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Abstract
In this manuscript, we investigate a sort of fractional neutral integro-differential
equations with impulsive outcomes and extend the formula of general solutions for
the impulsive fractional neutral integro-differential system in a Banach space. By using
the analysis of the limit case and the operator generating compact semigroup, we
derive the main results. Finally, an example is discussed to illustrate the efficiency of
the results.
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1 Introduction
Fractional calculus is a field of mathematics study that grows out of traditional defini-
tions of calculus integral and derivative operators in much the same way fractional expo-
nents are an outgrowth of exponents with integer value. The concept of fractional (frac-
tional derivatives and integrals) is popularly believed to have stemmed from a question
raised in the year 1695 by Marquis de L’Hopital (1661–1704) to Gottfried Wilhelm Leib-
niz (1646–1716), which sought the meaning of Leibniz’s (currently popular) notation dny

dxn

for the derivative of order n ∈N when n = 1
2 ; that is, “What if n is fractional?”. In his reply,

dated 30 September 1695, Leibniz wrote to L’ Hopital as follows:
“This is an apparent paradox from which, one day, useful consequences will be drawn.”

That is, “d 1
2 x are going to be adequate x

√
dx : x.”

It is typically acknowledged that integer-order derivatives and integrals have clear phys-
ical and geometric interpretations. However, just in case of fractional-order integration
and differentiation, that represent an apace growing field each in theory and in applica-
tions to planet issues, it is not thus. Since the looks of the thought on differentiation and
integration of arbitrary (not necessary integer) order, there was not any acceptable geo-
metric and physical interpretation of those operations for some three hundred years. In
[22], it is shown that geometric interpretation of fractional integration is “Shadows on the
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walls” and its physical interpretation is “Shadows of the past”. Fractional differential equa-
tions (abbreviated, FDEs) and integro-differential equations have gained wide importance
as a result of their applications in numerous fields like physics, mechanics, control theory,
and engineering, one will create relevance to the books [2, 11, 22, 29] and also the papers
[5, 10, 20, 25, 26, 30–32].

The definitions of Riemann–Liouville (abbreviated RL) FDEs or integral initial condi-
tions play a very important role in some fractional problems within the world. Heymans
and Podlubny [9] verified that it had been attainable to attribute physical desiring to initial
conditions expressed in terms of RL fractional derivatives or integrals on the sector of the
viscoelasticity. For more details, one can see [1, 15, 16, 19, 27].

In addition, the speculation of impulsive differential equations seems to be a natural de-
scription of many real processes subject to sure perturbations whose length is negligible as
compared with the overall length of the method, such changes are going to be fairly well ap-
proximated as being quick changes of state, or inside the design of impulses. This method-
ology tends to be extra fittingly sculptured by impulsive differential equations, which allow
for discontinuities inside the evolution of the state, considered in such fields as drugs, bi-
ology, engineering science, chemical technology, etc. Therefore, it appears fascinating to
check the fractional impulsive differential and integro-differential equations.

Furthermore, impulsive fractional evolution systems with the Caputo fractional deriva-
tive with completely different conditions were studied by several authors, one can see [4,
7, 8, 12–14, 23, 24]. However, abundant less is thought regarding the impulsive fractional
evolution systems with RL fractional derivative, see [17, 18, 28].

In specific, the following fractional order integro-differential equation in a Banach space
using the Caputo fractional derivative:

⎧
⎪⎪⎨

⎪⎪⎩

CDα
t u(t) + Au(t) = f (t, u(t)) +

∫ t
0 q(t – s)g(t, u(s)) ds, t ≥ 0, t �= tk ,

�u|t=tk = Ik(u(t–
k )), k = 1, . . . , m,

u(0) = u0 ∈ X,

was mentioned by Gou and Li [8], and they established the local and global existence of
mild solution to an impulsive fractional semilinear integro-differential equation with non-
compact semigroup. In [18], Liu and Bin gave the approximate controllability of an impul-
sive RL fractional system with the help of the Banach contraction principle in a Banach
space. Liu et al. [17] established the approximate controllability of impulsive fractional
neutral evolution equations with RL fractional derivatives by using the Banach contrac-
tion principle. Later, Zhang et al. [28] analyzed the general solution of impulsive systems
with RL fractional derivatives by using a limit case (as impulse tends to zero).

However, local existence for impulsive fractional neutral integro-differential equations
with RL has not been fully investigated in the literature.

Inspired by the above-mentioned works, we investigate the following impulsive frac-
tional integro-differential equation with RL fractional derivative of the form

LDγ
t
[
w(t) – D

(
t, w(t)

)]
= A w(t) + L

(
t, w(t)

)

+
∫ t

0
q(t – s)P

(
t, w(s)

)
ds,

I ′ = t ∈ (0, T], t �= tk , k = 1, . . . , m,

(1.1)
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�I1–γ

0+ w|t=tk = I1–γ

0+ w
(
t+
k
)

– I1–γ

0+ w
(
t–
k
)

= Ik
(
w
(
t–
k
))

, (1.2)

I1–γ
0+
[
w(t) – D

(
t, w(t)

)]|t=0 = w0 ∈H, (1.3)

where LDγ
t (0 < γ < 1) represents the RL fractional derivative of order γ and I1–γ

0+ denotes
the RL integral of order 1 – γ . Throughout this paper, we take I = [0, T] is an operational
interval. Let A : D(A ) ⊆H →H be the infinitesimal generator of a c0 semigroup {T (t)}t≥0

in a Banach space H. There exists a constant M ≥ 1 such that ‖T (t)‖ ≤ M, D ,L ,P :
I × H → H, q : I → H and Ik : H → H are apposite continuous functions. 0 = t0 < t1 <
, . . . , < tm = T . Here I1–γ

0+ w(t+
k ) = limε→0+ I1–γ

0+ w(tk + ε) and I1–γ
0+ w(t–

k ) = limε→0– I1–γ
0+ w(tk + ε)

denote the right and left limits of I1–γ
0+ w(t) at t = tk , respectively.

For impulsive system (1.1)–(1.3), we have

lim
I1→0,...,Im→0

{
(1.1)–(1.3)

}
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LDγ
t [w(t) – D(t, w(t))]

= A w(t) + L (t, w(t))

+
∫ t

0 q(t – s)P(t, w(s)) ds,

t ∈ (0, T],

I1–γ
0+ [w(t) – D(t, w(t))]|t=0

= w0 ∈H.

(1.4)

As a result, it implies that there exists a hidden condition

lim
I1→0,...,Im→0

{
the solution of impulsive system (1.1)–(1.3)

}

=
{

the solution of system (1.4)
}

. (1.5)

Consequently, the definition of solution for impulsive framework (1.1)–(1.3) is given be-
low.

Definition 1.1 Let w(t) : [0, T] →H be the solution of the fractional structure (1.1)–(1.3)
if I1–γ

0+ [w(t)–D(t, w(t))]|t=0 = w0, the problem LDγ
t [w(t)–D(t, w(t))] = A w(t)+L (t, w(t))+

∫ t
0 q(t – s)P(t, w(s)) ds for each t ∈ (0, T] is proved, the impulsive conditions �I1–γ

0+ w|t=tk =
Ik(w(t–

k )) (here k = 1, . . . , m) are fulfilled, the confinement of w(t) to the interval (tk , tk+1]
(here k = 1, . . . , m) is continuous, and therefore condition (1.5) holds.

The rest of this paper is composed as follows. In Sect. 2, we present some preliminar-
ies which will be used to prove our necessary and sufficient conditions. In Sect. 3, the
existence of solutions for problem (1.1)–(1.3) is analyzed under appropriate fixed point
techniques. In Sect. 4, as a final point, examples are given to illustrate our results.

2 Preliminaries
In this preliminary, we tend to recall some basic definitions, lemmas, and theorem which
will be used throughout this paper. The norm of a Banach space H is denoted by ‖ · ‖H.
Let C(I ,H) represent the Banach space of all H-valued continuous functions from I to
H with the norm ‖w‖C = supt∈I ‖w(t)‖H. So as to outline the mild solution of problem
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(1.1)–(1.3), we tend to additionally take the Banach space C1–γ (I ,H) = {w ∈ C(I ,H) :
t1–γ w(t) ∈ C(I ,H)} with the norm

‖w‖C1–γ
= sup

{
t1–γ

∥
∥w(t)

∥
∥
H

, t ∈ I
}

.

Obviously, the space C1–γ is a Banach space.
In order to outline the mild solutions of system (1.1)–(1.3), we also consider the Banach

space PC1–γ (I ,H) = {w : (t – tk)1–γ w(t) ∈ PC1–γ (I ,H) is continuous from left and has
right limits at t ∈ {t1, t2, . . . , tm}}

‖w‖PC1–γ
= max

{
sup

t∈(tk ,tk+1]
(t – tk)1–γ

∥
∥w(t)

∥
∥
H

: k = 0, 1, . . . , m
}

.

