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ABSTRACT 

Developing a Recurrent Neural Network with Long-Short Term Memory and 

Word2vec Representation for Sentiment Classification 

 

FALAH AMER ABDULAZEEZ ALKUBAISI 

M.Sc., Computer Engineering Department 

Information Technology Program 

Supervisor: Assist. Prof. Dr. Abdül Kadir GÖRÜR 

SEPTEMPER 2018, 79 Pages 

 

      One of the major components of machine learning is classification. Sentiment analysis 

is one of the sub-fields of classification. It works on the methods that study and classify 

the opinions of people regarding their feelings and it extracts any underlying impressions 

toward subjects or even other texts. In this study, we worked on developing a neural 

network model for binary sentiment classification which can analyze data as being either 

positive or negative. Many papers conclude that probabilistic classifiers and linear 

classifier (SVM) methods are more accurate than Neural Network methods. In this study, 

we proved (demonstrated) that there is more space for development in the Neural Network 

methods field. We compared our results with four supervised methods: Naïve-Bayes, 

Maximum Entropy, Support Vector Machine and Stochastic Gradient Descent. We 

achieved better results than the results of the mentioned methods by using RNN (Recurrent 

Neural Network) with GLOVE (Global Vectors for Word Representation) and achieved a 

result of 91.04% accuracy. 

 

Keywords: Sentiment Analysis, Deep Learning, Machine Learning, Movie Reviews, 

Neural Network. 
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ÖZ  

Developing a Recurrent Neural Network with Long-Short Term Memory and 

Word2vec Representation for Sentiment Classification 

FALAH AMER ABDULAZEEZ ALKUBAISI 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü, Bilgi Teknolojileri Programı 

Danışman: Dr. Öğretim Üyesi Dr. Abdül Kadir GÖRÜR 

 

Eylül 2018, 79 sayfa 

 

Makine öğreniminin en önemli bileşenlerinden bir tanesi sınıflandırmadır. Duygu analizi, 

sınıflamanın alt alanlarından biridir. Duygu analizi insanların duygularıyla ilgili 

düşüncelerini araştıran ve sınıflandıran yöntemlerle çalışır ve konuya ve hatta diğer 

metinlere yönelik altta yatan izlenimleri çıkarır. Bu çalışmada, metinleri olumlu ya da 

olumsuz olarak analiz edebilen ikili duygu sınıflandırması için bir sinir ağı modeli 

geliştirmeye çalıştık. Pek çok makale olasılıksal sınıflandırıcıların ve doğrusal 

sınıflandırıcı (SVM) yöntemlerinin Yapay Sinir Ağı yöntemlerinden daha doğru olduğu 

sonucuna varmışlardır. Bu çalışmada, Sinir Ağ yöntemleri alanında gelişme için daha fazla 

alan olduğunu kanıtladık. Sonuçlarımızı dört denetimli öğrenme yöntemi ile karşılaştırdık: 

Naïve-Bayes, Maksimum Entropi, Destek Vektör Makinesi ve Stokastik Gradyan Descent.  

Bahsi geçen bu yöntemler ile karşılaştırıldığı durumda daha iyi sonuçlar elde ettik.  RNN 

(Tekrarlayan Nöral Ağ) ile Glove (Kelime Temsili Global Vektörler) kullanarak% 91.04 

doğruluk elde ettik. 

 

Anahtar Kelimeler: Sentiment Analysis, Deep Learning, Machine Learning, Movie 

Reviews, Neural Network. 
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CHAPTER ONE 

Introduction 

A human can easily describe his opinions and make eloquent demands and the main 

underlying purpose of machine learning and Artificial Intelligence is to have the 

machine act like a human being. In natural language processing, there are many 

methods that can be implemented with linguistics, and from those fields, we have 

sentiment analysis (SA). The purpose of SA is to analyze user sentiment from a text. 

According to [1], with the increase in social media and social media networks, the size 

and amount of information has increased, and daily there are millions of reviews and 

much information from users. In order to make that information useful, sentiment 

analysis has become one of the modern sciences for processing such data. Sentiment 

analysis is good for understanding the sentiment in a text from a real user and to check 

whether it is positive or negative. It can be used to check the popularity of products, 

users, subjects and so on. Recently, the collection of user data has become easier than 

before with a return to a growth in technology, especially social media, with which the 

user can share his opinion about products or anything else by publishing comments. 

This development is very useful for retrieving data for analysis. 

Another source for data retrieval is blogs, which contain many reviews and opinions 

for many users on a daily basis. They (blogs) are considered a rich source for the 

acquisition of data for sentiment analysis. Sentiment analysis is one of the modern areas 

of text classification which is still new and has further room for development. Initially, 

scientists depended on the big data collected by users and the focus was on only those 

kinds of data. After that, the focus moved to the usage of social media and the activities 

of users on those websites, known as microblogs. There are many microblogs on the 

Internet, including the Twitter platform. As can be inferred from its name, the primary 
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part of it is the so--called “tweet,” which is a comment by a user consisting of a 

maximum 140-character message. 

Twitter is a social media platform which consists of millions of user reviews the 

numbers of whose retrievals exceed the number of users of reviews and comments on 

a daily basis. Tweets may contain a user’s opinions and his expressions about a specific 

subject and even a tweet from another user. However, there are many difficulties such 

reviews with many obstacles and issues including spelling, abbreviations and shortcuts 

being used widely to express the feeling(s) of the user known as “emoticons.” 

Moreover, a tweet might be very short and composed of a few words. All these 

complexities require a powerful method to handle them or replace the tweet with a more 

general dataset that is clear and rich in words per review. 

Many techniques use in term of sentiment analysis. There are lexicon based methods 

which depend on the linguistic distribution of words in a text, known as “semantic 

orientation,” to classify a text as being either positive or negative [1] [2] [3] [4] [5]. 

Other methods include machine learning methods which train modules with 

pre-classified datasets to define the sentiments of text as well as other datasets for 

testing [1] [2] [6] [7] [8]. 

1.1 Aim of the Study 

In this thesis, we did not use the dataset from the Twitter platform which returns all the 

complexity in Twitter comments and reviews, such as slang, irony, misspellings and so 

on. The dataset we are using in our work, which a binary sentiment classified dataset, 

is a number of IMDB movie reviews from Stanford researcher Andrew L. Mass [9]. 

Many machine learning approaches have been covered with their perspective results on 

the same dataset and compared with our proposed method results. In general, the most 

used algorithms in sentiment analysis are the supervised learning methods, such as 

Naive-Bayes and similar methods. Our work covers the supervised learning methods 

and compares between probabilistic classifier and linear classifier (SVM) results with 

Neural Network model results. We will focus on the Recurrent Neural Network (RNN) 

as the main part of our work. 
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1.2 Significance of the Study 

In this thesis, we search for efficient algorithms for the sentiment analysis task and 

discover the most accurate among the current methods being used in the research area. 

We investigate the classification algorithms in machine learning and measure the 

accuracy of each method with a dataset. Later, we provide a comparison of the results 

of the methods. Finally, we compare those results with the results gained from our 

model and show the accuracy of our RNN. Every test was performed with the same 

dataset. An advantage of this dataset was that both the training and testing data were 

labeled as binary classifications, the label being either positive or negative. The 

algorithms that were used as supervised methods were the Naïve-Bayes algorithm, 

Maximum Entropy, Support Vector Machine and the Stochastic Gradient Descent. All 

the algorithms in the supervised methods had many versions of the n-gram classifier. 

This classifier is unified as unigram, bigram and trigram. Additionally, we used a 

composed classifier from the unified parameters. 

1.3 Research Questions 

 Since most of the work on sentiment analysis focuses on probabilistic classifiers 

and SVM as the main methods, can the neural network methods provide a better 

Result than those methods? 

 Do pre-trained vectors provide better results than vectors generated Through 

training? 
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1.4 Thesis Structure 

There are four further chapters in addition to this first chapter: 

Chapter 2 presents the literature review of the thesis and it will cover every method 

used in the sentiment analysis task from a general perspective. Moreover, it will cover 

all the challenges in the field of the sentiment analysis and a detailed explanation of 

lexicon-based methods. 

Chapter 3 presents the details of the methods used in the sentiment analysis. It will 

cover the implementation of those methods in machine learning and an overview of the 

classification techniques. The dataset used for training and testing is also covered in 

this chapter. 

Chapter 4 presents explanations of the mechanisms of the methods and tools used in 

the work. It covers ideas used in previous work and the contribution of the new study. 

This chapter also presents information about the sequence of data flow during training 

and testing in the practical phase. 

Chapter 5 presents the experiments of the methods mentioned above and the results of 

those methods in addition to other results from testing those methods with a new dataset 

that was not used for the training. After comparing the results of those tests, we can 

define the best method among them for sentiment classification. 

Chapter 6 presents the conclusion of the work and future work. 
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CHAPTER TWO 

Literature Review 

This chapter presents an overview of all the methods that can be used in practice for 

sentiment analysis and all general information about the algorithms covered by 

scientists in the field. 

2.1 Introduction 

The work in sentiment analysis started in the 1990s and it has not drawn too much 

attention to scientists until the beginning of the new century due to its significant effects 

in many areas in computer science and other fields [1]. Data started increasing and 

many researchers started collecting data and labeling the data with opinions for those 

data. This development attracted the attention of scientists and pushed them forward 

into the field of sentiment analysis. Bing Liu concluded that sentiment analysis was a 

mining of user opinions and analysis of those opinions associated with other entities, 

such as organizations, persons, suggestions, products, politics and many others. The 

data that contain opinion are processed using sentiment analysis, after which they are 

classified with a sentiment. Most sentiment analysis tasks categorize texts in a binary 

manner as being either positive or negative [10] [11]. Other types of sentiment can be 

classified into more than two segments [12] [13] [14], and those categories may be 

positive, highly positive, negative, highly negative, natural, or they can even be 

emotions such as happiness, sadness, joy, fear, etc. 

