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Analysis of logistic equation pertaining
to a new fractional derivative with
non-singular kernel
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Abstract
In this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo–
Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown
with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The
numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given
graphically to observe the effects of the fractional order derivative on the growth of population.
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Introduction

The logistic equation describes the population growth.
It was first proposed by Pierre Verhulst that is why it is
also known as Verhulst model. The mathematical equa-
tion is a continuous function of time, but a modified
version of the continuous model to a discrete quadratic
recurrence model is said to be the logistic map which is
also extensively used.

The continuous form of the logistic equation is
expressed in the form of nonlinear ordinary differential
equation as1

dN

dt
= lN 1� N

K

� �
ð1Þ

In the above equation (1), N indicates population at
time t, l.0 represents Malthusian parameter expres-
sing growth rate of species and K denotes carrying
capacity. If we take x=N=K, then equation (1) reduces
in the nonlinear differential equation written as

dx

dt
= lx 1� xð Þ ð2Þ

Equation (2) is said to be logistic equation.
Fractional calculus in mathematical modeling has

been gaining great admiration and significance due
largely to its manifest importance and uses in science,
engineering, finance and social sciences. Due to its wide
applications, many scientists and engineers investigated
in this special branch and introduced various
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denotations of fractional derivatives and integrals.2–7 In
this connection, a monograph by Baleanu et al.8 presents
applications of nanotechnology and fractional calculus.
A monograph by Kilbas et al.9 provides an excellent lit-
erature related to basic concepts and uses of fractional
differential equations. In this sequel, Bulut et al.10 ana-
lyzed differential equations of arbitrary order analyti-
cally. Atangana and Alkahtani11 examined the fractional
Keller–Segel model using iterative technique. Alkahtani
and Atangana12 analyzed a non-homogeneous heat
model involving a new fractional order derivative.
Atangana13 studied a fractional generalization of non-
linear Fisher’s reaction–diffusion equation using iterative
scheme. Singh et al.14 studied the Tricomi equation
involving the local fractional derivative with the aid of
local fractional homotopy perturbation sumudu trans-
form technique. Kumar et al.15 reported the numerical
solution of fractional differential-difference equation
using homotopy analysis Sumudu transform scheme.
Choudhary et al.16 examined the fractional model of
temperature distribution and heat flux in the semi-infinite
solid using integral transform technique. Yang et al.17

obtained an exact traveling-wave solution for KdV equa-
tion associated with local fractional derivative. Yang
et al.18 investigated some novel uses for heat and fluid
flows associated with fractional derivatives having non-
singular kernel. Yang et al.19 studied a new fractional
derivative without singular kernel and showed its uses in
the modeling of the steady heat flow. Hristov20 examined
Cattaneo concept of flux relaxation with a Jeffrey’s expo-
nential kernel in view of its association with heat diffu-
sion pertaining to time derivative of fractional order
termed in Caputo–Fabrizio sense. Golmankhaneh
et al.21 studied the synchronization in a non-identical
fractional order of a modified system. The fractional gen-
eralization of logistic equation associated with Caputo
fractional derivative is studied by many authors such as
El-Sayed et al.,22 Momani and Qaralleh23 and many
others.

Thus, the fractional modeling is very useful in
description of natural phenomena. But the novel frac-
tional derivative given by Caputo and Fabrizio is more
suitable to describe the growth of population because
its kernel is non-local and non-singular. Therefore, we
replace the time derivative in equation (2) by a new frac-
tional derivative discovered by Caputo and Fabrizio,
and equation (2) converts to a time-fractional model of
the logistic equation expressed in the following manner

CF
0 D

b
t x(t)= lx(t) 1� x(t)ð Þ ð3Þ

subject to the initial condition

x(0)=a ð4Þ

The principal objective of this work is determining
the novel fractional derivative to the nonlinear logistic

model and imparting in detail the analysis of the solu-
tion of the nonlinear model with the aid of the fixed-
point theory. The structure of this article is as follows:
in section ‘‘Preliminaries,’’ the fundamental concept of
new fractional derivatives defined by the Caputo–
Fabrizio is given. In section ‘‘Equilibrium and stabi-
lity,’’ the equilibrium stability of initial value problem
(IVP) associated with new Caputo–Fabrizio fractional
derivative is discussed. The fractional logistic equation
and its stability analysis are examined in section
‘‘Fractional model of logistic equation associated with
new fractional derivative.’’ In section ‘‘Existence and
uniqueness,’’ the existence and uniqueness of the solution
are examined. Section ‘‘Numerical results and discus-
sions’’ contains the numerical simulation of fractional
logistic equation. Finally, section ‘‘Conclusion’’ is dedi-
cated to the conclusions.

