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Abstract: Raman shifts of the soft mode A1g and the B1 mode are calculated at various pressures at room temperature

for the cubic-tetragonal transition (PC = 9.5 GPa) in SrTiO3 . This calculation is performed using the observed volume

data through the mode Grüneisen parameters of A1g and B1 , which vary with pressure, by fitting to the experimental

wavenumbers in this crystalline system. Calculated Raman shifts are then used as order parameters to predict the

pressure dependence of the damping constant and the inverse relaxation time for the cubic-tetragonal transition in

SrTiO3 . Our predictions from the pseudospin-phonon coupling and the energy fluctuation models can be compared with

the experimental measurements when available in the literature.
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1. Introduction

SrTiO3 as a model perovskite (ABO3) exhibits a ferroelastic-antiferrodistortive (AFD) transition from a cubic

to a tetragonal structure. Its cubic-tetragonal transition has been the subject of various studies due to its

quantum paraelectric behavior at very low temperatures and ferroelastic AFD transition at higher temperatures

[1]. Some review papers [2–4] have appeared in the literature about its phase transition. Several experimental

and theoretical studies have explained the cubic-tetragonal transition in SrTiO3 . Among those studies, acoustic

measurements at low temperatures [5–7] and at high pressures [8] and Brillouin [9], Raman [1,10], and X-ray

diffraction [1] have been reported, as was also pointed out previously [1].

Raman studies have revealed that there are 7 Raman active modes appearing in the tetragonal phase

with the I4/mcm space group, which are not allowed due to symmetry in the cubic phase with the Pm3̄m

space group [1,11]. Among those Raman-allowed modes, the two A1g and Eg are the soft modes that drive

the antiferrodistortive phase transition in SrTiO3 . The 1 (A1g + Eg) and 2 (B1g + Eg) Raman modes in

particular have been previously studied experimentally at various high pressures (up to 53 GPa) at constant

temperatures for the cubic-tetragonal transition in SrTiO3 [1].

In this study, we calculate the pressure dependence of the Raman wavenumbers of the A1g and B1 modes

from the observed volume data [1] through the mode Grüneisen parameter close to the cubic-tetragonal transition

(P = 9.5 GPa) at room temperature for SrTiO3 . This is performed by fitting to the experimental Raman

wavenumbers of the A1g soft mode and the B1 mode of SrTiO3 . From the calculated Raman wavenumbers, the
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pressure dependence of the damping constant and the inverse relaxation time is calculated for this crystal using

the pseudospin-phonon coupled (PS) model and the energy fluctuation (EF) model, as we have also studied as

examples for BaTiO3 [12] and SrZrO3 [13].

Below, in Section 2, we give an outline of the theory. Section 3 gives our calculations and results.

Discussion and conclusions are given in Sections 4 and 5, respectively.

2. Theory

The volume dependence of the Raman wavenumber in SrTiO3 can be defined as the mode Grüneisen parameter:

γ = − V

ω
(
dω

dV
). (2.1)

When the Raman shifts and the volume V both depend on the pressure at a constant temperature (room

temperature), the mode Grüneisen parameter can also depend on the pressure (Eq. (2.1)). If we call it the

isothermal mode Grüneisen parameter γT (P ), it can be expressed as

γT (P )= − V (P )

ω (P )

(∂ω/∂P )T
(∂V /∂P )T

(2.2)

within the pressure interval where the volume and Raman shifts are obtained. In the case of SrTiO3 as we

calculated here, the ratio of the isothermal Grüneisen parameter (γT /γT,max) of the soft mode A1g varies from

about 0.2 to 1.0 in the pressure interval of 10 to 35 GPa. For the B1 mode, variation of the γT is between

about –1.5 and 6 within the pressures of 2 < P (GPa) < 12.5. From this definition of γT (P ), the Raman shifts

can be calculated as given below:

ωT (P ) = ω0 exp[− γT (P ) ln(
VT (P )

V0
)], (2.3)

where ω0 and V0 denote the Raman wavenumber and the volume at room temperature (T = 300 K, P =

0). Thus, by determining γT (P ) and using the volume data at various pressures, the Raman shifts can be

calculated in SrTiO3 .