Some of the most compelling reasons that bring sentiment analysis to the forefront are 

the decisions that can be made depending on sentiment analysis. Organizations focus 

on sentiment analysis to extract opinions from reviews and feedback from people. This 

procedure mitigates the effort exerted by those organizations to collect feedback about 
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particular products or subjects. The Internet, especially the social media, has helped to 

provide such organizations with information. Furthermore, this extracted information 

helps to reduce the cost of creating surveys to collect data about products or services. 

Instead, it can focus on any data that can be gathered from the Web at no cost and it 

saves any time consumed on surveys. Although information can be freely gathered, the 

data can accrue some noise or unwanted data which can affect the task, which will 

necessitate some preprocessing to use it in sentiment analysis. For this kind of problem, 

sentiment analysis has many methods to overcome this problem easily by processing 

on many levels [1]: 

 Document level: At this level, opinions can be gathered from an entire 

document which should be related to one topic [6]. 

 Sentence level: At this level, each sentence in the document can be dealt 

with as a small document from the primary document. Then, the 

sub-document is classified as an objective document and ignored, or it is 

classified as a subjective document and the sentiment is extracted from 

it [11]. 

 Aspect level: The sentiment can be extracted from the aspects of an item. 

Somehow it is considered to be a very general method but still effective in 

terms of sentiment analysis [15]. 

Sentiment analysis classification methods can be categorized into two categories, 

namely lexicon-based methods and machine learning methods [2]. For a clear review 

about these two categories and their related sub-categories, see Figure 1. 
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Figure 1: Sentiment analysis classification methods [2] 
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2.2 Lexicon-Based Approach 

The lexicon-based approach is one of the main components of sentiment analysis. This 

approach uses a lexicon of terms in a document and each is has a value associated with 

it called a score. A term can be related to a word from a language or even a phrase [16]. 

The sentiment calculated depends on the presentation value of the score from the 

lexicon. There are two methods in the lexicon-based approach: the dictionary-based 

approach and the corpus-based approach. These two methods will be discussed in the 

following paragraphs. 

2.2.1 Dictionary-Based Approach 

The main part in this method is the lexical database which contains the score of the 

words and those scores measured in terms of the sentiment of the words. The sentiment 

is extracted from a document depending on the score of the words from the lexicon 

database. Seed words should be the initial set for the task and should not be very large 

(a maximum of 30 words) [4] and those words should have high polarity, such as the 

words “good” or “bad” [1] [3]. A polar word should be Fed next to augment the set of 

words and check for any synonyms in the database. There are many types of lexicon 

database, some of which are free and others commercial. As examples of this type of 

database, there is SentiWordNet [17], WordNet [18], SenticNet [17], HowNet [18] and 

so on. This comparative procedure is performed here iteratively, which means that the 

set of words will be updated on each iteration and the size of the set will also be 

expanded. The search will continue until there no words remain to be added to the set. 

A study was published by Hu and Liu in 2010 which focused on gathering customer 

reviews about a feature of a product that has sentiment. Reviews are gathered as a 

summary. As an example of this process, a product may be a camera and the sentiment 

features may be the quality of the photographs taken or the size of the product and 

depending on the data collected from those features, the reviews will be grouped into 

positive reviews and negative reviews about the camera. The procedure is performed 

particularly by collecting polar words from a sentence, such as the adjectives. The score 

is retrieved for the word or its synonyms and even depending on the antonyms opposing 

the polarity of the antonyms. By summing the scoring of the polar words, the sentiment 

can be predicted for the sentence. The results of work in [4] present good results and an 

average accuracy of 84%. Another study performed by Kim and Hovy followed several 
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methods classifying sentiment analyses using the topic of the text. There were several 

levels for classifying texts. Initially, a classifier was used to find the polarity of each 

word in the text. The second classifier provided the polarity for the entire text regarding 

user opinion. In this paper, the authors used a short list as seeding for the initial stage 

similarly to [4]. By searching for the synonyms and antonyms in the WordNet lexicon 

database in this paper, the list would expand with new feeding words. However, the 

authors proved that a number of synonyms yielded the opposite polarity from the 

original word and in some cases, it yielded a natural polarity which affected the final 

result of the sentiment and affected its accuracy. Moreover, the authors indicated that 

the polarity of the words should be measured more accurately by providing a wide range 

of numbers of polarities to distinguish the strength of the positiveness and negativeness. 

By performing this procedure, the number of ambiguous words of ambiguity will be 

reduced and accuracy will increase. The work provides four parts in a sentence that can 

provide the sentiment of that which is similar to the person holding the opinion of that 

sentence. Moreover, there are three models for resolving orientation in sentences. The 

first one is the elimination of a negative when another negative appears. The second 

and third models iterate the words of the sentence and calculate the strength of the 

sentiment with a harmonic mean in the second model and a geometric mean in the third 

model. As a result, the authors proved that the best results would be collected from the 

first model and in the region where the user determined the sentiment forwarding to the 

end of the text [19]. 

Another study was performed by Park and Kim in 2016 [20] on Twitter data. The work 

concluded by gathering seed words and searched for synonyms/antonyms from three 

different dictionaries. The collected words were used to increase the lexicon of the 

words; then those data were used to classify the data. This method performed better 

than the traditional dictionary-based method. However, there were a number of 

problems in this method, the first of which was the time consumed to collect the 

synonyms and antonyms. The next problem was the informal words used in tweets, 

which causes difficulties retrieving their polarity. In conclusion, the dictionary-based 

approach had not provided the best results for the sentiment analysis due to the 

distribution of words and their polarities [2]. 
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2.2.2 Corpus-Based Approach 

The corpus-based approach can be adjusted in two stages according to Bing 

Liu’s opinions [1]. The first stage is the identification of the polarity of the words in a 

sentence using an initial list of words that have a strength polarity. The second stage is 

the building of a lexicon database from another database for the words from the 

sentence. He concluded that the same word might receive the opposite orientation in 

the text depending on the complete distribution of the words in a text. Hazivassiloglou 

and McKeown [5] focused on extracting the semantic orientation from the compound 

adjectives in a text and used the same initial seed concept. They used a special rule to 

extract the polarities from words. The compound adjectives gave the same polarity 

when they were compounded with the stop word “and.” In another case, the word “but” 

was used to produce the opposite polarity for compound adjectives and the same applied 

for “neither-nor” and “either-or” and the stop word “or.” In many cases, those rules did 

not produce accurate results, so the researchers compared the polarity of the compound 

adjectives with the polarity of the words separated from each other using the linear-

regression model. As a result of this procedure, the predictions were presented in a 

graph and clustered into two parts, one for the negative and the other for the positive. 

Finally, they produced an accuracy of 90% in their work. 

Since words in sentiment analysis have underlying orientations as semantic, they are 

distributed depending on the corpus. A method was developed by Ding [21] to 

determine semantic orientation. He suggested that some linked adjectives have some 

dependencies, such as those words that compound with “long,” “short,” etc., and 

depending on this representation, the polarity can change. Ding covered in his work 

many objects in a lexicon, such as phrases, idioms, and words. He also extended the list 

created in [4] by including nouns and adverbs. Moreover, he added more than 1000 

idioms with clear sentiment polarities. After preparing the modified lexicon database, 

the polarity of each word was calculated depending on the rules defined by the authors. 

The polarity was summed with the score function to give the total score of the sentence. 

The function provides better results than the normal summing in the previous work [4]. 

The authors proposed three methods to overcome the context dependent words, 

including words used with “but.” These methods are used to classify the connectivity 

to deal with them [21]: 
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 Intra-sentence conjunction technique 

 Pseudo intra-sentence conjunction technique 

 Inter-sentence conjunction technique 

The authors concluded that with the help of these methods, the result of the sentiment 

is better than those of the previous methods. 

Because of the limitation of the words used in the corpus-based method, the lonely 

corpus-based method shows lower accuracy than the dictionary-based method. 

However, it is still better in terms of rebuilding lexicon databases. Another weakness 

in the corpus-based method is the time consumed on processing due to the number of 

words used to expand the lexicons, and with increases in it, performance drops [22]. 

2.3 Machine Learning Approach 

Machine learning approaches in sentiment analysis may be classified as supervised 

machine learning methods and unsupervised machine learning methods. These two 

types are explained below. 

2.3.1 Unsupervised Machine Learning Methods 

All of the datasets that are not categorized with labels are unsupervised data and can be 

grouped into the unsupervised machine learning approach. Those methods examine the 

data and classify them according to their pattern. The data with similar features will be 

identified together under a category. It is easy to collect unsupervised data by retrieving 

them from any resource. 

In Turney’s paper [6], unsupervised machine learning methods are used to classify 

reviews for sentiment analysis. Each review has two features either recommended or 

not recommended and the review should have one of these features. Using the tag 

impression, Turney collected the phrases that consisted of two words. The tag was 

designed in such manner to contain reviews that had high sentiments associated with 

the tag subject. As an average, each review contained 5 patterns of phrases. Moreover, 

a Part-of-Speech (POS) tagger was used in the work to filter the phrases that were 

required to be collected for the task. Occasionally, the retrieved phrases from the 
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reviews had to be calculated according to their semantic orientation. Moreover, the 

work had an information retrieval (IR) algorithm and a Pointwise Mutual Information 

(PMI) algorithm to find the semantic orientation by calibrating the semantic similarity 

for the words (between every two words). Any phrase meeting the condition would be 

considered the first word as the pattern and the next one as a reference. The references 

would vary; for example, the word “weak” would be considered as one-star due to its 

low polarity in comparison to the high-polarity word “strong.” In the review, the 

grading system would start from one up to five stars. The PMI would calculate the 

difference in the semantic orientation for every two phrases, in our case, the PMI of the 

phrase, “weak” and the phrase, “strong.” In this scenario, the semantic orientation 

would be positive with any word coming with “strong” as a reference and negative for 

any word associated with “weak.” The PMI can be calculated by building a 

co-occurrence table for the words, which means that for every two words appearing 

together, they are considered a hit and added to the table. This is performed with the 

AltaVista search engine, which is used for this procedure in the paper. Finally, the 

sentiment is calculated for the entire review and will be either recommended (positive) 

or not recommended (negative). A 74% accuracy was achieved in the work. 