Preliminaries

Definition 1. If x 2 H1(a, b), b.a,b 2 ½0, 1�, then the new
fractional derivative defined by Caputo and Fabrizio5 is
represented as

D
b
t x(t)ð Þ= M(b)

1� b

ðt

a

x0(s) exp �b
t � s

1� b

� �
ds ð5Þ

In the above expression, M(b) is a normalization of
the function that satisfies the condition
M(0)=M(1)= 1 presented by Losada and Nieto.6

But if x 62 H1(a, b), then the new derivative of arbi-
trary order can be defined as

D
b
t x(t)ð Þ= bM(b)

1� b

ðt

a

x(t)� x(s)ð Þ exp �b
t � s

1� b

� �
ds ð6Þ

Remark 1. If s= 1�b
b
2 ½0,‘),b= 1

1+s
2 ½0, 1�, then

equation (6) presume the form

D
b
t x(t)ð Þ= N (s)

s

ðt

a

x0(s) exp � t � s

s

h i
ds, N (0)=N (‘)= 1

ð7Þ

Moreover

lim
s!0

1

s
exp � t � s

s

h i
= d(s� t) ð8Þ

The corresponding fractional integral resulted to be
essential.6

Definition 2. Let 0\b\1. If x be a function of t, then
the fractional integral operator of order b is presented
in the following form
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I t
b x(t)ð Þ= 2(1� b)

(2� b)M(b)
x(t)+

2b

(2� b)M(b)

ðt

0

x(s)ds, t � 0

ð9Þ

Definition 3. If x(t) be a function of t, then the Laplace
transform of the function CF

0 D
b
t x(t) is written as (see

Caputo and Fabrizio5)

L CF
0 D

b
t x(t)

h i
=M(b)

s�x(s)� x(0)

s+b(1� s)
ð10Þ

In the above formula (10), �x(s) stands for the
Laplace transform of the function x(t).

Equilibrium and stability

Let us take the following IVP associated with Caputo–
Fabrizio fractional derivative

CF
0 D

b
t x(t)= g x(t)ð Þ, t.0, 0\b� 1 ð11Þ

and

x(0)= x0 ð12Þ

To compute the equilibrium point for equation (11),
put CF

0 D
b
t x(t)= 0, then it yields the following result

g(xeq)= 0 ð13Þ

In order to find the asymptotic stability, take

x(t)= xeq + e(t) ð14Þ

Using equation (14) in (11), we get

CF
0 D

b
t xeq + e
� �

= g xeq + e
� �

ð15Þ

which yields

CF
0 D

b
t e(t)= g xeq + e

� �
ð16Þ

As we know that

g xeq + e
� �

= g xeq

� �
+ g0 xeq

� �
e+ � � �

which implies that

g xeq + e
� �

= g0 xeq

� �
e ð17Þ

where g(xeq)= 0, and then we have the following result

CF
0 D

b
t e(t)= g0 xeq

� �
e(t), t.0, with e(0)= x0 � xeq ð18Þ

Further assume that the solution e(t) of equation
(18) exists. Therefore, the equilibrium point xeq is
unstable if the function e(t) is increasing, and the

equilibrium point xeq is locally asymptotically stable if
the function e(t) is decreasing.

Fractional model of logistic equation
associated with new fractional derivative

Here, we examine the equilibrium and stability of the
fractional generalization of logistic equation associated
with the newly developed Caputo–Fabrizio fractional
derivative.