Regarding the tetragonal-cubic transition in SrTiO3 (PC = 9.5 GPa), the pressure dependence of the

Raman wavenumber can be treated as the order parameter S (tetragonal phase). This then leads to predict

the pressure dependence of the damping constant (linewidth) according to the relations

ΓSP = A
′
(1− S2)ln[

TC

T − TC(1 − S2)
] (2.4)

and

ΓSP = A[
T (1 − S2)

T − TC(1 − S2)
]
1/2

, (2.5)

where A
′
and A are amplitudes, and TC is the critical temperature for the tetragonal-cubic transition in

SrTiO3 . The damping constants ΓSP due to the PS model (Eq. (2.4)) and due to the EF model (Eq. (2.5))

were derived by Lahajnar et al. [14] and Schaack and Winterfelt [15] on the basis of the models of Yamada et
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al. [16] and Matsushita [17]. Those expressions (Eqs. (2.4) and (2.5)) have been used to explain the mechanism

of phase transition in KDP previously [18,19].

Once we predict the pressure dependence of the damping constant (linewidth), activation energy U can

be deduced using the following expression [20–22]:

Γ ∼= Γvib + C exp(−U/kBT ), (2.6)

where Γvib represents the contribution to the damping constant due to vibrations, which can be neglected close

to the tetragonal-cubic transition in SrTiO3 . This is due to the orientational motion of the BO6 octahedra in

ABO3 perovskites as in SrTiO3 , which causes large bandwidth of the highly energetic vibrational modes

(vibrons) in the ordered (ferroelectric) phase. With increasing temperature above the transition, a large

reduction of the bandwidth occurs in the disordered (paraelectric) phase of SrTiO3 in particular. Regarding

the lattice modes of the A1g soft mode and B1 mode with the low energies that we study here, variation of the

bandwidth (damping constant) with the temperature should not be unexpectedly very large as the vibrations

during the phase transition. Then Eq. (2.6) becomes

lnΓ ∼= lnC − U/kBT , (2.7)

with C as a constant and kB the Boltzmann constant. A plot of lnΓ as a function of inverse temperature

(1/T ) within the pressure range of the tetragonal-cubic transition in SrTiO3 gives rise to the activation energy

U , which can be compared with the kBTC value at T = TC . Also, using the Raman wavenumber and the

damping constant (linewidth), the pressure dependence of the inverse relaxation time (τ−1) can be predicted

according to

τ−1 =ω2
/
Γ (2.8)

for the tetragonal-cubic transition in SrTiO3 .

3. Calculations and results

The Raman wavenumbers of the soft A1g and B1 modes were calculated using the observed volume data [1]

by determining the isothermal mode Grüneisen parameter γT according to Eq. (2.3) at various pressures in

the tetragonal phase of SrTiO3 . For this determination of γT as a function of pressure, we used the observed

Raman wavenumbers of these modes with the volume data [1], which were analyzed at various pressures by

means of the quadratic function

V (P ) = c0 + c1P + c2P
2, (3.1)

where c0 , c1 , and c2 are constants. These coefficients were determined from our analysis as given in Table 1.

Table 1. Values of the coefficients for the observed volume data [1] with pressure at room temperature according to

Eq. (3.1) for the tetragonal-cubic transition in SrTiO3 .

Crystal c0 (Å
3
) c1 (Å

3
/
GPa) c2 (Å

3
/
GPa2)

SrTiO3 58.98 –0.30 1.72

In order to calculate the Raman wavenumbers of the modes (A1g and B1), we analyzed the pressure

dependence of the observed Raman wavenumbers according to

ωobs (P ) = a0 + a1P + a2P
2, (3.2)
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with the coefficients a0 , a1 , and a2 , which we determined, as given in Table 2. We then calculated the Raman

wavenumbers (ωcal) of those modes by using the pressure dependence of γT /γT,max (A1g) and γT (B1) as

determined (Eq. (2.2)) and the observed volume data in Eq. (2.3) by means of the observed wavenumber data

(ωobs) [1] according to

Table 2. Values of the coefficients a0 , a1 , and a2 for the observed wavenumbers [1] with pressure for the Raman modes

of A1g and B1 according to Eq. (3.2). The fitting parameters of b0 , b1 , and b2 (Eq. (3.2)) are also given here for the

two modes studied for the tetragonal-cubic transition in SrTiO3 .