Another work [23] published by Rothfels used the unsupervised machine learning 

approach for sentiment analysis for movie reviews. The work was inspired by [24], 

which was used to classify text in the Chinese language. Initially, positive seed words 

should be collected from the review. A list of seed words is collected by iterating the 

classification of those words in the document (review). The text of the document is 

segmented into pieces and each piece prepended with punctuation marks at the 

beginning and appended with punctuation marks at the end. The text with a domination 

of either positive or negative zones helps to predict the sentiment of the text. In practice, 

a text that has more positive zones than negative zones is considered to be a positive 

document and vice versa. Rothfels attempted to use different types of seed list by 

expanding it. He used many types of n-grams, including the bigram, trigram and 

4-gram, but only the 4-gram provided an acceptable result relative to the first two types. 

With a regrettable result, the work continued with a second attempt. The author started 

with highly semantic words as a seeding. However, even with this modification, the 

result was not sufficient and the same results occurred when they used the K-means 

clustering algorithm for scoring. Finally, he used a method from [6] to measure the 
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semantic orientation of phrases by collecting a two-seed word list, one for the positive 

and the second for the negative. The semantic orientation was measured again. The new 

list of words consisted of highly semantic words only. Later, by iterating the semantic 

orientation on the words, the accuracy increased by 15%. 

2.3.2 Supervised Machine Learning Approach 

Any data with labels are supervised data. This kind of data is used to train the 

algorithms, which is a common feature in almost all the supervised machine learning 

methods. After the training step, the output is compared with the input dataset. The 

predication is calculated by comparing the predicted value with the labeled value. There 

are many representations for a document, but the most well-known is the bag-of-words, 

wherein the document is represented as a vector of the unique terms in that document 

d = (w1 , w2 , … , wi , ... , wN), where N is the total number of unique words in a dataset 

and wi is the weight of the term [7]. The training data should be represented as a vector 

of features and this occurs by creating a list with the same value as N from the training 

data. There must be a feature model to perform this procedure. Many feature models 

are represented, including [7]: 

 The Binary Model: This model represents the weight as 1 if a term appears 

in a document of 0 for the opposite. 

 Term Frequency (TF): The number of appearances of a term in a document. 

 TF-IDF (Term Frequency-Inverse Document Frequency): The TF here 

recognizes every term with the same importance, whereas the IDF represents 

the importance of a term in the documents. 

 Information Gain (IG): This measures the popularity of a feature in a class 

in comparison with others. 

 Chi-Square Test: This is explained in the following chapter. 

There are many methods used for sentiment analysis; however, we have covered the 

most common algorithms in the field of sentiment analysis. The first method is the 

Naïve-Bayes algorithm [7] [25] [26] [27] (see Figure 2 to understand the initializing of 

the Naïve-Bayes classifier). This algorithm is used to calculate the assumption of 
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features that are independent from the Bayes theory. It shows the probability of a 

document being related to a class. The algorithm is easy to understand and can be 

implemented without complexity and it is fast with a high learning rate. The results 

vary from one test to another, but usually it performs with high results in comparison 

with many other algorithms [11] [26] [27]. The only problem here is that when there is 

a real-world problem, because most of the features are dependent, it conflicts with the 

naive theory. 

 

Figure 2: Naive-Bayes classifier initializing steps 

Another algorithm is the Maximum Entropy model, which states that the probability of 

a document belonging to a class should be estimated at the maximum value [25] [26]. 

The formula for the maximum entropy is: 

 

Where c is the class, d the document, and λ the weight of the classification indicator fi. 

Since the ME does not need to take in consideration the feature independence, it might 

give a better result than the Naïve-Bayes at least theoretically. Meanwhile, the learning 

is slower than the Naïve-Bayes as well as its implementation. 

The next method is the rule-based classification algorithm. This approach contains a set 

of rules created by professionals by analyzing the features in a specific domain, and 

depending on the usage of many rules, the results are promising; however, it still takes 

much time to process the data. This algorithm was created by Chikersal in 2015 [28] 

depends on data gathered from Twitter. He used the rules that take in action of the 

appearance of high sentiment terms in a tweet with emoticons. In his paper, the author 

later used the support vector machine classifier (SVM) to classify the removed 

emoticons deleted from the dataset for training as well as an L1-regularization and 
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linear-kernel. The work also covered n-grams and POS tags and various types of 

lexicon database, such as SentiWordNet, the Bing Liu Lexicon and the Sentiment140 

lexicon as well as many others. The application of all these methods was to combine 

more than one method into one composite method to enhance recall and precision. First, 

tweets were labeled as natural by the SVM and then analyzed with the rule-based 

approach to represent the label for the data. Later, all the results were totaled showing 

a good result. Many other papers also used SVM [25] [26] [27]. The entire algorithm 

could be concluded to be data distributed as points in space and each point associated 

with an appropriate class and those points would need to be separated and joined with 

the points related to the same class with a hyperplane. The training step here was to 

determine how best to separate the data so that the distances between the nearest points 

of each class to the hyperplane should be the same. Those points were called the support 

vector points (Figure 3) and any changes in those points or removing them would 

change the position of the hyperplane [29]. In many papers, the SVM brings better 

results than other algorithms, such as the Maximum Entropy and the Naive-Bayes [27], 

but it also has a time complexity which makes it a bad choice for classifying large 

datasets.  

 

Figure 3: SVM support vector points 

The modern common development in recent times is the Artificial Neural Networks or 

Neural Networks (NN). Similar to the actual human neural network, the neural network 

performs similarly to human neural networks to solve problems by performing a great 

number of calculations to achieve a satisfactory result. Simply, it is a network of 
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interconnected neurons distributed in many layers and it learns by modifying the 

weights of the neurons and repeating operations until the network learns the best value 

and becomes satisfied to answer the request for which it was built. There are many types 

of these used in classifying texts, and the most common types are the Convolutional 

Neural Network (CNN) and the Recurrent Neural Network (RNN). The CNN consists 

of interleaving layers with convolutions, sub-sampling and fully connected layers. It 

works in random order to cover every case of classification (see Figure 4) for the CNN 

architecture. 

 

 

Figure 4: CNN architecture 

Severyn and Moschitti worked on sentiment analysis with the deep Convolutional 

Neural Network. A network with one layer as a convolutional layer was used with a 

Rectified Linear Unit (ReLU) non-linear Activation function and max pooling layer 

followed by Softmax layer for classification [30]. They used word embedding as the 

weights for the input, which was developed by Mikolov [31] and which is a neural 

language model for word representation. The model performed well with data gathered 

from Twitter. In another work [8] performed by Kim, the CNN was used for text 

classification. A model was proposed to classify phrases into positive and negative as 

well as fine-grained classes. The model also classified the questions of 6 groups and 

classified sentences into subjective and objective. Many datasets were used in the 

research. As in the previous work [30], Kim used the word embedding model from [31]. 

The network consisted of convolutional and max over time pooling layers as well as 

fully connected layers. The model performed very well and the use of pre-trained word 
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embedding showed a very good result for feature extraction. Another high-performance 

architecture of CNN similar to the Kim model presented in [32] is the RNN network, 

which has the ability to feedback through neurons, thereby helping in storing the data 

from previous steps for use in following steps for more accurate calculations (see 

Figure 5 for the RNN model). After this step, the output would be tested with a test 

dataset and the learning rate would be determined by the error rate to give more accurate 

values. The benefits of using the RNN is that it is sequential, which makes it good for 

text data and predicting the next word in a sentence [34]. Capturing the context from 

the previous steps and using it to predict the next step made the RNN good at dealing 

with sentences. 

 

 

Figure 5: RNN sequential architecture 

Liu [33] used an RNN to classify text with multi-task learning. The first task of 

classification was binary-level. Another task classified sentences into subjective and 

objective, which performed binary classifications at the document level. In his work, 

the author built three different architectures to share information and feed it into the 

text sequence model. The first architecture had a shared layer for all the tasks above. 

The second one used different layers for different tasks. The third had a shared layer 

for the tasks but it took one task at one time at a specific level. The author claims that 

in some tasks, they outperformed the state-of-the-art methods. The last classifier in the 

supervised approaches is the Decision Tree [34]. It used a hierarchical architecture to 

classify texts. There are two types of nodes in a decision tree, namely the leaf node 

which has the value (label) of the word, and the decision node, which contains the 
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output of the attribute to make decisions. All the steps to move in the tree occurred 

recursively. 

2.4 Conclusion 

In this chapter, we presented general details about the approaches and their algorithms 

that have been adapted in the text classification and sentiment analysis field. All the 

experiments mentioned in the chapter had been tested by the authors for the task, and 

among all the approaches mentioned above, most conceded that the machine learning 

algorithms showed the best results. The supervised machine learning methods were 

preferred due to their good results in comparison to the other supervised 

techniques [27]. Despite the simple implementation and concept of the Naïve-Bayes 

algorithm, it showed the best results with the neural network models in sentiment 

analysis tasks. Many papers show reasonable results for neural networks. As for the 

natural language processing (NLP) science, they return to the ability of those models in 

mitigating the training steps to learn the optimal structure for the model as well as their 

comparison quality. The models showed an exceptional classification in comparing the 

old methods. Finally, due to all of these reasons, the Naïve-Bayes and similar methods 

with Artificial Neural Networks were selected for sentiment analysis of movie reviews. 
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CHAPTER THREE 

Methodologies 

3.1 Introduction 

Due to modern developments in technology, the computer sciences received the most 

space of this development, which returns to the overlapping of information technologies 

in other fields. Nowadays, people use the Web prolifically in almost every aspect of 

life. During the day, they share their activities and their opinions on subjects and 

products, such as on Amazon and other shopping pages. Many of those reviews stay 

active for some time, and by using those reviews, the new customer can check those 

reviews to seek opinions about products as to whether they will purchase them. Another 

website for sharing reviews is e-booking, which is a website for checking hotel and 

flight availability and reservations. In general, it is very useful for traveling. Moreover, 

Twitter is also a good site for users to share their opinions and feeling about their lives 

and products, and even political issues. However, the problem of Twitter is the 

incidences of misspelling and grammar mistakes because of the modern style of 

chatting and the differences between communities and languages, which necessitates 

more accurate and understandable manners of expression that do not overlap with 

English grammar. This type of style can be found on many websites that discuss a 

specific subject or field. The problem with this kind of website is that such websites 

lack communities, which in turn produces reviews that are too few in number or have 

an unexpected quality. Nevertheless, there are websites with reviews that are rich in 

content of reviews, such as movie review websites and blogs. The most well-known 

type of these websites is the IMDB and Rotten Tomatoes website. The sentiment 

analysis and text classification might not have received much attention until recent 

years, but it is not a new area. Many researchers depend on the products receiving short 
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reviews at the beginning in this field [4] [6] [21]. Moreover, many others use movie 

reviews due to the features mentioned above and the quality of the reviews [6] [23]. 

