
1

An Auction-Based Serious Game for Bug Tracking

Çağdaş Üsfekes 1, 2, Eray Tüzün 3, Murat Yılmaz 1, Yagup Macit 2, Paul Clarke4, 5

1 Computer Engineering, Çankaya University, Ankara, Turkey

2 HAVELSAN A.Ş, Ankara, Turkey
3 Computer Engineering, Bilkent University, Ankara, Turkey

4 School of Computing, Dublin City University, Dublin, Ireland
5 Lero – the Irish Software Research Centre, Dublin City University, Dublin, Ireland
*cagdas_usfekes@hotmail.com

Abstract: Today, one of the challenges in software engineering is utilizing application lifecycle management (ALM) tools
effectively in software development. In particular, it is hard for software developers to engage with the work items that are
appointed to themselves in these ALM tools. In this study, we have focused on bug tracking in ALM where one of the most
important metrics is mean time to resolution that is the average time to fix a reported bug. To improve this metric, we
developed a serious game application based on an auction-based reward mechanism. The ultimate aim of this approach is
to create an incentive structure for software practitioners to find and resolved bugs that are auctioned where participants
are encouraged to solve and test more bugs in less time and improve quality of software development in a competitive
environment. We conduct hypothesis tests by performing a Monte Carlo simulation. The preliminary results of this research
support the idea that using a gamification approach for an issue tracking system enhances the productivity and decreases
mean time to resolution.

1. Introduction

Application lifecycle management (ALM) is an

umbrella term that is used for development, governance and

maintenance of computer software. Investigating techniques

to manage ALM is a continuing concern within software
engineering theory and practices, where in previous related

work the authors have highlighted that the adoption of tooling

continues to rise with contemporary Continuous Software

Engineering [1]. The notion of gamification can play an

important role in addressing the issues that may arise during

the stages of ALM. One issue, known as a bug tracking,

concerns the monitoring of reported software bugs during the

software development lifecycle. To date, we suggest that

there has been little agreement on how to increase the

motivation of software practitioners for efficient bug tracking.

The usage of games has become an important avenue to
investigate social aspects of software development. [2].

Recently, some researchers have focused on using games in

software development because team characteristics can have

positive effects on the health of a software project like

selfishness and altruism [3].

Games are acceptable as social activities and games

can improve social interactions or engagements. In recent

years, games are using a type of communication by the help

of social media. Serious games can be used to improve game-

based social skills and social responsibilities with creative fun.

Game practitioners and researchers redefined the notion of

games in non-gaming areas. Consequently, the gamification
definition (using the theory of games in non-gaming areas)

becomes a beneficial perspective when seeking to improve

software development processes. Gamification does not only

improve the individuals’ motivations, it also helps to solve

problems about information technologies.

This paper proposes an auction-based serious game for

bug tracking by applying game theoretic techniques in this

context. The goal is to investigate the usefulness of incentive

mechanisms for efficient bug tracking in ALM. This paper

begins by a literature review related to software development,
gamification, use of games and gamification in specific

software development application areas such as bug tracking.

In section 3, we provide information about the bug tracking

context in Havelsan, the industry-based software

development company where we have examined our concepts

in practice. In Section 4, we provide information related to

game design. Section 5 discusses our validation approach

using Monte-Carlo simulation, while section 6 presents the

results. Section 7 concludes the paper.

2. Background

2.1. Games in Software Engineering Literature
We can give different example usages about game

theory and serious game practices to solve a set of problems

in software engineering. For example, Cockburn [4] defined

software development as a serious game and this game

depends on limited project resources and coordination

abilities. Sullivan [5] worked on software design decisions
using economic concepts. Lagesse [6] designed a game model

for giving tasks to software developers. Baskerville [7]

worked on high-speed internet from a game model that uses

a lot of resources. Sazawal and Sudan [8] mixed the decision

modelling and the theory of games to support software design.

In this work, they developed a game named “software design

evaluation”. This game tries to find problems between

software engineers and customers. Moreover, they designed

a simple game based theoretical analysis method to evaluate

software development teams.

Gao [9] developed a serious game to manage and
configure software project outputs and decision errors. Gao-

mailto:*cagdas_usfekes@hotmail.com

2

hui [10] worked on the theory of games that might be helpful

for software development. Soska et al. [11] focused on

students in their academic life. In this work, they created a

game for teaching software testing to all students. Moreover,

Pedreira et al. [12] worked on a map system for using

gamification in software development. In these days,

gamification is becoming popular in software engineering.

Sweedyk [13] searched about the popularity of theory of

games in academic conferences. Kitagawa and others
designed a theory of game for enhancing code reviews. Code

reviewing is important for software quality as it can enable a

decrease in bugs [14]. Szabo [15] used the “Game Dev

Tycoon” game on students to teach software development.

