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Abstract: In this work, we bring a di�erent approach
for Sturm-Liouville problems having Bessel and hydrogen
atom type and we provide a basis for direct and inverse
problems. From this point of view, we �nd representa-
tions of solutions and asymptotic expansions for eigen-
functions. Furthermore, some numerical estimations are
given to illustrate the necessity of the Sturm-Liouville dif-
ference equations with the potential function for the con-
venience to the spectral theory. The behavior of eigenfunc-
tions for the Sturm-Liouville problem having Bessel and
hydrogen atom potential type is analyzed and compared
to each other. And then, comparisons are showed by ta-
bles and �gures.
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1 Introduction
The Sturm-Liouville problem is a one-particle Schrödinger
equation, and it has an important place in mathematical
physics. The potential function q(t) determines the type of
equation, like Bessel andhydrogen atomequations. In this
study, we consider Sturm-Liouville problems with two dif-
ferent potentials and investigate the behaviors of its eigen-
functions. The Liouville normal form of Bessel equations,
also called Sturm-Liouville equation having Bessel poten-
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tial type, is studied in [1]–[9] , and it is de�ned as follows,

y′′ +
(
λ −

p2 − 1
4

x2 − q (x)

)
y = 0.

Bessel functions are obtained by series solutions while
q (x) = 0 in the equation above, accordingly, the equation
above is more general than classical Bessel equation. As
q (x) changes, the structure of the equation will change
and hence, a di�erent investigation will require. Lately,
the Bessel di�erence equation has been studied by [10],
and obtained discrete Bessel functions, which are the dis-
crete analogue of Bessel functions. The radial Schrödinger
equation, also called hydrogen atom equation, is studied
by [3, 7, 8, 11, 12], and it is de�ned as follows,

y′′ +
(
λ − ` (` + 1)

x2 + 2
x − q (x)

)
y = 0.

Physical interpretation of hydrogen atom and Bessel equa-
tions:

Bessel equations seem to have a lot of application ar-
eas in physics and mathematics. For example, the solu-
tion of two-dimensional wave equation, the heat equa-
tion and the Dirichlet problem in a cylinder are obtained
with the help of Bessel functions [4, 13, 14]. Also, vibra-
tional, gravitational and electromagnetic potential prob-
lems with cylindrical symmetry, di�raction problems (as-
tronomy) resolving power of optical instruments, heavy
chain, certain subjects in chemistry and biochemistry are
expressed by the means of Bessel equations [5].

The radial Schrödinger equation enables to calculate
the development of quantumsystemswith time, also it can
give analytical solutions for the non-relativistic hydrogen
atom.

d2R
dr2 + 2r

dR
dr −

` (` + 1)
r2 R+

(
E + 2

r

)
R = 0 (0 < r < ∞) ,

where R is the distance of the mass center to the origin, `
is the orbital quantum number and a positive integer, E is
energy constant and r is the distance between the nucleus
with the electron.

The hydrogen atom is a system consists of a two-
particle system, and it forms of one electron and one pro-
ton. Internal motion of two particles around the center of
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mass corresponds to the movement of a single particle by
a reducedmass. If R = y

x and E = λ is taken in the equation
above, it forms of

y′′ +
(
λ − ` (` + 1)

x2 + 2
x − q (x)

)
y = 0.

Figure 1: Bessel functions are the radial part of modes of vibrations
of a circular drum[9]

Figure 2: The Bessel functions of the �rst kind

Figure 3: The Bessel functions of the second kind

Di�erence equations have always been an interesting
subject due to the fact that the discrete analogue of di�er-
ential equations. The theory of linear ordinary di�erence
equations was improved by [15]–[19]. Recently, spectral
analysis of di�erence equations has attracted great atten-
tion. Especially, many scientists study on Sturm-Liouville
di�erence equations, see [16]–[18],[20]–[25].

The zeros of Bessel and hydrogen atom problems can-
not be calculated directly because of having closed form
solutions, and this type of solution is called the repre-
sentation of solution. Accordingly, solution function y (x),
also called eigenfunction, canbe foundonlybyasymptotic
estimations. Based on this, the number of eigenvalues λ
can be found only by asymptotic estimations. Thereafter,
the other spectral data, like norming constants, normal-
ized eigenfunctions and spectral function, are found by
asymptotic estimations. If we close attention, we have no
knowledge about potential function q(x) except for it is a
continuous function. This typeof problem isnamed"direct
problem". Viceversa, while there is knowledge about spec-
tral data, one ismade estimations about potential function
q(x) and this type of problem is named "inverse problem".
Additionally, Bessel functions are obtained by series solu-
tionswhile q(x) = 0 in the equation above, accordingly the
equation above ismore general than classical Bessel equa-
tion.As q(x) changes, structure of the equationwill change
and hence, a di�erent investigation will require. Our main
aim is to apply the spectral theory of these type of di�er-
ential equations to the discrete case.