Raman modes a0 (cm−1) a1 (cm−1
/
GPa) a2 (cm−1

/
GPa2) b0x10

4 (cm−1) b1x10
2 b2 (cm)

A1g –64.51 10.87 0.127 32.572 96.426 71.37
B1 237.95 9.50 0.450 –0.119 0.126 –0.027

ωobs (P ) = b0 + b1ωcal + b2ω
2
cal, (3.3)

where b0 , b1 , and b2 are constants that we determined (Table 2). The mode Grüneisen parameter γT was

normalized with respect to its maximum value (γT /γT,max) for the soft mode A1g due to the fact that γT

diverges as PC is approached, whereas γT for the B1 mode does not exhibit the anomalous behavior at P =

PC in SrTiO3 , as plotted in Figures 1 and 2 for soft mode A1g and the B1 mode, respectively. Figures 3 and

4 give our calculated Raman wavenumbers of the A1g soft mode and B1 mode, respectively, as a function of

pressure close to the tetragonal-cubic transition (PC = 9.5 GPa) in SrTiO3 . The observed Raman wavenumbers

[1] of those modes are also shown in these figures.

10 15 20 25 30 35

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

γ T
T

/γ
.m

ax

P(GPa)

A1g

0 5 10 15

0

3

6

P(GPa)

γ T
(P
)

B1

Figure 1. Variation of the isothermal mode Grüneisen

parameter (γT ) (normalized, γT,max is the maximum

γT ) with pressure for the soft mode A1g close to the

tetragonal-cubic transition (PC = 9.5 GPa) in SrTiO3 .

Figure 2. Variation of the isothermal mode Grüneisen

parameter (γT ) with pressure for the B1 mode close to the

tetragonal-cubic transition (PC = 9.5 GPa) in SrTiO3 .

The Raman wavenumbers calculated for the soft mode A1g and B1 mode were then used to evaluate the

pressure dependence of the damping constant Γ for the PS model (Eq. (2.4)) and the EF model (Eq. (2.5)) by

assuming that the Raman wavenumber can be considered as the order parameter S in the tetragonal phase (P

< PC) of SrTiO3 . Since the order parameter S varies from 0 (cubic phase) to 1 (tetragonal phase), the Raman
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Figure 3. Raman shifts calculated for the soft mode A1g

as a function of pressure according to Eq. (2.3) through

Eq. (3.3) using the observed volume data [1] for the

tetragonal-cubic transition (PC = 9.5 GPa) in SrTiO3 .

The observed Raman shifts [1] are also shown here.

Figure 4. Raman shifts calculated for the B1 mode as

a function of pressure according to Eq. (2.3) through Eq.

(3.3) using the observed volume data [1] for the tetragonal-

cubic transition (PC = 9.5 GPa) in SrTiO3 . The observed

Raman shifts [1] are also shown here.

wavenumber of the soft mode was normalized (ω/ωmax) with respect to the maximum frequency (ωmax). The

damping constant Γ was then predicted from ω/ωmax as a function of pressure for both models studied. We plot

in Figures 5 and 6 our calculated damping constants Γ for the A1g soft mode and the B1 mode, respectively,

using both models (PS model and EF model) as a function of pressure close to the tetragonal-cubic transition

(PC = 9.5 GPa) in SrTiO3 .
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Figure 5. Damping constant (Γ) calculated for the soft

mode A1g as a function of pressure using the pseudospin-

phonon coupled (PS) model and the energy fluctuation

(EF) model according to Eqs. (2.4) and (2.5), respectively,

for the tetragonal-cubic transition (PC = 9.5 GPa) in

SrTiO3 .

Figure 6. Damping constant (Γ) calculated for the

B1 mode as a function of pressure using the pseudospin-

phonon coupled (PS) model and the energy fluctuation

(EF) model according to Eqs. (2.4) and (2.5), respec-

tively, for the tetragonal-cubic transition (PC = 9.5 GPa)

in SrTiO3 .

