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Abstract

The new Boussinesg-type model in a fractal domain is derived based on the formulation of the
local fractional derivative. The novel traveling wave transform of the non-differentiable type
is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional
ODE. The exact traveling wave solution is also obtained with aid of the non-differentiable
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graph. The proposed method, involving the fractal special functions, is efficient for finding the
exact solutions of the nonlinear PDEs in fractal domains.

Keywords: Exact Traveling-Wave Solution; Local Fractional Boussinesq Equation; Local Frac-

tional Derivative; Fractals.

1. INTRODUCTION

Fractional-order derivatives (FDs) have success-
fully been applied for describing fractal problems
in engineeringl® Recent examples are the heat
transport in fractal media? fractal hydrodynamic
equations,™ fractal electrostatics ™ fractal Fokker—
Planck equation and fractal description of stress
and strain in elasticity.

There are several alternative approaches for
describing the complex and fractal behaviors in
nature 8 The theory of the local fractional deriva-
tive (LFD) is a mathematical tool for describ-
ing fractals, that was used to model the fractal
complexity in shallow water surfaces ¥ LC-electric
circuit/™ traveling-wave solution of the Burgers-
type equation 18 PDEsI20 ODEs 2! and inequal-
ities 2223 The useful models for the LFD were
considered?23 and discussed 39 However, the non-
linear local fractional Boussinesq equations and
their non-differentiable-type traveling-wave solu-
tions have not yet been tackled. The main aim of
the paper is to derive the Boussinesq-type model
in fractal domain and to find the exact non-
differentiable-type traveling-wave solution for the
two-dimensional problem.

The structure of the article is as follows. In Sec. 2,
the theory of the LFD is presented. In Sec. [3] the
local fractional Boussinesq equation for the wave
content in fractal domain is derived. In Secs. @ and
the traveling-wave transform and the exact solu-
tions are discussed, respectively. Finally, the con-
clusions are drawn in Sec. Bl

2. PRELIMINARIES

In this section, the concept and properties of the
LFD are introduced. The fractal special functions
(FSFs) defined on fractal sets for the fractal-
dimensional parameters from 1 to In2/In3 are
also given. Let Cg(r, s) be a set of the local frac-
tional continuous functions (LFCFs) with the frac-
tal dimension 6 such that 0 < 6 < 1. For more
details of the LFCFs, see Refs. [l T4HT5] 6] 23.

Definition 1. Let Ms(7) € Cs(r,s). The LFD of
M;s(7) of fractal order 6(0 < ¢ < 1) at the point

T =79 is given adlidT6I23)

d® Ms(1o)
4 d\70
DO My (7o) = —
1 _
T—T0 (1 —70)°
where

A’(Ms(7) — Ms(mo))
=T(1+0)A[Ms(r) — Ms(mo)].  (2)
Definition 2. The local fractional partial deriva-
tive (LFPD) of the function Mjg(u, ) of fractal

order §(0 < 0 < 1) at the point 7 = 7¢ is defined
ALl

& Ms(p,70) i A (M(p, 7) — Ms(p, 70))
— 7 7 — lim ,
aro T—To (1 —70)°
(3)
where

A’ (Ms(p,7) — M5 (11, 70))
=T+ 0)A[Ms(p, ) — Ms(p, 0)]. (4)

The LFPD of the function M(;(,u,,g% of fractal
order k¢ at the point 7 = 7 is given as™:

Kk—times
O™ My(p, 1)  0° o
W:W...ﬁMd(Mﬂb)a (5)

where 0 < § < 1, Kk € Ny and Ny is the set of integer
numbers.

If DO M;s;(7) and D@ Mjso(7) exist, then the
operations of the LFCFs Ms1(7) and Mso(7) are
given as followsH1d:

(M1)
DO [ Ms1 (1) £ Msao(7)]
= DO Ms () = DO Mso(7),
(M2)
DO [M;1(7) M5 2(7)]
= [D©O Ms (1) Ms2(7)
+ Ms (7)[D) Ms o ()],
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Table 1 The Expressions
of the FSFs.

FSFs Expressions

S 750 D(1 + k6)

k=0

05(7°)

0s5(07%) 2 657" )T(1 + K6)
k=0

Table 2 The LFDs of the FSFs
Defined on Fractal Sets.

FSFs LFDs

D 0s(r%) = 05(r%)
D®0s(pr%) = pO;(p7°)

05(7°)
05(p7°)

DO [ M1 (1) /My (7)]
= {[DY) Ms (7)) M5 2(7)
— M;1(7)[D) M; 5(7)]} /M3,

provided that M;o(T) # 0.

If 0 is a constant and k € Ny, then the expressions
of the FSFs defined on fractal sets™ 416 are listed
in Table [

If p is a constant, then the LFDs of the FSFs
defined on fractal sets! are listed in Table 2

3. THE BOUSSINESQ-TYPE
MODEL IN FRACTAL
DOMAIN

In this section, from the theory of LFD view of
point, we derive the two-dimensional and three-
dimensional local fractional Boussinesq equations in
fractal domain.

