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Abstract
In this manuscript, we prove new aspects for several Opial-type integral inequalities
for the left and right Caputo–Fabrizio operators with nonsingular kernel. For this
purpose we use the inequalities obtained by Andrić et al. (Integral Transforms Spec.
Funct. 25(4):324–335, 2014), which is the generalization of an inequality of Agarwal
and Pang (Opial Inequalities with Applications in Differential and Difference
Equations, 1995). Besides, examples are presented to validate the reported results.
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1 Introduction and preliminaries
Since the discovery of Opial’s inequality, it has found interesting applications. Really,
Opial’s inequality and its generalizations, extensions, and discretizations have been play-
ing an important role in the study of the existence and uniqueness of initial and boundary
value problems for ordinary and partial differential equations besides difference equations
[3, 4, 21, 39, 42].

In 1960, Opial [43] obtained the following integral inequality:

Theorem 1.1 Let x(t) ∈ C1[0, h] be such that x(0) = x(h) = 0 and x(t) > 0 in (0, h). Then the
following integral inequality holds:

∫ h

0

∣∣x(t)x′(t)
∣∣dt ≤ h

4

∫ h

0

(
x(t)

)2 dt. (1.1)

Here h
4 is a constant best possibility.

From that time, Opial’s inequality [43] has been studied extensively by many mathe-
maticians. This inequality has been extended, generalized in different ways, see [2, 5, 6,
22, 24–28, 39, 40, 44–47, 54]. Also, various mathematicians studied Opial-type integral
inequalities for different types of fractional derivative and integral operators involving Ca-
puto, Canavati, Riemann–Liouville, and so on, see [9, 14, 16–19, 29–31] and the references
therein.
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In 2000, Anastassiou [7] obtained Opial-type inequalities involving functions and their
ordinary and fractional derivatives. In 2002, Anastassiou and Goldstein [12] presented the
Opial-type inequalities involving fractional derivatives of different orders. The same year,
Anastassiou et al. [13] studied a class of Lp-type Opial inequalities for generalized frac-
tional derivatives for integrable functions based on the results obtained earlier by the first
author in 1998. In 2004, Anastassiou [8] established the Opial-type inequalities including
fractional derivatives of two functions in different order and power. In 2008, he presented
Opial-type inequalities involving Riemann–Liouville fractional derivatives of two func-
tions with applications, see [9]. Also, in 2009, he presented fractional Opial-type inequal-
ities subject to high order boundary conditions in Lp for p > 1, and in 2012, he extended
Opial’s integral inequality using the right and left Caputo as well as Riemann–Liouville
fractional derivatives, respectively, see [10, 11].

In 2013, Andrić et al. [17] obtained several Opial-type inequalities including Caputo,
Canavati, and Riemann–Liouville fractional derivatives. The same year, they presented
developments of composition identities for the Caputo fractional derivatives. They gave
applications to Opial-type inequalities in [18]. Also, the same year, they studied some
Opial-type inequalities for Riemann–Liouville fractional derivatives obtained by Fink in
[34] and Pang and Agarwal in [48], see [19].

In 2014, Andrić et al. [15] gave expansions of the Opial-type integral inequalities. Also,
they presented a generalization of an inequality obtained by Agarwal and Pang [4].

In 2015, Farid et al. [32] studied the Opial-type inequalities by using generalized frac-
tional integral operator including the Mittag-Leffler function in the kernel. One year later,
they presented Opial-type integral inequalities for Hilfer differential and fractional inte-
gral operators involving a generalized Mittag-Leffler function in the kernel, see [33].

In 2017, Tomovski et al. [53] gave the generalization of weighted Opial-type inequali-
ties for fractional integral and differential operators involving generalized Mittag-Leffler
functions by using Hölder’s integral inequality motivated by the work of Koliha and Pečarić
[38].

In 2017, Sarıkaya and Budak [50] obtained new inequalities of Opial-type for con-
formable integrals.