This game is used to simulate real business scenarios that can

affect software development projects. Gonzales [16] focused

on the advantages of the theory of games for teaching a

process in computer engineering. Largo [17] gets feedback

and comments from various parties about using game

elements in when learning. Amir [18] used gamification for

making systems more dynamic and gamified.

There is also a body of evidence that demonstrates that
building an architecture for automating software

development processes by creating game-like activities is

essential [19, 20, 3]. Yılmaz [19] developed a game-based

approach to detect the team characteristics in software

development units. Yılmaz et al. [3] designed a theory of

games to support and improve software development process.

The idea of developing an economic approach for software

development is defined by [20]. This work is the first serious

discussion about this subject. In another work Yilmaz et al.

[21] defined an economic formula to improve the software

development processes. Yılmaz and O'Connor [22] worked
on a ScrumBan approach while applying gamification. Also,

Yilmaz and O'Connor [23] defined software development as

an economic approach and they designed a market-based

approach to solve problems about task assignment. Moreover,

these studies show that using game-based studies in software

development have a material impact in terms of improving

the productivity of software development processes. In

another study, Jurado et al. [24] defined a model for the

design of game strategies. The model is composed of three

components. These are, game environment process, a game

environment and a component for measurement and
evaluation. This study makes an analysis between

gamification and knowledge management, with the goal of

determining the relationship between motivation properties

such as participation, collaboration and contribution, in the

implementation of knowledge management processes,

particularly in academic software development scenarios [24].

2.2. Reward Mechanisms
A reward mechanism can be considered as a

knowledge exchange environment that creates incentives for

participants who may benefit from collecting system-wide

resources such as reputation, badges and credits. There are
many published works regarding the computing features of

reward mechanisms. Houk et al. [25] searched the models of

behaviour and the relationship of these behaviours with the

reward mechanisms. Singh [26] designed a reward

mechanism to improve productivity on online learning

systems. Lua [27] developed a reward mechanism that is

designed for P2P systems. Wang and Chuen [28] worked on

reward mechanisms that are related with computer games.

Reward mechanisms have been found to exert a

significant influence on learning and cognition services [29].

Moreover, reward mechanisms can be considered as game

elements. If a reward system is designed successfully, it helps

to improve the motivation of the system users. Game

elements can encourage participants to solve problems in

more enjoyable ways, e.g. while they are working on tasks

about their jobs. Walz [30] developed a serious game which

establishes social and cultural fundamentals as key input
variables.

Large companies are using various and complex

systems in their production or management processes. For

example, these systems can be management or financial tools.

To use these tools more powerfully, employees have to be

educated about these systems. In this process using

gamification speeds up the people learning process. In a

further related work, Parizi [31] created a serious game to

create traceability in software tests and also developed a

serious game to create traceability in software tests and code

artifacts [32].

2.3. Defect Management

Bug tracking is an important process within software

development. Gamification can be used in bug tracking

because game elements and game scenarios can motivate the

developers to solve more bugs in a specific time. Lotufo [33]

used the Stack Overflow (an online community organized to

resolve computer programming problems) question database

to examine participant motivation. At Stack Overflow,

software developers can ask questions and provide responses

in relation to software development matters. They use game

elements to address these problems by motivating
contributors. Dal Sasso [34] used gamification for bug

reporting. In other work, Fraser [35] tried to set a new view

for testing and detecting bugs using gamification. Zheng at al.

developed an activity-based defect management framework

for product development [36]. In this work, they focused on

hardware products and they proposed this framework based

on design activities that assess and identify design defects.

Aqlan [37] integrates data analytics and simulation modelling

to develop a system for defect management in manufacturing

environments. In this work, simulation is used to analyse the

behavior of the system where data analytics is used to develop
prediction models for defect resolution. In another work,

Rahman [38] designed a framework for defect management

life cycle to improve software quality. The main aim of this

study is defining a defect management roadmap in software

development. Taba [39] presents a comprehensive model for

software inspection. This model provides special facilities to

collate common inspection obstacles. Weerd [40] presents a

conceptual model for integrating software product

management (SPM) and defect management in a distributed

environment. In other work, Nair [41] defines an effective

defect management process for project managers. This work

enables project managers to gain further awareness towards
the significance of predictive positioning in resource

allocation in order to develop high quality defect-free

software products [41].