Definition 2.1 ([30]) Let A be the infinitesimal generator of an analytic semigroup
{T (t)}t≥0 of uniformly bounded linear operators on H. If 0 ∈ ρ(–A ), where ρ(–A ) is the
resolvent set of A , then for 0 < η ≤ 1, it is possible to define the fractional power A η as
a closed linear operator on its domain D(A η). For an analytic semigroup {T (t)}t≥0, the
following properties will be used.

1. There is M≥ 1 such that

M := sup
t∈[0,+∞)

∣
∣T (t)

∣
∣ < ∞.

2. For any η ∈ (0, 1], there exists Mη > 0 ensuring that

∥
∥A ηT (t)

∥
∥≤ Mη

tη
, 0 < t ≤ T .

For additional details regarding the semigroup theory and fractional powers of opera-
tors, we advise the reader to refer to [21].

Currently, we offer a few basic definitions and results of the fractional calculus theory
that happen to be used in addition as a chunk of this manuscript.

Definition 2.2 ([11]) The fractional integral of order γ with the lower limit 0 for a func-
tion f is determined as

Iγ
t f (t) =

1
Γ (γ )

∫ t

0

f (s)
(t – s)1–γ

ds, t > 0,γ > 0,

given the right part is point-wise described on [0, +∞), where Γ (·) is the gamma function.

Definition 2.3 ([11]) The RL derivative of order γ with the lower limit 0 for a function
f ∈ L1(I ,H) is characterized as

LDγ
t f (t) =

1
Γ (n – γ )

dn

dtn

∫ t

0

f (s)
(t – s)1–n+γ

ds, t > 0, n – 1 < γ < n.

Consider the initial value problem
⎧
⎨

⎩

Dγ

a+ w(t) = A w(t) + f (t, w(t)), γ ∈C and R(γ ) ∈ (0, 1), t ∈ (a, T],

I1–γ

a+ w(a) = wa, wa ∈C
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is equivalent to the following nonlinear Volterra integral equation of the second kind:

w(t) =
wa

Γ (γ )
(t – a)γ –1 +

1
Γ (γ )

∫ t

a
(t – s)γ –1[A w(s) + f

(
s, w(s)

)]
ds.

The piecewise function for (1.1)–(1.3) is given by

w(t) =
1

Γ (γ )
I1–γ

a+ w
(
t+
k
)
(t – tk)γ –1 + D

(
t, w(t)

)

+
1

Γ (γ )

∫ t

tk

(t – s)γ –1[A w(s) + Λ1(s)
]

ds,

where Λ1(s) = L (s, w(s)) +
∫ s

0 q(s – τ )P(τ , w(τ )) dτ , t ∈ (tk , tk+1], k = 0, 1, . . . , m, with

I1–γ

a+ w
(
t+
k
)

= I1–γ

a+ w
(
t–
k
)

+ �k
(
w
(
t–
k
))

.

By Definition 2.3, we have

Dγ

a+
[
w(t) – D

(
t, w(t)

)]

= Dγ

a+

(
1

Γ (γ )
I1–γ

a+ w
(
t+
k
)
(t – tk)γ –1

)

+ Dγ

a+

(
1

Γ (γ )

∫ t

tk

(t – s)γ –1[A w(s) + Λ1(s)
]

ds
)

=
1

Γ (γ )Γ (1 – γ )
d
dt

∫ t

tk

(t – η)1–γ –1I1–γ

a+ w
(
t+
k
)
(η – tk)γ –1 dη +

1
Γ (γ )Γ (1 – γ )

(×)
d
dt

(∫ t

a
(t – η)1–γ –1

∫ η

tk

(η – s)γ –1[A w(s) + Λ1(s)
]

ds dη

)

=
1

Γ (1 – γ )
d
dt

∫ t

tk

(t – η)1–γ –1
(

1
Γ (γ )

∫ η

tk

(η – s)γ –1[A w(s) + Λ1(s)
]

ds
)

dη

= Dγ

a+

(
1

Γ (γ )

∫ η

tk

(η – s)γ –1[A w(s) + Λ1(s)
]

ds
)

= Dγ

a+

(

Iγ

a+

[

A w(t) + L
(
t, w(t)

)
+
∫ t

0
q(t – s)P

(
s, w(s)

)
ds
])

= A w(t) + L
(
t, w(t)

)
+
∫ t

0
q(t – s)P

(
s, w(s)

)
ds,

where a = 0 and t ∈ (tk , tk+1].
So, w(t) fulfills the condition of fractional differential framework (1.1)–(1.3), and it does

not fulfill condition (1.5). In this way, we accept that w(t) is an approximate solution for
the exact solution of impulsive framework (1.1)–(1.3).
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Theorem 2.1 Suppose that ξ is a constant and a = 0. w(t) is a general solution of model
(1.1)–(1.3) if and only if w(t) fulfills the fractional integral equation

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wa
Γ (γ ) (t – a)γ –1 + 1

Γ (γ )
∫ t

a (t – s)γ –1

(×)[A w(s) + Λ1(s)] ds, (a, t1],
wa

Γ (γ ) (t – a)γ –1 + 1
Γ (γ )

∫ t
a (t – s)γ –1[A w(s) + Λ1(s)] ds

+
∑k

i=1
�i(w(t–

i ))
Γ (γ ) (t – ti)γ –1 –

∑k
i=1

ξ�i(w(t–
i ))

Γ (γ )

(×){wa(t – a)γ –1 +
∫ t

a (t – s)γ –1[A w(s) + Λ1(s)] ds

– (wa +
∫ ti

a [A w(s) + Λ1(s)] ds)(t – ti)γ –1 –
∫ t

ti
(t – s)γ –1

(×)[A w(s) + Λ1(s)] ds},

(2.1)

where a = 0 and t ∈ (tk , tk+1], given that the integral in (2.1) exists.

Proof “Necessity”: First we are able to simply verify that equation (2.1) fulfills the shrouded
condition (1.5). Next, taking the RL fractional derivative to equation (2.1) for every t ∈
(tk , tk+1], k = 0, 1, . . . , m, we get

Dγ

a+
[
w(t) – D

(
t, w(t)

)]

= Dγ

a+

(
wa

Γ (γ )
(t – a)γ –1

)

+ Dγ

a+

(
1

Γ (γ )

∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds
)

+ Dγ

a+

( k∑

i=1

�i(w(t–
i ))

Γ (γ )
(t – ti)γ –1

)

– Dγ

a+

( k∑

i=1

ξ�i(w(t–
i ))

Γ (γ )

(×)
{

wa(t – a)γ –1 +
∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds –

(

wa +
∫ ti

a

[
A w(s)

+ Λ1(s)
]

ds
)

(t – ti)γ –1 –
∫ t

ti

(t – s)γ –1[A w(s) + Λ1(s)
]

ds
})

=
(
A w(t) + Λ1(t)

)

t≥a – ξ

k∑

i=1

�i
(
w
(
t–
i
))[(

A w(t) + Λ1(t)
)

t≥a –
(
A w(t)

+ Λ1(t)
)

t≥ti

]

t∈(tk ,tk+1]

=
(

A w(t) + L
(
t, w(t)

)
+
∫ t

0
q(t – s)P

(
s, w(s)

)
ds
)

t∈(tk ,tk+1]
.

Therefore, equation (2.1) fulfills the RL fractional derivative of model (1.1)–(1.3). Using
(2.1) for every tk , k = 1, 2, . . . , m, we have

I1–γ

a+ w
(
t+
k
)

– I1–γ

a+ w
(
t–
k
)

=
{

1
Γ (1 – γ )

∫ t

a
(t – η)1–γ –1w(η) dη

}

t→t+
k

–
{

1
Γ (1 – γ )

∫ t

a
(t – η)1–γ –1w(η) dη

}

t=tk

= �k
(
w
(
t–
k
))

– ξ�k
(
w
(
t–
k
))
{

wa +
∫ t

a

(
A w(s) + Λ1(s)

)
ds
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–
(

wa +
∫ tk

a

[
A w(s) + Λ1(s)

]
ds
)

–
∫ t

tk

(
A w(s) + Λ1(s)

)
ds
}

t→tk

= �k
(
w
(
t–
k
))

.

Therefore, equation (2.1) fulfills the impulsive conditions of model (1.1)–(1.3). Then equa-
tion (2.1) satisfies the conditions of system (1.1)–(1.3) with a = 0.

