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Non-linear unit root testing with arctangent trend: 
Simulation and applications in finance
Deniz Ilalan1* and Özgür Özel2

Abstract: We consider arctangent as the logistic function and compute the asymp-
totic critical values of the related non-linear unit root test via Monte Carlo simu-
lation. While doing so, we got inspiration from some pioneering articles and use 
first-order Taylor approximation. We observe that this newly proposed test exhibits 
higher power than some well-known linear and non-linear tests. We apply our test 
to some stock indexes and find out that a non-linear arctangent trend can be at 
stage, rather than a linear unit root process.
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1. Introduction
Despite designed to detect unit root in time series with linear trends, augmented Dickey–Fuller (ADF) 
(1979, 1981) test sometimes detects unit root when the series in question is stationary, but displays 
a smooth transition. The problems with linear detrending is discussed by Carmichael (1928) and he 
states that linear detrending is inappropriate in the presence of structural breaks; but would be ap-
propriate for situations where the transition from one regime to another is smooth. He introduces 
the arctangent representation as an alternative to linear trend. Moreover, as Mills and Patterson 
(2014) points out, Carmichael’s approach displays insight into the issues affecting the choice of 
break dates and the nature of adjustment between regimes.
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Today we encounter smooth transition functions in a different form, mainly in sigmoid-type ad-
justment functions, such as the logistic function (see especially Teräsvirta, 1994), which are used for 
testing unit roots (see for instance, Enders & Granger, 1998; Luukkonen, Saikkonen, & Terasvirta, 
1988; Van Dijk, Teräsvirta, & Franses, 2002). The pioneering study of Kapetanios, Shin, & Snell (2003) 
(KSS) offers a very convenient way of deriving the asymptotic distribution of the null hypothesis in 
the exponential smooth transition autoregressive (ESTAR) framework by taking first-order Taylor 
approximation of the transition function.

Some studies related to ESTAR function in recent literature can be summarized as follows. Sollis 
(2014), took into account possible asymmetric structures. Enders and Jones (2014) constructed a 
unit root test by the usage of Fourier series in order to approximate smooth breaks. Further generali-
zations and a recent literature survey are given by Chen and Gan (2018).

In this study, we derive the asymptotic distribution of the null hypothesis of a non-stationary time 
series when the transition function is arctangent. Next, we show that our test has more power than 
both the ADF and KSS tests. We also demonstrate the size of our test. Thus, in summary, we propose 
a plausible new transition function which could be used as an alternative unit root testing in the 
presence of a non-linear trend.

Rest of the study is as follows: Section 2 states the KSS test and our modification to it. Section 3 is 
devoted to the presentation of the critical values and the asymptotic distribution of our new test. In 
Section 4, we present size and power. Section 5 is for applications of these tests to certain stock in-
dices. Finally, Section 5 concludes.

2. KSS test and arctangent smooth transition function
As summarized in Hanck (2012), KSS test considers the unit root null H0: θ = 0 vs. the non-linear al-
ternative H1: θ > 0 in the ESTAR framework as:
 

The particular choice of 
{

1 − exp(−�y2t−1)
}

 comes from the fact that its first-order Taylor approxi-

mation is a polynomial yielding an analytically tractable OLS test regression coefficient under the 
null hypothesis. Now if 

{

1 − exp(−�y2t−1)
}

 is replaced by arctan(θyt-1), we end up with an alternative 
test statistics. In this vein, we state two propositions:

Proposition 1: Under the null hypothesis with an arctangent trend, the test statistics can be approxi-
mated by:

 

where 𝜎̂2 is the least squares estimate of σ2

Proof: Testing the null hypothesis H0: θ = 0 directly is not feasible, since γ is not identified under the null. 
Following Luukkonen et al. (1988), one can derive a t-type test statistic. If we compute a first-order 
Taylor series approximation to the arctangent model around zero from

 

we get the auxiliary relation in Equation (4)

 

(1)Δyt = �yt−1 + �yt−1

{

1 − exp(−�y2t−1)
}

+ �t, �t ∼ N(0, �
2) i.i.d.

(2)s =

∑T

t=1 y
2
t−1�t

�

�
2∑T

t=1y
4
t−1

(3)arctan(x) = x −
x3

3
+
x5

5
−
x7

7
+…

(4)Δyt = �y2t−1 + error



Page 3 of 10

Ilalan & Özel, Cogent Mathematics & Statistics (2018), 5: 1458555
https://doi.org/10.1080/25742558.2018.1458555

The error term consists of the error term ɛt stated in arctangent function replaced version Equation 
(1) already assumed to be i.i.d. and the error arising from first-order Taylor approximation. Therefore, 
it is denoted as “error” which corresponds to higher order epsilon terms. Hence, the test statistics 
becomes t = 𝛿

std.err.(𝛿)
.