The local fractional PDEs of the three-
dimensional free surface for the fractal incompress-
sible fluid on the flat bottom are described as:

0*M;  0*Ms = 0% Ms
8M25 + D€ + D20 =0, (6)
PNs  OMsPANs My Ag

om0 T ous o | o og

°M,
*876(5:0, w:H(;, (7)

Phs L[N\ (AT (005N
ord 2 oud o¢d Owd

+vH; =0, w=Hs, (8)
D N\s
W = 0, w = 0, (9)
where
Hs = H(S,O + M(S(:U’agaT) (10)

represents the local depth with the average depth

Hsp, ~v is the gravitational constant, Ms = Ms(pu,

&, w, ) and w is the distance from the bottom.
The expression

O°Ng (11, &, w,7) 5

e 9
a(sA(S(:u” ga W, T) /;5

describes the fractal fluid velocity using the

6’ j6

P

oA ~
Y(p, & w,T) = PN (p, 6w, 7) =

0

_l’_

quaternionic number system in fractal space i

and k9 (see Ref. [I)).

We have
PHs 99 M o 9 M
o5 T o (Hﬁ—am ) T oE <H5—8@ ) -0
(12)
1) )
PNs 0 M57 a13)
ol o¢d

where H5 = H5,0 + M(;(,U,, é-a 7_)7 M5 = M5(M7 57("-}7 T)
and Ay = As(p, &, w, 7).
The local fractional PDE of the fractal wave con-
tent in the three-dimensional case is
9 M 9% M POMs  OAs
M —
970 + ¢1 M o0 + < o +o P

0,
(14)

where o, ¢; and ¢ € RT are parameters.
Substituting Eq. (@) into Eq. (I0), we have the

three-dimensional local fractional Boussinesq equa-

tion for the wave content in the fractal domain:

d° [ 9° M 0% M 039 M
8—#5 <—87'5 + 1 Ms aM(; + < 6#35 )
0% M,

The local fractional PDE in the one-dimensional
fractal space can be written as

O*Ms  ,0%E;

925 7 79 125

(16)
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which leads to
PMs  0°Es

ars ~ ° oud’ (17
3= 9% M
aro 7 oud (18)

where =5 = Zs(u,7) and Ms = Ms(u,7) are
the non-differentiable functions and o(o > 0) is an
unknown constant.

When Ms(u,7) = Z5(p, 7), Eq. (I8) can be writ-
ten as:

aQéM(S ) aQéM(S
o2 7 op2
which is the local fractional wave equation in the
one-dimensional fractal space.
When Ms(p,7) = E5(u, 7) in Eq. ([{@), the local
fractional conservation equation for the one-
dimensional fractal waves is given agl:

(19)

PMs 9’ Ms
a0 7 opd ’ (20)
where Ms = Ms(u, 7).
Taking
d d
0°As _ 0° M (21)
o¢d oud

in Eq. ([I4)), we have the local fractional PDE for a
fractal velocity potential

99 M 9 M
- 292
om0~ 7o (22)
such that
99 M 9 M %0 M 99 M
— 2L gM, =0
B, + 1M BTG + < B + o o ;
(23)

where ¢; and ¢ are two parameters. Equation ()
represents the local fractional PDE for the fractal
wave content in the two-dimensional case.

For 0 = 1, we obtain from Eq. (@) that

9 M

W + §1M6

9 Mj 930 M

M
+ G2 8 =
B O30

ol

+ 0.

(24)

Taking ¢ = 0 in Eq. (@), we obtain the local
fractional Korteweg—de Vries equation
9° M PMs  OMs

T M = 0. 25
67_6 + S1ivls au(s 8,11:36 ( )

+ S

With a similar procedure, we have the local frac-
tional PDE of a fractal velocity potential in the two-
dimensional case given by

My M,
F A (26)
o ¢
such that
9 M 9 M IPOMs 9O M;
M, =0.
970 + ¢1 Mg (9#5 + 2 aM35 +o 655
(27)

Substituting Eq. (28] into Eq. (27)), we have

3 (9 Mg 8% My 93 M
— [ ==2 M
8#6 ( 8’7’6 ‘I’gl ) 8#6 +§2 aﬂg& >
MM
+ UW%(S =0, (28)

where o, ¢; and ¢ are the parameters and Ms =
M;s (:U’a T) :

Equation (28) is the two-dimensional local frac-
tional Boussinesq equation for the wave content in
the fractal domain.

4. TRAVELING-WAVE
TRANSFORM TECHNOLOGY

In this section, the traveling-wave transformation
technology for finding the exact solution for the
nonlinear PDEs is considered.