2.4. Monte Carlo Simulation
Monte Carlo is a type of stochastic simulation system

that depends on random choices for modelling aspects of real-

life system [42]. In this simulation technique, a condition is

3

repeated multiple times to obtain numerical results. This

simulation is used in physical and mathematical problems and

it can be used in wide variety of settings, from medicine to

the software industry. Monte Carlo methods are mainly used

in three problem classes. These are sampling, estimation and

optimization [43] [44]. Simulation modelling is concerned

with “Sampling”. It is a random process that mimics the

behavior of some real-life system, such as a production line

or telecommunications network [43]. In "Estimation" the
emphasis is on estimating certain numerical quantities related

to a simulation model. An example in the natural setting of

Monte Carlo techniques is the estimation of the expected

throughput in a production line. An example in the artificial

context is the evaluation of multi-dimensional integrals via

Monte Carlo techniques by writing the integral as the

expectation of a random variable [43]. Monte Carlo

techniques are also used to optimize noisy functions, where

the function itself is random — for example the result of a

Monte Carlo simulation [43].

3. Context

This study is designed to support bug tracking systems

and improve software development quality in Havelsan, a

Turkish Systems and Software company having business

presence in various domains. The company operates in three

main business areas including command and control,

simulation and training systems, and e-government systems
addressed by separate business divisions serving various

customer segments. The company has a diverse software

development project portfolio of around 50 projects in

different sizes at any given time.

In this study, we explored one of the projects in the

defence industry with around 60 personnel. Project X started

in 2014 and finished in 2016. In the project, the team used

Microsoft Team Foundation Server for integrated ALM.

Project X had four milestones T0 (Integration), T1

(System), T2 (Release Candidate), and T3 (Acceptance) with

a total of 1065 bugs. We calculated the sum of bugs in these

periods and calculated the percentages of them. The bug

counts and percentages in Project X are shown in Table 1.

Table 1. Bug Counts in Milestones

Time Bug Count Percentage

T0 488 % 45.8

T1 (T0 + 12 month) 441 % 41.5

T2 (T1 + 8 month) 115 % 10.8

T3 (T2 + 4 month) 21 % 1,9

Total 1065 %100

According to IEEE [45], a bug is an incorrect step,

instruction or data in a program. In Figure 1, we have

provided the workflow of a bug. The lifecycle of a bug starts

with a user (mostly test engineers) report a bug in the system.

This bug report is reviewed by the development tech lead for

initial triage, following which there are mainly two

alternatives. Either the tech lead would assign the bug to a

developer to get it fixed, or if a bug is affecting more than one
system, the tech lead would escalate to the Configuration

Control Board (CCB). Later on, after evaluation in CCB, the

bug would be assigned to a developer, or might be closed by

the CCB. In the Assigned state, the developer is expected to

fix the bug thus moving to a Resolved State. In the Resolved

state, a test engineer would test the proposed fix. If the fix is

verified, the bug would be closed, otherwise the test engineer

would return the bug to the developer in the Assigned State.

We can classify software anomalies in two groups.

First one is “Defect Classification” and the other one is

“Failure Classification” [45]. In this work we concentrated on
“Defect Classification” items.

Bug is opened/

 (Any user)

= State

 = State Transition

CCB

 Duplicate, Reject, Use-as-is

(CM)

Assigned

Cannot Reproduce, As Designed,

Duplicate, Obsolete, Other/

(Developer)

Resolved

(Waiting for Test)

Fixed

(Developer)

Resolution Verified/

(Tester)

Not Verified

(Tester)

RB Assigns for resolution,

(CM)

Proposed

Assign to developer

(TECH. LEAD)

CCB Evaluation required

(Tech. Lead)

Reopen

(CM)

Entry state

Closed/

Opened in Error

(tech. leadr)

Test Request

(CM)

Reopen

(Any user)

Figure 1. Bug Workflow Schema

4

One of the critical customer satisfaction criteria is to

be able to fix bugs in short periods of time. Time to fix a bug

is the time elapsed between when a bug is reported (i.e.

entered into the Proposed state in the defect management tool)

until a resolution to the bug is verified by the test engineer

(i.e. entering a Closed state in the defect management tool).

This metric is usually measured in days or hours. We can use

“Mean Time to Repair” (MTTR) as a metric to examine this

perspective. MTTR is a basic measure of the maintainability
of repairable items [46]. It represents the average time

required to repair a failed component or device. It is the total

corrective maintenance time for failures divided by the total

number of corrective maintenance actions for failures during

a given period of time [47]. Fousch [48] has previously

focused on software solutions for MTTR predictions. The

formula for MTTR is given as follows;

𝑀𝑇𝑇𝑅 =
∑ 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑖𝑚𝑒 𝑡𝑜 𝑓𝑖𝑥 𝑎 𝑏𝑢𝑔(𝑖)𝑛

1

𝑛

If we further expand the formula, we will have the

following formula 2, where n is the number of bugs in the

project.

