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Abstract
The nutrition of pregnant women is crucial for giving birth to a healthy baby and
even for the health status of a nursing mother. In this paper, the poor nutrition in the
life cycle of humans is explored in the fractional sense. The proposed model is
examined via the Caputo fractional operator and a new one with Mittag–Leffler (ML)
nonsingular kernel. The stability analysis as well as the existence and uniqueness of
the solution are investigated, and an efficient numerical scheme is also designed for
the approximate solution. Comparative numerical analysis of these two operators
reveals that the model based on the new fractional derivative with ML kernel has a
different asymptotic behavior to the classic Caputo. Thus, the new aspects of
fractional calculus provide more flexible models which help us to adjust the
dynamical behaviors of the real-world phenomena better.
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1 Introduction
Nutrition has been a major factor in every human stage of development from conception
to old age. The quality of nutrition determines the quality of life and particularly the health
of a pregnant woman [1]. When a pregnant woman has a poor nutritional status, then
the fetus in the womb begins to encounter many life challenges beginning from birth to
adulthood. The quality of health care of a pregnant woman is crucial to the quality of
health of the child to be born [2]. In other words, the nutrient gain or loss has an effect on
the weight of the child. If a newborn child has a weight of less than 2.5 kg, it is deemed to
be low birth weight. This situation is characterized by infant mortality, poor growth, poor
mental development, damage in brain, anaemia, low body, etc. [3, 4].

Sometimes the newborn babies are put into incubators for some number of days and
monitored. The quality of human life cycle depends on the quality of nutrients con-
sumed by the pregnant woman during this stage. In the developing countries, such as
Sub-Saharan Africa, the situation is worse; many families find it difficult to feed pregnant
women with quality food containing the required nutrients. In some cases, due to religious
and cultural believes, many pregnant women are denied of a nutritious diet [5–7].

An undergrown child, which is also a result of poor nutrition during pregnancy, is
viewed as a child whose weight or associated height is totally different from what he/she
ought to be at that age. There are other factors that usually account for this situation,
including heredity, malnutrition, and improper balanced diet [3, 5, 8]. In fact, this under-
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growth becomes a serious issue at the adolescent age of the child [9]. There are a number
of interventions designed to mitigate this effect of undergrowth at the adolescent stage.
For instance, UNICEF tries to improve the quality of nutrition of adolescent girls because
they are potentially women capable of giving birth [9, 10]. It has been established that the
first year of adolescent life of a woman requires more energy and nutrients, and UNICEF
provides supplements such as iron and folate through workshops during this stage of de-
velopment [11–13]. The life cycle which is the bedrock of human race calls for the need
to invest in the provision of adequate nutrients to humans, particularly pregnant women
[14].

Mathematical modeling has become a vital tool to investigate many societal problems
and provides cost-effective mechanisms in solving such problems. There are several math-
ematical models on the epidemiology of diseases [15, 16]; however, there is a scanty in-
formation on the mathematical modeling of a life cycle. All the studies carried out on
malnutrition have been focused on the local differentiation without any cogent justifica-
tion. It is worthy to note that the local differentiation has fallen short to live up to the ex-
pectation because of the nonlocality effect into mathematical formation. Therefore, there
is a need to formulate mathematical problems that describe the nonlocality of biological
systems. Among the existing approaches, the fractional calculus (FC) has a singular and
unique characteristic of capturing memory effects, which is found in almost all biological
processes.

The FC has played a significant role in modeling different kinds of diseases [17–21].
There are several fractional operators, such as Caputo and Caputo–Fabrizio, which have
been applied to study the behavior of biological systems. Regarding these operators, some
efficient numerical techniques have also been developed to solve different types of frac-
tional differential equations [22–25]. However, a few attempts have been made to com-
pare these operators in order to determine the most efficient one. In [26] the computer
virus dynamics have been studied via the Caputo and Beta derivatives. In [27] the authors
proposed mathematical model in the fractional sense on immunogenetic tumor and ob-
served that tumor growth rate, source rate of immune cells, and death rate of immune
cells constitute a major factor in tumor dynamics system. Also, the authors in [28] pro-
posed a mathematical model of hepatitis C using the Caputo–Fabrizio derivative to inves-
tigate the dynamic of the disease. In [29] the authors proposed a fractional mathematical
malaria model to investigate the transmission dynamics with control strategies. The frac-
tional complex-order model for HIV infection with drug resistance during therapy was
also studied in [30] to examine the dynamic of HIV. In [31] the authors used a fractional
order HIV model to explore the effect of vaccines on backward bifurcation. In [32], a new
fractional epidemic model with vaccination was introduced by using the Caputo fractional
derivative. Some other noticeable efforts have also been made in [33, 34].