“Sufficiency”: We demonstrate that the solutions of framework (1.1)–(1.3) fulfill condi-
tion (2.1) by scientific induction. By Definition 2.2, the solution of model (1.1)–(1.3) fulfills

w(t) =
wa

Γ (γ )
(t – a)γ –1 +

1
Γ (γ )

∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds, (a, t1]. (2.2)

By (2.2), we have

I1–γ

a+ w
(
t+
1
)

= I1–γ

a+ w
(
t–
1
)

+ �1
(
w
(
t–
1
))

= wa + �1
(
w
(
t–
1
))

+
∫ t1

a

[
A w(s) + Λ1(s)

]
ds,

and the approximate solution w(t), t ∈ (t1, t2] is defined by

w(t) =
1

Γ (γ )
I1–γ

a+ w
(
t+
1
)
(t – t1)γ –1 + D

(
t, w(t)

)

+
1

Γ (γ )

∫ t

t1

(t – s)γ –1[A w(s)Λ1(s)
]

ds

=
1

Γ (γ )

(

wa +
∫ t1

a

[
A w(s) + Λ1(s)

]
ds + �1

(
w
(
t–
1
))
)

(t – t1)γ –1

+ D
(
t, w(t)

)
+

1
Γ (γ )

∫ t

t1

(t – s)γ –1[A w(s) + Λ1(s)
]

ds, t ∈ (t1, t2],

with e1(t) = w(t) – w(t), t ∈ (t1, t2]. By

lim
�1(w(t–

1 ))→0
w(t) = lim

�1(w(t–
1 ))→0

{
wa

Γ (γ )
(t – a)γ –1 + D

(
t, w(t)

)

+
1

Γ (γ )

∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds + �1

(
w
(
t–
1
))
}

=
wa

Γ (γ )
(t – a)γ –1 + D

(
t, w(t)

)
+

1
Γ (γ )

∫ t

a
(t – s)γ –1[A w(s)

+ Λ1(s)
]

ds, t ∈ (t1, t2].

We get

lim
�1(w(t–

1 ))→0
e1(t) = lim

�1(w(t–
1 ))→0

{
w(t) – w(t)

}

=
wa

Γ (γ )
(t – a)γ –1 +

1
Γ (γ )

∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds
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–
1

Γ (γ )
(t – t1)γ –1

(

wa +
∫ t1

a

[
A w(s) + Λ1(s)

]
ds
)

–
1

Γ (γ )

∫ t

t1

(t – s)γ –1[A w(s) + Λ1(s)
]

ds.

Then we assume

e1(t) = σ
(
�1
(
w
(
t–
1
)))

lim
�1(w(t–

1 ))→0
e1(t)

=
σ (�1(w(t–

1 )))
Γ (γ )

{

wa(t – a)γ –1 +
∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds

–
(

wa +
∫ t1

a

[
A w(s) + Λ1(s)

]
ds
)

(t – t1)γ –1 –
∫ t

t1

(t – s)γ –1[A w(s)

+ Λ1(s)
]

ds
}

,

where the function σ (·) is an undetermined function with σ (0) = 1. Thus,

w(t) = w(t) + e1(t)

=
1

Γ (γ )

{

σ
(
�1
(
w
(
t–
1
)))
(

wa(t – a)γ –1 +
∫ t

a
(t – s)γ –1[A w(s)

+ Λ1(s)
]

ds
)

+ �1
(
w
(
t–
1
))

(t – t1)γ –1 +
[
1 – σ

(
�1
(
w
(
t–
1
)))]

(

wa

+
∫ t1

a

[
A w(s) + Λ1(s)

]
ds
)

(t – t1)γ –1 +
[
1 – σ

(
�1
(
w
(
t–
1
)))]

(×)
∫ t

t1

(t – s)γ –1[A w(s) + Λ1(s)
]

ds
}

+ D
(
t, w(t)

)
, t ∈ (t1, t2]. (2.3)

Using (2.3), we get

I1–γ

a+ w
(
t+
2
)

= I1–γ

a+ w
(
t–
2
)

+ �2
(
w
(
t–
2
))

= wa + �1
(
w
(
t–
1
))

+ �2
(
w
(
t–
2
))

+
∫ t2

a

[
A w(s) + Λ1(s)

]
ds,

and the approximate solution w(t), t ∈ (t2, t3] is given by

w(t) =
1

Γ (γ )
I1–γ

a+ w
(
t+
2
)
(t – t2)γ –1 + D

(
t, w(t)

)

+
1

Γ (γ )

∫ t

t2

(t – s)γ –1[A w(s) + Λ1(s)
]

ds

=
1

Γ (γ )

(

wa +
∫ t2

a

[
A w(s) + Λ1(s)

]
ds + �1

(
w
(
t–
1
))

+ �2
(
w
(
t–
2
))
)

(×)(t – t2)γ –1 + D
(
t, w(t)

)
+

1
Γ (γ )

∫ t

t2

(t – s)γ –1[A w(s) + Λ1(s)
]

ds
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for t ∈ (t2, t3]. Similarly, we get

w(t) = w(t) + e2(t)

=
1

Γ (γ )

{
[
σ
(
�1
(
w
(
t–
1
)))

+ σ
(
�2
(
w
(
t–
2
)))

– 1
]
(

wa(t – a)γ –1

+
∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds
)

+ �1
(
w
(
t–
1
))

(t – t1)γ –1

+ �2
(
w
(
t–
2
))

(t – t2)γ –1

+
[
1 – σ

(
�1
(
w
(
t–
1
)))]

(

wa +
∫ t1

a

[
A w(s) + Λ1(s)

]
ds
)

(t – t1)γ –1

+
[
1 – σ

(
�1
(
w
(
t–
1
)))]

∫ t

t1

(t – s)γ –1[A w(s) + Λ1(s)
]

ds

+
[
1 – σ

(
�2
(
w
(
t–
2
)))]

(

wa +
∫ t2

a

[
A w(s) + Λ1(s)

]
ds
)

(t – t2)γ –1

+
[
1 – σ

(
�2
(
w
(
t–
2
)))]

∫ t

t2

(t – s)γ –1[A w(s) + Λ1(s)
]

ds
}

+ D
(
t, w(t)

)
, t ∈ (t2, t3]. (2.4)

Moreover, letting t2 → t1, we have

lim
t2→t1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dγ

a+ [w(t) – D(t, w(t))]

= A w(t) + L (t, w(t))

+
∫ t

0 q(t – s)P(t, w(s)) ds, γ ∈ (0, 1), t ∈ (a, t3], t �= t1 and t �= t2,

�I1–γ

a+ w|t=tk = I1–γ

a+ w(t+
k ) – I1–γ

a+ w(t–
k ) = �k(w(t–

k )), k = 1, 2,

I1–γ
a+ [w(t) – D(t, w(t))]|t=a = wa ∈H

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dγ

a+ [w(t) – D(t, w(t))]

= A w(t) + L (t, w(t))

+
∫ t

0 q(t – s)P(t, w(s)) ds, γ ∈ (0, 1), t ∈ (a, t3] and t �= t1,

�I1–γ

a+ w|t=t1 = I1–γ

a+ w(t+
1 ) – I1–γ

a+ w(t–
1 ) + I1–γ

a+ w(t+
2 ) – I1–γ

a+ w(t–
2 )

= �1(w(t–
1 )) + �2(w(t–

1 )),

I1–γ
a+ [w(t) – D(t, w(t))]|t=0 = w0 ∈H.

Using (2.3) and (2.4), we have 1–σ (�1 +�2) = 1–σ (�1)+1–σ (�2). Taking ρ(z) = 1–σ (z),
we have ρ(z + ω) = ρ(z) + ρ(ω) for ∀z, ω ∈C. So, ρ(z) = ξz. Thus,

w(t) =
wa

Γ (γ )
(t – a)γ –1 +

1
Γ (γ )

∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds

+
�1(w(t–

1 ))
Γ (γ )

(t – t1)γ –1 –
ξ�1(w(t–

1 ))
Γ (γ )

{

wa(t – a)γ –1

+
∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds
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–
(

wa +
∫ t1

a

[
A w(s) + Λ1(s)

]
ds
)

(t – t1)γ –1

–
∫ t

t1

(t – s)γ –1[A w(s) + Λ1(s)
]

ds
}

+ D
(
t, w(t)

)
, t ∈ (t1, t2]. (2.5)

Continuing in this way, we obtain, for t ∈ (tk , tk+1],

w(t) =
wa

Γ (γ )
(t – a)γ –1 +

1
Γ (γ )

∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds

+
k∑

i=1

�i(w(t–
i ))

Γ (γ )
(t – ti)γ –1 –

k∑

i=1

ξ�i(w(t–
i ))

Γ (γ )

{

wa(t – a)γ –1

+
∫ t

a
(t – s)γ –1[A w(s) + Λ1(s)

]
ds –

(

wa +
∫ ti

a

[
A w(s)

+ Λ1(s)
]

ds
)

(t – ti)γ –1 –
∫ t

ti

(t – s)γ –1[A w(s) + Λ1(s)
]

ds
}

+ D
(
t, w(t)

)
, t ∈ (tk , tk+1]. (2.6)

So, the solution of system (1.1)–(1.3) satisfies equation (2.1) with a = 0. Therefore, the
impulsive system (1.1)–(1.3) is equivalent to the integral equation (2.1) with a = 0. �

Lemma 2.1 If a = 0 and ξ = 0 in (2.6) are given by

w(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w0
Γ (γ ) tγ –1 + D(t, w(t))

+ 1
Γ (γ )

