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The aim of this paper is to deal with the pulsatile flow of blood in stenosed arter-
ies using one of the known constitutive models that describe the viscoelasticity of 
blood witch is the generalized Oldroyd-B model with a variable-order fractional 
derivative. Numerical approximation for the axial velocity and wall shear stress 
were obtained by use of the implicit finite-difference scheme. The velocity profile is 
analyzed by graphical illustrations. This mathematical model gives more realistic 
results that will help medical practitioners and it has direct applications in the 
treatment of cardiovascular diseases.
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Introduction

The non-Newtonian fluids give more realistic behavior of real and biological fluids 
and they are appropriate in technological applications because of it viscosity that does not 
follow the relation between viscous stress and rate of change witch is linear for the case of a 
Newtonian fluid. The non-linear dependence makes the study of the fluid flow becomes more 
complicated and not like the Newtonian fluids.

In the previous researches there are large number of studies involving Newtonian 
fluids leading to closed form analytical solutions. But, for non-Newtonian fluids it is quite hard 
to obtain exact solutions. Many researches are denoted to study blood flow in arteries with the 
consideration that blood behaves as Newtonian or non-Newtonian fluids and in many cases 
blood behaves as a non-Newtonian fluid especially at low shear rate. The Oldroyd-B model, 
introduced by Oldroyd [1, 2], is one of the simplest constitutive model that describes the flow of 
viscoelastic fluids especially polymer and biological liquids. Some of the interesting Oldroyd-B 
fluid flows are presented in [3-6]. Recently, Shahid et al. [7] examined the flow of an Oldroyd-B 
fluid over an infinite flat plate.

Fractional derivatives have been known for a long time ago, and they had a real suc-
cess in describing some complex dynamics and the rheological properties of many types of 
fluids with more clear and deep understanding of its behavior by just substituting the time or-
dinary derivatives in the constitutive equations by derivatives of fractional order. Various work 
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are made in this subject, as presented in [8-10]. This type of calculus allows defining precisely 
non-integer order derivatives or integrals. Some recent work on the fluid flows with fractional 
derivative models can be found in [11-15]. More recently, some results using alternative analyt-
ical approach to solve some problems with second order fluid can be found in [16, 17].

More recently, many researchers proposed an extension to the known constant-order 
(CO) fractional derivatives to variable-order (VO) witch gives more realistic results than the 
usual derivative or the CO fractional derivative in the description of the complex dynamics. In 
particular it has been found to be quite flexible in describing viscoelastic behavior. In general, 
these constitutive equations are derived from known models via substituting time ordinary de-
rivatives of stress and strain by derivatives of fractional order. The original work of VO opera-
tor may be wrote by Samko and Ross [18, 19] witch gave the introduction to the VO integration. 
It has been known as a great way in the field of modeling real problems in many fields [20-22]. 
Some procedures are elaborated to find exact or numerical solution to such complex derivative 
[23, 24]. More references on VO fractional models are cited, for VO fractional diffusion model 
[25], difference between VO and constant order models [26].

For the moment, investigating the VO differential equations numerically is easy and 
more practical instead of searching for an analytical solution, witch are hard to obtain for some 
complex equations. Zhuang et al. [27] studied numerically VO fractional equations using finite 
difference schemes, the explicit scheme for VO fractional non-linear diffusion equation have 
been investigated by Lin et al. [28] and more recently Sun et al. [29] studied different numerical 
schemes for VO time-fractional diffusion equations.

The study of blood flow through 
different types of arteries and different 
shapes of the stenosis is important in 
understanding of many cardiovascular 
diseases, one of them is atherosclerosis, 
fig. 1. In reality many geometries of ves-
sels can be considered as long, narrow, 
and tapering cones. Akbar et al. [30] 
analyzed the effects of vessel tapering 
together with the asymmetric stenosed 
tapered artery on the flow by considering 
blood as a nanofluid. Also the stenosis 
may grow up in series manner, overlap 

with each other and it would be appear like ω-shape. Srivastava and Mishra [31] explored the 
arterial blood flow through an overlapping stenosis by treating the blood as a Casson fluid. 
More recently Bakhti and Azrar [32] have analyzed the effects of asymmetric stenosed tapered 
artery on the flow using the Couple-Stress fluid.