Recently, researchers have proposed different fractional-time operators from the well-
known Riemann–Liouville operator, see [20, 35–37, 52]. They are defined by nonsingular
memory kernels. Also, they used these new operators to generalize the usual diffusion
equation. In fact, these new operators can describe better the evolution of some dynamics
of complex systems which cannot be done within the standard fractional calculus opera-
tors (for more details, see Refs. [35–37] and the references therein).

The purpose of this paper is to establish some Opial-type integral inequalities for the left
and right operators with nonsingular kernel. The organization of this paper is given below.
The introduction is given in Sect. 1. In Sect. 2, basic definitions and theorems are intro-
duced. Motivated by [4] and [15], we establish several Opial-type inequalities in Sect. 3.
Several examples are given for our results in Sect. 4.

2 Basic definitions and theorems
In this section, we present the following theorems, corollaries, and definitions which are
useful in the proofs of our results.
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Let U1(u, K1) denote the class of functions v : [a1, b1] →R with the representation

v(t) =
∫ t

a1

K1(t, s)u(s) ds.

Here, the function u is continuous and K1 is an arbitrary nonnegative kernel function such
that u(t) > 0 implies v(t) > 0 for all t ∈ [a1, b1]. Similarly, let U2(u, K1) denote the class of
functions v : [a1, b1] → R with the representation

v(t) =
∫ b1

t
K1(t, s)u(s) ds.

We suppose that all integrals exist. Also, they are finite.

Theorem 2.1 ([15]) Let ψ : [0,∞) → R be a differentiable function such that, for
q1 > 1, ψ(t1/q1 ) is a convex function and ψ(0) = 0. Also, let v ∈ U1(u, K1) such that
(
∫ t

a1
(K1(t, s))p1 ds)1/p1 ≤ C and 1

p1
+ 1

q1
= 1. Then

∫ b1

a1

∣∣v(t)
∣∣1–q1

ψ ′(∣∣v(t)
∣∣)∣∣u(t)

∣∣q1 dt

≤ q1

Cq1
ψ

(
C

(∫ b1

a1

∣∣u(t)
∣∣q1 dt

)1/q1)
(2.1)

≤ q1

Cq1 (b1 – a1)

∫ b1

a1

ψ
(
(b1 – a1)1/q1 C

∣∣u(t)
∣∣)dt. (2.2)

If ψ(t1/q1 ) is a concave function, then reverse inequalities are valid.

When ψ(x) = tp1+q1 , the following corollary is obtained.

Corollary 2.1 ([15]) Let v ∈ U1(u, K1) where (
∫ t

a1
(K1(t, s))p1 ds)1/p1 ≤ C and 1

p1
+ 1

q1
= 1.

Then
∫ b1

a1

∣∣v(t)
∣∣p1 ∣∣u(t)

∣∣q1 dt ≤ q1Cp1

p1 + q1

(∫ b1

a1

∣∣u(t)
∣∣q1 dt

)(p1+q1)/q1

≤ q1Cp1 (b1 – a1)p1/q1

p1 + q1

∫ b1

a1

∣∣u(t)
∣∣p1+q1 dt. (2.3)

Theorem 2.2 ([15]) Let the function ψ : [0,∞) → R be differentiable such that, for
q1 > 1, ψ(t1/q1 ) is a convex function and ψ(0) = 0. Let v ∈ U2(u, K1) such that (

∫ b1
t (K1(t,

s))p1 ds)1/p1 ≤ C and 1
p1

+ 1
q1

= 1. Then

∫ b1

a1

∣∣v(t)
∣∣1–q1

ψ ′(∣∣v(t)
∣∣)∣∣u(t)

∣∣q1 dt

≤ q1

Cq1
ψ

(
C

(∫ b1

a1

∣∣u(t)
∣∣q1 dt

)1/q1)

≤ q1

Cq1 (b1 – a1)

∫ b1

a1

ψ
(
(b1 – a1)1/q1 C

∣∣u(t)
∣∣)dt. (2.4)

If ψ(t1/q1 ) is a concave function, then reverse inequalities are valid.
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When ψ(x) = tp1+q1 , the following corollary is obtained.