∫ t
0 (t – s)γ –1[A w(s) + Λ1(s)] ds, t ∈ (0, t1],

w0
Γ (γ ) tγ –1 + 1

Γ (γ )
∫ t

0 (t – s)γ –1[A w(s) + Λ1(s)] ds

+
∑k

i=1
�i(w(t–

i ))
Γ (γ ) (t – ti)γ –1, t ∈ (tk , tk+1],

(2.7)

where Λ1(s) = L (s, w(s)) +
∫ s

0 q(s – τ )P(τ , w(τ )) dτ . Then, for t > 0, we have

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tγ –1
Tγ (t)w0 + D(t, w(t)) +

∫ t
0 (t – s)γ –1A Tγ (t – s)

(×)D(s, w(s)) ds +
∫ t

0 (t – s)γ –1
Tγ (t – s)[L (s, w(s))

+
∫ s

0 q(s – τ )P(τ , w(τ )) dτ ] ds, t ∈ (0, t1],

tγ –1
Tγ (t)w0 + D(t, w(t)) +

∫ t
0 (t – s)γ –1A Tγ (t – s)

(×)D(s, w(s)) ds +
∫ t

0 (t – s)γ –1
Tγ (t – s)[L (s, w(s))

+
∫ s

0 q(s – τ )P(τ , w(τ )) dτ ] ds

+
∑k

i=1 Tγ (t – ti)(t – ti)γ –1Ii(w(t–
i )), t ∈ (tk , tk+1],

where

Tγ (t) = γ

∫ ∞

0
θξγ (θ )T

(
tγ θ

)
dθ ,

ξγ (θ ) =
1
γ

θ
–1– 1

γ φγ

(
θ

–1
γ
)
,
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φγ (θ ) = 1
π

∑∞
n=1(–1)n–1θ–γ n–1 Γ (nγ +1)

n! sin(nπγ ), θ ∈ (0,∞). Here ξγ is the probability density
function in (0,∞), that is, ξγ (θ ) ≥ 0 and

∫∞
0 ξγ (θ ) dθ = 1.

Proof The proof is very similar to the proof of [30, 32, Lemma 3.1, Lemma 3.3], hence here
we omit it. �

Lemma 2.2 ([30, Lemma 3.2]) If t ≥ 0, Tγ (t) is a linear and bounded operator. That is, for
any w ∈H,

∥
∥Tγ (t)w

∥
∥≤ M

Γ (γ )
‖w‖.

Lemma 2.3 ([30, Lemma 3.5]) For any β ∈ (0, 1), η ∈ (0, 1], and for all w ∈ D(A ), there
exists a positive constant Mη in a way that

A Tγ (t)w = A 1–β
Tγ (t)A βw, 0 ≤ t ≤ T ,

and

∥
∥A η

Tγ (t)
∥
∥≤ γMηΓ (2 – η)

tγ ηΓ (1 + γ (1 – η))
, 0 < t ≤ T .

Lemma 2.4 ([27, Lemma 2.7]) Assume ξ ,η ∈ R, η > –1 and n ∈ N
+, and then when t > 0,

we have

(

Iξ
0+

sη

Γ (η + 1)

)

(t) =

⎧
⎨

⎩

tξ+η

Γ (ξ+η+1) , ξ + η �= –n,

0, ξ + η = –n.

Next, we have a tendency to recall some properties of the measure of noncompactness
which will be employed in the proof of our main results. We tend to denote by ω(·) the
Kuratowski measure of noncompactness on both the finite sets of H and C(I ,H). For
more points of interest of the measure of noncompactness, see [3, 6]. For any D ⊂ C(I ,H)
and t ∈ I , let D(t) = {u(t)|u ∈ D} ⊂ H. If D ⊂ C(I ,H) is bounded, then D(t) is bounded
in H and ω(D(t)) ≤ ω(D).

3 Existence results
In this area, we display and demonstrate the existence results for problem (1.1)–(1.3). In
view of Lemma 2.1, first, we define the mild solution for model (1.1)–(1.3) with the help
of a probability density function and the Laplace transform.

Definition 3.1 ([27, Definition 3.1]) A function w ∈ PC1–γ (I ,H) is said to be a mild so-
lution of model (1.1)–(1.3) if the following hold:

(i) I1–γ

0+ [w(t) – D(t, w(t))]|t=0 = w0 ∈H;
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(ii)

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tγ –1
Tγ (t)w0 +

∫ t
0 (t – s)γ –1A Tγ (t – s)D(s, w(s)) ds

+ D(t, w(t)) +
∫ t

0 (t – s)γ –1
Tγ (t – s)[L (s, w(s))

+
∫ s

0 q(s – τ )P(τ , w(τ )) dτ ] ds, t ∈ (0, t1],

tγ –1
Tγ (t)w0 +

∫ t
0 (t – s)γ –1A Tγ (t – s)D(s, w(s)) ds

+ D(t, w(t)) +
∫ t

0 (t – s)γ –1
Tγ (t – s)[L (s, w(s))

+
∫ s

0 q(s – τ )P(τ , w(τ )) dτ ] ds

+
∑k

i=1 Tγ (t – ti)(t – ti)γ –1Ii(w(t–
i )), t ∈ (tk , tk+1].

Now, we are in a position to introduce the hypotheses on framework (1.1)–(1.3) as fol-
lows.

(H1) T (t), t > 0 is a strongly continuous semigroup and continuous in the uniform
operator topology.

(H2) L : I ×H →H is continuous, and we can discover constants NL > 0 in a way
that

∥
∥L (t, w) – L (t, v)

∥
∥
H

≤ NL ‖w – v‖H, t ∈ I , w, v ∈H.

(H3) P : I ×H →H is continuous, and we can discover constants NP > 0 such that

∥
∥P(t, w) – P(t, v)

∥
∥
H

≤ NP‖w – v‖H, t ∈ I , w, v ∈H.

(H4) The function D : I ×H→ H, we can discover constants β ∈ (0, 1) and ND > 0 in
ways that D ∈ D(A β ), and for any w, v ∈H, t ∈ I , the function A βD(·, w) is
strongly measurable and A βD(t, w) satisfies

∥
∥A βD(t, w) – A βD(t, v)

∥
∥
H

≤ ND‖w – v‖H.

(H5) There exist constants 0 < dk < Γ (γ )/[M
∑k

i=1(ti – ti–1)γ –1], k = 1, . . . , m + 1,
ensuring that

∥
∥Ii(w) – Ii(v)

∥
∥
H

≤ di‖w – v‖H and
∥
∥Ii(w)

∥
∥≤ NI , (w, v) ∈H

2.

(H6) For any R > 0 and a > 0, there exists Li(R, a) > 0, i = 1, 2, 3, ensuring that for any
equicontinuous and countable set D ⊂ BR = {w ∈ H : ‖w‖ ≤ R},

ω
(
L (t, D)

)≤ L2ω(D), ω
(
D(t, D)

)≤ L1ω(D),

ω
(
P(t, D)

)≤ L3ω(D), t ∈ [0, a].

Remark 3.1 Throughout this paper, we define a few notations:

∥
∥A –β

∥
∥ = M0 and K(γ ,β) =

M1–βΓ (1 + β)τ γβ

βΓ (1 + γβ)
.
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Theorem 3.1 Assume that hypotheses (H1)–(H6) are satisfied. Then, for every w0 ∈
PC1–γ (I ,H), there exists τ1 = τ1(w0), 0 < τ1 < T , ensuring that model (1.1)–(1.3) has a
solution w ∈ PC1–γ ((0, τ1],H).

Proof Since we are interested here just in local solutions, we may assume that T < ∞.
By using our conditions (H1)–(H5), t′ > 0 and r > 0 are such that Br(w0) = {w : (t –
tk)1–γ ‖w – w0‖ ≤ r} and (t – tk)1–γ ‖L (t, w(t))‖ ≤ NL , (t – tk)1–γ ‖P(t, w(t))‖ ≤ NP ,
(t – tk)1–γ ‖A βD(t, w(t))‖ ≤ ND for 0 ≤ t ≤ t′ and w ∈ Br(w0) and select

τ0 = min

{

t′, T ,
[

Γ (γ + 1)
M(NL + q∗NP)

(1 –
(
M0 + K(γ ,β)LD

)
] 1

γ

,

[
Γ (γ + 1)

M(NL + q∗NP)
(
1 –

(
M0 + K(γ ,β)

)
ND + u

)
] 1

γ
}

, (3.1)

where q∗ = sup0≤t≤T
∫ t

0 ‖q(t – s)‖ds, u = M
Γ (γ ) [‖w0‖ –

∑k
i=1(ti – ti–1)γ –1]. Set Ω = {w ∈

PC1–γ ([0, τ1],H) : t1–γ ‖w(t)‖ ≤ r, t ∈ [0, τ1]}, then Ω is a closed ball in PC1–γ ([0, τ1],H)
with center θ and radius r. Consider the operator Υ : Ω → PC1–γ ([0, τ1],H) defined by

(Υ w)(t) = tγ –1
Tγ (t)w0 + D

(
t, w(t)

)

+
∫ t

0
(t – s)γ –1A Tγ (t – s)D

(
s, w(s)

)
ds

+
∫ t

0
(t – s)γ –1

Tγ (t – s)
[

L
(
s, w(s)

)
+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

]

ds

+
∑

0<tk<t

Tγ (t – tk)(t – tk)γ –1Ik
(
w
(
t–
k
))

.