In this paper a mathematical model for the pulsatile blood flow through tapered ste-
nosed artery due to pressure gradient is presented by considering blood as a VO fractional 
Oldroyd-B fluid in a circular tube. The motivation is to give more realistic understanding of the 
blood flow in stenosed arteries using fractional calculus. The main aim of this work is to study 
numerically these phenomena and give numerical illustrations of the axial velocity as well as 
to study the effect of different fluid and geometry parameters on the flow. Results for the Old-
royd-B, VO fractional Maxwell, ordinary Maxwell fluids, and Newtonian fluids are obtained as 
limiting cases for different values of the model parameters.

Blood flowPlaque

Figure 1. Atherosclerosis is the buildup of fatty 
materials that can damage and clot arteries witch lead 
to constrict blood flow
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Problem formulation

A mathematical model is elaborated for unidirectional pulsatile blood flow through a 
rigid tapered stenosed artery by considering blood as an incompressible as on the generalized 
Oldroyd-B fluid with VO fractional derivatives. The geometry of the tapered stenosed artery is 
shown in figs. 2(a) and 2(b), and can be expressed mathematically as [32]:
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where R0 is the radius of the non-tapered and healthy region of the artery, n – the shape of the stenosis, 
L0 – the stenosis length, d – the location of stenosis, ϵ – the maximum height of the stenosis, ζ = tan ϕ 
– the tapering parameter which represents the slope of the tapered vessel with the tapering angle, ϕ,  
ϕ < 0, ϕ > 0, and ϕ = 0 are for converging, diverging, and non-tapering artery, respectively.

(a) 					        (b)

Figure 2. The 2-D view of a stenosed (a) tapered (b) artery
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An incompressible generalized Oldroyd-B fluid with VO derivative is characterized 
by the following constitutive equations [12, 13]:

	 ( ) ( )( , ) ( , ), x t T x t T
t r tp D Dα βλ µ λ = − + + − − = + − − T I S S S LS SL A A LA AL 	 (2)

where T presents the Cauchy stress tensor, p – the pressure, S – the extra-shear stress tensor,  
V= ∇L


– the velocity gradient where V


 being the velocity vector, A = L + LT – the first Rivlin-Er-
icksen tensor, µ – the viscosity of the fluid, and λ and λr are the relaxation and retardation times, re-
spectively. The superscript T indicates the transpose operation and ( , )x t

tDα , ( , )x t
tDβ  denote the VO (in 

time, t, and space, x) fractional time-derivatives in Caputo’s sense, which is defined [20]:
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where Γ(•) is the gamma function. This VO fractional derivative reduces to the local derivative 
when α = 1 because 1 d /dtD f f t= .

The conservation equations which govern the Oldroyd-B fluid flow can be written:
	 V 0∇ ⋅ =



	 (4)

	 dV b
dt

ρ ρ= ∇ ⋅ +T




	 (5)
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where ρ denotes the density, b


 – the body accelerations field, d/dt – the material time differen-
tiation, and ∇ – the divergence operator.

In the following analysis, we suppose that the flow is in the z-axis direction so the 
velocity field and stress are of the form:

	 V V( , ) ( , )e , ( , )ez zRZr t w r t r t= = = τS
 

 

	 (6)

where ez


 and w are the unit vectors and velocity in the z-direction, respectively, τRZ – the shear 
stress tensor acting on the r-plane toward the z-direction.

The pressure gradient ∂p/∂z, produced by the pumping action of the heart, is given by:

	 cos( )s p
p k k t
z φ ω∂

− = +
∂

	 (7)

where ks is the steady part of the pressure gradient, kϕ – the amplitude of the oscillatory part, and 
ωp = 2πfp, where fp is the heart pulse frequency.

