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Abstract
In this article, the residual power series method is used to solve time-fractional Fisher equation. The residual power series
method gets Maclaurin expansion of the solution. The solutions of present equation are computed in the shape of quickly
convergent series with quickly calculable fundamentals using mathematica software package. Explanation of the method is
given by graphical consequences and series solutions are made use of to represent our solution. The found consequences
show that technique is a power and efficient method in conviction of solution time-fractional Fisher equation.
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Introduction

Important care has been assigned to the work of the
fractional calculus during the last few decades and its
numerous utilizations in the physics, regular variation
in biophysics, thermodynamics, blood flow phenom-
ena, viscoelasticity, electrical circuits, aerodynamics,
astrophysics, biology, control theory, and so on.1–4

However, fractional derivatives supply an important
implement for the definition of recollection and heredi-
tary characteristics of different necessaries and treat-
ment. This is the fundamental advantage of fractional
differential equations in return usual integer order
problems.

Recently, there has been a significant analytical
improvement in fractional differential equations and its
applications. In the work by Yang et al.,5 researchers
applied the local fractional derivative operator for
obtaining the non-differential solution for diffusion
equation in fractal heat transfer; in the work by Gao
et al.,6 the exact solution for the local fractional diffu-
sion equation in fractal one-dimensional space is

obtained; in the work by Yang et al.,7 the analytical
solutions of the sub-diffusion and wave equations are
obtained by utilizing the local fractional variational
iteration method; in the work by Gao and Yang,8 the
local fractional Euler’s method is applied to obtain
numerical solution for the local fractional heat-
relaxation equation; in the work by Yang et al.,9

authors analyzed the exact traveling wave solutions for
local fractional Korteweg–de Vries (KdV) equation; in
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the work by Yang et al.,10 the exact traveling wave solu-
tions for the local fractional two-dimensional Burgers-
type equations are investigated, and in the work by
Zhang et al.,11 researchers utilized the series expansion
method within local fractional derivative to obtain the
solutions of homogeneous and non-homogeneous
transport equations, respectively. For some articles and
books on fractional differential and fractional calculus
equations, see Baleanu and colleagues12–14 and the
references therein.

In this study, we apply residual power series method
(RPSM) to find powerful series solution for a nonlinear
problem. The new method supplies the solution in the
shape of a convergence series. A repeated algorithm is
constituted for the designation of the infinite series solu-
tion. The RPSM was developed as an efficient method
for fuzzy differential equations.15 It has been success-
fully put into practice to handle the approximate solu-
tion for generalized Lane–Emden equation,16 the
solution of compound and non-compound fractional
differential equations,17 predicting and representing the
profusion of results to boundary value issues of frac-
tional order,18 constructing and forecasting the solitary
arrangement solutions for nonlinear time-fractional
advance partial differential equations,19 the comparative
solution of the nonlinear fractional KdV–Burgers equa-
tion,20 the comparative solutions of fractional popula-
tion diffusion model,21 and the numerical solutions of
linear non-homogeneous partial differential equations
of fractional order.22 The introduced method constitutes
a comparative solution in the shape of a polynomial.
Contrary to Taylor series method, RPSM needs small
calculational condition with high certainty and less time
at older orders. RPSM is a preference process for get-
ting consistent Maclaurin series solution of problems.

The base purpose of our work is to present practice
of RPSM in the touch of the Caputo fractional differ-
ential to examine and establish an approximate solution
of the space-time-fractional order Fisher equation23

Da
t u(x, t)=Dxxu(x, t)+ 6u(x, t)(1� u(x, t)),

x 2 R, t.0, 0\a� 1
ð1Þ

In above equation, u(x, t) is estimated to be a func-
tion of space and time, which equipment that u(x, t) is
disappearing for t\0 and x\0 and this function is con-
sidered to be analytic on t.0. Moreover, the function
f (x) is considered to be analytic on x.0.