For any w ∈ Ω and t ∈ [0, τ1], by Lemma 2.2 and Lemma 2.3, we have

(t – tk)1–γ
∥
∥(Υ w)(t)

∥
∥

= (t – tk)1–γ tγ –1∥∥Tγ (t)w0
∥
∥ + (t – tk)1–γ

∥
∥D

(
t, w(t)

)∥
∥

+ (t – tk)1–γ

∫ t

0
(t – s)γ –1∥∥A Tγ (t – s)D

(
s, w(s)

)∥
∥ds

+ (t – tk)1–γ

∫ t

0
(t – s)γ –1

∥
∥
∥
∥Tγ (t – s)

[

L
(
s, w(s)

)

+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

]∥
∥
∥
∥ds

+ (t – tk)1–γ

∥
∥
∥
∥

∑

0<tk<t

Tγ (t – tk)(t – tk)γ –1Ik
(
w
(
t–
k
))
∥
∥
∥
∥

=
4∑

j=1

Jj, (3.2)
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where

J1 = (t – tk)1–γ tγ –1∥∥Tγ (t)w0
∥
∥ + (t – tk)1–γ

∥
∥D

(
t, w(t)

)∥
∥

≤ ∥
∥Tγ (t)w0

∥
∥ +

∥
∥A –β

∥
∥(t – tk)1–γ

∥
∥A βD

(
t, w(t)

)∥
∥

≤ M‖w0‖
Γ (γ )

+ M0ND ,

J2 = (t – tk)1–γ

∫ t

0
(t – s)γ –1∥∥A Tγ (t – s)D

(
s, w(s)

)∥
∥ds

≤ (t – tk)1–γ

∫ t

0
(t – s)γ –1∥∥A 1–β

Tγ (t – s)
∥
∥
∥
∥A βD

(
s, w(s)

)∥
∥ds

≤ (t – tk)1–γ γM1–βΓ (1 + β)
Γ (1 + γβ)

∫ t

0
(t – s)γβ–1∥∥A βD

(
s, w(s)

)∥
∥ds

≤ K(γ ,β)ND ,

J3 = (t – tk)1–γ

∫ t

0
(t – s)γ –1

∥
∥
∥
∥Tγ (t – s)

[

L
(
s, w(s)

)

+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

]∥
∥
∥
∥ds

≤ (t – tk)1–γ M
Γ (γ )

∫ t

0
(t – s)γ –1[∥∥L

(
s, w(s)

)∥
∥ + q∗∥∥P

(
s, w(s)

)∥
∥
]

ds

≤ M
Γ (γ )

tγ

γ

[
NL + q∗NP

]

≤ M
Γ (γ + 1)

[
NL + q∗NP

]
τ γ ,

J4 = (t – tk)1–γ

∥
∥
∥
∥

∑

0<tk<t

Tγ (t – tk)(t – tk)γ –1Ik
(
w
(
t–
k
))
∥
∥
∥
∥

≤ (t – tk)1–γ M
Γ (γ )

k∑

i=1

(t – ti)γ –1∥∥Ii
(
w
(
t–
i
))∥
∥

≤ M
Γ (γ )

k∑

i=1

(ti – ti–1)γ –1(ti – ti–1)1–γ
∥
∥Ii
(
w
(
t–
i
))∥
∥

≤ M
Γ (γ )

k∑

i=1

(ti – ti–1)γ –1NI .

Using J1 – J4 in equation (3.2), we get

(t – tk)1–γ
∥
∥(Υ w)(t)

∥
∥≤ M

Γ (γ )

[

‖w0‖ +
k∑

i=1

(ti – ti–1)γ –1NI

]

+ ND

(
M0 + K(γ ,β)

)
+

M
Γ (γ + 1)

[
NL + q∗NP

]
τ γ

≤ R.
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Therefore, Υ w ∈ Ω . Now we show that Υ is continuous from Ω into Ω . To show this,
we first observe that since L , D , and P are continuous in I × H, for any ε > 0 and
for fixed w ∈ BR(w0), there exists δ1(w), δ2(w) > 0 ensuring that for any v ∈ BR(w0) and let
δ(w) = min{δ1(w), δ2(w)}. Then, for any v ∈ Ω , (t – tk)1–γ ‖w(t) – v(t)‖ < δ(w) and choose

[
(∥
∥A –β

∥
∥ + K(γ ,β)

)
ND +

M
Γ (γ + 1)

τ γ
[
NL + q∗NP

]
+

M
Γ (γ )

mdkτ
γ –1
]

<
ε

δ(w)
.

Then we have

(t – tk)1–γ
∥
∥(Υ w)(t) – (Υ v)(t)

∥
∥

≤ (t – tk)1–γ
∥
∥D

(
t, w(t)

)
– D

(
t, v(t)

)∥
∥

+ (t – tk)1–γ

∫ t

0
(t – s)γ –1∥∥A Tγ (t – s)

[
D
(
s, w(s)

)
– D

(
s, v(s)

)]∥
∥ds

+ (t – tk)1–γ

∫ t

0
(t – s)γ –1∥∥Tγ (t – s)

[
L
(
s, w(s)

)
– L

(
s, v(s)

)]∥
∥ds

+ (t – tk)1–γ

∫ t

0
(t – s)γ –1

∥
∥
∥
∥Tγ (t – s)

∫ s

0
q(s – τ )

(×)
[
P
(
τ , w(τ )

)
– P

(
τ , v(τ )

)]
dτ

∥
∥
∥
∥ds

+ (t – tk)1–γ

∥
∥
∥
∥

∑

0<tk<t

Tγ (t – tk)(t – tk)γ –1[Ik
(
w
(
t–
k
))

– Ik
(
v
(
t–
k
))]
∥
∥
∥
∥

≤
[
(∥
∥A –β

∥
∥ + K(γ ,β)

)
ND +

M
Γ (γ + 1)

τ γ
[
NL + q∗NP

]
+

M
Γ (γ )

mdkτ
γ –1
]

(×)‖w – v‖C1–γ

≤ ε.

Thus, we have that Υ : Ω → Ω is a continuous operator. Next, we demonstrate that the
operator Υ : Ω → Ω is equicontinuous. For any w ∈ Ω and 0 ≤ t1 < t2 ≤ τ1, we get that

∥
∥(t2 – tk)1–γ (Υ w)(t2) – (t1 – tk)1–γ (Υ w)(t1)

∥
∥

≤ ∥
∥(t2 – tk)1–γ tγ –1

2 Tγ (t2)w0 – (t1 – tk)1–γ tγ –1
1 Tγ (t1)w0

∥
∥

+
∥
∥(t2 – tk)1–γ D

(
t2, w(t2)

)
– (t1 – tk)1–γ D

(
t1, w(t1)

)∥
∥

+
∥
∥
∥
∥(t2 – tk)1–γ

∫ t2

0
(t2 – s)γ –1A Tγ (t2 – s)D

(
s, w(s)

)
ds

– (t1 – tk)1–γ

∫ t1

0
(t1 – s)γ –1A Tγ (t1 – s)D

(
s, w(s)

)
ds
∥
∥
∥
∥

+
∥
∥
∥
∥(t2 – tk)1–γ

∫ t2

0
(t2 – s)γ –1

Tγ (t2 – s)
[

L
(
s, w(s)

)

+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

]

ds
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– (t1 – tk)1–γ

∫ t1

0
(t1 – s)γ –1

Tγ (t1 – s)
[

L
(
s, w(s)

)

+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

]

ds
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

(t2 – tk)1–γ

k∑

i=1

Tγ (t2 – ti)(t2 – ti)γ –1Ii
(
w
(
t–
i
))

– (t1 – tk)1–γ

k∑

i=1

Tγ (t1 – ti)(t1 – ti)γ –1Ii
(
w
(
t–
i
))
∥
∥
∥
∥
∥

≤
9∑

j=5

Jj, (3.3)

where

J5 =
∥
∥(t2 – tk)1–γ tγ –1

2 Tγ (t2)w0 – (t1 – tk)γ –1tγ –1
1 Tγ (t1)w0

∥
∥

≤ (t2 – tk)1–γ
[
tγ –1
2 – tγ –1

1
]∥
∥Tγ (t2)w0

∥
∥

+ tγ –1
1
∥
∥(t2 – tk)γ –1

Tγ (t2) – (t1 – tk)γ –1
Tγ (t1)

∥
∥‖w0‖

≤ M
Γ (γ )

(t2 – tk)1–γ
[
tγ –1
2 – tγ –1

1
]‖w0‖

+ tγ –1
1
∥
∥(t2 – tk)γ –1

Tγ (t2) – (t1 – tk)γ –1
Tγ (t1)

∥
∥‖w0‖,

J6 =
∥
∥(t2 – tk)1–γ D

(
t2, w(t2)

)
– (t1 – tk)1–γ D

(
t1, w(t1)