The mathematical modeling of realistic systems with memory effects has been a big chal-
lenge for many scientists, since the nonlocal dynamics cannot always be properly charac-
terized by the classic version of fractional derivatives (FDs) with singular kernel. Hence,
to describe the nonlocality of complex processes better, some new definitions of the FDs
with nonlocal and nonsingular kernel have been introduced into the literature. Among the
existing definitions, a new FD with Mittag–Leffler (ML) kernel is one of the most desir-
able candidates to model the real-world problems [35]. Indeed, this new fractional differ-
entiation is more natural and more suitable to model realistic systems than the other FC
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derivatives due to the wide applicability of ML function as well as its nonlocal and nonsin-
gular characteristics. Applying this new definition, a different type of nonlocal dynamics is
exhibited in comparison with the classical fractional dynamics. Indeed, the asymptotic be-
haviors within this derivative are different from those of the classical FC differentiations.
However, the advantages of models within this new derivative should be deeply exam-
ined compared to the other FC derivatives, and efficient numerical methods to solve the
fractional differential equations within this calculus should be continuously investigated.
Inspired by the above discussions, this paper aims to develop a new fractional mathemat-
ical model to investigate new aspects of the poor nutrient status of pregnant women. In
this formulation, we use the new definition of FDs with ML nonsingular kernel [35]. We
also provide an efficient numerical scheme to solve the fractional model under considera-
tion. Numerical simulations verify that there exists a new asymptotic behavior within this
new formulation, which is different from that exhibited by using the other FC derivatives.
Hence, this new model has the potential to better represent hidden aspects of the poor
nutrition system in the life cycle than the classic type of fractional operators.

The paper is arranged as follows. First, the mathematical basic definitions and notations
are given. Then, we present the mathematical formulation of poor nutrition of pregnant
women in a fractional sense. After that, we investigate the stability analysis of the proposed
model. Next, the existence and uniqueness of the solution related the fractional poor nu-
trition system are given. In the next section, we develop a numerical scheme to solve the
fractional model under consideration. Finally, we present our numerical findings, which
are compared with those obtained within the classic Caputo FD.

2 Basic definitions and preliminaries
This section briefly gives some preliminaries concerning the FDs. There are some def-
initions for the FDs including Riemann–Liouville, Weyl, Caputo, Marchaud, and Riesz
[36–38]. Moreover, a new definition of FDs with ML kernel has been developed to model
some realistic systems [35]. Starting with the classic Caputo, we present the following def-
initions.

Definition 1 For a given function x : [a, b] → R, the (left) Caputo FD of order α is given
as

C
a Dα

t x(t) =
1

�(n – α)

∫ t

a
x(n)(ξ )(t – ξ )n–α–1 dξ , n – 1 < α ≤ n. (1)

Also, the associated Caputo fractional integral is defined by

C
a Iα

t x(t) =
1

�(α)

∫ t

a
x(ξ )(t – ξ )α–1 dξ . (2)

The characteristic principles underpinning the Caputo derivative and integral can be
found in [36–38].

Definition 2 ([35]) Let x ∈ H1(a, b), b > a, and 0 < α < 1. Then, the new FD of x in the
Caputo sense denoted by the ABC is defined by

ABC
aDα

t x(t) =
B(α)
1 – α

∫ t

a
x′(ξ )Eα

[
–

α

1 – α
(t – ξ )α

]
dξ , (3)



Baleanu et al. Advances in Difference Equations  (2018) 2018:230 Page 4 of 14

in which B(α) denotes the normalization function satisfying B(0) = B(1) = 1 and Eα is the
ML function

Eα(z) =
∞∑

k=0

(zα)k

�(αk + 1)
, α > 0. (4)

Also, the associated ABC fractional integral is given as

ABC
aIα

t x(t) =
1 – α

B(α)
x(t) +

α

B(α)�(α)

∫ t

a
x(ξ )(t – ξ )α–1 dξ . (5)

The new definition presented above is crucial when dealing with the real life problems
and plays an important rule when considering a problem of Laplace transform with the
initial condition. For more details, the interested reader can refer to [39–43].