The continuity equation is satisfied when we substitute eq. (6) into eq. (4), while the 
substitution into eqs. (2) and (5) gives us the following equations:
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ρ τ∂ ∂ ∂ = − + + ∂ ∂ ∂ 
	 (9)

Eliminating τ between the two equations, leads to the following governing equation:
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The following dimensionless quantities are introduced:
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The dimensionless form of the geometry (1) after dropping the stars is thus obtained:
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where γ = L0/L1, and w0 is a typical axial velocity. 
Also, eq. (10), after dropping the stars, becomes:
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where 2 2
0 ( / )Rα ωρ µ=  is Womersley parameter.

The corresponding non-dimensional initial and boundary conditions are:
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Numerical approximations

The implicit finite-difference scheme is applied to the problem (10) alongside with 
the initial and boundary conditions (14). Before that, let suppose that eq. (10) has a unique 
and smooth solution. Now, let ri = i∆r, 0 ≤ i ≤ M, M∆r = R and tn = n∆t, 0 ≤ n ≤ N , N∆t = T, 
where ∆r is the radial step and ∆t is the time step, also M and N are grid points, we suppose that 

( , )n
i i nw w r t .

The first and second derivative are classically approximated by the implicit finite dif-
ference equations:
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The discretization of the VO fractional derivative is given [27]:
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Therefore, the implicit scheme of the problem can be written:
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where
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For the boundary and initial conditions:
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It should be pointed out that the sum terms automatically vanishes when n = 0. Equa-
tion (18) can be transferred into the following matrix form:
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where
	 [ ] [ ] [ ]1 2A A A= + 	 (21)

	

[ ]

[ ]

1 2

1 1

2 2

2

2 2

1

1 1 0 0
1 2 1

1A 0 0
1 2 1

0 0 1 2
1/ 1/ 0 0
0 1/ 1/

1A 0
1/ 1/

0 0 1/
M M

M

r

r r
r r

r
r r

r
− −

−

− 
 − 
 =

∆  
− 

 − − 
− 
 − 
 =

∆  
− 

 − 



 

  

 





 

   

  

 

	 (22)



Bakhti, H., et al.: Pulsatile Blood Flow in Constricted Tapered Artery Using ... 
THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 29-40	 35

	

( )

( )

( )

( )

1 1
1 1

1 1
1 1

1 1
1 1

1 1

1 1
1 1

2 2

diag , diag

2 2

n n

n n
M M

n n

n n
r

n n
M M

t t

t t

α β

α β

α β

ν λ η λ

α β

+ +

+ +
− −

− −

+ +

+ +

− −

+ +
− −

   ∆ ∆
   
Γ − Γ −   

      = =      
   ∆ ∆   
   Γ − Γ −   

  	 (23)

	

1
1

1 1 1

1
1

1
,

1

n

n n n

n
M

w
W F f

w

+

+ + +

+
−

   
   = =   

     

  	 (24)

	

1, 1 1, 1

1 1

1, 1 1, 1

diag , diag

n n
k k

n n
k k

M n M n
k k

d c
D C

d c

+ +

+ +

− + − +

   
      = =      
      

  	 (25)

and [I] is the identity matrix of dimensions (M–1)×(M–1). Using the same process for shear 
stress, the implicit scheme of eq. (8), is given by:
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Equation (26) can be transferred into a matrix form:
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The presented methodological approach allows investigating the velocity field w(r,t) 
corresponding to the pulsatile flow in a tapered stenosed artery using the generalized Oldroyd-B 
model with VO fractional derivative where the flow is due to pressure gradient. The model as 
well as material and geometrical parameters effects on the velocity field can be easily analyzed. 
Other models such as Maxwell and second grade fluids can be resulted as special cases of the 
presented approach.
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Results and discussion

Let us consider a stensed tapered arteries, presented in fig. (2), with the following 
parameters: d = 0.5, L0 = 1, L = 2, n = 5, ks = 0.8, kθ = 0.1, and b = 0.5.

We suppose that the VO fractional derivatives α and β are given by:

	 ( , ) 0.5 0.4cos 0.1 rr t t
R

α  = + π + 
 

	 (29)

	 2( , ) 0.1 0.05cos 0.1rr t t
R

β  = + π + 
 

	 (30)

In order to reveal some relevant physical aspects of the obtained results, the diagrams 
of the velocity profiles w(r,t) are depicted against r. The effects of various geometric parameters 
and the parameters arising out of the fluid model are discussed. The parameters considered are 
tapered parameter, ζ, the height of the stenosis, ϵ, relaxation time, λ, the retardation time, λr, 
Womersley number, α, and time, t.