)∥
∥

≤ (t1 – tk)1–γ
∥
∥A –β

∥
∥
∥
∥A βD

(
t2, w(t2)

)
– A βD

(
t1, w(t1)

)∥
∥

+
[
(t2 – tk)γ –1 – (t1 – tk)γ –1]∥∥A –β

∥
∥
∥
∥A βD

(
t2, w(t2)

)∥
∥

≤M0(t1 – tk)1–γ
∥
∥A βD

(
t2, w(t2)

)
– A βD

(
t1, w(t1)

)∥
∥

+ M0
[
(t2 – tk)γ –1 – (t1 – tk)γ –1]∥∥A βD

(
t2, w(t2)

)∥
∥,

J7 =
∥
∥
∥
∥(t2 – tk)1–γ

∫ t2

0
(t2 – s)γ –1A Tγ (t2 – s)D

(
s, w(s)

)
ds

– (t1 – tk)1–γ

∫ t1

0
(t1 – s)γ –1A Tγ (t1 – s)D

(
s, w(s)

)
ds
∥
∥
∥
∥

≤ (t2 – tk)1–γ

∫ t1

0

[
(t2 – s)γ –1 – (t1 – s)γ –1]

(×)
∥
∥A 1–β

Tγ (t2 – s)
∥
∥
∥
∥A βD

(
s, w(s)

)∥
∥ds

+
∫ t1

0
(t1 – s)γ –1∥∥(t2 – s)1–γ A 1–β

Tγ (t2 – s)

– (t1 – s)1–γ A 1–β
Tγ (t1 – s)

∥
∥
∥
∥A βD

(
s, w(s)

)∥
∥ds

+ (t2 – tk)1–γ

∫ t2

t1

(t2 – s)γ –1∥∥A 1–β
Tγ (t2 – s)

∥
∥
∥
∥A βD

(
s, w(s)

)∥
∥ds

≤ γM1–βΓ (1 + β)ND

Γ (1 + γβ)

∫ t1

0
(t2 – s)γβ–γ

[
(t2 – s)γ –1 – (t1 – s)γ –1]ds

+
∫ t1

0
(t1 – s)γ –1∥∥(t2 – s)1–γ A 1–β

Tγ (t2 – s)

– (t1 – s)1–γ A 1–β
Tγ (t1 – s)

∥
∥
∥
∥A βD

(
s, w(s)

)∥
∥ds
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+
γM1–βΓ (1 + β)ND

Γ (1 + γβ)
(t2 – tk)1–γ

∫ t2

t1

(t2 – s)γβ–1 ds,

J8 =
∥
∥
∥
∥(t2 – tk)1–γ

∫ t2

0
(t2 – s)γ –1

Tγ (t2 – s)

(×)
[

L
(
s, w(s)

)
+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

]

ds

– (t1 – tk)1–γ

∫ t1

0
(t1 – s)γ –1

Tγ (t1 – s)

(×)
[

L
(
s, w(s)

)
+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

]

ds
∥
∥
∥
∥

≤ M
Γ (γ )

(
NL + q∗NP

)
∫ t1

0

[
(t2 – s)γ –1 – (t1 – s)γ –1]ds

+
∫ t1

0
(t1 – s)γ –1∥∥(t2 – s)1–γ

Tγ (t2 – s) – (t1 – s)1–γ
Tγ (t1 – s)

∥
∥

(×)
∥
∥
∥
∥L

(
s, w(s)

)
+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

∥
∥
∥
∥ds

+
M

Γ (γ )
(
NL + q∗NP

) (t2 – t1)γ

γ
,

J9 =

∥
∥
∥
∥
∥

(t2 – tk)1–γ

k∑

i=1

Tγ (t2 – ti)(t2 – ti)γ –1Ii
(
w
(
t–
i
))

– (t1 – tk)1–γ

k∑

i=1

Tγ (t1 – ti)(t1 – ti)γ –1Ii
(
w
(
t–
i
))
∥
∥
∥
∥
∥

≤ M
Γ (γ )

k∑

i=1

NI
[
(t2 – ti)γ –1 – (t1 – ti)γ –1] +

k∑

i=1

(t1 – ti)γ –1

(×)
[
(t2 – ti)1–γ

Tγ (t2 – ti) – (t1 – ti)1–γ
Tγ (t1 – ti)

]∥
∥Ii
(
w
(
t–
i
))∥
∥.

From (J5)–(J9) in equation (3.3), we have

∥
∥(t2 – tk)1–γ (Υ w)(t2) – (t1 – tk)1–γ (Υ w)(t1)

∥
∥

≤ M
Γ (γ )

(t2 – tk)1–γ
[
tγ –1
2 – tγ –1

1
]‖w0‖

+ tγ –1
1
∥
∥(t2 – tk)γ –1

Tγ (t2) – (t1 – tk)γ –1
Tγ (t1)

∥
∥‖w0‖

+ M0(t1 – tk)1–γ
∥
∥A βD

(
t2, w(t2)

)
– A βD

(
t1, w(t1)

)∥
∥

+ M0
[
(t2 – tk)γ –1 – (t1 – tk)γ –1]∥∥A βD

(
t2, w(t2)

)∥
∥

+
γM1–βΓ (1 + β)ND

Γ (1 + γβ)

∫ t1

0
(t2 – s)γβ–γ

[
(t2 – s)γ –1 – (t1 – s)γ –1]ds

+
∫ t1

0
(t1 – s)γ –1∥∥(t2 – s)1–γ A 1–β

Tγ (t2 – s)

– (t1 – s)1–γ A 1–β
Tγ (t1 – s)

∥
∥
∥
∥A βD

(
s, w(s)

)∥
∥ds

+
γM1–βΓ (1 + β)ND

Γ (1 + γβ)
(t2 – tk)1–γ

∫ t2

t1

(t2 – s)γβ–1 ds
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+
M

Γ (γ )
(
NL + q∗NP

)
∫ t1

0

[
(t2 – s)γ –1 – (t1 – s)γ –1]ds

+
∫ t1

0
(t1 – s)γ –1∥∥(t2 – s)1–γ

Tγ (t2 – s) – (t1 – s)1–γ
Tγ (t1 – s)

∥
∥

(×)
∥
∥
∥
∥L

(
s, w(s)

)
+
∫ s

0
q(s – τ )P

(
τ , w(τ )

)
dτ

∥
∥
∥
∥ds

+
M

Γ (γ )

[
(
NL + q∗NP

) (t2 – t1)γ

γ
+

k∑

i=1

NI
[
(t2 – ti)γ –1 – (t1 – ti)γ –1]

]

+
k∑

i=1

(t1 – ti)γ –1[(t2 – ti)1–γ
Tγ (t2 – ti) – (t1 – ti)1–γ

Tγ (t1 – ti)
]∥
∥Ii
(
w
(
t–
i
))∥
∥

→ 0 as t2 – t1 → 0,

which means that Υ : Ω → Ω is equicontinuous.
Since (t2 – s)1–γ

Tγ (t2 – s) – (t1 – s)1–γ
Tγ (t1 – s) → 0 as t2 → t1 because Tγ (·) is strongly

continuous.
Let B = coΥ (ω). At that point it is anything but difficult to confirm that Υ maps B into

itself and B ⊂ PC1–γ (I ,H) is equicontinuous. Now, we prove that Υ : B → B is a condens-
ing operator. For any E ⊂ B, by [8, Lemma 2.2], there exists a countable set E0 = {wn} ⊂ E
such that

ω
(
Υ (E)

)≤ 2ω
(
Υ (E0)

)
. (3.4)

By the equicontinuity of B, we know that E0 ⊂ B is also equicontinuous. Therefore, by [8,
Lemma 2.4], assumption (H6), we have

ω
(
Υ (E0)(t)

)

= ω

{

(t – tk)1–γ

(

tγ –1
Tγ (t)w0 + D

(
t, wn(t)

)

+
∫ t

0
(t – s)γ –1A Tγ (t – s)D

(
s, wn(s)

)
ds

+
∫ t

0
(t – s)γ –1

Tγ (t – s)
[

L
(
s, wn(s)

)
+
∫ s

0
q(s – τ )P

(
τ , wn(τ )

)
dτ

]

ds

+
∑

0<tk<t

Tγ (t – tk)(t – tk)γ –1Ik
(
w
(
t–
k
))
)}

≤ 2
∥
∥A –β

∥
∥ω
(
(t – tk)1–γ A βD

(
t, wn(t)

))

+ 2ω

(

(t – tk)1–γ

∫ t

0
(t – s)γ –1A Tγ (t – s)D

(
s, wn(s)

)
ds
)

+
2M
Γ (γ )

ω

(

(t – tk)1–γ

∫ t

0
(t – s)γ –1

Tγ (t – s)
[

L
(
s, wn(s)

)

+
∫ s

0
q(s – τ )P

(
τ , wn(τ )

)
dτ

]

ds
)

≤ 2
∥
∥A –β

∥
∥L1ω

(
(t – tk)1–γ wn(t)

