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The key aim of this work is to present a new non-integer model for convective 
straight fins with temperature-dependent thermal conductivity associated with 
Caputo-Fabrizio fractional derivative. The fractional energy balance equation is 
solved by using homotopy perturbation method coupled with Laplace transform 
method. The efficiency of straight fin has been derived in terms of thermo-geomet-
ric fin parameter. The numerical results derived by the application of suggested 
scheme are demonstrated graphically. The subsequent correlation equations are 
very helpful for thermal design scientists and engineers to design straight fins hav-
ing temperature-dependent thermal conductivity. 
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Introduction

Most of scientific problems such as heat transfer are modeled by using non-linear 
differential equations [1]. The concept of heat transfer is very important and useful in mechan-
ical engineering as it is required in numerous objects. The convective heat transfer rate can be 
enhanced with the aid of distinct schemes such as enlarging the surface area of heat transfer 
or coefficient of heat transfer. It is very popular that the heat transfer surface area can enlarged 
by affixing the fins fabricated of materials having highly conductive on base surface. Fins are 
designed in such a manner that it increases the heat transfer from the base surface to its en-
vironment. Besides the well known utilizations such as heat exchanges, internal combustion 
engines and compressors, fins also insures efficacious in heat rejection systems in cooling of 
various types of electric instruments and space vehicles [2, 3]. In this connection a detailed re-
port was presented in a monograph by Kern and Kraus [4]. In an attempt Domairry and Fazeli 
[5] examined the efficiency of convective straight fins with the help of homotopy perturbation 
method (HPM). Chiu and Chen [6] operated the Adomian’s decomposition method (ADM) to 
investigate convective longitudinal fins having variable thermal conductivity. In another study 
Chiu and Chen [7] examined the convective-radiative with the help of decomposition tech-
nique. Bartas and Sellers [8] analyzed the heat-rejecting system. Furthermore, Coskun and Atay 
[9] employed the variational iteration technique to examine the convective straight and radial 
fins. Arslanturk [10] used and show the efficiency of ADM to examine the optimum design of 
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space radiators. In another investigation Aziz and Hug [11] employed the classical perturbation 
scheme to examine the efficiency of convective straight fins. In this sequel Patra and Ray [12] 
studied the efficiency of convective straight fins possessing temperature-dependent thermal 
conductivity with the help of HPM by using sumudu transform scheme.