Time-fractional Fisher equation can be readily
solved by many methods. In the work by Rida et al.,24

an accurate algorithm for the solution of special condi-
tions is developed and differential transform method is
used. Khan et al.25 used homotopy perturbation
approach in order to find the comparative solutions of
time-fractional Fisher equation. Sungu and Demir23

applied generalized differential transform and finite dif-
ference method for numerical solutions of the equation.
Baranwal et al.26 and Merdan27 used fractional varia-
tional iteration method for series solutions of proposed
equation.

In section ‘‘Some necessary definitions and results
from fractional calculus’’ of this work, some prelimi-
nary results related to the Caputo derivative and the
fractional power series (PS) are described. In section
‘‘Solution of the time-fractional Fisher equation with
RPSM algorithm,’’ base opinion of the RPSM is consti-
tuted to construct the solution of the time-fractional
Fisher equation (1). In section ‘‘Graphical results of the
RPSM,’’ some graphical consequences are included to
demonstrate the reliability and efficiency of the method.
Moreover, consequences are introduced in section
‘‘Final remarks.’’

Some necessary definitions and results
from fractional calculus

Below, we first illustrate the essential descriptions and
various features for the fractional algebra theory.2

Definition 1. From El-Ajou et al.,17,20 the fractional
integral operator Riemann–Liouville with order a

(a � 0) is given by

Jaf (x)=
1

G(v)

ðx

0

(x� t)a�1f (t)dt, a.0, x.0

J0f (x)= f (x)

ð2Þ

Definition 2. The Caputo fractional derivative with order
a is given by

Daf (x)= Jm�aDmf (x)=
1

G(m� a)
ðx

0

(x� t)m�a�1 dm

dtm
f (t)dt, m� 1\a�m, x.0

ð3Þ

where Dm is the classic differential operator with order
m.17,20

By the Caputo derivative, we get

Daxb = 0, b\a

Daxb =
G(b+ 1)

G(b+ 1� a)
xb�a, b � a

Definition 3. For n to be the smallest integer that exceeds
a, the Caputo time-fractional differential operator of
order a of u(x, t) is defined as17,20
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Da
t u(x, t)=

∂au(x, t)

∂ta
=

1

G(n� a)

ðt

0

(t � t)n�a�1 ∂
nu(x, t)

∂tn
dt, n� 1\a\n

Dn
t u(x, t)=

∂nu(x, t)

∂tn
, n 2 N

ð4Þ

and the space-time-fractional differential with order b

of u(x, t) is defined by

Db
x u(x, t)=

∂bu(x, t)

∂xb
=

1

G(n� b)
ðx

0

(x� t)n�b�1 ∂
nu(t, t)

∂tn
dt, n� 1\b\n

Dn
xu(x, t)=

∂nu(x, t)

∂xn
, n 2 N

ð5Þ

Definition 4. A PS expanding of the manner

X
m= 0

‘

cm t � t0ð Þma = c0 + c1 t � t0ð Þa

+ c2 t � t0ð Þ2a + � � � , 0�m� 1\a�m, t � t0

is named fractional PS at t= t0.
13

Definition 5. A PS of the form

X
m= 0

‘

fm(x) t � t0ð Þma = f0(x)+ f1(x) t � t0ð Þa

+ f2(x) t � t0ð Þ2a + � � � , 0�m� 1\a�m, t � t0

ð6Þ

is named fractional PS at t= t0.
13

Theorem 1. Only u(x, t) gives a polynomial fractional PS
representing at point t= t0 of the shape (see El-Ajou
et al.20 for proof)

u(x, t)=
X

m= 0

‘

fm(x) t � t0ð Þma,

0�m� 1\a�m, x 2 I , t0� t\t0 +R

ð7Þ

If Dma
t u(x, t) are continuous on I 3 (t0, t0 +R), in this

case, coefficients fm(x) are given as

fm(x)=
Dma

t u x, t0ð Þ
G(ma+ 1)

, m= 0,‘

where Dma
t = ∂ma=∂tma =(∂a=∂ta) � (∂a=∂ta) � � � (∂a=∂ta)

(m times) and R= minc2I Rc, in which Rc is the effect
domain of convergency of the fractional PSP‘

m= 0 fm(c)(t � t0)
ma.