𝑀𝑇𝑇𝑅

=
∑ 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 [𝐶𝑙𝑜𝑠𝑒𝑑](𝑖) − 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 [𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑](𝑖)𝑛

1

𝑛

MTTR values, minimum bug resolution days and

maximum bug resolution days for all milestones for Project

X can be seen in Table 2.

Table 2. MTTR Values (Days)

Time MTTR Min. Time Max. Time

T0 54,61 0,04 686,76

T1 51,87 0,02 310,76

T2 78.10 2,03 195,83

T3 33,75 5,79 71,82

This is an important metric to analyse the team’s

overall average time to resolution. Although it is useful to

know which individual cases took long time to resolve,

MTTR gives an overall indicator about the performance of

the team. Since in general, the quicker your team is able to

resolve bugs for the customers, the happier customers will be,

this metric is directly related to customer satisfaction.

The metric also would provide an indicator of the

team’s efficiency. By analysing this metric, one can explore
the bottlenecks in the bug resolution process. To improve this

metric, we developed an auction-based serious game

application for issue tracking. For our scenario, we designed

a serious game with reward mechanisms intended to make

fixing bugs more enjoyable and efficient. In this system

developers see the bugs as an auction and bid on them to solve

in a specific time period. The detailed information about the

system will be given in “Game Design” section.

4. Game Design

In our game model, the aim is using individual choices

to improve software productivity while developers are

assigning tasks [49]. User can bid more than one auction and

these auctions can be related with software testing,

requirement analysis etc.

We developed a web-based Bayesian game on a

private value auction model in which users (i.e. player N= {1,

2, . . . n}) know only their valuation and therefore valuation

is independent across bidders who are considered as risk

neutral (i.e. if v is a wining value and pays p, the pay-off is v-

p). The type set θ i = [v , v] , v ≥ 0 and action set, Ai = R

+. The opponents’valuations are independent draws from a

distribution function F that is increasing and continuous;

consequently, the payoff function is:

𝑢𝑖(𝑎, 𝑣) = {
𝑣𝑖 − 𝑃(𝑎)

𝑚
0

 𝑖𝑓 𝑎𝑗 ≤ 𝑎𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑖 𝑎𝑛𝑑 |{𝑗: 𝑎𝑗 = 𝑎𝑖}| = 𝑚

𝑖𝑓 𝑎𝑗 >𝑎𝑖 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗 ≠ 𝑖

Where P(a) is the price paid by the winner if the bid

profile is a and θ is the team set of our game. Team

information is presented in section 5.

There are several different roles for which we name

participants who can view auctions and bid them and collect

point after resolving the issues. Administrators are a type of

user with the authority to import bugs and initiate auctions.

All users can search auctions with keywords and see

their credits as depicted in Figure 2.

Figure 2. User Information Panel

Only administrators can create new auctions or cancel

an auction from admin page. Firstly, an administrator

connects to the ALM tool to import bugs by selecting a query

(Figure 3).

Figure 3. Query Selection

5

Secondly, the administrator creates new auctions from

bugs or cancels an active auction (Figure 4).

Figure 4. Creating and Cancelling Auction

In the home page, users can display all auctions (bugs)
with title and credit information. At the right side of every

auction item, a time counter shows how much time is left to

finish the current auction. The Auction list is as seen in Figure

5.

Figure 5. Auction List

When user click to any auction, the auction item is

displayed with detailed information at the left side of screen.

The detail screen can be seen in Figure 6.

Figure 6. Auction Detail Screen

In the detail screen, there is a progress bar that shows

how much time is passed and how much time is left to finish

auction. At the bottom of progress bar, there is a link that

shows the auction item (bug) in ALM tool. Users can see the

credit value and the number of bidders for this auction. In the

bidders list, bidder information is not displayed, user can see
the other bidders like “1. Person”, “2. Person” etc. At the right

of auction panel, users enter the expected number of days to

resolve this item. Then the user clicks the green button. One

user can bid multiple auctions if he has enough credits, but a

user can bid the same auction only one time.

When the auction is finished, the system checks the

bidders and assigns this auction to one of them who bids with

the minimum day value. This user is then responsible to solve

this auction in the promised time. A service checks the time

interval between assign date and resolved date of auction. If

this period is shorter than the promised time, the user wins the

auction and gains the auction’s credit otherwise user can not
earn any credit and try to win other auctions.

With this system, we aimed to associate bugs and

developers with their choices and solve bugs in a short time.

By this game, developers are more enthusiastic to solve bugs

by gaining credits.

Before using this web-based game application in our

project, our project management board wanted to see the

results of a simulation about all steps of this game and they

wanted to see effects of gamification on defect management.

However, they were concerned about the effectiveness of the

gamification approach. So, we tested our game system with
the real users and bug counts in Project X. For that reason, we

used Monte Carlo method in our game system as described in

the following section.