Figures 3 and 4 illustrate the variation of axial velocity profile for different values of 
ζ and ϵ, respectively. It is observed from fig. 3, that the velocity increases by the increase in the 
tapered parameter, ζ, and from fig. 4 that the velocity profile decreases for increasing the height 
of the stenosis because of the obstruction to the flow.

The effect of the relaxation time, λ, on the fluid flow is shown in fig. 5 in which the velocity 
is a decreasing function of the relaxation time. On the other hand, the influence of the retardation 
time, λr, is shown in fig. 6 in which the velocity is also a decreasing function of the retardation time.

Figures 7 and 8 show the variation of the velocity profile with respect to Womersley 
parameter, α, and time, t, respectively. It can be seen that w(r,t) is decreasing (resp. increasing) 
function of Womersley parameter α (resp. time t).

It is observed from experimental data that the peak value of the velocity does not al-
ways appears in the middle of the artery (symmetry axis) but for some cases the peak velocity 
can be near the artery wall (between the center of the artery and the wall). Thus, the use of the 
VO (in space and time) fractional derivative in fluid models can give us more realistic results 
than the usual derivative or the CO fractional derivative as also observed from experimental 
results [33, 34].

Figure 3. Variation of axial velocity w with 
respect to ζ when ϵ = 0.2, λ = 15, λr = 10, α = 2,  
and t = 0.8
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Figure 4. Variation of axial velocity w with 
respect to ϵ when ζ = 0.05, λ = 15, λr = 10, α = 2, 
and t = 0.8
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As a comparison, the obtained results of w(r,t) based on the VO fractional models 
corresponding to Oldroyd-B, Maxwell, and second grade fluids are plotted in fig. 9 for fixed 
values of material parameters and time. It is observed that the peak value of the velocity appears 
in middle of the artery (symmetry axis) for the Oldroyd-B and second grade fluids, while for 
Maxwell fluid the peak velocity appears near the artery wall. Moreover, in the middle of the ar-
tery the second grade fluid is the swiftest. Also, near the artery wall, the Maxwell fluid appears 
to be the fastest and Oldroyd-B fluid is the slowest.

Based on the presented model, various kinds of fractional derivatives can be used and 
the resulted profile w(r,t) can be obtained. The velocity profile w(r,t) can take several forms 
when we use different types of fractional models as shown in fig. 10. For these results we 
take VO (in time and space) fractional derivative VO – α(r,t) = 0.5 + 0.4cos(πr/R) + 0.1t and  
β(r,t) = 0.1 + 0.05cos(πr/R) + 0.1t2, time-order (TO) fractional derivative – α(r, t) = 0.6 + 0.1t 
and β(r, t) = 0.2 + 0.1t2, CO fractional derivative – α(r,t) = 0.6 and β(r,t) = 0.2.

The numerical computations show that the solutions, obtained by use of the implicit 
finite-difference scheme and presented graphically, satisfy the imposed initial and boundary 
conditions. Also, we can obtain the solutions corresponding to Maxwell fluids and second grade 
fluids by taking λr → 0 or λ → 0, respectively.

Figure 5. Variation of axial velocity w with 
respect to λ when ζ = 0.05, ϵ = 0.2, λr = 10, α = 2, 
and t = 0.8

w
0 0.005 0.010 0.015

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
λ  = 12
λ  = 15
λ  = 30

Figure 6. Variation of axial velocity w with 
respect to λr when ζ = 0.05, ϵ = 0.2, λ = 15, α = 2, 
and t = 0.8
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Figure 7. Variation of axial velocity w with 
respect to α when ζ = 0.05, ϵ = 0.2, λ = 15, λr = 10, 
and t = 0.8
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Figure 8. Variation of axial velocity w with 
respect to t when ζ = 0.05, ϵ = 0.2, λ = 15, λr = 10, 
and α = 2
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Conclusions

A mathematical model has been elaborated to investigate the pulsatile flow of blood 
through an asymmetric tapered stenosed artery due to pressure gradient using the generalized 
Oldroyd-B with VO fractional derivative. The implicit finite difference approach combined with a 
VO fractional discretization approach is elaborated. A matrix formulation is presented allowing to 
take into account various types of VO fractional derivative parameters as well as various geomet-
rical parameters. Numerical solutions are obtained and the effects of various geometric and fluid 
parameters on the axial velocity of the blood are studied.