3 Mathematical model formulation
This section presents a mathematical formulation of malnutrition in pregnant females.
The dynamic of this phenomenon has been shown in Fig. 1. The undernourished preg-
nant females (Sf ) give birth to malnourished boys (Mb) and girls (Mg ). The boys and girls
are malnourished from susceptible females at the transmission rates βb and βg , respec-
tively. When the low weight babies are not given the proper medical attention, they turn
to become undergrown children at the rates of αb and αg for boys and girls, respectively.
The natural mortality rate is denoted by μ, and the number of underweight individuals
is U . The total population is denoted by Nh, where Nh = Sf + Mb + Mg + U . The following
system of nonlinear differential equations describes the poor nutrition at different stages
of a life cycle [44]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSf
dt = (B + ε) – (βbMb + βgMg + μ)Sf + ηgMg ,

dMb
dt = βbSf Mb – (μb + αb + μ)Mb + γbU ,

dMg
dt = βgSf Mg – (αg + ηg + μ)Mg + γgU ,

dU
dt = αbMb + αgMg – (γb + γg + μ)U ,

(6)

Figure 1 The transmission of malnutrition and underweight
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where B is the new female recruitment rate and ε denotes the vertical transmission to a
new born population. The other parameters ηg , γb, γg in Eq. (6) also represent the recov-
ery rate of malnourished girls and the fractions of underweight babies moving to Mb and
Mg , respectively. Since model (6) concerns the human population dynamics, the entire
parameters and state variables are considered to be positive and nonnegative, respectively
[44–46].

The mathematical model given by Eq. (6) has been previously examined in [44] to study
the transmission of malnutrition and underweight individuals in the society. However, this
model does not include the effects of memory, which are found in many biological systems.
Hence, in order to take into account the memory effects by the mathematical formulation,
we modify the model by replacing the ordinary derivative to the newly introduced ABC
fractional operator. For this purpose, let us obtain the fractional representation of Eq. (6)
by considering the operator ABC

0 Dα
t for each derivative. Then the transmission of poor

nutrition system (6) in the fractional ABC sense is given as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ABC
0 Dα

t Sf = (B + ε) – (βbMb + βgMg + μ)Sf + ηgMg ,
ABC

0 Dα
t Mb = βbSf Mb – (μb + αb + μ)Mb + γbU ,

ABC
0 Dα

t Mg = βgSf Mg – (αg + ηg + μ)Mg + γgU ,
ABC

0 Dα
t U = αbMb + αgMg – (γb + γg + μ)U .

(7)

4 Stability analysis
In this section, we shall endeavor to analyze the model stability.

Lemma 1 The closed set

	 =
{

(Sf , Mb, Mg , U) ∈R
4
+ : Sf + Mb + Mg + U ≤ B + ε

μ

}
(8)

is positively invariant with respect to the system given by Eq. (7).

Proof For system (7), the FD of the total population is expressed as

ABC
0 Dα

t Nh = B + ε – μNh(t) – μbMb ≤ B + ε – μNh(t), (9)

since μb > 0 and Mb ≥ 0. Using the Laplace transform, from Eq. (9) we derive

Nh(t) ≤
(

B(α)
B(α) + (1 – α)μ

Nh(0) +
(1 – α)(B + ε)

B(α) + (1 – α)μ

)
Eα,1

(
–βtα

)

+
α(B + ε)

B(α) + (1 – α)μ
Eα,α+1

(
–βtα

)
, (10)

where β = αμ

B(α)+(1–α)μ and Eα,β is the two-parameter ML function. By taking into account
that the ML function possesses an asymptotic characteristic

Eα1,α2 (ξ ) ∼ –

∑
k

ξ–k

�(α2 – α1k)
+ o

(|ξ |–1–

) (

|ξ | → ∞,
α1π

2
<
∣∣arg(ξ )

∣∣ ≤ π

)
, (11)
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it is obvious to see that Nh(t) ≤ B+ε
μ

as t → ∞. Thus, the entire solutions of the proposed
system for the initial conditions belonging to 	 remain in 	 for every t > 0. Hence, 	 is a
positively invariant region with respect to system (7). �

The system given by Eq. (7) has three equilibrium points E0, E1, E2 for the set of param-
eters given in [44]. However, among these three points, only the first one, i.e., E0, satisfies
the system requirement limitations Sf ≥ 0, Mb ≥ 0, Mg ≥ 0, U ≥ 0, and the other ones
E1, E2 have no physical interpretation in our case. Hence, within this manuscript, we dis-
cuss only the equilibrium point E0 of system (7), viz. E0 = ( B+ε

μ
, 0, 0, 0, 0). Indeed, E0 is the

malnutrition-free equilibrium of pregnant women. The Jacobian matrix JE0 of (7) evalu-
ated at the disease-free equilibrium E0 is given by

JE0 =

⎛
⎜⎜⎜⎜⎝

–μ – βb(B+ε)
μ

– βg (B+ε)
μ

+ ηg 0
0 βb(B+ε)

μ
– μb – αb – μ 0 γb

0 0 βg (B+ε)
μ

– ηg – αg – μ γg

0 αb αg –(γb + γg + μ)

⎞
⎟⎟⎟⎟⎠ . (12)

Also, from Theorem 2 of [47] the basic reproduction number of system (7) is given as

R0 =
βg(B + ε)((μb + μ)(μ + γb + γg) + αb(μ + γg))

μ(μ + μb)(μ(μ + αg + ηg + γb + γg) + γb(αg + ηg) + γgηg)
. (13)

Note that the malnutrition-free equilibrium E0 of system (7) is asymptotically stable if
R0 < 1 [47].

5 The existence and uniqueness of the solution
In this section, we study the existence and uniqueness of the solution associated with the
fractional-order poor nutrition model (7). To this end, first we reformulate the fractional
poor nutrition system (7) in the form

⎧⎨
⎩

ABC
0 Dα

t x(t) = f (x(t)), 0 < t < T < ∞,

x(0) = x0,
(14)

where x is the state vector given by x = (Sf , Mb, Mg , U), f is a real-valued continuous vector
function defined by

f =

⎡
⎢⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(B + ε) – (βbMb + βgMg + μ)Sf + ηgMg

βbSf Mb – (μb + αb + μ)Mb + γbU
βgSf Mg – (αg + ηg + μ)Mg + γgU
αbMb + αgMg – (γb + γg + μ)U

⎤
⎥⎥⎥⎦ , (15)

and x0 is the initial state vector. Since f is a quadratic vector function, it fulfills the Lipschitz
condition, i.e., there exists a constant M such that

∥∥f
(
x(t)

)
– f

(
y(t)

)∥∥ ≤ M
∥∥x(t) – y(t)

∥∥. (16)
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Note that the existence and uniqueness of the solution of fractional differential equation
(14) in the sense of classic Caputo have been developed and analyzed in [36]. In the follow-
ing theorem, we will investigate this subject theoretically for the ABC fractional operator
with ML nonsingular kernel.

Theorem 1 (Existence and uniqueness) The fractional poor nutrition system (14) has a
unique solution if the following condition holds:

1 – α

B(α)
M +

α

B(α)�(α)
MTα < 1. (17)

Proof See the Appendix. �

6 Numerical method
In this section, we develop an efficient approximation scheme, namely the predictor–
corrector method, for the numerical solution of fractional differential equation (14). Note
that this technique has been previously investigated in [23–25] for different types of frac-
tional differential equations. To develop this method for Eq. (14) in the sense of ABC FD,
first we apply the ABC fractional integration of order α which provides Eq. (28). Consider
a uniform mesh on [0, T] and label the nodes 0, 1, . . . , N , where N is an arbitrary positive
integer and hN = T–0

N is the time step size. We denote by xi the numerical approximation
of x(ti). Then from Eq. (28) we obtain

xi+1 = x0 +
1 – α

B(α)
f (xi+1) +

α

B(α)�(α)

∫ ti+1

0
(ti+1 – ξ )α–1f

(
x(ξ )

)
dξ . (18)

Using the trapezoidal quadrature rule for the integration part in (18), we have

∫ ti+1

0
(ti+1 – ξ )α–1f

(
x(ξ )