5. Designing Monte-Carlo Simulation

The following subsection gives outlines the Monte

Carlo method and example usages of it, following which we
describe our Monte Carlo parameters.

In our algorithm we used a gamification ratio while

calculating bidding day. This ratio based on a previous related

work which was published in 2016. Gulec and Yılmaz [50]

examined decision making skills on 54 Turkish football

referees. They created two groups as experimental and

control group from 54 referees. Experimental group are

trained by a serious game and control group are trained by

classical referee training system. All of these groups are

tested before and after training. At the end of all tests we can

see that the experimental group is % 8.65 more successful

6

than control group. This ratio is the effect of using

gamification.

We developed a windows form application to simulate

this system. Before running simulation, we defined some

parameters in three groups. These are auction options, user

options and bidding options. The auction parameters are:

auction count (The project X has 1065 bugs and each bug is

related with a team), minimum and maximum auction point

(value is from 1 point to 50 point), team count (the project has
6 teams and each team has 8-12 personnel). The user

parameters are: user count (value is 60 users because there are

around 60 people are working in Project X and each user has

a team) and credit per user (value is 5000 points per user). We

set the simulation variables depend on Project X. The values

are shown in Table 3.

Table 3. Simulation Variables

Variable Value

Auction count 1065

Min. auction point 1

Max. auction point 50

Team count 6

User count 60

Credit per user 5000

Gamification ratio % 8.65

At this point we introduced the gamification ratio to

our simulation. Gamification ratio is used while calculating

bidding hour for every user and auction. The simulation
pseudocode is seen in Figure 7.

Figure 7. Simulation Pseudocode

We developed a service that creates random auction

objects and user objects. All of the methods of this service

work randomly. While simulation is in progress, all auctions

are called one by one and select a user randomly from the

auction’s team to bid this auction. While the user is bidding

an auction, the user spends credits and one user can bid

multiple auctions, but an auction is offered at most once by

the same user. These loops continue until the all auctions are

finished. At the end of simulation, winners of auctions are

determined.

6. Results

We run the auction simulation using 1065 bugs and 60

users. Now we can calculate and compare the MTTR values

for two scenarios. First scenario is depending on real project

data from Project X. The second scenario is running the

Monte Carlo simulation with parameters in Table 3 and using

the gamification ratio which is drawn from previous

published work by the authors [50]. The main difference

between two scenarios is using a gamification ratio. By this

ratio we can see the effect of using gamification in defect
management.

We calculated MTTR values for two scenarios by the

formula (1). We included 1065 bugs into this formula. MTTR

results for the Monte Carlo simulation are shown in Table 4.

Table 4. Monte Carlo Simulation MTTR Values (Days)

Time MTTR Min. Time Max. Time

T0 50.30 0.06 633.66

T1 47.12 0.02 307.12

T2 73.11 1.41 182.31

T3 28.76 5.01 68.02

Now we can compare actual MTTR values for Project

X with the Monte Carlo Simulation, as shown in Table 5.

Table 5. Comparing Results

 Project X Monte Carlo

Simulation

Number of bugs that

used

1065 1065

MTTR values (day) 54.58 49.82

We listed the top 5 users who has maximum points,

won auction counts and their teams. The list is shown in Table

6.

Table 6. Top 5 Users

User Name Point Won

Auction

Count

User Team

User 3 2456 58 Maintenance

User 7 2256 48 Planning

User 32 1748 32 Infrastructure

User 16 1290 18 Maintenance

User 57 967 10 Infrastructure

By these results we can see the MTTR value decreases

from 54.58 days to 49.82 days by using gamification. This

shows gamification has a positive impact about solving bugs

faster. We conduct experiments with a set of parameters (see

Table 3) and the average results are shown in Table 4. We

7

repeated the simulation for five times and we have got close

results. The average of MTTR values were between 49.05

days and 50.83 days for every repetition.

7. Conclusion

MTTR is a well-known metric in the software industry.

Lower MTTR numbers are closely related to improved

customer satisfaction. To decrease MTTR, we proposed a

novel approach of serious gamification in this study. This

project was undertaken to design an incentive structure for

software practitioners for bug tracking and investigated using

Monte Carlo simulation methods. After conducting five

experiments, the evidence found in this study suggests that

gamified version (i.e. incentive mechanism-based simulation)

has better results than normal run. The data distribution found

in this study shows a series of dichotomous event outcomes
happened in a selected period such as number of bugs

resolved in 51.45 days.