In the last decade derivatives and integrals of fractional orders had notable develop-
ment as revealed by several monographs dedicated to it (e. g. Hilfer [13], Podlubny [14], Miller 
and Ross [15], Baleanu et al. [16], Kilbas et al. [17], etc.), the plethora of research papers 
published in scientific journals (e. g. Kumar et al. [18] studied differential-difference equation 
of fractional order, Singh et al. [19] investigated the local fractional Tricomi equation, Bhrawy 
et al. [20] examined the fractional Burgers’ equations, Area et al. [21] analyzed the Ebola 
epidemic model of fractional order, Carvalho and Pinto [22] presented a delay mathematical 
model of fractional order to determine the co-infection of malaria and the human immunode-
ficiency virus, Srivastava et al. [23] examined a fractional model of vibration equation, Yang 
et al. [24] studied the fractional KdV equation involving local fractional derivative, Jafari et 
al. [25] investigated the differential equations pertaining to local fractional operators, Yang  
et al. [26] examined the local fractional diffusion and relaxation equations, He at al. [27] stud-
ied a new fractional derivative and its application to explanation of polar bear hairs, Wang and 
Liu [28] showed the applications of He’s fractional derivative for non-linear fractional heat 
transfer equation, Liu et al. [29] used the He’s fractional derivative for heat conduction in a 
fractal medium arising in silkworm cocoon hierarchy, Sayevand and Pichaghchi [30] studied a 
non-linear fractional KdV equation based on He’s fractional derivative, Hu et al. [31] studied 
fractal space-time and fractional calculus, Liu et al. [32] presented a fractional model  for  in-
sulation  clothings  with  cocoon-like  porous  structure, etc.) and definitions of various deriva-
tives and integrals (e. g. Caputo [33], Yang [34], He [35, 36], etc.). In a recent work Caputo and 
Fabrizio [37] introduced a new fractional derivative. The importance of the newly derivative 
is due to the requisite of employing a mathematical model explaining the nature of various 
processes. In fact, the classical Caputo fractional derivative comes into view to be especially 
suitable for those mechanical processes, associated with plasticity, fatigue, damage and with 
electromagnetic hysteresis. The physical processes in which these effects absent it seem more 
suitable to employ the novel definition of fractional derivative. Atangana [38] used the newly 
fractional derivative to understand the nature of Fisher’s reaction- diffusion equation. In another 
investigation Atangana and Koca [39] employed this approach to nonlinear Baggs and Freed-
man model and show the efficiency of the newly fractional derivative. In a series of papers 
Hristov [40, 41] has shown that the newly Caputo-Fabrizio fractional derivative can easily be 
obtained from the Cattaneo concept of the flux relaxation if the damping function is the Jeffrey 
memory kernel. Sun et al. [42] examined the fractional relaxation and diffusion problems with 
non-singular kernels. Yang et al. [43] proposed a new fractional derivative having non-singular 
kernel and verify its applications in steady heat flow. In another work Atangana and Baleanu 
[44] suggested a new non-integer order derivative having non-local and non-singular kernel. 
Mirza and Vieru [45] obtained the solutions of advection-diffusion equation with time-frac-
tional Caputo-Fabrizio derivative by using a combination of Laplace transform and Fourier 
transform. Atangana and Baleanu [46] show the application of Caputo-Fabrizio derivative in 
groundwater flow within confined aquifer. Ali et al. [47] used the Caputo-Fabrizio derivative to 
examine the MHD free convection flow of generalized Walters’-B fluid model. Baleanu et al. 
[48] presented a comparative study of Caputo and Caputo-Fabrizio derivatives for advection 
differential equation. Algahtani [49] used the Atangana-Baleanu and Caputo-Fabrizio deriva-
tive with fractional order in Allen Cahn model.
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In view of the great importance of heat transfer and related problems, we present a new 
fractional model for energy balance equation associated with newly Caputo-Fabrizio fractional 
derivative to calculate the efficiency of the convective straight fins possessing temperature-de-
pendent thermal conductivity. The efficiency of HPM coupled with Laplace transform algo-
rithm is employed to examine the energy balance equation of fractional order. We estimate the 
non-dimensional temperature distribution and fin tip temperature for the convective straight 
fins possessing thermal conductivity for the distinct values of various physical parameters. The 
used method is an extension of HPM by using Laplace transform [50-52] to handle non-linear 
PDE associated with newly Caputo-Fabrizio fractional derivative and is a combined form of 
HPM [53-55], Lapalce transform technique and He’s polynomials [56]. The supremacy of ap-
plied scheme over the classical analytical techniques is that requires the less computer memory 
and reduces the computation time. 

Preliminaries

Definition 1. Let us consider that θ ∈ H1 (a, b), b > a, β ∈ [0, 1], then the Caputo-Fab-
rizio derivative of fractional order discovered by Caputo and Fabrizio [37] is written in the 
following manner:

	 [ ] '( )D ( ) ( ) exp d
1 1a

M ξ
β
ξ

β ξ τθ ξ θ τ β τ
β β

 −
= − − − 

∫ 	 (1)

In eq. (1) M(β) is denoting normalization function, which holds the property  
M(0) = M(1) = 1 [37]. If θ ∉ H1 (a, b) then the Caputo-Fabrizio fractional derivative can be 
re-expressed:

	 [ ] ( )D ( ) [ ( ) ( )]exp d
1 1a

M ξ
β
ξ

β β ξ τθ ξ θ ξ θ τ β τ
β β

 −
= − − − − 

∫ 	  (2)

The eq. (2) also reduces in the following similar equation:

	 [ ] '( )D ( ) ( ) exp d , (0) ( ) 1
t
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 −
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∫  	 (3)

if

	 1 1[0, ), [0,1]
1

βγ β
β γ
−

= ∈ ∞ = ∈
+

    as presented by the Atangana [38].

Moreover, 
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 −
− = − 
 
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The associate integral of the Caputo-Fabrizio fractional derivative was introduced by 
Losada and Nieto [57] expressed in the following manner.