530
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Using the pressure dependence of the Raman wavenumbers (ω/ωmax) and the damping constant (Γ/Γmax)

as normalized with the maximum values, we then predicted the inverse relaxation time (τ−1) of the A1g soft

mode and the B1 mode according to Eq. (2.8) as a function of pressure close to the tetragonal-cubic transition

in SrTiO3 , as plotted in Figures 7 and 8 due to both models (PS and EF) studied. Finally, within the pressure

interval corresponding to the temperature range in the T-P phase diagram [1], we extracted the values of the

activation energy U according to Eq. (2.7). This was done for the pressure interval of 11.4–18.1 GPa for the

soft mode A1g and the two pressure intervals of 1.9–12.1 GPa and 10.7–12.1 GPa as studied for the damping

constant Γ using the predictions of the PS model and the EF model, respectively. Our lnΓ against T plots

(Eq. (2.7)) of the A1g soft mode are given for both models (PS and EF) in Figures 9 and 10, respectively.

Within the pressure intervals, values of the activation energy U that we deduced for both models and also the

kBTC values are given in Table 3. For the B1 mode, the predicted values of the damping constant Γ were not

adequate for the PS model in the pressure region of 10.7–12.1 GPa so that we extracted the activation energy

for the 1.9–12.1 GPa pressure interval using the EF model only, as also given in Table 3.
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Figure 7. The inverse relaxation time (τ−1) calculated

for the soft mode A1g as a function of pressure using the

pseudospin-phonon coupled (PS) model and the energy

fluctuation (EF) model according to Eq. (2.8) for the

tetragonal-cubic transition (PC = 9.5 GPa) in SrTiO3 .

Figure 8. The inverse relaxation time (τ−1) calcu-

lated for the B1 mode as a function of pressure using

the pseudospin-phonon coupled (PS) model and the en-

ergy fluctuation (EF) model according to Eq. (2.8) for the

tetragonal-cubic transition (PC = 9.5 GPa) in SrTiO3 .

Table 3. Values of the activation energy (U) deduced for both models (pseudospin-phonon coupled model - PS and

energy fluctuation model - EF) according to Eq. (2.7) in the pressure intervals indicated for the tetragonal-cubic transition

in SrTiO3 .

Raman modes PC (GPa) TC (K) U (meV) PS U (meV) EF P (GPa) kBTC (meV)
A1g 9.5 288.0

–420 –253 11.4–18.1
25

B1 - 395 1.9–12.1

4. Discussion

Pressure dependences of the Raman wavenumbers of the soft mode A1g and the B1 mode were calculated using

the observed volume data [1] for the tetragonal-cubic transition in SrTiO3 . For this calculation of the Raman
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Figure 9. Variation of lnΓ with inverse temperature

for the soft mode A1g according to Eq. (2.7) using the

pseudospin-phonon coupled (PS) model within the pres-

sure range of 11.4–18.1 GPa for the tetragonal-cubic tran-

sition in SrTiO3 .

Figure 10. Variation of lnΓ with temperature for the

soft mode A1g according to Eq. (2.7) using the energy

fluctuation (EF) model within the pressure range of 11.4–

18.1 GPa for the tetragonal-cubic transition in SrTiO3 .

wavenumbers, the pressure dependences of the mode Grüneisen parameters of the soft mode A1g (Figure 1) and

the B1 mode (Figure 2) were determined. The normalized mode Grüneisen parameter (γT /γT,max) for the soft

mode A1g and γT for the B1 mode decrease as the pressure increases. This decrease is anomalous for the soft

mode A1g , which diverges as the critical pressure (PC = 9.5 GPa) is approached (Figure 1), whereas for the B1

mode a smooth (linear) decrease occurs with increasing pressure (Figure 2) for the tetragonal-cubic transition

in SrTiO3 . This divergence behavior of the γT /γT,max for the soft mode A1g at the critical pressure (PC = 9.5

GPa) is rather unusual as compared to the soft mode A1 (1TO) with the value of its mode Grüneisen parameter

–4.7 [23] and –4 ± 0.5 [24] at PC = 12.1 GPa (at room temperature) in PbTiO3 . Also, our value of γT ∼=
0.7 for the B1 mode at PC = 9.5 GPa of SrTiO3 can be compared with the values of –0.41 [23] and –0.44 ±
0.09 [24] of the B1 + E mode for the cubic-tetragonal transition at PC = 12.1 GPa (at room temperature) in

PbTiO3 . Our predictions for the γT /γT,max of the A1g soft mode and γT value of the B1 mode for SrTiO3

can also be compared with those values when available in the literature.