Corollary 2.2 ([15]) Let v ∈ U2(u, K1) where (
∫ b1

t (K1(t, s))p1 ds)1/p1 ≤ C and 1
p1

+ 1
q1

= 1.
Then

∫ b1

a1

∣∣v(t)
∣∣p1 ∣∣u(t)

∣∣q1 dt ≤ q1Cp1

p1 + q1

(∫ b1

a1

∣∣u(t)
∣∣q1 dt

)(p1+q1)/q1

≤ q1Cp1 (b1 – a1)p1/q1

p1 + q1

∫ b1

a1

∣∣u(t)
∣∣p1+q1 dt. (2.5)

Below, we show the definitions of the left and right operators with nonsingular kernel
introduced in [23]. According to [1, 23], if g ∈ H1(a1, b1), 0 < a1 < b1 ≤ ∞, α ∈ (0, 1), the
left operator CFR

a1 Dα is defined by

(CFR
a1 Dαg

)
(t) =

M(α)
1 – α

d
dt

∫ t

a1

g(s) exp
(
λ(t – s)

)
ds (2.6)

and the right operator CFRDα
b1

is defined by

(CFRDα
b1 g

)
(t) = –

M(α)
1 – α

d
dt

∫ b1

t
g(s) exp

(
λ(s – t)

)
ds, (2.7)

with λ = – α
1–α

and t ≥ a1. Here M(α) is a normalization function depending on α. Also,
the left integral operator is defined as

(CF
a1 Iαg

)
(t) =

1 – α

B(α)
g(t) +

α

B(α)

∫ t

a1

g(s) ds (2.8)

and the right integral operator is defined as

(CF Iα
b1 g

)
(t) =

1 – α

B(α)
g(t) +

α

B(α)

∫ b1

t
g(s) ds. (2.9)

Definition 2.1 ([49]) Let f and g be two functions that are piecewise continuous on every
finite closed interval 0 ≤ t ≤ b and of exponential order. The function denoted by f ∗ g and
defined by

f (t) ∗ g(t) =
∫ t

0
f (s)g(t – s) ds

is called the convolution of the functions f and g .

Definition 2.2 ([51]) Let f (x) and g(x) be positive and be in L1. Moreover, they are differ-
entiable and their derivative is integrable. Then the derivative of a convolution is

(f ∗ g)′ = f ′ ∗ g = f ∗ g ′.
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3 Main results
In this section, we give the Opial-type integral inequalities for the left and right of the
operator using the inequalities obtained by Andrić et al. [15], which is the generalization
of an inequality of Agarwal and Pang [4].

The following result is obtained by using Theorem 2.1 and the left operator.

Theorem 3.1 Let ψ : [0,∞) →R be a differentiable function such that, for q1 > 1, ψ(t1/q1 )
is a convex function and ψ(0) = 0. Also, let 0 < α < 1, g ∈ H1(a1, b1), and let CFR

a1 Dα be defined
by (2.6). If 1

p1
+ 1

q1
= 1, then the following inequalities hold:

∫ b1

a1

∣∣(CFR
a1 Dαg

)
(t)

∣∣1–q1
ψ ′(∣∣(CFR

a1 Dαg
)
(t)

∣∣)∣∣g ′(t)
∣∣q1 dt

≤ q1

Cq1
ψ

(
C

(∫ b1

a1

∣∣g ′(t)
∣∣q1 dt

)1/q1)

≤ q1

Cq1 (b1 – a1)

∫ b1

a1

ψ
(
(b1 – a1)1/q1 C

∣∣g ′(t)
∣∣)dt, (3.1)

where

C =
M(α)
1 – α

(
1 – exp(p1λ(b1 – a1))

–p1λ

)1/p1

. (3.2)

If ψ(t1/q1 ) is a concave function, then reverse inequalities hold.