3.2 Problem Statement 

The main focus in this work is movie review sentiment analysis which is performed by 

distinguishing positive and negative reviews. The work covers the machine learning 

methods that have been implemented in [35] and our part of the implementation 

covering the deep learning part. Moreover, the work covers the methods we presented 

in the second chapter. The Naïve-Bayes algorithm, Maximum Entropy, Support Vector 

Machine and the Stochastic Gradient Descent are the most popular methods in 

sentiment analysis, so we covered those methods and compared them with the neural 

network. Prior to commencement of the training, we used the weights for the model, 

particularly the word2vec model, which are pre-trained weights. 

3.3 Methodology 

In this part of the chapter, all the underlying concepts and algorithms for the sentiment 

analysis task are explained in detail and additional information about the dataset used 

in this study is presented. 

3.3.1 Data Preprocessing and the Machine Learning Methods Flowchart 

In this work, a dataset for IMDB (Internet Movie Database) was used for training and 

testing the models [9]. The dataset contains 25,000 movie reviews and all are binarily 

labeled (positive, negative). Half of them are labeled as negative and the other half as 

positive as the training data. Furthermore, 25,000 more movie reviews are labeled in 

the same manner to test the model with 12,500 being positive and similarly 12,500 

being negative. The dataset contains an unsupervised dataset without labels for 

bag-of-words tasks if needed. The training part and the testing part are the only parts 

needed in the task. Table 1 presents the statistics of the dataset. 
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Table 1: Dataset Statistics 

Name Part Positive Negative Total 

IMDB Reviews 

Training 12,500 12,500 25,000 

Testing 12,500 12,500 25,000 

 

The dataset has been processed on many levels to remove any noise and stop words. 

After removing the stop words from the dataset, it is vectorized and injected into the 

machine learning algorithm to start training, followed by classification and finally the 

results (see Figure 6). 

 

Figure 6: Preprocessing steps of the dataset 

The preprocessing step is performed according to levels and each level processes text 

in a different manner until achieving the final result. 

Step 1: The IMDB dataset is taken into consideration by checking and saving the labels 

of the review to have them be references for the following steps. 

Step 2: We remove the noise and unwanted data, such as: 

1. Stop words: These are words that do not have a high effect and are the most 

frequent words in English which can be repeated many times in a review. 

Examples include “the,” “that,” “is,” “are,” etc. 

Training 

Dataset 

Stop words, numerical and special 

character removal 

Transform to vectors 

Classification 

Results 
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2. Numeric characters: All the numbers with any type of numerical representation. 

3. Special characters: Characters that are not alphabetical or numerical and which 

do not have any semantic effect and can produce ambiguity in the classification, 

such as $, #, %, &, etc. 

Step 3: In this step, the review should be converted into a numerical vector. For this 

operation, there are many methods for the conversion that are to be considered: 

 CountVectorizing: This occurs by tokening the words and calculating the 

counts of each word. In particular, it is a mix of tokens and counting operations. 

As a result of this mixture, a matrix is generated from this process called a 

“sparse matrix.” To have a clear understanding for the process, the following 

example is provided: 

For the CountVectorizing process, [36] provides a good example of the operation. In 

the example, there are three different documents and each document has sentences 

different from the others, as shown below: 

Document 1: Movie is nice 

Document 2: Movie is bad 

Document 3: Movie is fine 

The sparse matrix will be as shown below in Table 2, which shows the number of 

documents and builds a vector representing whether a word appears in the sentence. 

Hence, the terms might be higher in number than the number of words in the documents 

completely depending on the terms from all the documents to create a general vector 

representation. In the example, the number “1” means that the word appears in the 

document and opposite for the “0”. 



23 

 

Table 2: Count Vectors for the Three Documents 

 Movie Is Nice Bad Fine 

Document 1 1 1 1 0 0 

Document 2 1 1 0 1 0 

Document 3 1 1 0 0 1 

 

 TF-IDF: This method is well known in the information retrieval and text 

mining fields. It simply shows the importance of a word in a document and for 

the entire corpus (all the documents in a data file). TF (Term Frequency) refers 

to the number of occurrences of a word in a document. IDF (Inverse Document 

Frequency) shows the importance of a word in whole documents 

(corpuses) [36]. To calculate the TF-IDF value, the example below provides a 

clear understanding of the calculations. 

If there is a document which consists of 1000 words and the word “awesome” appears 

20 times in that document, then the TF of the word “awesome” is 20/1000 = 0.02. For 

the IDF of the document, there is a need to know the total numbers of words in the 

corpus. If we have 1 million words in the corpus, then the IDF of the document will be 

log(1,000,000 / 1000 ) = 3. Finally, the TF-IDF of the word “awesome” will be 

0.02 × 3 = 0.06. 

Step 4: After vectorizing, the vectors become inputs for the supervised machine 

learning algorithms. In this dissertation, there are four different algorithms for the 

sentiment analysis task. Every algorithm is explained in the following paragraphs 

separately: 

 Naïve-Bayes: This algorithm classifies an event depending on the probability 

of its occurrence and learns the patterns for the events. It classifies many 

documents after learning the patterns [37]. 

 Maximum Entropy: By categorizing the data with groups within the maximum 

distribution by considering that there is independent between the data. That 

distribution is used to explicit the training data and use them again for 

testing [38]. 
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 Stochastic Gradient Descent: The SGD algorithm is good when the data are 

large. It iterates repeatedly to estimate the gradient of a randomly selected part 

from the data [39]. 

 Support Vector Machine: Using the hyperplanes, the data are analyzed and 

grouped according to their similarity. In normal cases, if there are two types of 

data, they will be clustered into two groups and using the hyperplane, the data 

will be dichotomously as a large as possible from the plane [40]. 

Step 5: With the algorithms mentioned above, there are a variety of n-gram methods 

for the algorithms, including unigram, bigram, trigram, mixes of unigram and bigram, 

or unigram and trigram as well as a mix of the three methods (unigram, bigram and 

trigram). 

Step 6: The results are collected and compared with the results of the neural network 

and show the most accurate among them. 

3.4 Machine Learning Classification Methods 

In this part, we present detailed information about all the methods used in this work. 

The explanations cover all the rules and equations for the algorithms in the machine 

learning part of the work. 

3.4.1 Naïve-Bayes Algorithm 

The Naïve-Bayes algorithm is one of the more widely used classifiers in the field of 

classification algorithms in general and in sentiment analysis specifically [26] [27]. It 

measures the probability of an event occurring with what is known as the Bayes 

algorithm, which plays a role in calculating the probability for the features of a label. 

A relation exists between the features of the label and this helps to measure the 

probability which can be extracted using the following equation: 

 

Where features is related to label, and P is the probability of the feature to appear with 

this label. It is calculated as the probability of the occurrences of label multiplied by the 
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probability of the feature appearing associated with the label. It can be cast as the total 

number of occurrences of the label multiplied by the number of occurrences of the same 

label with a specific feature associated to it and divided by the total number of 

occurrences of the feature. To make the assumption for the features in the terms of 

naïve, we have the equation below: 

 

Where fi is the feature of the label as an individual feature. In more particular, the label 

might come with many features and each feature should be calculated separately from 

the other features of a label. With this assumption, the algorithm still produces an 

acceptable result and in some cases, a good result when the features and the labels are 

not very high. However, in the binary sentiment analysis, there are only two labels 

which make the probabilities limited to those labels. In the algorithm, the feature should 

be defined for the label and associate it with the suitable one as a result. This makes the 

interest of finding the probability unimportant and only the label should be the most 

important item on which we focus. In this case, there is a method called the MAP 

(maximum a posteriori), which estimates the label at a higher probability with the value 

labelmap. The full equation is [29]: 

 

The probability of true features can be ignored and the new formula becomes: 

 

The P is converted to P power because the result should be estimated to its label from 

the training [29]. 
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The numerous multiplications of the probabilities are generated from the previous 

equation. This can easily lead to a decimal value and to overcome this problem, there 

is a need to use a logarithm, thus: 

log(XY) = log X + log Y 

Here, the summation of the logarithm is the multiplication of the probabilities and since 

the function is a routine function, it is applied to the two parts of the equation. As a 

result, the gained value will be the maximum value. Since the only value that changes 

is a numeric value, it does not affect the final result of the label. The equation after 

adding the logarithm function is: 

 

Since P (label) is already defined for the training, the new P for the label will be: 

 

Where Nlabel is the features associated with the label and N the number of the features 

from the training equation. To compute the conditional probability, we use: 

 

Where Fi 'label is the number of appearances of the features in the training for a label and 

V is the total number of all the unique features for the same label to make the final 

Naïve-Bayes classifier. There is a need to cover the case when a new feature appears 

and it is not covered in the training. To prevent the conflict, it should disregard it and 

with this addition, the final formula for the label becomes: 

 

Based on [29], the Naive Multinomial Bayes algorithm is as presented in the figure 

below (Figure 7): 
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Algorithm    Naive Bayes: 

1 procedure TrainingNB(L, F) 

2     V  ExtractVocabulary(F) 

3     N  CountAllFeatures(F) 

4    for each label ∈ L do 

5         Nlabel  CountFeaturesBelongingToLabel(F) 

6         priorProb[label]  Nlabel / N 

7         textlabel  CombainTextOfAllFeaturesBelongingToTheLabel(F, label) 