In this paper, we are concerned with the discrete ana-
logue of Sturm-Liouville equations having hydrogen atom
and Bessel potentials, and we provide a basis for direct
and inverse problems. From this point of view, we ob-
tain representation of solutions, asymptotic estimations
of eigenfunctions and some numerical estimations about
behaviors of eigenfunctions and eigenvalues. The numer-
ical results for the eigenfunctions corresponding to the
certain signi�cant eigenvalues for Sturm-Liouville prob-
lem having Bessel and hydrogen atom potential type are
shown and compared to the each other. The integral rep-
resentation and asymptotic formulae for eigenfunctions of
Sturm-Liouville di�erential problem are found in [3]. Sim-
ilarly, the sum representation and asymptotic formulae
for eigenfunctions of Sturm-Liouville di�erence problem
are acquired in [26]–[28]. Also, numerical computations of
Sturm-Liouville problem are considered in [21], [29].
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Now, let’s introduce Liouville normal form of Bessel’s
di�erence equations

∆2u (n − 1) +
(
λ + q (n) −

p2 − 1
4

n2

)
u (n) = 0, n = 1, ..., b,

(1)
where p ∈ R, u (n) , q (n) ∈ l2 [0, b] , b is a �nite integer, ∆
is the forwarddi�erence operator, ∆x (n) = x (n + 1)−x (n) ,
assume that λ is the positive spectral parameter, q (n) −
p2 − 1

4
n2 are called potential function, n is a �nite integer.

Then, let’s introduce hydrogen atom di�erence equation

∆2v (n − 1) +
(
λ − q (n) + 2

n −
` (` + 1)
n2

)
v (n) = 0,

n = 1, ..., b, (2)

where ` is the orbital quantum number and a positive inte-
ger, v (n) ∈ `2 [0, b] , q (n) , b, λ and n is as de�ned above,
−q (n) + 2

n −
` (` + 1)
n2 are called potential function.

Our object is to give discrete analogue results to the studies
mentioned before [2], [3], [26]–[28], [30].

2 Preliminaries
De�nition 1. [25] The matrix of Casoratian is de�ned by

w (n) =
u1 (n) u2 (n) ... ur (n)

u1 (n + 1) u2 (n + 1) ... ur (n + 1)
...

...
...

u1 (n + r − 1) u2 (n + r − 1) ... ur (n + r − 1)


where u1 (n) , u2 (n) , ..., ur (n) are known functions. The
determinant

W (n) = detw (n)
is called Casoratian.

Theorem 1. [16] (Wronskian-Type Identity) Assume y and
y are linearly independent solutions of Sturm-Liouville dif-
ference equation, mentioned in [26]. Then, for a ≤ n ≤ b

W [y, z] (n) = [y (n) ∆z (n − 1) − y (n) ∆z (n − 1)] (3)
= − [y (n) z (n − 1) − y (n − 1) z (n)]

is a constant (Particularly equal to W [r, u] (a)).

De�nition 2. Let’s de�ne Sturm-Liouville problem having
Bessel potential type (1) as following, n ∈ [1, b]

L1u (n) = ∆2u (n − 1) +
(
q (n) −

p2 − 1
4

n2

)
u (n) = −λu (n) ,

(4)

with initial conditions

u (1) = −h, u (2) = 1, (5)

where L1 is a self-adjoint di�erence operator, h = cot α, α ∈
R.

De�nition 3. Let’s de�ne Sturm-Liouville problem having
hydrogen atom potential (2) as following, n ∈ [1, b] ,

L2v (n) = ∆2v (n − 1) +
(
−q (n) + 2

n −
` (` + 1)
n2

)
v (n)

= −λv (n) , (6)

with initial conditions

v (1) = −h, v (2) = 1, (7)

where L2 is a self-adjoint di�erence operator, h = cot α, α ∈
R.