Definition 2. The integral operator of fractional order for the function θ(ξ) of order   
β, 0 < β < 1 is written as [57]: 

	 [ ]
0

2(1 ) 2I ( ) ( ) ( )d , 0
(2 ) ( ) (2 ) ( )

s s
M M

ξ
β
ξ

β βθ ξ θ ξ θ ξ
β β β β
−

= + ≥
− − ∫  	  (5)

From eq. (5), the following result can be found:

	
2(1 ) 2 1

(2 ) ( ) (2 ) ( )M M
β β

β β β β
−

+ =
− − 	  (6)
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It yields the following result:
	 2( ) , 0 1

(2 )
M β β

β
= ≤ <

−
 	 (7)

Further Losada and Nieto [57] showed that the Caputo-Fabrizio derivative of order  
0 < β < 1 can be redefined by using previous discussed expression as:

	 [ ] '1D ( ) ( ) exp d
1 1a

ξ
β
ξ

ξ τθ ξ θ τ β τ
β β

 −
= − − − 

∫ 	 (8)

Now, we present the following important theorem for the newly Caputo-Fabrizio frac-
tional derivative.

Definition 3. If CF
0 Dξ β+1θ(ξ) is the Caputo-Fabrizio fractional derivative of a function 

θ(ξ) then its Laplace transform formula is expressed as [37]:

	
2 '

CF 1
0

( ) (0) (0)D ( )
(1 )

s s sL
s s

β
ξ

θ θ θθ ξ
β

+ − −  =  + −
	 (9)

where θ ̄(s) indicates the Laplace transform of the function θ(ξ).

Mathematical model of the problem

The schematic diagram of straight fin 
problem possessing the arbitrary cross-section-
al area, Ac, perimeter, P, and length, b, is pre-
sented in fig. 1. The fin is joined with the base 
surface having the temperature, Tb, and extends 
into fluid having temperature, Ta, and its tip is 
insulated. 

Then the energy balance equation is writ-
ten as [9, 10]:

         d d( ) ( ) 0c a
TA k T Ph T T

dx dx
  − − =  

        (10)

In the eq. (10) k(T) indicates the temperature-dependent thermal conductivity and h rep-
resents the coefficient of heat transfer. It is considered that the thermal conductivity for the fin 
material is expressed:

	 [ ]( ) 1 ( )b bk T k T Tλ= + − 	 (11)

In the expression (11) kb represents the thermal conductivity at the ambient fluid tem-
perature of the fin and λ is standing for the variation of the thermal conductivity.

Using the non-dimensional variables:

	 , , ( ),a
b a

b a

T T x T T
T T b

θ ξ α λ
−

= = = −
−

   and   
1/22

a c

Phb
k A

ψ
 

=  
 

	 (12)

Consequently the eq. (10) reduces in the following form:	

	
22 2

2
2 2

d d d , 0 1
dd d

θ θ θαθ α ψ θ ξ
ξξ ξ

 
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	 (13)

with the boundary conditions

h, Ta

Tb

x dx

b

Figure 1. Schematic diagram of the problem
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0

d 0
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θ
ξ =

=    and   
1

1
ξ

θ
=
= 	 (14)

Since we know that the integer order derivatives are in local in nature, so these de-
rivatives can not describe the problem accurately. The Caputo-Fabrizio fractional derivative is 
more suitable to describe to natural phenomena because its kernel is non-local and non-singular. 
Therefore, we replace the second order derivative d2θ / dξ2 in eq. (13) by the newly Caputo-Fab-
rizio fractional derivative and eq. (13) converts to a fractional model of energy balance equation 
expressed:

	
22

CF 1 2
2

d dD , 0 1
dd

β
ξ

θ θθ αθ α ψ θ β
ξξ

+  
+ + − < ≤ 

 
  	 (15)

along with the boundary conditions (14).

Basic idea of HPM coupled  
with Laplace transform method

In order to demonstrate the fundamental plan of HPM coupled with Laplace transform 
algorithm, we take a non-linear differential equation involving Caputo-Fabrizio fractional de-
rivative written:
	 CF 1D ( ) ( ) ( ) ( ), 0 1R N gβ

ξ θ ξ θ ξ θ ξ ξ β+ + + = < ≤ 	 (16)

with the initial conditions: 
	 '(0) , (0)a bθ θ= = 	 (17)

where CFDξ 
β+1 θ(ξ) represents the Caputo-Fabrizio derivative of non-integer order for the func-

tion θ(ξ), R indicates the linear differential operator, N stands for the non-linear differential 
operator of general nature, and g(ξ) denotes the term due to the source. 