8         for each f ∈ V do 

9             Filabel  CountFrequencyOfFeatures(textlabel, f) 

10             For each f ∈ V do 

11                 condProb[f][label]  
𝐹𝑖𝑙𝑎𝑏𝑒𝑙

∑ 𝑖 ∈ 𝑉𝐹𝑖𝑙𝑎𝑏𝑒𝑙
 

12                 end for 

13             end for 

14         end for 

15         return V, priorProb, condProb 

16 end Procedure 

17 procedure TestingNB(L, V, priorProb, condProb) 

18     W  ExtractFeatures(V) 

19     for each label ∈ L do 

20         scorelabel  logpriorProb[label] 

21         for each f ∈ W do 

22             scorelabel + = logcondProb[f][label] 

23         end for 

24      end for 

25      return argmaxlabel∈L
score[label] 

26 end procedure 

Figure 7: Naïve-Bayes algorithm 

To conclude, the final explanation about the system works with the Naïve-Bayes 

classifier for sentiment analysis (see Figure 8). The dataset requires labeled training 

data that are fed into the system as the inputs. Then the features are extracted and 

injected into the classifier, followed by the system classifying the data. Finally, the data 

are tested to measure the accuracy of the system. 
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Figure 8: Estimation model for the Naive-Bayes classifier for sentiment analysis 

3.4.2 Maximum Entropy Algorithm 

The maximum entropy classifier uses data as experimental inputs. Many researchers 

have found that the Maximum Entropy algorithm produces better results than the 

Naïve-Bayes classifier in their works [38] [41] [42]. The main difference between it 

and the Naïve-Bayes classifier is that the assumptions are made independently for the 

word occurrences. The probability in the Maximum Entropy for a word is maximization 

of the unique distribution of the words. The algorithm takes words as inputs and 

compares them with a set of words which are features and are related to a document as 

well as by checking whether it belongs to the document and labeled with “1” for 
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availability and “o” for the opposite. The probability can be measured with the 

following equation: 

 

Where P (cj|d) is the probability of a class to appear in a document and Z(d) is the 

summed values of the iterated value of cj. The equation works with what is known as 

GIS (Generalized Iterative Scaling) [43]. It converges the values with uniform 

distribution iteratively until it reaches the maximum entropy value. 

3.4.3 Stochastic Gradient Descent 

The SGD is a linear model for document classification into either positive or negative. 

This model is called binary and when there are more than labels, such as natural labels, 

and then the model will contain three linear models, one for each label. This method 

decreases the loss in the model for the loss function. The method updates the weights 

at each new input with regard to the training and is therefore called a “stochastic.” This 

manner of updating makes the algorithm fast in terms of training and it helps in making 

the combinations of features [44]. 
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Figure 9: SGD Algorithm 

3.4.4 Support Vector Machine Algorithm 

The SVM is a classification algorithm for both linear and non-linear data. Basically, it 

takes a set of points as data for labels and associates features to those labels and 

classifies them depending on their similarity to the main labels. The main objective in 

the algorithm is to separate the data into two groups of data in terms of being positive 

or negative. The SVM equation is: 

 

Where k is the exponential, which can be extracted with the following formula: 

 

The SVM algorithm can deal with isolating the data on the linear and non-linear and 

even overlapping data by producing many versions of the hyperplane. However, since 
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the data are binary, the process will be linear without any of the complexity of the 

non-linear or multi-dimensional [45]. 

3.5 Deep Learning Method 

In this part, all the details about the neural network method used in this work are 

presented and here our model will be built with the RNN (Recurrent Neural Network). 

The Word to Vector method is also explained in this part. 

3.5.1 Word to Vector (word2vec) 

This machine learning method deals with the simple techniques for data and weighting 

them with regard to occurrences of the terms in the documents or with similar 

techniques. This can make the work very limited in terms of the vocabulary size and 

especially when there are high-dimensional data. In 2013, Mikolov [31] developed a 

model to convert words into numerical representations, which makes dealing with them 

easier and increases the accuracy of the tests for Natural Language Processing 

applications. Words are represented as a vector of numbers, which is the reason for the 

term word to vector. Moreover, it is also known as word embedding. Those vectors, or 

embeddings, are used to map words with their associated numeric representations. The 

length of the vectors is a fixed size for all the terms, called a “dimension,” and built 

corresponding to the calculation of the building from the gathered data used to generate 

those embedding's. The booming of the word to vector is a return to the fact that the 

embeddings can capture the semantic meanings of the words. For example, the word 

Rome is close in similarity to the vector of the word Italy and the similarity between 

them will be like 0.7 as a score, while the Rome vector and the Car vector will receive 

a similarity of 0.2 as a score. This makes the predication better and reduces the gap 

between it and the human mind for the measurement of the similarity between words. 

Also important with regard to embedding's is that this method is an unsupervised 

technique and it can be built with a corpus of texts rich with words, including 

Wikipedia. Mikolov’s Word2Vec is the most well-known embedding algorithm and it 

has two different architectures (Figure 10, namely CBOW (Continuous Bag of Words) 

and Skip-Gram. CBOW is good for predicting the next word that might appear after 

another word while Skip-Gram is good for predicting the words near another word 

regarding whether it came after or before it [31]. 
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Figure 10: Mikolov’s word2vec architecture 

3.5.2 Recurrent Neural Network 

RNN is a type of the neural network and it is called name returns for the reason that it 

deals with data sequentially, which makes it good when the data are texts. RNN can use 

data from previous entries and store them for calculations, which is another reason to 

make it good for dealing with texts. The problem of storing that information makes it 

limited to the few previous steps. The model acquires two entries at a time, one for the 

current entry and the other for the previous entry (see Figure 11). This makes it 

somewhat similar to the human brain such that it compares the text using the previous 

words having appeared previously. 
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Figure 11: Recurrent Neural Network 

Due to the back propagation, the error rate might increase with this model when the 

model trains and updates the weight to minimize the error between the prediction and 

the correct value. To prevent this problem from appearing, the RNN has been developed 

with new features called LSTM (Long Short Term Memory). The key to the success of 

this method is the locking gates mechanism. This model stores the data from previous 

steps and has the ability to ignore data when they are not mandatory (see 

Figure 12) [46]. 

 

Figure 12: RNN with the LSTM model 
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3.5.3 Layers in Deep Learning Models 

In this section, all the layers used in the model will be explained in detail with their 

functionality and how they fit into the model. 

3.5.3.1 Embedding Layers 

As mentioned previously, the embedding is used to present the input in numerical form 

to make calculations easier and more accurate. There are many options to build this 

layer. It can be generated from a large corpus or by using pre-trained embeddings and 

making them static, which means it will not be updated during the training. The last 

option is the use of a pre-trained embedding and updating it during the training. 

3.5.2.2 Dropout Layers 

The main advantage of using this type of layer is to overcome the over fitting problem 

in the model. The model consists of many layers and those layers are connected and 

have the ability to deal with any number of high complexity inputs or outputs. This 

makes the model expensive in terms of calculations and the training data might affect 

the quality of the output due to its limitations. When this appears, it causes the model 

not to work well in the training and the quality of prediction will drop. The dropout 

layer prevents this scenario by making the model learn various copies of the same data 

to decrease the dependence of the data in the training. 

3.5.2.3 LSTM Layers 

LSTM is a better version of the RNN and it is widely used when dealing with texts. A 

benefit of using it is the enhancement of the accuracy of classification for the model. 

There are many underlying aspects of this performance. The first aspect is that the 

model can control the time of the data to enter the neuron. The next aspect is the ability 

to store any data from previous entries and using them to predict the data during 

subsequent steps. Finally, there is the ability to control what should or should not be 

output. 
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3.5.2.4 Activation Layers 

This is another layer in the model that applies a function which can be any type of 

activation function to generate an output. It helps the model to learn more complex 

calculations better than the linear regression and it is performed linearly. Any model 

that does not have an activation function will act with the function f(x) = x and it makes 

the model act like a single neuron and consume every network resource. For this reason, 

activation functions become important. In a particular manner, the activation function 

plays the main role in making the model extract a non-linear value with the help of the 

weights. 

3.6 Network Architecture 

There are two types of LSTM networks: stacked and bidirectional. Here, we describe 

the details of those architectures. 

3.6.1 Stack of LSTMs 

This model is a composition of two LSTM units with an activation layer and one 

embedding layer. The link between those layers is a recurrent connection and this 

makes it a deep network. This design is good at capturing the meanings in sentences in 

the higher LSTM layer, which in turn makes it very good at capturing the semantic 

meaning for the sentiment analysis task. (See Figure 13 for the stacked LSTM 

architecture.) 
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Figure 13: Stack of two-layer LSTMs 

This model does not have a dropout layer. There is, instead, a dropout assumption and 

it works to update the training with a value of 0.25. For the embedding layer, there are 

many specifications, including the input dimension, input length, input weight and 

output dimension. The input dimension pertains to the number of words that will fit in 

the model at each entry as a maximum. The input length and weights are the maximum 

lengths for a sentence, such as the number of words that should be processed, and the 

weights are arrays to contain the weights for each word. Finally, the output dimension 

pertains to the embedding size. The activation function here is the sigmoid function and 

the weights are initialized with a zero value and are updated during the training. 

3.6.2 Bidirectional LSTM 

This architecture has been developed to increase the performance of RNN networks. 

Since a regular RNN does not have a forward step of the present state, the Bidirectional 

LSTM design fixes this by connecting all the current nodes to any output in the next 

layer, which helps to cover any past or future information to enhance the performance 

of the model. (See Figure 14 for Bidirectional LSTM architecture.) 
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Figure 14: Bidirectional LSTM architecture 

It is clear in Figure 14 that the model has all of the stacked LSTM architecture. It has 

an embedding layer and a sigmoid activation layer. In addition, it has a dropout layer 

which makes it good to pass the overfitting problem. The main point here is that this 

provides the ability to move back and forth easily to update the information and capture 

the semantic meaning in the sentences. 