Theorem 2. [25] (Summation by parts) Assume m < n,
then

n−1∑
k=m

u (k) ∆r (k) = [u (k) r (k)]nm −
n−1∑
k=m

∆u (k) r (k + 1) . (8)

Theorem 3. [25] Assume zn is an inde�nite sum of un, then

n−1∑
k=m

z (k) = u (n) − u (m) . (9)

3 Main results
In this paper, we are concerned with the discrete ana-
logue of Sturm-Liouville problem with Bessel and hydro-
gen atompotentials (6)−(7) , (4)−(5), andweprovide a ba-
sis for direct and inverse problems. From this point of view,
we obtain the representation of solutions, asymptotic esti-
mations of eigenfunction and some numerical estimations
about behaviors of eigenfunctions and eigenvalues. The
numerical results for eigenfunctions corresponding to the
certain signi�cant eigenvalues for Sturm-Liouville prob-
lem having Bessel and hydrogen atom potential type are
shown and compared to the each other. Our main aim is to
apply the spectral theory of these type of di�erential equa-
tions to the discrete case.

In `2 (1, b) , the Hilbert space of sequences of complex
numbers u (1) , ..., u (b) with the inner product,

< u (n) , r (n) >=
b∑
n=1

u (n) r (n) ,
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for every u ∈ DL, let’s de�ne as follows

DL =
{
u (n) , v (n) ∈ `2 (1, b) : L1u (n) ,

L2v (n) ∈ `2 (1, b) , u (1) = v (1) = −h,
u (2) = v (2) = 1.}

In this section, we show the sum representations of solu-
tions of Sturm-Liouville problemhaving Bessel and hydro-
gen atom potential by the variation of parameters method
and prove that the solutions obtained hold for the prob-
lems.

Theorem 4. Sturm-Liouville problem having Bessel poten-
tial type is de�ned as follows

∆2φ (n − 1) +
(
q (n) −

p2 − 1
4

n2

)
φ (n) = −λφ (n) , (10)

φ (1) = −h, φ (2) = 1, (11)

then the problem (10) − (11) has a unique solution for φ (n)
as follows,

φ (n, λ) =
(
−h sin 2θ − sin θ

[
1 + h

(
q (1) + p2 − 1

4
)]

sin θ

)
cos nθ

+
(
cos θ

[
1 + h

(
q (1) + p2 − 1

4
)]
+ h cos 2θ

sin θ

)
sin nθ

+ 1
sin θ

n−1∑
i=1

(
−q (i) +

p2 − 1
4

i2

)
φ (i) sin (n − i) θ,

where,
b∑
i=a

. = 0 if a > b.

Proof. We restrict the eigenvalues with 0 < λ < 4 to be able
to obtain more advantageous results for the spectral the-
ory. Let u1 (n) and u2 (n) be linearly idependent solutions
for homogeneous part of (10) , so by characteristic equa-
tion, we can �nd characteristic roots, and since |λ − 2| < 2,
we can take

λ = 2 − 2 cos θ,

from here, the solution of the homogeneous part of (10) is

φh (n) = c1 cos nθ + c2 sin nθ.

Bymeans of variation of parameters method for di�erence
equations [2, 17], we get

φp (n) = c1 (n) cos nθ + c2 (n) sin nθ, (12)

if we insert the equation (12) in the equation (10) and
make necessary operations, then we can �nd the param-
eters as,

c1 (n) =
n∑
i=1

[
−q (i) + p2− 1

4
i2

]
φ (i)φ2 (i)

W ,

c2 (n) = −
n∑
i=1

[
−q (i) + p2− 1

4
i2

]
φ (i)φ1 (i)

W ,

whereW = sin θ by Theorem 1.
Eventually, we get the general solution

φ (n, λ) = c1 cos nθ + c2 sin nθ

+ 1
sin θ

n∑
i=1

[
−q (i) +

p2 − 1
4

i2

]
φ (i) sin (n − i) θ,

by the initial conditions, we get the sum representation of
solution, c1 ≠ 0, c2 ≠ 0,

φ (n, λ) =
(
−h sin 2θ − sin θ

[
1 + h

(
q (1) + p2 − 1

4
)]

sin θ

)
cos nθ

+
(
cos θ

[
1 + h

(
q (1) + p2 − 1

4
)]
+ h cos 2θ

sin θ

)
sin nθ+

+ 1
sin θ

n−1∑
i=1

(
−q (i) +

p2 − 1
4

i2

)
φ (i) sin (n − i) θ.

We can show that the solution holds for the problem (10)−
(11) by inserting in (10) by virtue of Theorem 2 and Theo-
rem 3.
The proof completes.