)
dξ ≈

∫ ti+1

0
(ti+1 – ξ )α–1 f̃i+1(ξ ) dξ , (19)

where f̃i+1(ξ ) is the following piecewise interpolation polynomial with degree one:

f̃i+1(ξ )
∣∣
ξ∈[tj ,tj+1] ≈ tj+1 – ξ

tj+1 – tj
f (xj) +

ξ – tj

tj+1 – tj
f (xj+1), 0 ≤ j ≤ i. (20)

Inserting the above f̃i+1(ξ ) into Eq. (19), we get the product trapezoidal quadrature formula

∫ ti+1

0
(ti+1 – ξ )α–1 f̃i+1(ξ ) dξ =

hα
N

α(α + 1)

i+1∑
j=0

aj,i+1f (xj), (21)

where

aj,i+1 =

⎧⎪⎪⎨
⎪⎪⎩

iα+1 – (i – α)(i + 1)α , j = 0,

(i – j + 2)α+1 – 2(i – j + 1)α+1 + (i – j)α+1, 1 ≤ j ≤ i,

1, j = i + 1.

(22)
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As a consequence, the corrector formula is

xi+1 = x0 +
1 – α

B(α)
f
(
xp

i+1
)

+
αhα

N
B(α)�(α + 2)

(
ai+1,i+1f

(
xp

i+1
)

+
i∑

j=0

aj,i+1f (xj)

)
. (23)

In addition, the predictor formula is obtained by using the product rectangle rule

∫ ti+1

0
(ti+1 – ξ )α–1 f̃

(
x(ξ )

)
dξ ≈ hα

N
α

i∑
j=0

bj,i+1f (xj), (24)

where

bj,i+1 = (i – j + 1)α – (i – j)α , 0 ≤ j ≤ i. (25)

Hence, the predictor formula is derived

xp
i+1 = x0 +

1 – α

B(α)
f (xi) +

hα
N

B(α)�(α)

i∑
j=0

bj,i+1f (xj). (26)

Similar to the predictor–corrector scheme for the ODEs, we first use Eq. (26) to get xp
i+1

(predictor), then we use (23) to get xi+1 (corrector).

7 Simulation results
For the numerical simulation, we use the predictor–corrector scheme developed in the
previous section. Figure 2 shows the simulation curves of Sf , Mb, Mg , and U considering
different values of α, where the system parameters and initial conditions are selected as in

Figure 2 Simulation curves of Sf , Mb , Mg and U for different values of α . α = 0.85 (
), α = 0.9 (�), α = 0.95
(×), α = 1 (©) and classic integer (+)
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Figure 3 Asymptotic behaviour of Sf within the classic Caputo derivative (+) and ABC fractional operator (©)
for different values of α . α = 0.85 (upper-left), α = 0.9 (upper-right), α = 0.95 (lower-left), α = 1 (lower-right)

Figure 4 Asymptotic behaviour of Mb within the classic Caputo derivative (+) and ABC fractional operator
(©) for different values of α . α = 0.85 (upper-left), α = 0.9 (upper-right), α = 0.95 (lower-left), α = 1
(lower-right)

[44] as follows:

B = 0.01, ε = 0.001, βb = 0.1, βg = 0.2,

αb = 0.01, αg = 0.1, μ = 0.1, μb = 0.3,

ηg = 0.1, γb = 0.01, γg = 0.01,

Sf (0) = 30, Mb(0) = 2, Mg(0) = 4, U(0) = 1.

(27)

In this figure, we also provide the numerical solution of classic integer model (6) by us-
ing the fourth-order Runge–Kutta (RK) method. The results given in this figure indicate
that the dynamical behavior of the poor nutrition model depends notably on the FD or-
der α. Indeed, the fractional poor nutrition system (7) within the ABC fractional operator
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Figure 5 Asymptotic behaviour of Mg within the classic Caputo derivative (+) and ABC fractional operator
(©) for different values of α . α = 0.85 (upper-left), α = 0.9 (upper-right), α = 0.95 (lower-left), α = 1
(lower-right)