Firstly we operate the Laplace transform on fractional eq. (16), it yields:

	 2 2 2

(1 ) (1 )[ ( )] [ ( )] [ ( ) ( )]a b s s s sL L g L R N
s s s s
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On operating with the inverse of Laplace transform on eq. (18), it gives:

	 1
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In eq. (19) G(ξ) indicates the term occurring due to the source term and the initial 
conditions.

Next we use the classical HPM:
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and the non-linear term Nθ(ξ) can be deformed in the following manner: 
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where Hn(θ) are the He’s polynomials in [56] that are presented: 
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On using the eqs. (20) and (21) in eq. (19), it yields:
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The previous result is the combination of the standard Laplace transform scheme and 
the classical HPM employing the He’s polynomials. On equating the coefficients of same pow-
ers of p, we have:
	 0
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Using the same way, the remaining the iterates θn(ξ) can obtained. Finally, the FHPTM 
solution θ(ξ) is expressed: 
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( ) Lim ( )
N

nN n
θ ξ θ ξ

→∞
=
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The HPM coupled with Laplace transform method  
for non-linear energy balance equation of fractional order

First of all, we operate the Laplace transform on eq. (15), it yields:
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where K = θ(0). 
On operating the inverse of Laplace transform on eq. (26), it gives:
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On applying the HPM, it yields:
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In eq. (28) Hn(θ) and H′(θ) are He’s polynomials given in the following manner:
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The initial few, components H0(θ), H1(θ), H2(θ),... are expressed: 
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for H′(θ), we find that
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On equating the coefficients of the same powers of p, it yields:
	 0

0: ( )p Kθ ξ =

	
2

1 2
1: ( ) 2(1 )

2
Kp ψθ ξ β ξ βξ = − +  	 (32)

	 ⋮
Using the same way, the remaining iterates θn(ξ) can be completely obtained. There-

fore, the solution is expressed: 

	 0 1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) .θ ξ θ ξ θ ξ θ ξ θ ξ θ ξ= + + + + +	 (33) 

In eq. (29) K indicates the temperature at the fin tip and K ∈ [0, 1]. The value of K can 
be easily obtained by using the boundary condition θ| ξ=1=1. 

Fin efficiency

The rate of heat transfer from the straight fins is derived by employing the Newton’s 
law of cooling:

	
0

( )d
b

aQ P T T x= −∫ 	 (34)

The most significant property of the fins is the fin efficiency. It is investigated in the 
problems of heat and mass transfer. The fin efficiency is the ratio of the actual heat transferred 
by the fin and the heat transfer if the fin is entirely present in base temperature:

	
1
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( )d
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P T T x
Q
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∫
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Now substituting the value of θ from eqs. (33) and (35), we calculate the dimension-
less fin efficiency for the straight fins.

Numerical results and discussions

In this section, we compute the non-dimensional temperature distribution, θ(ξ), and 
non-dimensional fin tip temperature, K. The comparison between the results derived for inte-
ger order derivative, classical Caputo fractional derivative and newly Caputo-Fabrizio frac-
tional derivative are presented in tab. 1. It can be perceived from tab. 1 that the numerical 
results associated with Caputo-Fabrizio fractional derivative show new characteristics com-

pared to standard derivative 
and classical Caputo fraction-
al derivative. The comparison 
between the numerical sim-
ulations for non-dimension-
al temperature distribution 
obtained with aid of distinct 
schemes is discussed in tab. 
2. From tab. 2, it can be eas-
ily noticed that the outcomes 
of the suggested scheme are 
perfectly agree with the re-
sults available in the litera-
ture. The numerical results for 
non-dimensional temperature 
distribution, θ(ξ), for various 
values of values of β, ψ, and 
α are displayed through figs. 