Theorem 5. Sturm-Liouville problem having hydrogen
atom potential type is de�ned as follows

∆2ψ (n − 1) +
(
−q (n) + 2

n −
` (` + 1)
n2

)
ψ (n) = −λψ (n) ,

(14)

ψ (1) = −h, ψ (2) = 1, (15)

then the problem (14) − (15) has a unique solution for ψ (n)
as follows,

ψ (n, λ) =(
−h sin 2θ − sin θ [1 + h (q (1) + 2 + ` (` + 1))]

sin θ

)
cos nθ

+
(
cos θ [1 + h (q (1) + 2 + ` (` + 1))] + h cos 2θ

sin θ

)
sin nθ

+ 1
sin θ

n−1∑
i=1

(
q (i) + 2

i +
` (` + 1)
i2

)
ψ (i) sin (n − i) θ.

where,
b∑
i=a

. = 0 if a > b.

Proof. Similar arguments used in the proof of Theorem 5
are applied to easily obtain the conclusion.
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4 Asymptotic formulas for Bessel
and hydrogen atom di�erence
equations

In this section, we give the asymptotic formulas for the
eigenfunctions of Bessel and hydrogen atom potential, re-
spectively.

Theorem 6. Sturm-Liouville problem having Bessel poten-
tial (10) − (11) has the estimate

φ (n) = O
(
e|τ|n

)
,

and more precisely

φ (n) =
(
−h sin 2θ−sin θ[1+h(q(1)+p2− 1

4 )]
sin θ

)
cos nθ

+O
(

e|τ|n

sin θ
2 sin θ

)
,

where n ∈ Z+, {φ (n)} is a complex sequence,
∞∑
i=0
i |q (i)| <

∞

Proof. Let’s insert φ (n) = f (n) e|τ|n in (10) . Hence, we get

f (n) =
(
−h sin 2θ − sin θ

[
1 + h

(
q (1) + p2 − 1

4
)]

sin θ

)
e−|τ|n

+
(
cos θ

[
1 + h

(
q (1) + p2 − 1

4
)]
+ h cos 2θ

sin θ

)
e−|τ|n

+ 1
sin θ

n−1∑
i=1

(
−q (i) +

p2 − 1
4

i2

)
f (i) e|τ|(n−i) sin (n − i) θ.

Let ξ = max
1≤n≤∞

|f (n)| , then if we insert the last equation in
that

ξ ≤ 2
(
|h| + 1 + |h|

(
|q (1)| + p2 + 1

4

))
+ ξ
|sin θ|

∞∑
i=1

(
|q (i)| +

p2 + 1
4

i2

)
,

and thus,

ξ ≤
2
(
|h| + 1 + |h|

(
|q (1)| + p2 + 1

4
))

1 − 1
|sin θ|

∞∑
i=1

∣∣∣|q (i)| + p2+ 1
4

i2

∣∣∣ ,

the proof completes under the assumption that nominator
of the last inequality is large enough and

|sin θ| >
∞∑
i=1

∣∣∣∣∣|q (i)| + p2 + 1
4

i2

∣∣∣∣∣ .
The proof is complete under the assumption.

Theorem 7. Sturm-Liouville problem having hydrogen
atom potential (14) − (15) has the estimate

ψ (n) = O
(
e|τ|n

)
,

and more precisely

ψ (n) =
(
−h sin 2θ − sin θ [1 + h (q (1) + 2 + ` (` + 1))]

sin θ

)
cos nθ

+O
(

e|τ|n

sin θ
2 sin θ

)
,

where n ∈ Z+, {ψ (n)} is a complex sequence,
∞∑
i=0
i |q (i)| <

∞.

Proof. Similar arguments used in the proof of Theorem 6
are applied to easily obtain the conclusion.

5 Applications
Assuming that h = p = 1, l = 2, b = 24 in all of the appli-
cations.
Application 1. Taking q1 (n) =

1√
n

in the problems (10) −

(11) and (14) − (15) , then we have the eigenfunctions as
in Figure 4, Figure 5, Figure 6, Table 1, Table 2, Table 3
Application 2. Taking h = p = l = 1, b = 24 and q2 (n) =
1 in the problem (10) − (11) and (14) − (15) , we have the
eigenfunctions as in Table4, Table5.
Application 3. Taking h = p = 1, l = 2, b = 24 and q3 (n) =
1
n in the problem (10) − (11) and (14) − (15) , we have the
eigenfunctions as in Fig8–Fig17.