Proposition 2: Under the null hypothesis of the existence of a unit root, (4) has the asymptotic 
distribution:

 

Proof: Following the assertions in the derivation of the asymptotic distribution of the null hypothesis 
of the KSS test, we have:

 

As 𝜎̂2
p

⇒ 𝜎
2 under the null, we only need to derive the asymptotic expressions for 

T
∑

t=1

y2t−1�t and 
T
∑

t=1

y4t−1.

For the first expression:

Since from Ito formula, we have:

The second expression can be computed by following Chan and Wei (1988) as:

and finally,

3. Asymptotic critical values
In this section, we compare the arctangent and the KSS tests in terms of the critical values. The criti-
cal values of the tests are derived from Monte Carlo simulations with a discretization of a Brownian 
path into T = 1,000 intervals and producing 10,000 replications and are given in Tables 1 and 2, 
respectively.

Figure 1 portrays the histograms of the distribution of the test statistics under the null hypothesis 
of the arctangent test.

In fact, since the exponential and arctangent logistic functions display a similar structure in the [0, 
1] interval, it is quite natural to end up with close critical values for KSS and arctangent tests as 
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evident in Tables 1 and 2. However, even a slight difference in the test statistics or critical values 
might change the test result for a given level of significance, depending on the form of the non-lin-
ear trend in the data. We depict them with a figure along with LSTAR function for size and power 
tests in Section 4.

4. Size and power
In this section, we provide size and power of the arctangent test. For all cases, we took a 5% signifi-
cance level with 1,000 replications.

4.1. Size of the test
For the size test, we use a DGP which exhibits a clear unit root with constant as:

where c is a positive real, β = 1 and �t ∼ N
(

0, 1
)

i.i.d.

The results are portrayed in Table 3.

yt = c + �yt−1 + �t

Table 3. Size of the arctangent test
Case 2 (with constant) Case 3 (with constant and trend)

β = 1 Arctan KSS DF Arctan KSS DF
T = 50 0.04 0.06 0.05 0.04 0.06 0.03

T = 100 0.04 0.05 0.06 0.05 0.07 0.08

T = 200 0.05 0.05 0.08 0.05 0.06 0.07

Table 1. Asymptotic critical values of KSS test
Significance (%) Case 1 (no 

deterministic term)
Case 2 (with constant) Case 3 (with constant 

and trend)
1 −2.81 −3.47 −3.91

5 −2.23 −2.91 −3.38

10 −1.94 −2.63 −3.13

Table 2. Asymptotic critical values of the arctangent test
Significance (%) Case 1 (no 

deterministic term)
Case 2 (with constant) Case 3 (with constant 

and trend)
1 −2.51 −3.44 −3.94

5 −1.97 −2.87 −3.41

10 −1.61 −2.56 −3.13



Page 5 of 10

Ilalan & Özel, Cogent Mathematics & Statistics (2018), 5: 1458555
https://doi.org/10.1080/25742558.2018.1458555

Fi
gu

re
 1

. H
is

to
gr

am
s 

of
 th

e 
nu

ll 
hy

po
th

es
is

 o
f a

rc
ta

ng
en

t t
es

t (
fr

om
 le

ft
 to

 ri
gh

t, 
no

 d
et

er
m

in
is

tic
 te

rm
, w

ith
 c

on
st

an
t, 

w
ith

 c
on

st
an

t a
nd

 tr
en

d)
.



Page 6 of 10

Ilalan & Özel, Cogent Mathematics & Statistics (2018), 5: 1458555
https://doi.org/10.1080/25742558.2018.1458555

4.2. Power of the test
For the power test, we will be comparing the arctangent test with KSS test. Here, c is a positive real 
and �t ∼ N

(

0, 1
)

i.i.d. for all cases. When the data is generated via KSS DGP as 
Δyt = c + �yt−1 + �yt−1

{

1 − exp(−�y2t−1)
}

+ �t the arctangent test exhibits less power. On the 
other hand when the data is generated by Δyt = c + �yt−1 + �yt−1

{

arctan(�yt−1)
}

+ �t, then the 
power of the KSS test diminishes significantly. So in order to accurately compare the powers of these 
tests, we utilize the well-known LSTAR smooth transition function and use the DGP as by 
Δyt = c + �yt−1 + �yt−1

{

1∕(1 + exp
(

−�yt−1
)

)
}

+ �t. Notice that all LSTAR, ESTAR, and arctangent 
smooth transitions are bounded. These functions are depicted in Figure 2 for different values of �.