Figure 6 Asymptotic behaviour of U within the classic Caputo derivative (+) and ABC fractional operator (©)
for different values of α . α = 0.85 (upper-left), α = 0.9 (upper-right), α = 0.95 (lower-left), α = 1 (lower-right)

exhibits a new asymptotic behavior due to memory effects, which was invisible when mod-
eling at α = 1. In addition, the numerical solution of Eq. (7) in fractional sense tends to the
classic integer solution, as α tends to 1. In Figs. 3, 4, 5, 6 we provide the simulation curves
by taking into account two different fractional operators including the classic Caputo and
the ABC. As it is shown in these figures, there exist significant differences between the
asymptotic behavior of fractional poor nutrition system within these two fractional op-
erators. Comparative numerical analysis in Figs. 3, 4, 5, 6 indicates that the model based
on the new FD with ML nonsingular kernel exhibits different asymptotic behavior to the
classic Caputo. Thus, the recent prospects of the FC supply more flexible models to extract
hidden features of the real-world phenomena.
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8 Conclusion
Mathematical modeling plays a critical role in investigating social problems and provides
cost effective mechanisms to solve them. Among the existing approaches, the FC has a
special characteristic of capturing memory effects, which is found in almost all biological
systems. In this paper, we considered a fractional model of pregnant females by using the
ABC fractional operator. The stability analysis and the existence and uniqueness of the
solution for the considered model were studied. A predictor–corrector method was also
developed for the numerical solution of fractional poor nutrition system. Numerical re-
sults reported in this manuscript confirmed that the proposed method is effective to solve
the fractional dynamic system (7) for different values of α. In addition, as it is interpreted
from Fig. 2, the numerical solution in fractional sense approaches the classic case, as α ap-
proaches 1. Figures Figs. 3, 4, 5, 6 also indicated that the model based on the new ABC FD
presents different asymptotic behavior to the classic Caputo. Thus, the recent prospects of
FC supply more flexible models to extract hidden features of the real-world phenomena.
In the future works, the most reliable fractional model can be obtained by selecting a rele-
vant fractional operator in accordance with real data. Then, the administration of drugs or
treatment can be recommended to each individual patient by using the information from
the generalized model within the most relevant fractional operator.

Appendix: The proof of Theorem 1
Applying the ABC fractional integral operator (5), we obtain

x(t) = x0 +
1 – α

B(α)
f
(
x(t)

)
+

α

B(α)�(α)

∫ t

0
(t – ξ )α–1f

(
x(ξ )

)
dξ . (28)

Let J = (0, T) and define the operator F : C(J ,R5) → C(J ,R5) as

F
[
x(t)

]
= x0 +

1 – α

B(α)
f
(
x(t)

)
+

α

B(α)�(α)

∫ t

0
(t – ξ )α–1f

(
x(ξ )

)
dξ . (29)

Then Eq. (28) is reformulated as follows:

x(t) = F
[
x(t)

]
. (30)

Let ‖ · ‖J denote the supremum norm on J , i.e.,

∥∥x(t)
∥∥

J = sup
t∈J

∥∥x(t)
∥∥, x(t) ∈ C

(
J ,R5). (31)

Then C(J ,R5) with ‖ · ‖J is a Banach space. Moreover, it is easily shown that

∥∥∥∥
∫ t

0
K(t, ξ )x(ξ ) dξ

∥∥∥∥
J
≤ T

∥∥K(t, ξ )
∥∥

J

∥∥x(t)
∥∥

J , (32)

where x(t) ∈ C(J ,R5), K(t, ξ ) ∈ C(J2,R) and

∥∥K(t, ξ )
∥∥

J = sup
t,ξ∈J

∣∣K(t, ξ )
∣∣, K(t, ξ ) ∈ C

(
J2,R

)
. (33)
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Using the definition of operator F in Eq. (29), and with the aid of Eqs. (16) and (32), we
have

∥∥F
[
x(t)

]
– F

[
y(t)

]∥∥
J ≤ 1 – α

B(α)
∥∥f

(
x(t)

)
– f

(
y(t)

)∥∥
J

+
α

B(α)�(α)
Tα

∥∥f
(
x(ξ )

)
– f

(
y(ξ )

)∥∥
J

≤
(

1 – α

B(α)
M +

α

B(α)�(α)
MTα

)∥∥x(t) – y(t)
∥∥

J . (34)

Therefore, we obtain

∥∥F
[
x(t)

]
– F

[
y(t)

]∥∥
J ≤ L

∥∥x(t) – y(t)
∥∥

J , (35)

where L = 1–α
B(α) M + α

B(α)�(α) MTα . If condition (17) is satisfied, the operator F will be a con-
traction on C(J ,R5). Thus, as a consequence of Banach fixed point theorem, system (14)
has a unique solution. �
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