Figure 4: Comparison of datas in Table 1
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Figure 5: Comparison of datas in Table 3

Figure 6: Comparison of datas in Table 2

Figure 7: Comparison of datas in Table 4

Figure 8: ψ (n) , n = 1, 2, ..., 5

Table 1

Eigenfunctions correspond to λ1 = 1
n Bessel: φ (n) Hydrogen:ψ (n)
1 −1 −1
2 1 1
3 1.48 3.207
4 −0.25 4.058
5 −1.617 2.373
6 −0.691 −1.003
13 1.59 −1.960
14 0.161 −3.86
15 −1.471 −2.50
16 −1.257 0.981
21 −1.586 −3.62
22 −0.162 −0.937
23 1.458 2.556
24 1.318 3.834

Table 2

Eigenfunctions correspond to λ2 = 2 −
√
3

n Bessel: φ (n) Hydrogen:ψ (n)
1 −1 −1
2 1 1
3 2.21244 3.93916
4 1.73908 8.09709
5 0.0117111 13.1218
6 −1.72368 18.3994
13 −0.145179 11.2468
14 −1.75401 2.4093
15 −2.43079 −6.70029
16 −1.83671 −15.0299
21 0.930821 −17.9065
22 −0.785314 −9.8949
23 −2.12481 −0.564677
24 −2.45493 8.84181

Figure 9: Comparison of φ (n) , n = 1, 2, ..., 5
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Table 3

Eigenfunctions correspond to λ3 = 2 +
√
3

n Bessel: φ (n) Hydrogen:ψ (n)
1 −1 −1
2 1 1
3 −1.25166 0.475056
4 1.78627 −1.54855
5 −2.65167 1.6264
6 3.91286 −0.801338
13 −27.6413 1.69851
14 32.6601 −1.76153
15 −37.5314 1.07949
16 41.9117 0.055379
21 −43.325 0.271728
22 37.5582 −1.32168
23 −29.6769 1.83948
24 19.9896 −1.61992

Table 4

Eigenfunctions correspond to λ1 = 1
n Bessel: φ (n) Hydrogen:ψ (n)
1 −1 −1
2 1 1
3 1.1875 3.5
4 −0.901042 6
5 −1.22974 7.75
6 0.86415 8.26
13 −1.26819 −8.39808
14 0.819945 −9.19431
15 1.27133 −8.95851
16 −0.815707 −7.76715
21 −1.27712 5.13985
22 0.807579 7.3874
23 1.27837 9.05495
24 −0.805767 10.0378

Table 5

Eigenfunctions correspond to λ5 = 2 −
√
3

n Bessel: φ (n) Hydrogen:ψ (n)
1 −1 −1
2 1 1
3 2.41955 3.73205
4 2.5859 6.70812
5 1.53409 8.72527
6 −0.189564 8.7535
13 2.73757 −4.85591
14 2.81137 −0.212425
15 1.94182 4.49665
16 0.428975 7.82098
21 −1.20795 −6.02999
22 0.42675 −8.51653
23 1.92836 −8.43953
24 2.83217 −5.82995

Figure 10: Comparison of φ (n) and ψ (n) ,n=1,2,...,5

Figure 11: Comparison of datas in Table 5
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Figure 12: Comparison of varphi (n) for di�erent p values,λ = 1, q =
1√
n

Figure 13: Comparison of φ (n) for di�erent potentials, λ = 1

Figure 14: Comparison of ψ (n) for di�erent eigenvalues, q = 1√
n

Figure 15: Comparison of ψ (n) for di�erent potentials λ = 2+
√
3, l =

1

Figure 16: Comparison of ψ (n) for di�erent l orbital quantum num-
bers, λ = 2 +

√
3, q = 1√

n

Figure 17: φ (n) , n = 1, 2, ..., 5
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6 Conclusion
In this study, we are concerned with discrete analogue of
Sturm-Liouville problem with Bessel and hydrogen atom
potentials (6)− (7) , (4)− (5), and we provide a basis for di-
rect and inverse problems. From this point of view, we ob-
tain representation of solutions, asymptotic estimations of
eigenfunction and some numerical estimations about be-
haviors of eigenfunctions and eigenvalues. The numerical
results for eigenfunctions corresponding to the certain sig-
ni�cant eigenvalues for Sturm-Liouville problem having
Bessel and hydrogen atom potential type are shown and
compared to the each other. Our main aim is to apply the
spectral theory of these type of di�erential equations to the
discrete case.
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