We consider the following nonlinear local frac-
tional PDE:

o (P Ms(p,m) 0¥ Ms(p,7) 9°Ms(p,7)
o opx o Ot

=0, (29)

where ©5 = Os(p,7) is the nonlinear local frac-
tional operator.l

The non-differentiable traveling-wave transfor-
mation is defined by

Y = =i, (30)
where
(151_% Y =p—vT. (31)
With the aid of Egs. (30) and (BI]), we consider
O5(p,7) = O5(¢). (32)
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Following the chain rule of the LFD, we have from
Eq. (30) that

2Os(p,7) _ 9°Os(p,7) (8_1#)‘5

or' oyt \or
=T, (33
aé@é;li,;, 7) _ 65((991221/})’ (34)
82522(2?,7) _ 82‘;(:)!}(;[(:/})7 (35)
335222?,7) _ 83‘;(3%((51/1)_ (36)

Thus, making use of Eqs. (33)-(B2), Eq. (29) can
be rewritten as:

o (0s)  d¥Osw) PO\ _
4 A2 T Qe 0 gyd -

(37)

where d*0s(¢)/d3, d?°Os(v)/d* and d°Og
(¢)/dy® are the LFDs of the orders 34, 26 and &
with respect to 1, respectively.

We obtain the exact solutions of the nonlinear
ODE for Eq. (B7). With the help of Eq. (B0), the
exact traveling-wave solutions of Eq. ([29) is also
given.

5. EXACT TRAVELING-WAVE
SOLUTION FOR
BOUSSINESQ-TYPE MODEL
IN FRACTAL DOMAIN

In this section, we find the exact traveling-wave
solution for the local fractional local fractional
Boussinesq equation.
Finding the local fractional integral of Eq. (28)
with respect to p yields
9 M 99 M POMs 9 Mg
Y= + 61 M5 o0 + & By +o o

= ®5(7), (38)

where ®5(7) is the unknown constant.
Making ®5(7) = 0, Eq. (38) becomes

9° M, 9° M, O3 M, 9% M,
1) +§1M6 ) ) ) _

0.
o710 opd + < D3 +o opd

(39)
Substituting Eqs. (B3), (34) and (B6) into Eq. (28)

leads to the following nonlinear local fractional

ODE:

d°O5(1))
d

d*0,(1))
dT/)%

d°O5(¢)
d

<105(v) =0,

G2 S3

(40)

where Ms(p,7) = Ms(¥) = Os(p, 7) = O5(1)) and
G =0 — 0.

Following the chain rule of the LFD, Eq. {0 is

d(S d26
d—w(; <§2d®T(;(;M +6305(¢) + %@g(@b)) =0.
(41)

Finding the local fractional integral of Eq. (41l) with
respect to 1 yields

s +a0s(V) + FOIW) = a1, (42)

where o is a constant.
Taking a; = 0, we have from Eq. ([@2)) that

d?0;s(v)

S1
d¢25 Yer

o O3(¢) =0.  (43)

+ g—B@(s(@b) +
S

Multiplying Eq. (19) by the term 2d6d612§¢) , it follows
that

POs(1) d¥0s(¥) 2 d°Os(1)
W g a0V
61 d°Os(1Y) 5 _
g—dd/& 66(1/}) =0. <44)

From Eq. ([@4]), we have

<d5d®126(¢))2 v (E—Z’@?s(@) + (3%@‘%@))]

=0, (45)

d5

dyp?

which, by finding the local fractional integral of
Eq. ([#H), leads to

<d5@5(¢>
a0’

2
S3 12 S1 3 _
> + Q®5(¢)+ 3§2@5(T/}) = ag,
(46)

where o9 is a constant.
Taking ay = 0, we obtain from Eq. that

<d6@5(¢)
)

2
S3 92 ST 930 —
) +g2®5(w)+ Bgz@(;(zp) 0. (47)
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T

Fig. 1 The exact travelling-wave solution for the local fractional local fractional Boussinesq equation for the parameters

a:2,y6:1,§1:1and§2:1.

Defining the fractal special function™
2
0y
csc hg(°) = 05 (%) — O (=19)’ (48)
we have
X5 (1) = B csc b3 (B21°) (49)
such that
x5 () 4032
(ﬁ) 483 (W) + ZE3(W) = 0. (50)

Taking O5(1)) = xs(), we have from Eqgs. (46]) and
(EO) that

4p3 =2 (51)
)
and
483 o
— = — 52
81 3% (52)

Thus, we deduce from Egs. (5I) and (52]) that

/82 — \/257 (53)
B=2 (54)

S1

The non-differentiable solution of Eq. [3) is as
follows:

O;(1) = 3 csc h3 \/gw‘s : (55)

2

We derive the exact traveling-wave solution for

Egs. ([28) and (B3) that

3 .0
Mion7) = 2= e
o—v’
X TQ(/ﬂ — 9. (56)

Plot of Eq. (6) for the parameters o = 2, 9 = 1,
¢1 = 1 and ¢ = 1 (in Cantor condition § = In2/In3)
is illustrated in Fig. [l

6. CONCLUSION

Based on the theory of LEFD, the two- and three-
dimensional local fractional Boussinesq equations
for the wave content in fractal domain were pro-
posed. The non-differentiable-type traveling-wave
transform is used to generalize the problem to
the nonlinear local fractional ODE. Furthermore,
the exact traveling-wave solution for the proposed
model is also discussed. The proposed formulation
is efficient for obtaining the exact traveling-wave
solutions of the nonlinear local fractional PDEs.
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