3.7 Conclusion 

We have covered all the details about the methods used in this work. The explanations 

covered the machine learning methods, including the Naïve-Bayes, ME, SGD and SVM 

algorithms. It also shows all the information about the deep learning method used in 

our thesis. The next chapter will show the design and implementation parts of this 

thesis. 
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CHAPTER FOUR 

Design and Implementation 

4.1 Introduction 

In this chapter, we present all the information about the inner design and the mechanism 

of the models and algorithms used in our work and the implementation of the training 

and test parts for [35] and our model. Furthermore, we present information about all the 

tools used in the thesis. 

4.2 Tensorflow and Keras 

Tensorflow [47] is a machine learning library developed by Google. It is very powerful 

for high performance applications that require many numerical and complex 

computations. It can be used in many types of hardware, such as CPUs and GPUs and 

also in mobile devices. It is the main library in these experiments. Keras [48] is a library 

for machine learning and deep learning which is considered to be a high-level library 

that can be used on top of any other machine library such as Tensorflow, Theano, Caffee 

and many others. Keras has a large community of developers who return to the 

simplicity of the Keras coding, which might be a problem for many other libraries. For 

more exhaustive control over Tensorflow, we used Keras on top of it. The Tensorflow 

version used in this work was the 1.8 release. 

4.3 Machine Learning Methods 

The algorithms mentioned in the previous chapter were implemented with an n-gram 

model, which is also explained in the same chapter. In brief, the n-gram model is a 

method used for many applications, and from those we have the classification as one of 

those applications. It helps to predict the next term in a sequence, but in the field of 
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sentiment analysis, it helps to improve results when used especially with more than a 

unigram model. The sizes of the n-gram models used in this work are Unigram, Bigram 

and Trigram. Any model higher than 3-gram is called a high gram and designated with 

the number of grams followed by “gram,” such as four-gram, five-gram, six-gram and 

so on. Simply, the n-gram is a technique used to split sentences into many segments 

depending on the weight of the gram in the model. The gram here is used for the word 

as shown in the example sentence “The day was shinny and beautiful”. When the model 

is a unigram model, the sentence is divided as follows: “The”, “day”, “was”, 

“shinny”, “and”, “beautiful”. 

For the Bigram and Trigram: 

1. Bigram model: When two words are used for the model. “The day”, “day was”, 

“was shinny”, “shinny and”, and “and beautiful”. 

2. Trigram model: When the gram has three words. “The day was”, “day was 

shinny”, “was shinny and”, and “shinny and beautiful”. 

4.4 Deep Learning Model 

The neural network used in this study is the RNN (Recurrent Neural Network) with 

LSTM (Long Short Term Memory) as mentioned earlier in the previous chapters. We 

covered all the details about the model and the supplements used with it. Moreover, we 

covered all the details about the mechanisms of the model and finally presented all the 

results obtained from our work. 

4.4.1 Word2vec Model 

We explained the word2vec model implemented by Mikolov and covered the details 

about it in the third chapter. In our work, we used another word vectorizing model called 

GLOVE, which stands for Global Vectors for Word Representation. It was 

implemented at Stanford University by Jeffery Pennington, Richard Socher and 

Christopher D. Manning. GLOVE is another algorithm for word numeric representation 

and its unsupervised learning method. It uses the co-occurrences of words in a corpus 

and gathers the statistics of the word and represents them in a numerical form for use 

in tasks. In [49], GLOVE showed better results in comparison with Mikolov’s [31] 
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word2vec in the analogy task. Performance decreased with the negative samples for 

both the CBOW and Skip-gram models and GLOVE outperformed them and showed 

better results with faster training times, as shown in Figures 15 (a) and (b). 

 

Figure 15 (a) Glove vs. CBOW [49] Figure 15 (b) Glove vs. Skip-gram [49] 

 

We downloaded the pre-trained word vectors from [49]. Because training word vectors 

requires a large corpus such as Wikipedia and high performance hardware, we might 

have the same results as the pre-trained vectors at the end. The vectors we used were 

collected using the GLOVE algorithm from the corpus data of both Wikipedia 2014 [50] 

and Gigaword (5th edition) data [51]. The data were collected from 6 billion tokens and 

contained a vocabulary of 400,000 unique words with vectors of different dimensions 

(50d, 100d, 200d and 300d). We used other data collected from 42 billion tokens and 

1.9 million unique vocabulary items with 300 dimensions. The word vectors were used 

as weights for the words in our model. 

4.4.2 The RNN and LSTM Mechanisms 

The main feature in the RNN is the sequential design which makes it one of the best 

architectures in terms of text processing. There are many types of RNN and the most 

recognizable is the LSTM, which is good for storing information from previous steps 

and using that information in following steps to generate more accurate data for 

classification or prediction. Since the RNN is sequential, it has the input feed into the 

network consecutively, known as time steps (see Figure 16). 
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Figure 16: Time step inputs feeding in RNN 

The model requires a weight for the inputs which are the vectors that are generated from 

the GLOVE algorithm. The weight is a numerical matrix representing the word and this 

design is used to express the analogy of the words associated with the semantic meaning 

of the words. The hidden layer in the model uses a sigmoid function to process the input 

and the output of the previous steps and totals them in one value for the output of the 

current state (see Equation (1)). 

ht = σ(W Hh t  – 1 + WXx t) (1) 

where ht is the output of the current state,  W
Hh t  – 1 is the output vector generated from 

the previous steps and W
Xx t  is the vector of the current state. W H  is a weight matrix that 

remains static throughout every step and WX  is the weight of the current input which 

changes every time depending on the input. The formula helps the next hidden state 

with taking the decision for the current processing. The output may remain the same as 

the previous steps if the neuron determines that it is not important for the overall 

summary of the text. In other words, if the value of W H
 is greater than the WX , then the 

input x in the current state is unaffected and it passes the previous vector as an output 

to the next step. The weight matrix is updated through time with the update of the 

optimizer, or what is known as back prorogation. The final step in the hidden state is 

the sigmoid function, which yields a value between 0 and 1 to decide the sentiment 

classification (see Figure 17). 

Figure 17: Sequential process in RNN 

WH WH WH 

Wxt-1 Wxt Wxt+1 



42 

 

To gain a clear understanding of the LSTM and how to store the information and ignore 

the data with an example, we have the following text: 

Text: “the big brother is 30 years old, the day was rainy, the younger brother is 27 years 

old” 

Question: “What is the difference in years between the two brothers?” 

We can see clearly that the sentence consists of three parts; two are associated with the 

age issue, while the middle part is far in terms of subject from the question. The main 

part is to separate the data and feed them into the LSTM to handle the process and 

extract the data associated with the question. Firstly, we can look at the architecture of 

the LSTM (Figure 18). 

 

 

Figure 18: LSTM unit architecture [46] 

The input is entered as xt and depending on the previous h t  – 1, it will be decided by the 

ct as to whether this information is related to the question. Basically, the unit will 

initially ignore most of the data until it stores the word “30,” then it will continue to 

parse all the data and ignore them with the forget gate until it stores the next input which 

is similar to the previous input (a numeric input), namely the word “27.” Finally, it will 

take only those data that are related to the question and ignore the other data. 

Another example for classification is when a sentence is entered into the LSTM layer 

for sentiment analysis. It focuses on the key words that have sentiment as being either 

positive or negative (see Figure 19). 
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Figure 19: Sentiment analysis for a sentence 

In the figure above, the model ignores every word until it reaches the word “not” and 

stores the vector for the word and passes it to the next unit. The layer will ignore the 

words until reaching the word “good.” Finally, the sigmoid activation function will 

summarize the overall score between 0 and 1 to give the final sentiment for the word as 

being either positive or negative. 

4.4.3 Neural Network Flowchart 

In our experiments, we feed the reviews as raw text into the model. Then we use a 

tokening method to convert the words into integers depending on the order of the words 

in all 25,000 reviews. Next, we convert the data into vectors using the vectors from the 

GLOVE pre-trained embeddings. We only used the 1,000,000 most frequent words for 

the analysis. Tensorflow builds the first tensor with a dimension of 3 values: the number 

of the words in the review, the dimension of the embedding and the dimension of the 

word which is 1 using the lookup function in Tensorflow (see Figure 20). 
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Figure 20: Building the tensor step in TensorFlow 

In order to decrease the cost of processing, we converted every review and stored them 

as a numpy array of reviews with a length of words, which were stored under the name 

“idsMatrix.npy”. Figure 21 shows all the steps of the model that we followed in the 

process. 

 

Figure 21: Sentiment analysis flowchart 
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4.4.4 How It Works 

The steps of the process in the model are in two parts: training and testing. The training 

steps occur when the network learns how to measure the sentiment by training itself 

with labeled data to learn the pattern of the sentiment. The model receives the training 

data as reviews and those reviews are labeled as either negative or positive. The network 

takes a review and processes it to learn the pattern, after which it stores that pattern with 

its own label. After each step, it updates the weights of the network by learning the best 

parameters for the layers. To avoid the over-fitting problem, we separated the training 

data into two parts: training and validation. We segmented the reviews as 90% training 

and 10% validation. For example, if we feed 100 reviews each time into the batch, then 

90 reviews will be used for training and learning the pattern in that step, and 10 reviews 

will be used to test the pattern learned in this step. If the values of the validation test 

continue to appear with the same accuracy, it then means that we have an over-fitting 

in the model. In this case, we need to stop the training and change the parameters of the 

network, such as the number of LSTMs in the hidden units and batch size, etc. If the 

training continues and the validation accuracy value continues to change, then we wait 

until the model trains and updates itself with the learning rate to handle the reviews 

with a more accurate analysis. What is actually happening underneath the model is that 

the network learns the vector of the review and stores it with the associated label and 

whenever it receives a review similar to its vector, it then assigns it the same label. After 

the model finishes the training, the model should be tested with new reviews that were 

never used in the training or validation to test the accuracy of the model. The last 

accuracy determines the quality of the sentiment analysis task of the network. If the 

accuracy sufficiently good, then the model needs modification within the layers and 

design. The test step is concluded by feeding the model with the test review and 

analyzing it. Then the sentiment of it is predicted followed by comparing the result with 

the label associated to this review. If it is correct, it counts as a correct prediction, 

otherwise it is a false prediction. The final accuracy is the percentage of the total number 

of correct predictions of all the test reviews. 