This study set out to develop a model for exploring an

auction-based incentive mechanism for bug tracking in

software development landscapes. The findings of this

research provide a guideline for mechanism designers (i.e.

software managers) to assess potential scenarios that are

likely to help managers to make better decisions. Given that

in earlier related research the authors have demonstrated that

software development process decisions can be highly

complex [51] and that software development is dependent on
the performance of many individuals [52], steps to address

the complexity through harnessing gamification may offer

some promise of addressing the complexity involved by

engaging developers at a higher level via gamification in the

social setting that is software development. More engaged

developers might produce better work in a shorter timeframe.

The approach that we have identified has the benefit

of allowing individual developers to select defects that they

feel most strongly placed to resolve, which might be

considered beneficial in terms of providing robust resolutions

for defects. Naturally, individuals will not always be accurate

in assessing their own strengths but in the main, enabling
them to identify issues which they believe they can resolve is

considered by the authors to represent a mechanism for

alignment of appropriate developers with individual defects.

Furthermore, by users self-declaring the expected time to fix,

they are somewhat committed to the duration entered, as

otherwise they can risk appearing foolish to their peers if

continually unable to accurately identify resolution times.

This can help to focus the minds of individual developers

towards identifying more accurate bug resolution durations.

Additionally, in the future, a development team could use a

combination of known developer predictive resolution
duration accuracy and bids placed across various auctionable

defects to identify the stronger economic distributions of

defects to defect resolvers. This would represent a positive

development for effective defect clearance through the

application of gamification techniques.

There are however a number of limitations to our

study which should be discussed. Firstly, similar to other

methods based on the theory of probability Monte Carlo

approaches are data-intensive. Therefore, they cannot

produce significant results unless a considerable set of data

has been generated - which has the effect of introducing a

computational burden. Therefore, more experiments need to

be conducted under various data scenarios. An auction-based

bug management is a socio-technical process where all on

different trials needs to be run to determine parameters which

should have to be set by the researcher. This may impose time

constraints while modelling the system. A further limitation

can be seen in the assumption that the gamification ratio from

earlier research will retain validity in the context of this

gamification experiment. Clearly, further work should be

conducted to examine this assumption. It should however be
noted that a new gamification ratio could be established for

individual teams.

The present research explores, for the first time, the

application of an auction mechanism to software

development. Characterization of MTTR is important for our

increased understanding of the dynamics of bug trends (i.e.

defect trends, bug dynamics) in software development.

Ultimately, this study provides an exciting opportunity to

advance our knowledge of software metrics are, which can be

used to quantify the reliability of a software product.

Initial prototype and simulation results were shared

with the company, and we got very positive initial feedback
from the company. Further work is needed to fully understand

the implications of an auction-based incentive mechanism. In

terms of directions for future research, the system shall be

tested on a middle-sized software development organization

to monitor results and feedbacks.

8. Acknowledgments

The authors would like to thank Havelsan

management for supporting this study. This work was

supported, in part, by Science Foundation Ireland grant

13/RC/2094.

9. References

[1] Clarke P., O'Connor R.V., Yilmaz M. "In Search of the

Origins and Enduring Impact of Agile Software

Development.", ACM proceedings of the International

Conference of Software and System Processes (ICSSP

2018), Gothenburg, Sweden. 26-27 May 2018, pp.142-146

[2] JP Mangalindan, "Play to win: The game-based

economy". Fortune. Archived from the original on 2012-11-

12. Retrieved 2012-11-25.

[3] Yilmaz Murat, O'Connor Rory, Clarke Paul, “A
gamification approach to improve the software development

process by exploring the personality of software

practitioners.”, Software Process Improvement and

Capability Determination. Communications in Computer

and Information Science, 2016. Springer, pp. 71-83. ISBN

978-3-319-38980-6

[4] A. Cockburn, “Agile software development: the

cooperative game. Addison-Wesley, 2007., "A Game-

Theoretical model for task assignment in project

management," in 2006 IEEE International Conference on

Management of Innovation and Technology, Singapore,
2006, pp. 678-680.

[5] K. Sullivan, P. Chalasani, and S. Jha, “Software design

decisions as real options,” University of Virginia, Tech.

Rep., 1997.

8

[6] B. Lagesse, "A Game-Theoretical model for task

assignment in project management," in 2006 IEEE

International Conference on Management of Innovation and

Technology, Singapore, 2006, pp. 678-680.

[7] R. L. Baskerville, L. Levine, B. Ramesh, and J. Pries-

Heje, “The high speed balancing game: How software

companies cope with internet speed,” Scandinavian Journal
of Information Systems, vol. 16, no. 1, pp. 11–54, 2004.

[8] V. Sazawal and N. Sudan, “Modeling software evolution

with game theory,” Trustworthy Software Development

Processes, vol. 5543, pp. 354–365, 2009.