Let us consider that 0\b� 1, l.0 and x0.0; the
fractional model of logistic equation is presented as

CF
0 D

b
t x(t)= lx(t) 1� x(t)ð Þ, t.0 and x(0)=a ð19Þ

To compute the equilibrium points, put

CF
0 D

b
t x(t)= 0 ð20Þ

which gives the equilibrium points x= 0, 1.
Next, to investigate the stability of the equilibrium

points, we find the following result

g0 x(t)ð Þ= l 1� 2x(t)ð Þ ð21Þ

which yields

g0(0)= l and g0(1)= � l ð22Þ

Then, the solution of fractional order IVP

CF
0 D

b
t e(t)= g0 xeq = 0

� �
e(t)= le(t), t.0 with e(0)= x0

is presented as

e(t)=
x0

1� l+ lbð Þ e
lb

1�l+ lbð Þt ð23Þ

In this case, the point x= 0 is unstable.
In order to check the stability of the point x= 1, we

consider the fractional order IVP

CF
0 D

b
t e(t)= g0 xeq = 1

� �
e(t)= � le(t), t.0

with e(0)= x0 � 1 ð24Þ

which is ( if x0.0) the relaxation equation of arbitrary
order, and its solution is presented as

e(t)=
x0 � 1

1+ l� lbð Þ e
� lb

1+ l�lbð Þt ð25Þ

Therefore, the equilibrium point x= 1 is asymptoti-
cally stable.

Next, we present the existence and uniqueness
for the solution of the logistic equation of fractional
order (3).

Kumar et al. 3



Existence and uniqueness

Here, we present the analysis of the fractional model of
logistic equation. Applying the Losada–Nieto fractional
integral operator on equation (3) we get the following
result

x(t)� x(0)=
2(1� b)

(2� b)M(b)
lx(t) 1� x(t)ð Þf g

+
2b

(2� b)M(b)

ðt

0

lx(s) 1� x(s)ð Þf gds ð26Þ

For simplicity, we interpret

x(t)= x(0)+
2(1� b)

(2� b)M(b)
K(t, x)+

2b

(2� b)M(b)

ðt

0

K(s, x)ds

ð27Þ

The operator K has Lipschitz condition providing
that the function x has an upper bound. So if the func-
tion x is upper bounded then

K(t, x)� K(t, y)k k= l x� yð Þ � l x2 � y2
� ��� �� ð28Þ

On using the inequality of triangle on equation (28),
it yields

K(t, x)� K(t, y)k k�l x� yð Þk k+ l x2 � y2
� ��� ��

�l x� yð Þk k+ l x� yð Þ A+Bð Þk k
�l 1+A+Bð Þ x� yð Þk k

ð29Þ

Setting r= l(1+A+B), where xk k � A and
yk k � B are bounded functions, we have

K(t, x)� K(t, y)k k� r x� yk k ð30Þ

Therefore, the Lipschitz condition is fulfilled for K,
and if additionally 0\l(1+A+B)� 1, then it is also
a counterstatement.

Theorem 1. Considering that the function x is bounded,
then the operator presented below satisfies the
Lipschitz condition

T (x)= x(0)+
2(1� b)

(2� b)M(b)
K(t, x)

+
2b

(2� b)M(b)

ðt

0

K(s, x)ds ð31Þ

Proof. Suppose both the functions x and y are bounded
with x(0)= y(0), then we have

T (x)� T (y)k k=
2(1� b)

(2� b)M(b)
K(t, x)� K(t, y)f g+ 2b

(2� b)M(b)

����
ðt

0

K(s, x)� K(s, y)f gds

������
� 2(1� b)

(2� b)M(b)
K(t, x)� K(t, y)f gk k

+
2b

(2� b)M(b)

ðt

0

K(s, x)� K(s, y)f gk kds

� 2(1� b)

(2� b)M(b)
r+

2b

(2� b)M(b)
rt0

� �
x� yk k

�h x� yk k

ð32Þ

Hence, the theorem is proved.