Result 1. The fractional PS expanded of u(x, t) at point
t0 should be of the shape

u(x, t)=
X

m= 0

‘
Dma

t u x, t0ð Þ
G(ma+ 1)

t � t0ð Þma,

0�m� 1\a�m, x 2 I , t0� t\t0 +R

ð8Þ

which denotes a generalized Taylor’s series expression.
To particularize, if one sets a= 1 in equation (8), in
this case, the classical Taylor’s series expression

u(x, t)=
X

m= 0

‘
∂mu x, t0ð Þ

∂tm

t � t0ð Þ
m!

, x 2 I , t0� t\t0 +R

is obtained.20

Solution of the time-fractional Fisher
equation with RPSM algorithm

First, we study the time-fractional Fisher equation

Da
t u(x, t)=Dxxu(x, t)+ 6u(x, t)(1� u(x, t)),

x 2 R, t.0, 0\a� 1
ð9Þ

by the initial condition

u(x, 0)=
1

1+ exð Þ2
ð10Þ

Therefore, we study procedure of the RPSM to
ascertain series solution for our time-fractional Fisher
equation dependent on given initial conditions by repla-
cing its fractional PS expanded with its truncated resi-
dual function.

The RPSM proposes the solution for equations (9)
and (10) with a fractional PS at point t= 0.15 Theorize
that the solution selects the expansion shape

u(x, t)=
X
n= 0

‘

fn(x)
tna

G(1+ na)
0\a� 1, x 2 I , 0� t\R

ð11Þ

Next, we let uk(x, t) to refer k truncated series of
u(x, t)

uk(x, t)=
X
n= 0

k

fn(x)
tna

G(1+ na)
, 0\a� 1, x 2 I , 0� t\R

ð12Þ

where u0(x, t)= f0(x)= u(x, 0)= f (x):
Besides, equation (12) may be reported by

uk(x, t)= f (x)+
X
n= 1

k

fn(x)
tna

G(1+ na)
,

0\a� 1, 0� t\R, x 2 I , k = 1,‘

ð13Þ
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At first, to find the value of coefficients fn(x),
n= 1, 2, 3, . . . , k in series expanded of equation (13),
we define residual function Res for equation (1) by

Res(x, t)=
∂au(x, t)

∂ta
� ∂2u(x, t)

∂x2
� 6u(x, t)(1� u(x, t))

and the kth residual function Resk as follows

Resk(x, t)=
∂auk(x, t)

∂ta
� ∂2uk(x, t)

∂x2

� 6uk(x, t)(1� uk(x, t)), k = 1, 2, 3, . . .

ð14Þ

As in Abu Arqub and colleagues,15–18 it is clear that
Res(x, t)= 0 and lim

k!‘
Resk(x, t)=Res(x, t) for each x 2 I

and t � 0:
Then, Dra

t Res(x, t)= 0, fractional derivative of a sta-
tionary in the Caputo’s idea is zero, and the fractional
derivative Dra

t of Res(x, t) and Resk(x, t) is pairing at
t = 0 with each r = 0, k. To give residual PS algorithm,
first, we replace the kth truncated series of u(x, t) with
equation (9). Second, we find the fractional derivative
expression D

(k�1)a
t of both Resu, k(x, t) and k = 1,‘,

and, finally, we can solve found system

D
(k�1)a
t Resu, k(x, 0)= 0, 0\a� 1, x 2 I , k = 1,‘ ð15Þ

to obtain the needed coefficients fn(x) for n= 1, k in
equation (13).