The Raman wavenumbers of the soft mode A1g were then calculated using the observed volume data

[1] by means of the pressure dependence of the γT /γT,max (Figure 1) according to Eq. (2.3), which was fitted

(Eq. (3.3)) to the experimental wavenumber data [1], as shown in Figure 3. As the observed Raman shifts [1]

increase with pressure, our calculated values saturate at about 20 GPa (Figure 3) according to Eq. (2.3). This

difference between the observed and calculated Raman shifts may be due to the ratio of the mode Grüneisen

parameter γT /γT,max for the A1g mode, which is almost independent of the pressure above about 20 GPa

(Figure 1). Since below 20 GPa γT /γT,max varies rapidly with the pressure (Figure 1), as the observed volume

[1] decreases correspondingly the Raman shifts increase with increasing pressure according to Eq. (2.3), as

observed experimentally [1]. For the B1 mode the calculated Raman wavenumbers (Eq. (2.3)) disagreed with

the observed wavenumbers [1] when Eq. (3.3) was fitted with the coefficients determined (Table 2), although

the Raman shifts increase with increasing pressure up to about 11 GPa as observed experimentally (Figure

4). Above 11 GPa, with a linear decrease of γT (Figure 2), a decrease in the observed volume [1] causes a
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decrease in the Raman shifts of the B1 mode with increasing pressure according to Eq. (2.3), as also observed

experimentally (Figure 4). Disagreement between our calculated and observed [1] Raman shifts of the mode

B1 occurs, which can be due to an almost linear decrease of the mode Grüneisen parameter γT for this mode

(Figure 2) as compared to a rapid decrease of the γT /γT,max for the A1g soft mode (Figure 1) with increasing

pressure. Although our calculated Raman shifts of the B1 mode were fitted to the observed data [1] according

to Eq. (3.3), as we also performed for the A1g soft mode, this disagreement also indicates that the A1g soft

mode is the driving mechanism for the tetragonal-cubic transition in SrTiO3 .

We used the pressure dependence of the Raman wavenumbers of both modes (A1g and B1) to predict

the damping constant Γ by means of the PS model and the EF model according to Eqs. (2.4) and (2.5), as

plotted in Figures 5 and 6, respectively. The critical behavior of the damping constant occurs at about 11 GPa

for the soft mode A1g due to both models (PS and EF models), as shown in Figure 5, which is not exhibited

by the predicted Γ for the B1 mode (Figure 6) for the tetragonal-cubic transition in SrTiO3 . The damping

constant of the soft mode A1g peaks at this pressure as predicted by both models (PS and EF). This critical

behavior of Γ is consistent with the divergence of the γT /γT,max of the A1g mode at nearly 11 GPa (Figure

1) since the damping constant (Γ) is related to the mode Grüneisen parameter (γT ) through the Raman shifts

(ω) as an order parameter.

Regarding the damping constant Γ of the B1 mode as predicted from the EF model, it decreases rapidly

at around P = 11 GPa when it peaks at 6 GPa and then increases with increasing pressure (Figure 6), although

its mode Grüneisen parameter (γT ) decreases smoothly (Figure 2). Correspondingly, Raman shifts of the B1

mode peak at nearly 11 GPa as calculated from Eq. (2.3) and as observed experimentally (Figure 4). This is

not seen for the observed [1] and calculated Raman shifts of the soft mode A1g (Figure 3). This can be clarified

by comparing our predicted damping constant Γ of the soft mode A1g and mode B1 from both models (PS

and EF) with the observed linewidths [1].