Generalized Oldroyd-B fluid can be regarded as an extension of the Maxwell 
and second grade fluid. Also when λ = 0 and λr = 0, we obtain the Newtonian fluid. When  
λr = 0, we obtain the Maxwell fluid and when λ = 0, we have the second grade fluid. As previously 
mentioned a numerical scheme was followed to solve the mathematical model of blood flow through 
stenosed tapered artery under some assumptions. The resultant observations are summarized:

yy As the height of the stenosis is increasing the obstruction to the flow of blood is increasing.
yy Diverging tapered artery is increasing the obstruction to the flow.
yy The increment in the Womersley number decreases the blood velocity.
yy The axial velocity are increasing function of time.
yy The velocity is a decreasing function of relaxation time λ and retardation time λr.

It is observed from the comparison between the fluid models that the peak value of the 
velocity appears in middle of the artery (symmetry axis) for the Oldroyd-B and second grade 
fluids, while for Maxwell fluid the peak velocity appears near the artery wall.

The use of the VO fractional derivative in fluid models is giving more realistic results 
than usual derivative or CO fractional derivative.

The modeling and simulation of the previously mentioned phenomena is expected to 
be very useful in predicting the behavior of physiological parameters in the diagnosis of various 
arterial diseases.

Nomenclature

A	 −	 Rivlin-Ericksen tensor, (= L + LT ), [s−1]
b


	 −	 body accelerations, [N = kgms−2] tDα 	 −	 fractional time-derivatives in Caputo’s  
	 sense, [–]

Figure 9. Axial velocity w for Oldroyd-B, 
Maxwell, and second grade fluids with VO 
fractional derivative when ζ = 0.05, ϵ = 0.2,  
λ = 15, λr = 10, α = 2, and t = 0.8
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Figures 10. Axial velocity w for VO, time-variable, 
and CO fractional derivative when ζ = 0.05, ϵ = 
0.2, λ = 15, λr = 10, α = 2, and t = 0.8
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d	 −	 location of the stenosis, [m]
fp	 −	 heart pulse frequency, [Hz = s−1]
ks	 −	 steady-state part of the pressure gradient, 
		  [Pam−1]
kϕ	 −	 amplitude of the oscillatory part, [Pam−1]
n	 −	 shape of the stenosis, [−]
L	 −	 velocity gradient, (= V∇



), [s−1]
L0	 −	 stenosis length, [m]
p	 −	 pressure, [Pa]
∂p/∂z	−	 pressure gradient, [Pa∙m−1]
R(z)	 −	 radius of the tube, [m]
S	 −	 extra-shear stress tensor, [Pa]
t	 −	 time, [s]
T	 −	 Cauchy stress tensor, [Pa]
V


	 −	 velocity vector, [ms−1]
x	 −	 space, [m]

Greek symbols

α 	 −	 Womersley number, [= R0(ωρ/μ)1/2], [−]
α(x,t)	−	 the VO of the fractional derivative, [−]
Γ(•)	 −	 gamma function, [–]
γ	 −	 defined constant (= L0/L1), [−]
ζ	 −	 tapering parameter (= tan ϕ), [−]
ϵ	 −	 maximum height of the stenosis, [m]
λ, λr	 −	 relaxation and retardation times, [−]
µ	 −	 dynamic viscosity, [Pa∙s]
ρ	 −	 density of the fluid, [kgm−3]
ωp	 −	 heart angular frequency, [Hz = rads−1]
ϕ	 −	 tapering angle, [rad]
τRZ		  shear stress tensor acting on r-plane toward 

	 z-direction, [Pa]

Abbreviations

CO	 −	 constant-order 
VO	 −	 variable-order
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