4.4.5 Neural Network Parameters 

Before we provide the final results of the work, there is a need to understand the 

parameters used in this work and the details for each one of those parameters. The first 
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detail of the parameters is the batch size, which is a term always used with neural 

networks indicating the number of samples that will be passed to the model to process 

at one time. In particular, if we have 100 samples that need to be tested in the model, 

then it will be entered as 10 samples each time until the network completes every 

sample. The benefits of the batch size include decreasing the memory required, which 

means less information to store in the memory. Moreover, with the smaller size of the 

batch, the network will train faster. 

The next parameter is the max sequence length, which simply means the maximum 

number of words of the review to be injected for the training. The LSTM units are the 

next parameters which are assigned for the number of LSTMs in the hidden state. If we 

have 20 words and 5 LSTMs, then each group of 5 words will be covered by the five 

LSTMs and only the important information will be stored before it receives the next 5 

words. 

Epoch is another parameter in our model. ‘Epoch’ is a term used widely in neural 

networks meaning the number of times the samples will be added to the network for 

processing. Each time the network processes the data and completes doing so, it is then 

considered to be an epoch. With many epochs, the network will process the data many 

times to decrease the error rate in the training. 

The last of the parameters is max words, which relates to the words used in the process. 

After the tokening step, the words will be sorted according to their frequencies and the 

first word becomes the most important word among the other words and the next one 

will be less important with fewer appearances. The same applies to the remaining 

words. 

Since there are many word vectors used for the training with a high number of words 

in each embedding, there was a need to decrease the time that can be wasted on the 

words occurring at lower frequencies. Max words limits the number of words needed 

in the tasks. These are the important parameters that require being known for the 

modifications occurring in our model. 
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4.5 Conclusion 

In this chapter, we have explained the designs and mechanisms of the methods used in 

the practical part. We also covered the details about the parameters of the network. 

Moreover, we added an explanation about the training and testing steps during the work. 

In the next chapter, we present the conclusion we reached for the final result of each 

method from the previous work and we compare them with our method results. 
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CHAPTER FIVE 

Results and Discussion 

5.1 Introduction 

In this part of the thesis, all the results obtained from the algorithms used in the thesis 

and analysis of the results of the machine learning approach algorithms and the neural 

network results are presented. The work was performed with the IMDB dataset. The 

results of the machine learning methods have already been carried out by [35]. The 

neural network experiments occurred with Tensorflow and the Python programming 

language. The accuracies of each algorithm are presented and compared with our 

method. As a conclusion, the results will be discussed according to the information and 

the gathered data from the experiments. 

5.2 Results of Machine Learning Methods 

The results of the methods used in [35] are covered in the order of the algorithms: NB, 

ME, SVM and SGD. The authors also have mentioned in the literature section all the 

related works using the same methods and datasets to compare the enhancements they 

made. Moreover, they compared the achieved results of previous works with the results 

they gained in their work (see Table 3). 
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Table 3: Sentiment Analysis Works Comparisons 

Paper Method used Algorithms Dataset Results 

Pang 2002 

Classify the data with 

different methods using 

different n-gram models 

NB, ME, SVM IMDB dataset 

SVM with Unigram: 

82.9, 

ME with Bigram: 

77.4 

SVM with 

Unigram+Trigram : 

82.7 

Salvetti 2004 

Using machine learning 

methods with OvOP 

(overall opinion polarity) 

NB, 

Makarov Model 

(MM) 

IMDB dataset 
NB : 79.5, 

MM : 80.5 

Beineke 2004 
Features from linear 

combination 
NB IMDB NB : 65.9 

Mullen & 

Collier 2004 

Classification model 

combined with words with 

assigned values 

SVM IMDB dataset SVM : 86.0 

Dave 2003 
Several machine learning 

algorithms 

SVM lite, ML using 

Rainbow, NB 

Cnet dataset, Amazon 

dataset 
NB : 87.0 

Matsumoto 

2005 

Document level 

classification with the 

syntactic relationships 

among the words 

SVM IMDB dataset 

Unigram : 83.7, 

Bigram : 80.4, 

Unigram+Bigram: 

84.6 

Zhang 2015 
SVM perf using word2vec 

model 
SVM perf 

Lexicon based 

model: 89.95, 

POS model: 90.30 

Comments of 

Chinese products 

(clothes) 

Liu & Chen 

2015 

Using 11 multi-label with 

different aspects 

Eight evaluation 

matrices 

DUTSD (Dalian 

University of 

technology sentiment 

dictionary), NTUSD 

(National taiwan 

university sentiment 

dictionary) 

AVG highest 

precision : 75.5 

Luo 2016 
Machine learning 

techniques from (Ekman & 

Friesen 1971) 

SVM, NB, 

Desision Tree (DT) 

Dataset from the 

lion forum 

SVM: 78.31, NB: 

63.28, DT: 79.21 

Niu 2016 

Classification with 

statistical learning 

methods 

Bag of words with 

TF, TF-IDF 
Twitter data 

Text: 71.9, visual 

feature: 68.7, 

multiview: 75.2 

 

As can be seen from the table above, many works depend on the n-gram model for 

sentiment classification. Most of the similar papers achieved a good result with the 

unigram model in many cases; however in other cases, it failed the accuracy and became 

poor. As an example of this type of failure, for the sentence “the item is not good” with 

the unigram model, it gave the result of the review as being natural and returned a 

positive polarity for the word “good” and a negative polarity for the word “not,” so the 

correct classification is a negative review. However, with the bigram model, the 

classification becomes negative due to the negative classification of “not good,” thereby 

making it a correct classification. With this study and comparison, the authors 
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suggested that with higher numbers than unigram in the n-gram model, the accuracy 

might increase. Another problem appears with the papers that used the POS (part of 

speech) tags for classification. Here, the authors observed that the POS tag was not 

accurate and it changed depending on the context. For example, the word “Book” is a 

noun tag, but in case the word comes as a verb tag, such as “ticket booking,” this would 

result in a confusing classification. To overcome this problem, each word was 

considered separately without the POS tags method. Many papers agree that texts must 

be converted into numerical form to deal with them and the best representation in this 

case is a numerical matrix. Most of them used the TF or the TF-IDF method to convert 

texts into numbers. The researchers created a combination of TF-IDF and the Count 

Vectorizing methods. 

Table 4: Results of Methods Used in [35] 

Algorithm Results 

Naive 
Bayes 

Classifier 

Unigram 83.652 

Bigram 84.064 

Trigram 70.532 

Unigram, Bigram 86.004 

Bigram, Trigram 83.828 

Unigram, Bigram, 

Trigram 
86.232 

Maximum 
Entropy 

Unigram 88.48 

Bigram 83.228 
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Trigram 71.38 

Unigram, Bigram 88.42 

Bigram, Trigram 82.948 

Unigram, Bigram, 

Trigram 
83.36 

Support 
Vector 

Machine 

Unigram 86.976 

Bigram 83.872 

Trigram 70.204 

Unigram, Bigram 88.884 

Bigram, Trigram 83.636 

Unigram, Bigram, 

Trigram 
88.944 

Stochastic 
Gradient 
Descent 

 

Unigram 85.11 

Bigram 62.36 

Trigram 58.408 

Unigram, Bigram 83.36 

Bigram, Trigram 58.744 

Unigram, Bigram, 

Trigram 
83.33 

 

Table 4 presents the result of the experiments. We can easily observe that the best result 

of the single level n-gram model is the result of the bigram model which returns the 

probabilistic model for the Naïve-Bayes algorithm and the dependency of the features. 

Hence, the result of the trigram model is poor compared with the unigram and bigram 
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models. This paradox occurs with the trigram model when a word is repeated many 

times, such as “day was shinny” and the repetition of the word “shinny” in “shinny and 

beautiful.” If the same case appears in a sentence with the word “not,” a different 

classification can be made. Moreover, even combinations in the trigram cause poor 

performance when used with the bigram model. The best results achieved with the 

Naïve-Bayes algorithm was when the n-gram was unigram + bigram + trigram. 

With the Maximum Entropy method, the result of the unigram model was the best 

among all the n-gram models used in the experiments. This result was achieved due to 

the dependence of the algorithm on the conditional distribution of the words. The 

performance decreased with the other models due to the number of appearances of the 

word with different polarities depending on the new distribution from the models higher 

than a unigram model. Moreover, this continued to cause problems even with 

combinations of the n-gram models. 

As presented in the SVM results, since the support vector machine is a non-probabilistic 

linear classifier, the best result among the one level n-gram model is the unigram model. 

The SVM algorithm depends on training the model to discover the best hyperplane to 

classify the data, which causes problems when two or more words appear as one point 

and cause confusion. The combination of the model achieved better results when the 

unigram model was used in it. 

The stochastic gradient descent is an estimation of the gradient for a review depending 

on the learning rate to mitigate any loss in the classification. The authors found that the 

result is better in the unigram model than in the bigram and trigram models. In 

particular, it was high when it selected one random word for the analysis and decreased 

with the increase of the words randomly selected. Even with the combinations, the 

result of the unigram joined with the bigram was the best among the other combinations. 