Proof For t ∈ [a1, b1], let

v(t) =
(CFR

a1 Dαg
)
(t) =

M(α)
1 – α

d
dt

∫ t

a1

g(s) exp
(
λ(t – s)

)
ds

=
M(α)
1 – α

d
dt

(
g(t) ∗ exp(λt)

)

=
M(α)
1 – α

(
dg
dt

(t) ∗ exp(λt)
)

=
M(α)
1 – α

∫ t

a1

g ′(s) exp
(
λ(t – s)

)
ds, (3.3)

K1(t, s) =

⎧⎨
⎩

M(α)
1–α

exp(λ(t – s)), a1 ≤ s ≤ t;

0, t ≤ s ≤ b1,

and

φ(t) =
(∫ t

a1

(
K1(t, s)

)p1 ds
)1/p1

=
M(α)
1 – α

(
1 – exp(p1λ(t – a1))

–p1λ

)1/p1

.

From λ < 0, the function φ is increasing on [a1, b1]. Thus, we can write

max
t∈[a1,b1]

φ(t) =
M(α)
1 – α

(
1 – exp(p1λ(b1 – a1))

–p1λ

)1/p1

= C.
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Then (
∫ t

a1
(K1(t, s))p1 ds)1/p1 ≤ C. Also, if it is taken as u = g ′ and v as in (3.3), then from

Theorem 2.1 it gives us (3.1) in Theorem 3.1. This completes the proof. �

When ψ(t) = tp1+q1 in Theorem 3.1, the following corollary is obtained.

Corollary 3.1 Let 0 < α < 1, g ∈ H1(a1, b1), and let CFR
a1 Dα be defined by (2.6). Also let 1

p1
+

1
q1

= 1. Then the following inequalities hold:

∫ b1

a1

∣∣(CFR
a1 Dαg

)
(t)

∣∣p1 ∣∣g ′(t)
∣∣q1 dt ≤ q1Cp1

p1 + q1

(∫ b1

a1

∣∣g ′(t)
∣∣q1 dt

)(p1+q1)/q1

≤ q1Cp1 (b1 – a1)p1/q1

p1 + q1

∫ b1

a1

∣∣g ′(t)
∣∣p1+q1 dt, (3.4)

where C is defined as in (3.2).

Theorem 3.2 Let the function ψ : [0,∞) → R be differentiable such that, for q1 > 1,
ψ(t1/q1 ) is a convex function and ψ(0) = 0. Also, let 0 < α < 1, g ∈ H1(a1, b1), and let CFRDα

b1

be defined by (2.7). If 1
p1

+ 1
q1

= 1, then the following inequalities hold:

∫ b1

a1

∣∣(CFRDα
b1 g

)
(t)

∣∣1–q1
ψ ′(∣∣(CFRDα

b1 g
)
(t)

∣∣)∣∣g ′(t)
∣∣q1 dt

≤ q1

Cq1
ψ

(
C

(∫ b1

a1

∣∣g ′(t)
∣∣q1 dt

)1/q1)

≤ q1

Cq1 (b1 – a1)

∫ b1

a1

ψ
(
(b1 – a1)1/q1 C

∣∣g ′(t)
∣∣)dt, (3.5)

where C is defined as in (3.2). If ψ(t1/q1 ) is a concave function, then reverse inequalities
hold.

Proof Using the same method as the proof of Theorem 3.1, inequalities follow from The-
orem 2.2. �

When ψ(t) = tp1+q1 in Theorem 3.2, the following corollary is obtained.

Corollary 3.2 Let 0 < α < 1, g ∈ H1(a1, b1), and let CFRDα
b1

be defined by (2.7). Also let
1

p1
+ 1

q1
= 1. Then the following inequalities hold:

∫ b1

a1

∣∣(CFRDα
b1 g

)
(t)

∣∣p1 ∣∣g ′(t)
∣∣q1 dt ≤ q1Cp1

p1 + q1

(∫ b1

a1

∣∣g ′(t)
∣∣q1 dt

)(p1+q1)/q1

≤ q1Cp1 (b1 – a1)p1/q1

p1 + q1

∫ b1

a1

∣∣g ′(t)
∣∣p1+q1 dt, (3.6)

where C is defined as in (3.2).