)
+

γM1–βΓ (1 + β)tγβ

γβΓ (1 + γβ)
L1ω

(
(t – tk)1–γ
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(×)wn(t)
)

+
2M
Γ (γ )

tγ

γ
ω
(
(t – tk)1–γ

[
L
(
t, wn(t)

)
+ q∗P

(
t, wn(t)

)])

≤ 2
(

‖M0L1‖ + K(γ ,β)L1 +
M

Γ (γ + 1)
[
L2 + q∗L3

]
τ γ

)

ω(E0). (3.5)

Since Υ (E0) ⊂ B is bounded and equicontinuous, we know from [8, Lemma 2.3] that

ω
(
Υ (E0)

)
= max

t∈I
ω
(
Υ (E0)(t)

)
. (3.6)

Therefore, from (3.1), (3.4)–(3.6), we know that

ω
(
Υ (E)

)≤ 4
(
(
M0 + K(γ ,β)

)
L1 +

M
Γ (γ + 1)

[
L2 + q∗L3

]
τ γ

)

ω(E)

≤ ω(E). (3.7)

Thus, Υ : B → B is a condensing operator. It follows from [8, Lemma 2.5] that Υ has at least
one fixed point w(t0) ∈ B, which is the mild solution of model (1.1)–(1.3) on the interval
[0, τ1]. �

4 Applications
Consider the subsequent initial-boundary value problem of impulsive fractional integro-
differential model with RL fractional derivatives:

LD
3
4
0+

[

u(t, x) –
∫ t

0
e2s ‖u(s, x)‖

1 + ‖u(s, x)‖ ds
]

=
∂2u(t, x)

∂x2 +
2e–t‖u(t, x)‖
1 + ‖u(t, x)‖

+
∫ t

0
et–s es

5 + ‖u(s, x)‖ ds, t ∈ (0, 2] and t �= 1, (4.1)

�I
1
4

0+ u
(
1–, x

)
= sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

)

, (4.2)

u0(x) = I
1
4

0+

[

u(t, x) –
∫ t

0
e2s ‖u(s, x)‖

1 + ‖u(s, x)‖ ds
]

|t=0, (4.3)

u(t, 0) = u(t,π ) = 0, t ∈ (0, T], x ∈ [0,π ], (4.4)

where LD
3
4
0+ is the Riemann–Liouville fractional derivatives of order 3

4 , 0 < 3
4 ≤ 1, I

1
4

0+ is the
RL integral of order 1

4 , u0(x) ∈H. To study this problem, consider H = L2([0,π ],R). Let the
operator A by A y = y′′, with the domain

D(A ) =
{

y(·) ∈H : y, y′ are absolutely continuous, y′′ ∈ H, y(t, 0) = y(t,π ) = 0
}

.

Then A generates a c0 semigroup {T(t)}t≥0 which is compact, analytic. Besides, A can be
composed as

A y =
∞∑

n=1

n2〈y, en〉en, y ∈ D(A ),
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where en(x) =
√

2
π

sin nx, 0 ≤ x ≤ π , n = 1, 2, . . . , is an orthonormal basis of H. We have

T(t)y =
∞∑

n=1

e–n2t〈y, en〉en, y ∈H, and
∥
∥T(t)

∥
∥≤ e–t ≤ 1 = M, t ≥ 0.

For each y ∈H,

A – 1
2 y =

∞∑

n=1

1
n

〈y, en〉en.

In specific, ‖A – 1
2 ‖ = 1. The operator A

1
2 is given by

A
1
2 y =

∞∑

n=1

n〈y, en〉en

on the space

D
(
A

1
2
)

=

{

y(·) ∈H,
∞∑

n=1

n〈y, en〉en ∈H

}

.

From Theorem 2.1, the general solution of impulsive model (4.1)–(4.4) is obtained as fol-
lows:

u(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0
Γ ( 3

4 )
t –1

4 + 1
Γ ( 3

4 )

∫ t
0 (t – s) –1

4 [ ∂2u(s,x)
∂x2 + 2e–s‖u(s,x)‖

1+‖u(s,x)‖
+
∫ s

0 es–τ eτ

5+‖u(τ ,x)‖ dτ ] ds +
∫ t

0 e2s ‖u(s,x)‖
1+‖u(s,x)‖ ds,

t ∈ (0, 1],
u0

Γ ( 3
4 )

t –1
4 + 1

Γ ( 3
4 )

∫ t
0 (t – s) –1

4 [ ∂2u(s,x)
∂x2 + 2e–s‖u(s,x)‖

1+‖u(s,x)‖
+
∫ s

0 es–τ eτ

5+‖u(τ ,x)‖ dτ ] ds +
∫ t

0 e2s ‖u(s,x)‖
1+‖u(s,x)‖ ds

+ 1
Γ ( 3

4 )
sin( 1

7‖u(1–, x)‖)(t – 1) –1
4

– ξ

Γ ( 3
4 )

sin( 1
7‖u(1–, x)‖)u0t –1

4

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ξ

Γ ( 3
4 )

sin( 1
7‖u(1–, x)‖){ 1

Γ ( 3
4 )

∫ t
0 (t – s) –1

4

(×)[ ∂2u(s,x)
∂x2 + 2e–s‖u(s,x)‖

1+‖u(s,x)‖
+
∫ s

0 es–τ eτ

5+‖u(τ ,x)‖ dτ ] ds – (u0 +
∫ 1

0 [ ∂2u(s,x)
∂x2

+ 2e–s‖u(s,x)‖
1+‖u(s,x)‖ +

∫ s
0 es–τ eτ

5+‖u(τ ,x)‖ dτ ] ds)(t – 1) –1
4

–
∫ t

1 (t – s) –1
4 [ ∂2u(s,x)

∂x2 + 2e–s‖u(s,x)‖
1+‖u(s,x)‖

+
∫ s

0 es–τ eτ

5+‖u(τ ,x)‖ dτ ] ds}, t ∈ (1, 2].

(4.5)

Next, it is verified that equation (4.5) satisfies the condition of system (4.1)–(4.4). Taking
the Riemann–Liouville fractional derivative to both sides of equation (4.5), we have:



Kalamani et al. Advances in Difference Equations        (2018) 2018:416 Page 21 of 26

(i) for t ∈ (0, 1],

D
3
4
0+

(

u(t, x) –
∫ t

0
e2s ‖u(s, x)‖

1 + ‖u(s, x)‖ ds
)

= D
3
4
0+

(
u0

Γ ( 3
4 )

t
–1
4 +

1
Γ ( 3

4 )

∫ t

0
(t – s)

–1
4

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖

+
∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

=
{

1
Γ ( 3

4 )Γ (1 – 3
4 )

d
dt

∫ t

0
(t – η)1– 3

4 –1
(

u0η
–1
4 +

∫ η

0
(η – s)

–1
4

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

dη

}

t∈(0,1]

=
{∫ t

0

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖

]

ds
}

t∈(0,1]

+
{∫ t

0

[∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
}

t∈(0,1]

=
∂2u(t, x)

∂x2 +
2e–t‖u(t, x)‖
1 + ‖u(t, x)‖ +

∫ t

0
et–s es

5 + ‖u(s, x)‖ ds.

(ii) for t ∈ (1, 2],

D
3
4
0+

(

u(t, x) –
∫ t

0
e2s ‖u(s, x)‖

1 + ‖u(s, x)‖ ds
)

= D
3
4
0+

(
u0

Γ ( 3
4 )

t
–1
4 +

1
Γ ( 3

4 )

∫ t

0
(t – s)

–1
4

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖

+
∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

+ D
3
4
0+

(

sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

)
(t – 1) –1

4

Γ ( 3
4 )

)

– D
3
4
0+

(
ξ sin( 1

7‖u(1–, x)‖)
Γ ( 3

4 )

{

u0t
–1
4 +

1
Γ ( 3

4 )

∫ t

0
(t – s)

–1
4

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds

–
(

u0 +
∫ 1

0

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

(t – 1)
–1
4

–
∫ 1

0
(t – s)

–1
4

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖

+
∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
})

=
{

1
Γ ( 3

4 )Γ (1 – 3
4 )

d
dt

∫ t

0
(t – η)1– 3

4 –1
(

u0η
–1
4 +

∫ η

0
(η – s)

–1
4

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

dη

}

t∈(1,2]

+
{

1
Γ ( 3

4 )Γ ( 1
4 )

d
dt

∫ t

0
(t – η)

–3
4 (η – 1)

–1
4 sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

)

dη

}

t∈(1,2]
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+
{

1
Γ ( 3

4 )Γ ( 1
4 )

d
dt

∫ t

0
(t – η)

–3
4 (η – 1)

–1
4

ξ sin( 1
7‖u(1–, x)‖)
Γ ( 3

4 )

{

u0η
–1
4

+
∫ η

0
(η – s)

–1
4

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖

+
∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds –
(

u0 +
∫ 1

0

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖

+
∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

(η – 1)
–1
4 –

∫ 1

0
(t – s)

–1
4

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
}

dη

}

t∈(1,2]

=
{∫ t

0

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
}

t∈(1,2]