Theorem 2. Considering that the function x is bounded,
then the operator T1 expressed as

T1(x)= lx(t) 1� x(t)ð Þ ð33Þ

satisfies the result

T1(x)� T1(y), x� yh ij j � r x� yk k2 ð34Þ

In the above inequality (34), �, �h i indicates the inner
product of function with the differentiation restricted in L2:

Proof. Let us assume that x be bounded function, then
we have

T1(x)� T1(y), x� yh ij j= l x� yð Þ � l x2 � y2
� �

, x� y
	 
�� ��

�l x� yð Þ, x� yh ij j+ l x2 � y2
� �

, x� y
	 
�� ��

�l x� yð Þk k x� yk k+ l x2 � y2
�� �� x� yk k

�l(1+A+B) x� yð Þk k2

� r x� yð Þk k2 ð35Þ

Hence, the theorem is proved.

Theorem 3. If it is assumed that the function x is
bounded, then the operator T1 satisfies the result

T1(x)� T1(y),wh ij j � r x� yk k wk k, 0\ wk k\‘ ð36Þ

Proof. Let 0\ wk k\‘ and consider that the function x
be bounded, then we have

T1(x)� T1(y),wh ij j= l x� yð Þ � l x2 � y2
� �

,w
	 
�� ��

�l x� yð Þ,wh ij j+ l x2 � y2
� �

,w
	 
�� ��

�l x� yð Þk k wk k+ l x2 � y2
�� �� wk k

�l(1+A+B) x� yð Þk k wk k
� r x� yð Þk k wk k ð37Þ
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Hence, the theorem is proved.

Existence of the solution

To show the existence of the solution, we employ the
notion of iterative formula. In view of equation (27),
we set up the following iterative formula

xn+ 1(t)=
2(1� b)

(2� b)M(b)
K(t, xn)

+
2b

(2� b)M(b)

ðt

0

K(s, xn)ds ð38Þ

and

x0(t)= x(0) ð39Þ

The difference of the successive terms is represented
as follows

un(t)= xn(t)� xn�1(t)=

2(1� b)

(2� b)M(b)
K(t, xn�1)� K(t, xn�2)ð Þ

+
2b

(2� b)M(b)

ðt

0

K(s, xn�1)� K(y, xn�2)ð Þds

ð40Þ

Its usefulness is to notice that

xn(t)=
Xn

i= 0

ui(t) ð41Þ

Slowly but surely we assess

un(t)k k= xn(t)� xn�1(t)k k=
2(1�b)

(2�b)M(b)
K(t, xn�1)� K(t, xn�2)ð Þ

+ 2b

(2�b)M(b)

Ðt
0

K(s, xn�1)� K(s, xn�2)ð Þds

�������

�������
ð42Þ

Making use of the triangular inequality, equation
(42) becomes

un(t)k k� 2(1� b)

(2� b)M(b)
K(t, xn�1)� K(t, xn�2)ð Þk k

+
2b

(2� b)M(b)

ðt

0

K(s, xn�1)� K(s, xn�2)ð Þ ds

������
������
ð43Þ

As the Lipschitz condition is fulfilled by the kernel, it
yields

un(t)k k� 2(1� b)

(2� b)M(b)
r xn�1 � xn�2k k

+
2b

(2� b)M(b)
r

ðt

0

xn�1 � xn�2k kds ð44Þ

Then

un(t)k k� 2(1� b)

(2� b)M(b)
r un�1(t)k k

+
2b

(2� b)M(b)
r

ðt

0

un�1(t)k kds ð45Þ

Now taking the above result into consideration, we
derive the following result expressed as the subsequent
theorem.

Theorem 4. The fractional model of logistic equation
associated with equation (3) has a solution under the
condition that we can find t0 satisfying the following
inequality

2(1� b)

(2� b)M(b)
r+

2b

(2� b)M(b)
rt0\1 ð46Þ

Proof. Here, we have the function x(t) is bounded.
Additionally, we have shown that the kernels fulfill the
Lipschitz condition, hence on considering the result of
equation (45) and by applying the recursive method, we
get the inequality as follows

un(t)k k� 2(1� b)

(2� b)M(b)
r+

2b

(2� b)M(b)
rt

� �n

x(0) ð47Þ

Therefore

xn(t)=
Xn

i= 0

ui(t) ð48Þ

exists and is a smooth function. Next, we demonstrate
that the function presented in equation (48) is the solu-
tion of equation (3). Now it is assumed that

x(t)� x(0)= xn(t)� Pn(t) ð49Þ

Therefore, we have

Pn(t)k k= 2(1� b)