As a final conclusion of the performance of the accuracy for the algorithms compared 

with the previous works, the authors showed that the method used in the previous works 

provided a comparison and conclusion for the method used in their work and not 

appearing in previous works. Table 5 shows the results attained by the previous 

researchers and the results of [35]. Those papers used the n-gram model. 
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Table 5: Comparison of Methods Used in IMDB Sentiment Analysis 

Algorithm Pang Salvetti Beineke 
Mullen & 

Collier 
Matsumoto 

Paper 

Results 

Naive- 

Bayes 

Classifier 

Unigram 81.0 79.5 65.9 - - 83.65 

Bigram 77.3 - - - - 84.06 

Trigram - - - - - 70.53 

Unigram, 

Bigram 
80.6 - - - - 86 

Bigram, 

Trigram 
- - - - - 83.82 

Unigram, 

Bigram, 

Trigram 

- - - - - 86.23 

Maximum 

Entropy 

Unigram 80.4 - - - - 88.48 

Bigram 77.4 - - - - 83.22 

Trigram - - - - - 71.38 

Unigram, 

Bigram 
80.8 - - - - 88.42 

Bigram, 

Trigram 
- - - - - 82.94 

Unigram, 

Bigram, 

Trigram 

- - - - - 83.36 

Support 

Vector 

Machine 

Unigram 72.9 - - 86.0 83.7 86.97 

Bigram 77.1 - - - 80.4 83.87 

Trigram - - - - - 70.16 

Unigram, 

Bigram 
82.7 - - - 84.6 88.88 
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Bigram, 

Trigram 
- - - - - 83.63 

Unigram, 

Bigram, 

Trigram 

- - - - - 88.94 

Stochastic 

Gradient 

Descent 

 

Unigram - - - - - 85.11 

Bigram - - - - - 62.36 

Trigram - - - - - 58.40 

Unigram, 

Bigram 
- - - - - 83.36 

Bigram, 

Trigram 
- - - - - 58.74 

Unigram, 

Bigram, 

Trigram 

- - - - - 83.36 

 

We can easily observe that Pang used the machine learning methods of the Naïve-Bayes 

algorithm, Maximum Entropy and the support vector machine with the n-gram models 

which covered the unigram, bigram and a combination of them. Salvetti and Beineke 

implemented the models for sentiment analysis with the Naïve-Bayes classifier and 

n-gram model. However, they only covered the unigram model. Mullen and Collier 

used the Support Vector Machine method with a unigram model. Matsumoto extended 

the work by adding the bigram and a combination of the unigram and bigram for 

Sentiment Analysis on the IMDB dataset. The researchers in [35] used the same method 

with an additional algorithm, namely the stochastic gradient descent algorithm, and the 

n-gram models. Moreover, the n-gram models used in the study were extended by 

covering the trigram model and the combined models were also increased by adding 

the combination of bigram and trigram and unigram, bigram and trigram. The results 

achieved in the work were better than the result of the literature and the methods 

covered many n-grams models. In conclusion, the authors stated that the use of the 

n-gram models with increased n values would produce better results. Only when the 

value exceeded two grams, the accuracy dropped. Although some papers suggested the 

use of the POS tag might increase the accuracy of classification, the authors claim that 

it might cause confusion in the work, which makes the model inaccurate. Instead, they 

used a combination of different n-gram models, which produced better results. 
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5.3 Deep Learning Results 

In our neural network, we used many parameters and made many modifications in the 

model in addition to much tuning until we achieved our best result. Since most neural 

networks, especially the deep learning networks, perform a high number of 

computations, there needs to be a great deal of tuning as well as high-performance 

hardware to supply the cost of computation needed in the model to achieve the best 

results and final form of the network. 

Firstly, we started the work with the training and finally with the testing. We used in 

our work the following parameters: 

 Batch size: 100 

 Embedding: GLOVE of 6 billion words of dimension 50 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 64 

 Epochs: 10 

With those parameters we started our first training and testing and the result was 

84.06% for the testing with the 25,000 reviews being dedicated to the test issue. We 

made the first tuning for the characteristics of the model with the following new 

parameters: 

 Batch size: 100 

 Embedding: GLOVE of 6 billion words of dimension 50 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 60 

 Epochs: 10 
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We assumed that the number of LSTMs would be high and the memory dependency of 

the LSTM had a large gap. Then we decreased it to 60. With this number of LSTMs, 

the enhancement was hardly better with an accuracy of 84.311%. Then we made an 

attempt with another modification, but this time using a higher number of dimensions 

for the embedding than previous number of LSTMs with these parameters: 

 Batch size: 100 

 Embedding: GLOVE of 6 billion words of dimension 100 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 64 

 Epochs: 10 

 

On the third attempt, we achieved a better result with 86.78% accuracy. With this new 

result, we commenced another task at a higher number of dimensions for the word 

vectors at 200 dimensions of embedding and the parameters became: 

 Batch size: 100 

 Embedding: GLOVE of 6 billion words of dimension 200 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 64 

 Epochs: 10 
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This time the accuracy also increased to 88.83%. Each time we used an embedding of 

a higher dimension, the accuracy increased. On this attempt, we applied the highest 

dimension of embedding with the parameters below: 

 Batch size: 100 

 Embedding: GLOVE of 6 billion words of dimension 300 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 64 

 Epochs: 10 

This time the result was very good and the highest among all the previous tests with an 

accuracy of 89.36%. With this accuracy, we returned to the first modification we made 

for the number of LSTMs and preformed another test with the following parameters: 

 Batch size: 100 

 Embedding: GLOVE of 6 billion words of dimension 300 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 60 

 Epochs: 10 

The result was 89.72% accuracy. On this attempt, we abandoned decreasing the 

numbers of LSTMs for the current time and we started with another embedding. 

However, this time we performed another test with Mikolov’s word2vec that was 
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collected using the Google News website before it closed; it is currently available on 

the Internet. The new parameters were: 

 Batch size: 100 

 Embedding: word2vec of Google News 100 billion words of dimension 300 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 64 

 Epochs: 10 

The accuracy obtained this time was 86.30%, which was lower than in the previous test. 

Before we left the Mikolov embedding, we gave it another opportunity with a smaller 

number of LSTMs with the following parameters: 

 Batch size: 100 

 Embedding: word2vec of Google News 100 billion words of dimension 300 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 60 

 Epochs: 10 

This time, the result was enhanced a little, with an accuracy of 87.41%, after which we 

left this embedding and returned to GLOVE. However, this time with a higher number 
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of LSTMs, we started to increase it with a small number of increments until we reached 

a new result with the following parameters: 

 Batch size: 100 

 Embedding: GLOVE of 6 billion words of dimension 300 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 100 

 Epochs: 10 

The result this time became 90.03% for the first time. This remained with one final 

modification. We started with another GLOVE embedding which was generated from 

a larger corpus. This time the GLOVE we used was collected from a corpus with 42 

billion words and a smaller number of LSTMs with the following parameters: 

 Batch size: 100 

 Embedding: GLOVE of 42 billion words of dimension 300 

 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 64 

 Epochs: 10 

The accuracy increased by a very small amount to become 90.34% accuracy. The only 

item remaining for us this time was to increase the LSTMs again with small parts. The 

best results we achieved were at 100 LSTMs and the number of epochs. The best result 

was achieved with 13 epochs. The result was 91.04% accuracy with the following 

parameters: 

 Batch size: 100 

 Embedding: GLOVE of 42 billion words of dimension 300 
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 Max number of words: 1,000,000 words 

 Max length of review: 2,500 

 Number of LSTM units: 100 

 Epochs: 13 

As a conclusion of the results from all the tests above, Table 6 shows the results we 

achieved with different features for the model. We compare the best results in Table 5.3 

which was 88.94% accuracy (with the SVM using the combination of unigram, bigram 

and trigram) with our result 91.04%, which is clearly higher with our model of deep 

learning. We performed many tests, but we covered only the tests that produced 

noticeable and significant results. 

Table 6: Results of Our Model 

 
Batch 

Size 
Embedding 

Max 

words 

Max 

length 

No. of 

LSTMs 
Epoch Result 

Test 1 100 Glove 6b-50D 1 M 2500 64 10 84.06 

Test 2 100 Glove 6b-100D 1 M 2500 60 10 84.311 

Test 3 100 Glove 6b-100D 1 M 2500 64 10 86.78 

Test 4 100 Glove 6b-200 1 M 2500 64 10 88.83 

Test 5 100 Glove 6b-300D 1 M 2500 64 10 89.36 

Test 6 100 Glove 6b-300D 1 M 2500 60 10 89.72 

Test 7 100 Glove 6b-300D 1 M 2500 64 10 86.30 

Test 8 100 Word2vec 100b-300 1 M 2500 60 10 87.41 

Test 9 100 Word2vec 100b-300 1 M 2500 100 10 90.03 

Test 10 100 Glove 42-300D 1 M 2500 64 10 90.34 

Test 11 100 Glove 42-300D 1 M 2500 100 13 91.04 
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CHAPTER SIX 

Conclusion 

6.1 Conclusion 

Sentiment Analysis is a field that is still in development and has many enhancements 

that continuously expand it. With the revolution in AI and machine learning, the field 

gains more attention for scientists in the computer science field. This motivates them 

to experiment with different methods. The type of data can significantly change 

accuracy. This thesis described the methods used for the task of Sentiment Analysis. 

Regarding the literature review, the most widely used algorithms in the field are the 

supervised machine learning algorithms. Hence, we experimented with the Neural 

Network methods and in our case, the deep learning networks. We used the Recurrent 

Neural Network and compared it with the probabilistic classifiers and Support Vector 

Machine results described in [35]. Moreover, the work shared the same dataset. The 

results obtained from the paper were high and this required a high-quality model to 

surpass those results. In this work, the dataset was classified binarily for the IMDB 

dataset and each review was labeled as either positive or negative. We used a 

pre-trained word representation method (GLOVE) to weight the review for more 

accurate results. The word vectors were tested with different dimensions. During the 

research, we carried out many tunings and modifications to achieve the final result. The 

accuracy we achieved was 91.04% and we compared our result with the results from 

[35], which had 88.94% as the highest accuracy. Our method was better in test accuracy 

than the methods mentioned in the related work part. Our method surpassed the 

Naïve-Bayes (86.23%), Maximum Entropy (88.48%), Support Vector Machine (88.94 

%) and Stochastic Gradient Descent (85.11%) algorithms. Using the pre-trained word 

vectors improved the results and it reduced the time consumed on training and learning 

the pattern with better performance and greater accuracy. 
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6.2 Future Work 

In the future, we will expand our work with a different model and layers, such as 

Recursive Neural Network or the Convolutional Neural Network. It might also provide 

a combination of many models. Moreover, the work will cover different datasets from 

many platforms to check the performance of the model and it will focus on social media 

datasets such as from Twitter or Amazon. Moreover, it will be tested with more 

properties than was used in the binary classification by estimating the results to many 

labels. Finally, we will endeavor to collect a large corpus and use it to build our own 

word vectors and use them in the model. Different word vectors will be used for training 

and they will contain the final developed word2vector model (Fast Text) which has 

been developed recently by Mikolov. 
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