–
{

ξ sin( 1
7‖u(1–, x)‖)
Γ ( 3

4 )

∫ t

0

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖

]

ds
}

t∈(1,2]

–
{

ξ sin( 1
7‖u(1–, x)‖)
Γ ( 3

4 )

∫ t

0

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ ds
}

t∈(1,2]

+
{

ξ sin( 1
7‖u(1–, x)‖)
Γ ( 3

4 )
1

Γ ( 3
4 )Γ ( 1

4 )
d
dt

∫ t

1
(t – η)

–3
4

{(

u0 +
∫ 1

0

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

(η – 1)
–1
4

–
∫ 1

η

(t – s)
–1
4

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖

+
∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
}

dη

}

}t∈(1,2]

=
{[

∂2u(t, x)
∂x2 +

2e–t‖u(t, x)‖
1 + ‖u(t, x)‖ +

∫ t

0
et–s es

5 + ‖u(s, x)‖ ds
]

t≥0

–
ξ sin( 1

7‖u(1–, x)‖)
Γ ( 3

4 )

{[
∂2u(t, x)

∂x2 +
2e–t‖u(t, x)‖
1 + ‖u(t, x)‖

+
∫ t

0
et–s es

5 + ‖u(s, x)‖ ds
]

t≥0
–
[

∂2u(t, x)
∂x2 +

2e–t‖u(t, x)‖
1 + ‖u(t, x)‖

+
∫ t

0
et–s es

5 + ‖u(s, x)‖ ds
]

t≥1

}

t∈(1,2]

=
[

∂2u(t, x)
∂x2 +

2e–t‖u(t, x)‖
1 + ‖u(t, x)‖ +

∫ t

0
et–s es

5 + ‖u(s, x)‖ ds
]

t∈(1,2]
.

So, equation (4.5) satisfies the RL fractional derivative condition of system (4.1)–(4.4). By
Definition 2.2, we obtain

I1– 3
4

0+ u
(
1+, x

)
– I1– 3

4
0+ u

(
1–, x

)

=
{

1
Γ ( 1

4 )

∫ t

0
(t – η)

–3
4 u(η) dη

}

t→1+
–
{

1
Γ ( 1

4 )

∫ t

0
(t – η)

–3
4 u(η) dη

}

t=1+
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=
{

sin( 1
7‖u(1–, x)‖)

Γ ( 3
4 )Γ (1 – 3

4 )

∫ t

0
(t – η)

–3
4 dη

}

t→1+

– ξ sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

){
1

Γ ( 3
4 )Γ (1 – 3

4 )

∫ t

0
(t – η)

–3
4 u0η

–1
4

+
∫ η

1
(η – s)

–3
4

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds –
(

u0 +
∫ 1

0

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

(η – 1)
–1
4

–
∫ η

1
(η – s)

–1
4

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
}

dη}t→1+

= sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

)

– ξ sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

){

u0 +
∫ t

0

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds –
(

u0 +
∫ 1

0

[
∂2u(s, x)

∂x2

+
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
)

–
∫ t

1

[
∂2u(s, x)

∂x2 +
2e–s‖u(s, x)‖
1 + ‖u(s, x)‖ +

∫ s

0
es–τ eτ

5 + ‖u(τ , x)‖ dτ

]

ds
}

t→1+

= sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

)

.

That is, equation (4.5) satisfies impulsive condition (4.2). Therefore, clearly equation (4.5)
fulfills the following limit case:

lim
sin( 1

7 ‖u(1–,x)‖)→0

⎧
⎪⎪⎨

⎪⎪⎩

D
3
4
0+ [u(t, x) –

∫ t
0 e2s ‖u(s,x)‖

1+‖u(s,x)‖ ds]

= ∂2u(t,x)
∂x2 + 2e–t‖u(t,x)‖

1+‖u(t,x)‖ +
∫ t

0 et–s es

5+‖u(s,x)‖ ds,

t ∈ (0, 2] and t �= 1,

lim
sin( 1

7 ‖u(1–,x)‖)→0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(I
1
4

0+ u)|t=1 = I
1
4

0+ u(1+, x) – I
1
4

0+ u(1–, x)

= sin( 1
7‖u(1–, x)‖) ∈H,

I
1
4

0+[u(t, x) –
∫ t

0 e2s ‖u(s,x)‖
1+‖u(s,x)‖ ds]|t=0 = u0(x) ∈H,

D
3
4
0+ [u(t, x) –

∫ t
0 e2s ‖u(s,x)‖

1+‖u(s,x)‖ ds]

= ∂2u(t,x)
∂x2 + 2e–t‖u(t,x)‖

1+‖u(t,x)‖
+
∫ t

0 et–s es

5+‖u(s,x)‖ ds, t ∈ (0, 2],

I
1
4

0+[u(t, x) –
∫ t

0 e2s ‖u(s,x)‖
1+‖u(s,x)‖ ds]|t=0 = u0(x) ∈H.

So, equation (4.5) is the general solution of system (4.1)–(4.3). Characterize the adminis-
trators L ,D ,P : I ×H →H and q : I →H by

L (t, u) =
2e–t‖u(t, x)‖
1 + ‖u(t, x)‖ ,
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P(t, u) =
et

5 + ‖u(s, x)‖ ,

D(t, u) =
∫ t

0
e2s ‖u(s, x)‖

1 + ‖u(s, x)‖ ds,

q(t – s) = et–s and

Ik
(
u
(
1–, x

))
= sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

)

.

Then the impulsive fractional differential system (4.1)–(4.4) can be converted into the
abstract form problem (1.1)–(1.3). Next, we shall show that hypotheses (H2)–(H5) are
satisfied. For this, u, v ∈ PC1–γ ((0, 2],H).

(i)

∥
∥L (t, u) – L (t, v)

∥
∥ =

∥
∥
∥
∥

2e–tu
1 + u

–
2e–tv
1 + v

∥
∥
∥
∥

= 2e–t
∥
∥
∥
∥

u
1 + u

–
v

1 + v

∥
∥
∥
∥

= 2e–t ‖u – v‖
(1 + u)(1 + v)

≤ 2‖u – v‖.

Hypothesis (H2) holds if NL = 2.
(ii)

∥
∥P(t, u) – P(t, v)

∥
∥ =

∥
∥
∥
∥

et

5 + u
–

et

5 + v

∥
∥
∥
∥

= et ‖u – v‖
(5 + u)(5 + v)

≤ e
25

‖u – v‖.

If NL = e
25 , condition (H3) is satisfied.

(iii) Choose β = 1
2 , we have

∥
∥(A )

1
2 D(t, u) – (A )

1
2 D(t, v)

∥
∥ =

∫ t

0
e2s
∥
∥
∥
∥

u
1 + u

–
v

1 + v

∥
∥
∥
∥ds

=
e2t – 1

2
‖u – v‖

(1 + u)(1 + v)

≤ e – 1
2

‖u – v‖.

Here, condition (H4) holds with NP = e–1
2 .



Kalamani et al. Advances in Difference Equations        (2018) 2018:416 Page 25 of 26

(iv) Finally,

∥
∥Ik
(
u
(
1–)) – Ik

(
u
(
1–))∥∥ =

∥
∥
∥
∥sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

)

– sin

(
1
7
∥
∥v
(
1–, x

)∥
∥

)∥
∥
∥
∥

=
∥
∥
∥
∥sin

(
1
7

u
)

– sin

(
1
7

u
)∥
∥
∥
∥

≤ 1
7
‖u – v‖.

And

∥
∥Ik(u)

∥
∥ =

∥
∥
∥
∥sin

(
1
7
∥
∥u
(
1–, x

)∥
∥

)∥
∥
∥
∥

≤ 1
7
‖u‖.

From (iv), we notice that hypothesis (H5) holds with di = NI = 1
7 .

Let t ∈ I , then we have

q∗ = sup
t∈I

∫ t

0

∣
∣q(t – s)

∣
∣ds =

∫ t

0
et–s ds = et – 1 ≤ e – 1.

Therefore, all the conditions of Theorem 3.1 are verified. Hence, problem (4.1)–(4.4) has
a solution in (0, 2].

5 Conclusion
In this manuscript, we have studied the local existence for an impulsive fractional neu-
tral integro-differential system with Riemann–Liouville fractional derivatives in a Ba-
nach space. More precisely, by utilizing the semigroup theory, fractional powers of opera-
tors, and condensing fixed point theorem, we investigate the impulsive fractional neutral
integro-differential system in a Banach space. To validate the obtained theoretical results,
an example is analyzed. The fractional differential equations are very efficient to describe
real life phenomena; thus, it is essential to extend the present study to establish the other
qualitative and quantitative properties such as stability and approximate controllability.

There are two direct issues which require further study. First, we will investigate the
global existence of a mild solution to impulsive fractional semilinear integro-differential
equations with noncompact semigroup. Secondly, we will be devoted to studying the ap-
proximate controllability of impulsive fractional neutral integro-differential systems with
Riemann–Liouville fractional derivatives in a Banach space both in the case of a noncom-
pact operator and a normal topological space.
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