Hence, to determine f1(x), we write k = 1 in equa-
tion (14)

Res1(x, t)=
∂au1(x, t)

∂ta
� ∂2u1(x, t)

∂x2
� 6u1(x, t)(1� u1(x, t))

ð16Þ

where

u1(x, t)=
ta

G(1+a)
f1(x)+ f (x)

for

u(x, 0)= f0(x)= f (x)= u(x, 0)=
1

1+ exð Þ2

Therefore

Res1(x, t)= f1(x)� f 00(x)� ta

G(1+a)
f 001(x)

�6
ta

G(1+a)
f1(x)+ f (x)

� �

1� ta

G(1+a)
f1(x)+ f (x)

� �� �

From equation (15), we deduce that Res1(x, 0)= 0

and thus

f1(x)=
10ex

1+ exð Þ3
ð17Þ

Therefore

u1(x, t)=
10ex

1+ exð Þ3
ta

G(1+a)
+

1

1+ exð Þ2
ð18Þ

Likewise, to determine the shape of the second
unnamed coefficient f2(x), we write k = 2 in equation (14)

Res2(x, t)=
∂au2(x, t)

∂ta
� ∂2u2(x, t)

∂x2
� 6u2(x, t)(1� u2(x, t))

where

u2(x, t)= f (x)+
ta

G(1+a)
f1(x)+

t2a

G(1+ 2a)
f2(x)

Therefore

Res2(x, t)= f1(x)+
ta

G(1+a) f2(x)� f 00(x)� ta

G(1+a) f
00

1(x)

� t2a

G(1+ 2a) f 002(x)� 6 f (x)+ ta

G(1+a) f1(x)
�

+ t2a

G(1+ 2a) f2(x)
�

1� f (x)� ta

G(1+a) f1(x)� t2a

G(1+ 2a) f2(x)
� �

From equation (15), we deduce that Da
t Res2(x, 0)= 0

and thus

f2(x)=
50ex �1+ 2exð Þ

1+ exð Þ4
ð19Þ

Therefore

u2(x, t)=
1

1+ exð Þ2 +
10ex

1+ exð Þ3
ta

G(1+a)

+ 50ex(�1+ 2ex)

1+ exð Þ4
t2a

G(1+ 2a)

ð20Þ

Similarly, to determine f3(x), we write k = 3 in equa-
tion (14)

Res3(x, t)=
∂au3(x, t)

∂ta
� ∂2u3(x, t)

∂x2
� 6u3(x, t)(1� u3(x, t))

where

u3(x, t)= f (x)+
ta

G(1+a)
f1(x)

+
t2a

G(1+ 2a)
f2(x)+

t3a

G(1+ 3a)
f3(x)

Therefore
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Res3(x, t)= f1(x)+
ta

G(1+a)
f2(x)+

t2a

G(1+ 2a)
f3(x)

� f 00(x)+
ta

G(1+a)
f 001(x)+

t2a

G(1+ 2a)
f 002(x)+

t3a

G(1+ 3a)
f 003(x)

� �

�6 f (x)+
ta

G(1+a)
f1(x)+

t2a

G(1+ 2a)
f2(x)+

t3a

G(1+ 3a)
f3(x)

� �

1� f (x)+
ta

G(1+a)
f1(x)+

t2a

G(1+ 2a)
f2(x)+

t3a

G(1+ 3a)
f3(x)

� �� �

From equation (15), we deduce that D2a
t Res3

(x, 0)= 0 and thus

f3(x)=
125ex 1� 7ex + 4e2xð Þ

1+ exð Þ5
ð21Þ

Therefore

u3(x, t)=
10ex

1+ exð Þ3
ta

G(1+a)
+

1

1+ exð Þ2

+
50ex �1+ 2exð Þ

1+ exð Þ4
t2a

G(1+ 2a)

+
125ex 1� 7ex + 4e2xð Þ

1+ exð Þ5
t3a

G(1+ 3a)

ð22Þ

Likewise, employing the similar operation for k = 4

taking describe the shape of f0(x), f1(x), f2(x), f3(x), par-
ticularly, will moderate after easily computations to the
next shape of f4(x)

f4(x)=
625ex �1+ 18ex � 33e2x + 8e3xð Þ

3 1+ exð Þ6
ð23Þ

Therefore

u4(x, t)=
1

1+ exð Þ2
+

10ex

1+ exð Þ3
ta

G(1+a)