(2� b)M(b)
K(t, x)� K(t, xn�1)ð Þ

����

+
2b

(2� b)M(b)

ðt

0

K(s, x)� K(s, xn�1)ð Þds

������
� 2(1� b)

(2� b)M(b)
K(t, x)� K(t, xn�1)ð Þk k

+
2b

(2� b)M(b)

ðt

0

K(s, x)� K(s, xn�1)ð Þk kds

� 2(1� b)

(2� b)M(b)
r x� xn�1k k+ 2b

(2� b)M(b)
r x� xn�1k kt

ð50Þ
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On using this process recursively, it yields

Pn(t)k k� 2(1� b)

(2� b)M(b)
+

2b

(2� b)M(b)
t

� �n+ 1

rn+ 1A

ð51Þ

Now taking the limit on equation (51) as n tends to
infinity, we get

Pn(t)k k ! 0

Hence, proof of existence is verified.

Uniqueness of the solution

Here, we present the uniqueness of the solution of equa-
tion (3). Suppose, there exists an another solution for
equation (3) be y(t), then

x(t)� y(t)=
2(1� b)

(2� b)M(b)
K(t, x)� K(t, y)ð Þ

+
2b

(2� b)M(b)

ðt

0

K(s, x)� K(s, y)ð Þds ð52Þ

On taking the nom on both sides of equation (52), it
yields

x(t)� y(t)k k� 2(1� b)

(2� b)M(b)
K(t, x)� K(t, y)k k

+
2b

(2� b)M(b)

ðt

0

K(s, x)� K(s, y)ð Þk kds ð53Þ

By employing the Lipschitz conditions of kernel, we
obtain

x(t)� y(t)k k� 2(1� b)

(2� b)M(b)
r x(t)� y(t)k k

+
2b

(2� b)M(b)
rt x(t)� y(t)k k ð54Þ

This gives

x(t)� y(t)k k 1� 2(1� b)

(2� b)M(b)
r � 2b

(2� b)M(b)
rt

� �
� 0

ð55Þ

Theorem 5. If the following condition holds, then frac-
tional logistic equation (3) has a unique solution

1� 2(1� b)

(2� b)M(b)
r � 2b

(2� b)M(b)
rt

� �
.0 ð56Þ

Proof. If the aforesaid condition holds, then

x(t)� y(t)k k 1� 2(1� b)

(2� b)M(b)
r � 2b

(2� b)M(b)
rt

� �
� 0

ð57Þ

which implies that

x(t)� y(t)k k= 0

Then, we get

x(t)= y(t) ð58Þ

Hence, we proved the uniqueness of the solution of
equation (3).

Numerical results and discussions

Here, we compute the numerical solution of fractional
model of logistic equation (3) using perturbation-
iterative technique and Padé approximation.24 For the
numerical calculation, the initial condition is taken as
x(0)= 0:5. In Figures 1 and 2, growth of population
x(t) is investigated with respect to various values of b

and l= 1=3 and l= 1=2, respectively. The graphical
representations show that the model depends notably
to the fractional order. From Figures 1 and 2, we can
observe that the growth of population increases with
increasing value of order of time-fractional derivative
b: Thus, the fractional model narrates a new character-
istic at b= 0:80 and b= 0:90 that was invisible when
modeling at b= 1.

Figure 1. The response of solution x(t) versus t at l= 1=3 for
distinct values of b.
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Conclusion

In this article, we have studied the logistic equation
involving a novel Caputo–Fabrizio fractional deriva-
tive. The stability analysis of model is conducted. The
existence and uniqueness of the solution of logistic
equation of fractional order are shown. The numerical
solution is obtained using an iterative scheme for the
arbitrary order model. The most important part of this
study is to analyze the fractional logistic equation and
related issues. It is also observed that the order of time-
fractional derivative significantly affects the population
growth. Hence, we conclude that the proposed frac-
tional model is very useful and efficient to describe the
real-world problems in a better and systematic manner.
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