The next result is obtained by using Theorem 2.1 and the left integral operator, see for
more details [41].
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Theorem 3.3 Let the function ψ : [0,∞) → R be differentiable such that, for q1 > 1,
ψ(t1/q1 ) is a convex function and ψ(0) = 0. Also, let 0 < α < 1, g ∈ H1(a1, b1), and let CF

a1 Iα

be defined by (2.8). If 1
p1

+ 1
q1

= 1, then the following inequalities hold:

∫ b1

a1

∣∣∣∣
(CF

a1 Iαg
)
(t) –

1 – α

B(α)
g(t)

∣∣∣∣
1–q1

ψ ′
(∣∣∣∣

(CF
a1 Iαg

)
(t) –

1 – α

B(α)
g(t)

∣∣∣∣
)∣∣g(t)

∣∣q1 dt

≤ q1

Cq1
1

ψ

(
C1

(∫ b1

a1

∣∣g(t)
∣∣q1 dt

)1/q1)

≤ q1

Cq1
1 (b1 – a1)

∫ b1

a1

ψ
(
(b1 – a1)1/q1 C1

∣∣g(t)
∣∣)dt, (3.7)

where

C1 =
α

B(α)
(b1 – a1)1/p1 . (3.8)

If ψ(t1/q1 ) is a concave function, then reverse inequalities hold.

Proof For t ∈ [a1, b1], let

v(t) =
(CF

a1 Iαg
)
(t) –

1 – α

B(α)
g(t), (3.9)

K1(t, s) =

⎧⎨
⎩

α
B(α) , a1 ≤ s ≤ t;

0, t ≤ s ≤ b1,

and

φ(t) =
(∫ t

a1

(
K1(t, s)

)p1 ds
)1/p1

=
α

B(α)
(t – a1)1/p1 .

From λ < 0, the function φ is increasing on [a1, b1]. Thus, we can write

max
t∈[a1,b1]

φ(t) =
α

B(α)
(b1 – a1)1/p1 = C1.

Then (
∫ t

a1
(K1(t, s))p1 ds)1/p1 ≤ C1. Also, if it is taken as u = g and v as in (3.9), then from

Theorem 2.1 it gives us (3.7) in Theorem 3.3. This completes the proof. �

When ψ(t) = tp1+q1 in Theorem 3.3, we obtain the following corollary.

Corollary 3.3 Let 0 < α < 1, g ∈ H1(a1, b1), and let CF
a1 Iα be defined by (2.8). Also let 1

p1
+

1
q1

= 1. Then the following inequalities hold:

∫ b1

a1

∣∣∣∣
(CF

a1 Iαg
)
(t) –

1 – α

B(α)
g(t)

∣∣∣∣
p1 ∣∣g(t)

∣∣q1 dt

≤ q1Cp1
1

p1 + q1

(∫ b1

a1

∣∣g(t)
∣∣q1 dt

)(p1+q1)/q1
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≤ q1Cp1
1 (b1 – a1)p1/q1

p1 + q1

∫ b1

a1

∣∣g(t)
∣∣p1+q1 dt, (3.10)

where C1 is defined as in (3.8).

Theorem 3.4 Let the function ψ : [0,∞) → R be differentiable such that, for q1 > 1,
ψ(t1/q1 ) is a convex function and ψ(0) = 0. Also, let 0 < α < 1, g ∈ H1(a1, b1), and let CF Iα

b1

be defined by (2.9). If 1
p1

+ 1
q1

= 1, then the following inequalities hold:

∫ b1

a1

∣∣∣∣
(CF Iα

b1 g
)
(t) –

1 – α

B(α)
g(t)

∣∣∣∣
1–q1

ψ ′
(∣∣∣∣

(CF Iα
b1 g

)
(t) –

1 – α

B(α)
g(t)

∣∣∣∣
)∣∣g(t)

∣∣q1 dt

≤ q1

Cq1
1

ψ

(
C1

(∫ b1

a1

∣∣g(t)
∣∣q1 dt

)1/q1)

≤ q1

Cq1
1 (b1 – a1)

∫ b1

a1

ψ
(
(b1 – a1)1/q1 C1

∣∣g(t)
∣∣)dt, (3.11)

where C1 is defined as in (3.8). If ψ(t1/q1 ) is a concave function, then reverse inequalities
hold.