From the selection of Raman spectra as a function of pressure at room temperature, as observed experi-

mentally [1], while the Raman intensity seems to increase the bandwidths decreases for the soft mode A1g as

the pressure increases from 10 to 22 GPa, which agrees with our predictions of the damping constant Γ from

both models (Figure 5). On the other hand, the experimental measurements show that the Raman intensity

tends to decrease while the bandwidth increases for the B1 mode for pressures between 2 and 12 GPa [1], which

essentially agrees with our Γ values predicted from the PS model and partly agrees above 10 GPa due to the

EF model (Figure 6).

The inverse relaxation time (τ−1) of the soft mode A1g , which we calculated (Eq. (2.8)) from both

models (PS and EF), diverges at about 20 GPa (Figure 7). This does not indicate a transition occurring since

the relaxation time is accompanied with the damping constant (Γ) and the Raman shifts (ω) on the basis

of Eq. (2.8). Due to the fact that there is no divergence behavior of the Γ (Figure 5) and ω (Figure 3) of

the soft mode A1g at P = 20 GPa, the cubic-tetragonal transition occurs only at PC = 9.5 GPa (at room

temperature) in SrTiO3 , as observed experimentally [1]. However, the divergence behavior of the τ−1 seems to

occur above about PC = 9.5 GPa as expected for the B1 mode due to the PS and EF models (Figure 8). This

critical behavior is more apparent as predicted from the PS model, whereas the data points for the B1 mode as

calculated from the EF model are not adequate to describe the cubic-tetragonal transition in SrTiO3 . However,

regarding the pressure dependence of the damping constant Γ of the B1 mode, the critical behavior is better
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described by the EF model than the PS model (Figure 6). This also indicates that regarding Γ and τ−1 , one

model (PS or EF) is not adequate to describe the cubic-tetragonal transition in SrTiO3 . Finally, we extracted

the values of the activation energy U from the plots of Figures 9 and 10 as examples using the PS (Eq. (2.4))

and EF (Eq. (2.5)) models, respectively, according to Eq. (2.7) for the soft mode A1g and B1 mode in SrTiO3

(Table 3). Our U values were all negative for the soft mode A1g and we have very large values for the B1

mode above 10 GPa as compared with the kBTC value of 25 meV for SrTiO3 . In particular, the negative U

values for the soft mode A1g may indicate the AFD transition to a tetragonal structure from the cubic phase

due to the tilt instabilities at the zone boundary in SrTiO3 . In particular, the critical behavior of the mode

Grüneisen parameter (γT /γT,max) (Figure 1) and damping constant Γ (Figure 5) for the soft mode A1g , which

we calculated using the PS and EF models, indicates a second-order transition from cubic to tetragonal phase

in SrTiO3 . This is also supported by the pressure dependence of the Raman shifts of this soft mode (Figure

3), which we calculated using the volume data by means of the mode Grüneisen parameter. This also indicates

that the soft mode A1g is the driven mechanism of the cubic-tetragonal phase transition in SrTiO3 , as stated

above.

5. Conclusions

Raman wavenumbers of the soft mode A1g and the B1 mode were calculated as a function of pressure using

the observed volume data by means of the mode Grüneisen parameter for the cubic-tetragonal transition in

SrTiO3 . The pressure dependences of the damping constant and the inverse relaxation time of those modes

were also calculated using the PS and EF models for SrTiO3 . Our calculations show that the mode Grüneisen

parameter decreases rapidly for the soft mode A1g , whereas it decreases almost linearly for the B1 mode as

the pressure increases. Raman shifts of the soft mode A1g calculated from the volume data agree well with the

observed wavenumbers of this mode, which drives the SrTiO3 from the cubic to the tetragonal phase (PC =

9.5 GPa at room temperature). For the B1 mode, our calculated Raman shifts are not in good agreement with

those observed for this transition. Regarding the damping constants of the soft mode A1g as predicted from

the PS and EF models, they peak close to the transition pressure (PC = 9.5 GPa). This critical behavior is

predicted by the EF model for the damping constant of the B1 mode. Also, the critical behavior of the inverse

relaxation time of the B1 mode is exhibited due to the PS model.
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