.3 6533
P1 P2 P3 P4 PS5 P6  P7
-0.0075 0.0097 -0.005 -0.040 -0.030 -2.71 38.42
P1 P2 P3 P4 PS5  P6  P7
-0.005 -0.0063 0.010 0.146 0.2789 4.122 10.89 (3.49)
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3.7 Average Probability of Transmission Error Rate

In this section, we calculate A, B and C coefficient values for 8 "u values ranging
from 0 to 40. For the calculation of coefficient values we use MATLAB curve fitting
option for p(x) equation which is defined in expression (2.16). Coefficient values
are tabulated in Fig. 45.

I A B ¢
n=1>5 0.96 7.835 9,283
u=10 33.64 13, 9,425
u=15 105.7 7.73 9.46
u=20 326.9 22.66 9.414
u=25 951.2 7.44 9284
u=30 2393 31.92 9.098
u=35 4680 36.03 8.925
u=40 6459 39.82 8.803

Table 3 List of Coefficients for Different & Values

After calculation of coefficient values, we compute probability of average
transmission error with respect to average signal to noise ratio (SNR). We use the

equation in (3.50) to calculate P, values

= (2w ()0 550

In (3.50) M, represents the moment generating function defined in (3.8). We

assignsin? ® = S, ¥ = 1/2. After these assignments equation (3.50) becomes as in

(3.51).
= (3w (s ) s
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We calculate all P, values with respect to SNR ranging from 0 to 40 in steps of 5.
We plot transmission error probability P, with respect to Signal to noise ratio (SNR)

in Fig. 45.

Bit Error Rate

SNR

Figure 43 Average Probability of Transmission Error Rate to SNR

From this Fig. 45, it is obvious that as the average SNR increases, probability of

transmission error decreases rapidly. Thus for “u = 40 dB the probability of

transmission error is less than 1012
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CHAPTER 4

CONCLUSION

In this thesis study, we demonstrated how to develop a mathematical model in closed
form for those systems having performance expressions in numerical integration
form. For this purpose, we considered two-hop communication systems whose end-
to-end performance depends on the harmonic mean of the hop SNRs. We considered
two-hop systems with log-normally distributed optical communication channels. We
derived an expression for the harmonic mean of two-hop systems employing log-
normally distributed channels. Later, for the derived expression, using the curve
fitting utility of the MATLAB compiler, we developed a simple Gaussian like
expression for the derived harmonic mean expression, and using the developed
approximate expression we calculated the cumulative distribution function, moment
generating function, and transmission error probability, for two-hop communication

systems with log-normal channels.

FSO offers many advantages over existing techniques which can be either optical or
radio or microwave. Less cost and time to setup are the main attraction of FSO
system. Optical equipment can be used in FSO system with some modification.
Merits of FSO communication system and its application area make it a hot
technology but there are some problems arising due to the attenuation caused by
medium. FSO system poses some problem like attenuation in medium that can affect
the performance of transmission as power loss would be there. But extra care and
restudy of the medium can guide what type of parameters to be considered before
setting up the system.

In this work, we have derived closed-form expression for the evaluation of the

average capacity and the outage probability of a typical two-hop FSO
48



communication system over turbulence atmospheric conditions modeled by log
normal distribution respectively. We studied the dependence of the reliability and the
performance of a system as a function of the principal parameters of such a link,
being the length of the link, aperture diameter of the receiver and the atmospheric
turbulence conditions between transmitter and receiver. If we know the value of
length between transmitter and receiver and turbulence strength according to
atmospheric conditions, we can calculate performance of channels easily thanks to
our model which is explained in this thesis.
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