In order to have stability β + γ < 0 needs to hold. As we took β = 0.1 (same as KSS test), we vary � 
parameters from the set � =

{

−1.0,−0.5,−0.25,−0.15
}

. Moreover, we consider different curva-
tures � =

{

0.01, 0.05, 0.1, 1
}

. We took different time interval values represented by T as 50,100, 
and 200 (the reader can consult KSS test for a detailed explanation and choice of parameters). The 
results show that arctangent test has more power than KSS for almost all cases. Since our DGP is 
based on a constant term without trend, we expect the powers for Case 2 to be higher than Case 3 
which indeed turn out to be the case. When examined further, the more linear the LSTAR function 
becomes (when θ approaches to 0), the more powerful becomes the DF test compared to arctangent 
and KSS tests. In addition, the magnitude of � is crucial in the sense that it determines the pullback 
rate which compensates the impact of �. Although for lower values of �, DF test outperforms the 
arctangent test, for higher values the opposite is the situation. Nevertheless, arctangent test exhib-
its higher power than KSS test regardless of the curvature of the LSTAR function. Results are pre-
sented in Table 4.

5. Application to financial data
In the empirical analysis, we take time series of three stock indexes namely Turkish BIST 100, Japan 
Nikkei 225, and South African FTSE/JSE indexes depicted in Figures 3–5.

For convenience, we take the natural logarithm of the data in question. ADF, KSS, and arctangent 
unit root test results are given in Tables 5, 6, and 7, respectively.

We clearly see that all tests claim non-stationarity for all the time series for case 3.

However, for Case 2, the ADF and KSS test claims stationarity only for Nikkei 225 index at 10% 
significance level, whereas arctangent test detects stationarity for all series (BIST 100, 10%, Nikkei 

Figure 2. LSTAR, ESTAR, and 
arctangent logistic functions 
with θ = 1 (left panel) and with 
θ = 0.5 (right panel).
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Figure 3. Logarithm of BIST 100 
Index between December 2011 
and December 2016.

Figure 4. Logarithm of Nikkei 
225 Index between August 
2016 and December 2016.

Figure 5. Logarithm of FTSE/JSE 
Index between May 2016 and 
December 2016.
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225, 5% and FTSE/JSE, 10%). Notice further that the significance level of the arctangent test is higher 
than ADF and KSS tests for Nikkei 225 index.

6. Conclusion
It is a widely known fact that certain economic and financial data exhibit smooth transition which 
ADF test sometimes fails to capture. In that regard, we modify one of the most cited and appreci-
ated non-linear tests namely the KSS test. Having known the arctangent as the precursor of smooth 
transitions, we replace the logistic function using that particular functional form.

After the computation of critical values and asymptotic distributions, we demonstrate that arc-
tangent test may sometimes reject the presence of unit root where a conventional linear test (ADF) 
or a non-linear one (KSS) fails to do so. So, we deduce that arctangent test is quite powerful com-
pared to ADF and KSS tests when there is a smooth transition in the data. We applied our findings to 
three stock indexes for evidence. Researchers can apply this new arctangent test along with ADF and 
KSS tests in case a smooth transition is suspected in the data, but ADF and KSS tests fail to detect 
stationarity.

Table 5. ADF test results

*Denotes 10% significance level.
**Denotes 5% significance level.
***Denotes 1% significance level.

Case 2 (with constant) Case 3 (with constant and trend)
Index t-statistics Index t-statistics
BIST 100 −2.5556 BIST 100 −2.5591

Nikkei 225 −2.8746* Nikkei 225 −2.9026

FTSE/JSE −2.5753* FTSE/JSE −2.1980

Table 6. KSS test results

*Denotes 10% significance level.
**Denotes 5% significance level.
***Denotes 1% significance level.

Case 2 (with constant) Case 3 (with constant and trend)
Index t-statistics Index t-statistics
BIST 100 −2.5800 BIST 100—5 year −2.5862

Nikkei 225 −2.8785* Nikkei 225—3 month −2.9024

FTSE/JSE −2.5651 FTSE/JSE—6 month −2.1890

Table 7. Arctangent test results

*Denotes 10% significance level.
**Denotes 5% significance level.
***Denotes 1% significance level.

Case 2 (with constant) Case 3 (with constant and trend)
Index t-statistics Index t-statistics
BIST 100—5 year −2.5678* BIST 100—5 year −2.5728

Nikkei 225—3 month −2.8785** Nikkei 225—3 month −2.9025

FTSE/JSE—6 month −2.5703* FTSE/JSE—6 month −2.1936
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