+
50ex �1+ 2exð Þ

1+ exð Þ4
t2a

G(1+ 2a)
+

125ex 1� 7ex + 4e2xð Þ
1+ exð Þ5

t3a

G(1+ 3a)
+

625ex �1+ 18ex � 33e2x + 8e3xð Þ
3 1+ exð Þ6

t4a

G(1+ 4a)

ð24Þ

To give a deficit overview of the content of our work,
in the next section, by the above recurrent connections,
we can demonstrate some graphical consequences of
equations (1) and (2) in Figures 1–3.

Figure 1. The 3D graphic for the exact solution u(x, t) and the u4(x, t) approximate solution of the time-fractional Fisher equation:
(a) u4(x, t) when a= 0:5, (b) u4(x, t) when a= 0:75, (c) u4(x, t) when a= 0:9, and (d) u(x, t) when a= 1.
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Graphical results of the RPSM

Following our considerations in the previous section,
we can form graphical consequences of equation

Da
t u(x, t)=Dxxu(x, t)+ 6u(x, t)(1� u(x, t)),

t.0, x 2 R, 0\a� 1

with the initial condition

u(x, 0)=
1

1+ exð Þ2

u(x, t)= 1=(1+ ex�5t)2 is the exact solution of this
equation.24

In Figure 2, we plot the RPS (residual power series)
approximate solution uk(x, t) for k = 1, 2, 3, 4 which are
closing the line y= 0 as the amount of iterations
enlarge. This figure clearly shows that the absolute
error is smaller as the amount of k enlarges. It is clear
that the value of kth truncated series uk(x, t) affects the
RPS approximate solutions.

In Figure 3, we plot the RPS approximate solution
u4(x, t) for a= 0:5� 1 which is closing the exact

solution as the number of a increases. This figure clear
shows that the convergency of the approximate solu-
tions to the exact solution related to the order of the
solution and the exact error is smaller as the order of
the solution increases.

In Tables 1–3, we constitute table of numerical solu-
tions uk(x, t) for k = 3. Comparison among approxi-
mate solutions with known results is made. These
results are obtained using RPSM, homotopy perturba-
tion method,25 and fractional variational iteration
method.27

Figure 2. uk(x, t) solution of the time-fractional Fisher equation when k= 1, 2, 3, 4 versus its exact solution: (a) a= 0:9, t= 0:4
and (b) a= 0:5, t= 0:1.

Figure 3. u4(x, t) solution of the time-fractional Fisher equation when a= 0:5, 0:6, 0:7, 0:8, 0:9, 1 (t= 0:1 and t= 0:3).

Table 1. Comparison among approximate solutions uRPSM,
uFVIM, and uHPM (x= 0:5).

a= 0:75

t uRPSM uFVIM uHPM

0.01 0.175966 0.0242651 0.146808
0.05 0.277218 0.0818379 0.157343
0.1 0.406898 0.139343 0.168312
0.15 0.54626 0.186505 0.178529
0.2 0.695654 0.224693 0.188419

6 Advances in Mechanical Engineering



Tables 1–3 clarify the convergency of the approxi-
mate solutions to the exact solution and exact error is
smaller as the value of the t decreases.

Final remarks

The fundamental objective of this article is to introduce
an algorithmic form and implement a new analytical
repeated algorithm derived from the RPS to find
numerical solutions for nonlinear time-fractional
Fisher equation. The approximate solution is given in
the shape of PS. Graphical and numerical consequences
are introduced to illustrate the solutions. The conse-
quences found using the RPSM are very active and
appropriate in general conditions with less calculational
work and time. It has been established that the struc-
ture of this RPSM obsesses a very fast convergent
series with easily calculable components using symbolic
calculation software. The article stressed our notion
that the introduced process can be applied as an instead
to get analytic solutions of different kinds of fractional
linear and nonlinear partial differential equations prac-
ticed in mathematics, physics, and engineering.
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