Table 1. Comparative study between integer order derivative, classical Caputo fractional  
derivative and newly fractional derivative due to Caputo and Fabrizio for the non-dimensional  
temperature distribution within the fin at α = 0.3 and ψ = 1

ξ Integer order derivative
β = 1

Caputo fractional derivative
β = 0.75

Caputo-Fabrizio  
fractional derivative

β = 0.75
0.0 0.7004658984 0.6557094016 0.6336851793
0.1 0.7033558030 0.6606701636 0.6493352360
0.2 0.7120421010 0.6735652420 0.6693067431
0.3 0.7265733504 0.6933393015 0.6937271779
0.4 0.7470265036 0.7195597031 0.7227314777
0.5 0.7735009521 0.7519699773 0.7564565254
0.6 0.8061102147 0.7903792329 0.7950350175
0.7 0.8449712927 0.8346092686 0.8385887508
0.8 0.8901917235 0.8844616181 0.8872213648
0.9 0.9418543709 0.9396937045 0.9410105835
1.0 1.000000000 1.000000000 1.000000000

Table 2. The numerical results obtained by using HPM [3],  
VIM [9] and present method for the non-dimensional  
temperature distribution within the fin at α = 0, ψ = 0.2, and β = 1

ξ HPM [3] VIM [9]
HPM coupled  
with Laplace 

transform method
0.0 0.9803 0.9803 0.9803279973
0.1 0.9805 0.9805 0.9805240694
0.2 0.9805 0.9811 0.9811123643
0.3 0.9821 0.9820 0.9820931172
0.4 0.9835 0.9834 0.9834667204
0.5 0.9852 0.9852 0.9852337234
0.6 0.9874 0.9873 0.9873948330
0.7 0.9900 0.9899 0.9899509138
0.8 0.9929 0.9929 0.9929029880
0.9 0.9963 0.9962 0.9962522366
1.0 1.0000 1.0000 1.0000000000
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2-4, respectively. It can be detected from fig. 
2 that as the order of time-fractional derivative 
increases, it leads the increases in the value of 
the temperature, θ(ξ). Figure 3 reveals that the 
temperature, θ(ξ), is decreased by increasing 
the value of α. In can be observed from fig. 4 
that the temperature, θ(ξ), is increased by in-
creasing the value of α. The numerical results 
obtained by using FHPTM for non-dimension-
al fin tip temperature, K, for various values of 
order of non-integer derivative and α are dis-
played in figs. 4 and 5, respectively. Figure 5  
shows that as β increases, it leads to the corre-
sponding increase in the value of fin tip tem-
perature K. Figure 6 reveals that the value of K 
increases by increasing the value of α.

Figure 2. Response of dimensionless 
temperature distribution θ(ξ) for convective 
straight fins vs. ξ for distinct values of β at  
α = 0.3, and ψ =1

Figure 4. Nature of non-dimensional 
temperature distribution θ(ξ) for convective 
straight fins vs. ξ for distinct values of α at  
ψ = 1 and β = 1

Figure 5. The nature of fin tip temperature  
K with respect to ψ for various values of β  
at α = 0.2

Figure 3. Behavior of non-dimensional 
temperature distribution θ(ξ) for convective 
straight fins corresponding to ξ for distinct 
values of ψ at and α = 0.3, and β = 1
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Conclusions

In this paper, a new non-integer model for convective straight fins possessing tempera-
ture-dependent thermal conductivity involving Caputo-Fabrizio fractional derivative is con-
sidered. The HPM coupled with Laplace transform method is successfully used to solve the 
energy balance equation of arbitrary order. The HPM coupled with Laplace transform scheme is 
specially design to examine the non-linear differential equations pertaining to Caputo-Fabrizio 
fractional derivative. The most important part of this study is to use the newly Caputo-Fabrizio 
fractional derivative to investigate the convective straight fins possessing the temperature-de-
pendent thermal conductivity. The numerical simulation is performed for non-dimensional tem-
perature distribution and fin tip temperature that reveal that the selection of the order of frac-
tional derivative remarkably influence the outcomes. The results of this investigation are very 
helpful for engineers dealing with the heat conduction problems of strongly non-linear nature. 
Thus, we can conclude that the use of newly Caputo-Fabrizio fractional derivative in modeling 
of the real world problems is very interesting, gives very fruitful consequences and HPM cou-
pled with Laplace transform method is very powerful and efficient scheme to study such type 
of nonlinear problems of fractional order.
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