[9] Xing Gao, Weijun Zhong, Shue Mei, “A game-theory

approach to configuration of detection software with

decision errors”, 2013

[10] Nie Gao-hui, “Analysis on Enterprise's Software

Project Management Based on Game Theory, Management
Science and Engineering”, 2006

[11] Alexander Soska, Jürgen Mottok, Christian Wolff, “An

experimental card game for software testing: Development,

design and evaluation of a physical card game to deepen the

knowledge of students in academic software testing

education”, Global Engineering Education Conference

(EDUCON), 2016 IEEE, 2016

[12] Oscar Pedreira, Félix García, Nieves Brisaboa, Mario

Piattini, “Gamification in software engineering – A
systematic mapping”, Information and Software

Technology, v. 57, 2015

[13] Elizabeth Sweedyk, Robert M. Keller, “Fun and games:

a new software engineering course”, ITiCSE '05

Proceedings of the 10th annual SIGCSE conference on

Innovation and technology in computer science education,

2005, pp. 138-142

[14] Norihito Kitagawa, Hideaki Hata Nara, Akinori Ihara,

Kiminao Kogiso, Kenichi Matsumoto, “Code review
participation: game theoretical modeling of reviewers in

gerrit datasets”, CHASE '16 Proceedings of the 9th

International Workshop on Cooperative and Human Aspects

of Software Engineering, pp. 64-67, 2016

[15] Claudia Szabo, “Evaluating GameDevTycoon for

teaching software engineering”, Proceeding SIGCSE '14

Proceedings of the 45th ACM technical symposium on

Computer science education, pp. 403-408, 2014

[16] Carina Soledad González, Alberto Mora Carreño,

"Methodological proposal for gamification in the computer
engineering teaching", IEEE, Computers in Education

(SIIE), 2014 International Symposium on, 2014

[17] Faraón Largo, Francisco Durán, Carlos Arnedo,

Patricia Rosique, Rosana Cuerda, Rafael Carmona,

"Gamification of the learning process: lessons learned",

IEEE, IEEE Revista Iberoamericana de Tecnologias del

Aprendizaje, 2016, pp. 1 - 1

[18] Bilal Amir, Paul Ralph, “Proposing a theory of

gamification effectiveness”, Proceeding ICSE Companion

2014 Companion Proceedings of the 36th International

Conference on Software Engineering, 2014, pp. 626-627

[19] Yilmaz Murat, “A software process engineering

approach to understanding software productivity and team

personality characteristics: an empirical investigation”,
2013, PhD thesis, Dublin City University.

[20] Yilmaz Murat, O'Connor Rory “Maximizing the value

of the software development process by game theoretic

analysis”, 11th International Conference on Product Focused

Software, 21-23 Jun 2010, Limerick, Ireland. ISBN 978-1-

4503-0281-4

[21] Yilmaz Murat, O'Connor Rory, Collins John

“Improving software development process through

economic mechanism design.”, 17th European Software

Process Improvement Conference”, 1-3 Sept 2010,
Grenoble, France. ISBN 978-3-642-15666-3

[22] Yilmaz Murat, O'Connor Rory, “A Scrumban

integrated gamification approach to guide software process

improvement: a Turkish case study.” Tehnicki Vjesnik

(Technical Gazette), 23 (1), 2016, pp. 237-245. ISSN 1330-

3651

[23] Yilmaz Murat, O'Connor Rory, “A market based

approach for resolving resource constrained task allocation

problems in a software development process.”, 19th
European Conference on Systems, Software and Services

Process Improvement (EuroSPI 2012), 25-27 June 2012,

Vienna, Austria.

[24] Jose L. Jurado, César A. Collazos, Francisco Luis

Gutiérrez Vela, Luis Merchán, “Designing Game Strategies:

An Analysis from Knowledge Management in Software

Development Contexts, Serious Games, Interaction and

Simulation”, pp.64-73

[25] James C. Houk, Joel L. Davis, David G. Beiser, "
Models of Information Processing in the Basal Ganglia",

MIT Press, pp. 185 - 185, 1994

[26] Neetu Singh, Narendra S. Chaudhari, "Differential

Reward Mechanism Based Online Learning Algorithm for

URL-based Topic Classification",IEEE, Computational

Intelligence and Communication Networks (CICN), 2014

International Conference on, 2014

[27] Kun Lua, Shiyu Wanga, Ling Xiea, Zhen Wanga, b,

Mingchu Li, "A dynamic reward-based incentive

mechanism: Reducing the cost of P2P systems", vol. 112,
pp. 105 - 113, 2016

[28] Hao Wang, Chuen-Tsai, “Game Reward Systems:

Gaming Experiences and Social Meanings”, 2011

[29] Schultz W, "Neuronal reward and decision signals:

from theories to data", Physiological Reviews, 2015, pp

853–951.