Proof Using the same method as the proof of Theorem 3.1, inequalities follow from The-
orem 2.2. �

When ψ(t) = tp1+q1 in Theorem 3.4, we obtain the following corollary.

Corollary 3.4 Let 0 < α < 1, g ∈ H1(a1, b1), and let CF Iα
b1

be defined by (2.9). Also let 1
p1

+
1

q1
= 1. Then the following inequalities hold:

∫ b1

a1

∣∣∣∣
(CF Iα

b1 g
)
(t) –

1 – α

B(α)
g(t)

∣∣∣∣
p1 ∣∣g(t)

∣∣q1 dt

≤ q1Cp1
1

p1 + q1

(∫ b1

a1

∣∣g(t)
∣∣q1 dt

)(p1+q1)/q1

≤ q1Cp1
1 (b1 – a1)p1/q1

p1 + q1

∫ b1

a1

∣∣g(t)
∣∣p1+q1 dt, (3.12)

where C1 is defined as in (3.8).

4 Examples
Below, we will show the application of our main results with two examples.

Example 4.1 In Corollary 3.1, let g(t) = et , α = 1
2 , p1 = q1 = 2, M(α) = α, and t ∈ [a1, b1] =

[1, 3]. Then λ = –1, M( 1
2 ) = 1

2 , and C =
√

1–e–4
2 . So, we obtain

(CFR
1 D

1
2 g

)
(t) =

(CFR
1 D

1
2 g

)
(t) =

d
dt

∫ t

1
ese–(t–s) ds =

∫ t

1

∂

∂t
(
e–t+2s)ds + et

= –
∫ t

1
e–t+2s ds + et =

et + e–t+2

2
.
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Then we apply Corollary 3.1 to obtain the following inequalities:

∫ 3

1

∣∣(CFR
1 D

1
2 g

)
(t)

∣∣2∣∣g ′(t)
∣∣2 dt =

∫ 3

1

∣∣∣∣et + e–t+2

2

∣∣∣∣
2

e2t dt

≤ 1 – e–4

4

(∫ 3

1
e2t dt

)2

≤ 1 – e–4

2

∫ 3

1
e4t dt.

Example 4.2 In Corollary 3.3, let g(t) = sin t, α = 1
2 , p1 = q1 = 2, B(α) = 1 – α, and t ∈

[a1, b1] = [ π
2 ,π ]. Then λ = –1, B( 1

2 ) = 1
2 , and C1 =

√
π – π

2 . So, we obtain

(CF
π
2

I
1
2 g

)
(t) =

(CF
π
2

I
1
2 sin

)
(t) = sin t +

∫ t

π
2

sin(s) ds = sin t – cos t.

Then we apply Corollary 3.3 to obtain the following inequalities:

∫ π

π
2

∣∣∣∣
(CF

π
2

I
1
2 g

)
(t) –

1 – α

B(α)
g(t)

∣∣∣∣
2∣∣g(t)

∣∣2 dt

=
∫ π

π
2

| sin t – cos t – sin t|2| sin t|2 dt

=
∫ π

π
2

cos2 t sin2 t dt ≤ π – π
2

2

(∫ π

π
2

sin2 t dt
)2

≤ π

4

(
π –

π

2

)∫ π

π
2

sin4 t dt.

5 Conclusion
Caputo–Fabrizio operator has recently started to play an important role in modeling of a
class of real world dissipative phenomena [35]. In fact some real data have confirmed that
this operator is important for describing the dynamics of specific classes of real world
problems. At the same time new mathematical generalizations of this operator were de-
veloped. In our manuscript, with the help of inequalities obtained by Andrić et al. [15], we
proposed, within four theorems and their related corollaries, several Opial-type integral
inequalities for Caputo–Fabrizio operators. Finally, we analyzed two illustrative examples
carefully. The results reported in this manuscript can find applications within the evalu-
ation of the existence and uniqueness of initial and boundary value problems related to
diffusion process within the Caputo–Fabrizio operators.
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