9

[30] Steffen P. Walz, Sebastian Deterding, "Gamification

and Learning", MIT Press, pp. 688, 2014

[31] Reza Meimandi Parizi, "On the gamification of human-

centric traceability tasks in software testing and coding",

IEEE, Software Engineering Research, Management and

Applications (SERA), 2016 IEEE 14th International

Conference on, 2016

[32] Reza Meimandi Parizi, Asem Kasem, Azween

Abdullah, "Towards gamification in software traceability:

Between test and code artifacts", Software Technologies

(ICSOFT), 2015 10th International Joint Conference on,

2015

[33] Rafael Lotufo, Leonardo Passos, Krzysztof Czarnecki,

"Towards improving bug tracking systems with game

mechanisms", Proceedings of the 9th IEEE Working

Conference on Mining Software Repositories, 2012, pp.2-11

[34] Tommaso Dal Sasso, Andrea Mocci, Michele Lanza,

Ebrisa Mastrodicasa, "How to Gamify Software

Engineering", Software Analysis, Evolution and

Reengineering (SANER), 2017

[35] Gordon Fraser, "Gamification of software testing",

Proceedings of the 12th International Workshop on

Automation of Software Testing, 2017, pp.2-7

[36] Huimeng Zheng, Weidong Liu, Chengdi Xiao, "An

activity-based defect management framework for product
development", Computers & Industrial Engineering, 2018

[37] Faisal Aqlan, Sreekanth Ramakrishnan, Abdulrahman

Shamsan, "Integrating data analytics and simulation for

defect management in manufacturing environments",

Simulation Conference (WSC), 2017

[38] Aedah Abd Rahman, Nurdatillah Hasim, "Defect

Management Life Cycle Process for Software Quality

Improvement", Artificial Intelligence, Modelling and

Simulation (AIMS), 2015

[39] Navid Hashemi Taba, Siew Hock Ow, "Improving

Software Quality Using a Defect Management-Oriented

(DEMAO) Software Inspection Model", Modelling

Symposium (AMS), 2012

[40] Inge van de Weerd, Rudy Katchow, "On the integration

of software product management with software defect

management in distributed environments", Software

Engineering Conference in Russia (CEE-SECR), 2009

[41] T. R. Gopalakrishnan Nair, V. Suma, N. R. Shashi
Kumar, "An analytical approach for project managers in

effective defect management in software process", Software

Engineering (MySEC), 2011

[42] N. Metropolis and S. Ulam., "The Monte Carlo

method.", Journal of the American Statistical Association

Vol. 44, No. 247, 1949, pp. 335-341

[43] Kroese D. P., Brereton T., Taimre T., Botev Z. I, "Why

the Monte Carlo method is so important today". WIREs

Comput Stat. 6: 386–392. doi:10.1002/wics.1314, 2014

[44] Pham, H., "Software Reliability.", John Wiley & Sons

Inc., p:567, ISBN 9813083840, 1999, "Software Validation.

The process of ensuring that the software is performing the

right process. Software Verification. The process of

ensuring that the software is performing the process right."

[45] IEEE, "1044-2009 - IEEE Standard Classification for

Software Anomalies.", ISBN: 0-7381-0406-X

[46] Steven A. Lapp, "Derivation of an Exact Expression for

Mean Time to Repair", IEEE Transactions on Reliability,

1986, pp. 336 - 337

[47] Institute for Telecommunications Sciences, Mean Time

To Repair definition Archived 2008-09-25 at the Wayback

Machine.

[48] R.J. Fousch, "PC software solutions for MTTR

predictions", Reliability and Maintainability Symposium,

1989

[49] Usfekes C., Yilmaz M., Tuzun E., Clarke P., O'Connor

V. R., "Examining Reward Mechanisms for Effective Usage

of Application Lifecycle Management Tools", EuroSPI

2017: Systems, Software and Services Process Improvement

pp 259-268, 2017

[50] Ulas Gulec, Murat Yilmaz, "A serious game for

improving the decision making skills and knowledge levels

of Turkish football referees according to the laws of the

game", 2016

[51] Clarke P., O'Connor R.V., Leavy B. "A Complexity

Theory viewpoint on the Software Development Process and

Situational Context." In: proceedings of the International

Conference on Software and Systems Process (ICSSP), Co-

Located with the International Conference on Software

Engineering (ICSE), pp. 86-90,
DOI:10.1145/2904354.2904369 (2016)

[52] Clarke P. and O'Connor R.V. "Changing situational

contexts present a constant challenge to software

developers", 22nd European Conference on Systems,

Software and Services Process Improvement (EuroSPI

2015), Springer-Verlag, September 2015

