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Abstract: This paper deals with a mixed-order Caputo fractional system with nonlocal integral boundary conditions.

This study can be considered as an extension of previous studies, since the orders of the equations lie on different

intervals. We discuss the existence and uniqueness of the solution using fixed point methods. We enrich the study with

an example.
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1. Introduction

Fractional differential equations (FDEs) have attracted interest for a long time since they are capable of modeling

different problems arising in different fields such as physics, biology, optics, and control systems [5–8, 12, 14].

Fractional derivatives have eliminated the drawbacks of integer-order derivatives on account of their nonlocal

characteristics. This property gives us a chance to understand the memory effect on the system and it is

especially important to understand the material properties.

Studies concerning the existence and uniqueness of the solution of FDEs with classical, nonlocal integral

type and coupled boundary conditions can be found in the literature. For example, a coupled system of nonlinear

Caputo–Fabrizio FDEs of order 0 < α < 1 with classical homogeneous boundary conditions (BCs) is discussed

in [4]. A three-point boundary value problem (BVP) with Riemann–Liouville derivative was addressed in [1].

A system of nonlinear FDEs of orders 1 < α, β < 2 was investigated in [15]. A nonlinear system of coupled

Riemann–Liouville FDEs of order q − 1 < α < q for q ≥ 3 with coupled integral BCs was studied in [10]. A

system of Caputo FDEs of order 0 < α < 1 with nonlocal integral BCs was analyzed in [11]. A similar FDE of

order 1 < α < 2 with a more general source function was studied in [2]. Authors discussed a system of FDEs

coupled with a new type of integral boundary conditions in [3].

In this study, we analyze the following coupled system of nonlinear FDEs with fractional integral boundary

conditions:
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CDαu(t) = f(t, u(t), v(t)), 0 < α ≤ 1, 0 < t < 1, (1.1a)

CDβv(t) = g(t, u(t), v(t)), 1 < β ≤ 2, 0 < t < 1, (1.1b)

u(0) = ζIpu(µ), 0 < µ < 1, (1.1c)

v(0) = δIqv(ξ), 0 < ξ < 1, v(1) = ψv(θ), 0 < θ < 1, (1.1d)

where CDαu(t) denotes the Caputo derivative of u(t) of order α and Ipu(µ) denotes the Riemann–Liouville

integral of u(µ) of order p , f, g ∈ C([0, 1] × R2,R) and p, q, ζ, δ, ψ ∈ R . This study can be considered as an

extension of the previous studies, since the orders of the equations lie on different intervals, i.e. 0 < α ≤ 1 and

1 < β ≤ 2. Existence of the solution of the FDE (1.1) has been justified using the Leray–Schauder alternative

and then existence and uniqueness results have been proven using Banach’s fixed point theorem. To the best of

our knowledge, this is the first study concerning a coupled system of Caputo FDEs of mixed orders 0 < α ≤ 1

and 1 < β ≤ 2 with nonlocal integral boundary conditions and justifying the existence and uniqueness of the

solution.

This paper is organized as follows. In Section 2, some basic fractional differentiation/integration operators

are introduced and two auxiliary lemmas are proven. In Section 3, the existence and uniqueness of the solution

of the model (1.1) are shown and an example is presented.

2. Preliminary results

We define some basic fractional differentiation/integration operators and state some of their properties [13].

Then we present some auxiliary lemmas for the corresponding linear problem.

Definition 2.1 Let f : [0,∞) → R be an at least n-times continuously differentiable function. The Caputo

derivative of order α is defined as

CDαf(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ) dτ, n− 1 < α < n, n = [α] + 1,

where [α] denotes the integer part of the order α .

Definition 2.2 The Riemann–Liouville integral of order α is defined as

Iαf(t) = 1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ, 0 < α,

provided the integral exists.

Lemma 2.3 Let α, β ≥ 0 , f ∈ L1([a, b]) . Then Iα Iβf(t) = Iα+βf(t) and CDβ Iβf(t) = f(t) for all

t ∈ [a, b] .

Lemma 2.4 Let β > α > 0 , f ∈ L1([a, b]) . Then CDα Iβf(t) = Iβ−αf(t) for all t ∈ [a, b] .

We present some auxiliary lemmas before deriving the main theorems.
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Lemma 2.5 Let ζ ̸= Γ(p+1)
µp and h ∈ C([0, 1],R) . Then the FDE

CDαu(t) = h(t), 0 < α ≤ 1,

with the boundary condition

u(0) = ζIpu(µ) = ζ

∫ µ

0

(µ− τ)p−1

Γ(p)
u(τ) dτ, 0 < µ < 1,

has the solution

u(t) =

∫ t

0

(t− τ)α−1

Γ(α)
h(τ) dτ − ζΓ(p+ 1)

ζµp − Γ(p+ 1)
Ip+αh(µ), t ∈ [0, 1].

Proof The proof is given in [11]. 2

For ease of notation, we set

Π1 =
Γ(q + 1)

Γ(q + 1)− ξq
, Π2 =

ξq+1

Γ(q + 2)− ξq(q + 1)
, Π3 =

1

1− ψθ + (1− ψ)Π2
.

Lemma 2.6 Let Γ(q + 1) ̸= ξq , 1−ψθ
ψ−1 ̸= ξq+1

Γ(q+2)−ξq(q+1) and k ∈ C([0, 1],R) . The FDE

CDβv(t) = k(t), 1 < β ≤ 2, (2.1a)

with the boundary conditions

v(0) = δIqv(ξ) = δ

∫ ξ

0

(ξ − τ)q−1

Γ(q)
v(τ) dτ, 0 < ξ < 1, (2.1b)

v(1) = ψv(θ), 0 < θ < 1, (2.1c)

has the solution

v(t) = (Π1 +Π3(ψ − 1) Π1 (t+Π2)) Iq+βk(ξ)−Π3 (t+Π2)

∫ 1

0

(1− τ)β−1

Γ(β)
k(τ) dτ

+Π3 ψ (t+Π2)

∫ θ

0

(θ − τ)β−1

Γ(β)
k(τ) dτ +

∫ t

0

(t− τ)β−1

Γ(β)
k(τ) dτ, t ∈ [0, 1]. (2.2)

Proof We write the solution of the model in (2.1) as

v(t) = d1t+ d2 +

∫ t

0

(t− s)β−1

Γ(β)
k(s) ds, (2.3)

where d1, d2 are arbitrary real numbers. Using initial conditions, we have

v(0) = d2 = δIqv(ξ),

v(1) = d1 + d2 +

∫ 1

0

(1− s)β−1

Γ(β)
k(s) ds.

Applying the Riemann–Liouville integral of order q to v , we obtain the following equation:

Iqv(t) = Iq+βk(t) + d1
tq+1

Γ(q + 2)
+ d2

tq

Γ(q + 1)
. (2.4)
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By taking t = ξ in (2.4), we get

Iqv(ξ) = Iq+βk(ξ) + d1
ξq+1

Γ(q + 2)
+ d2

ξq

Γ(q + 1)
= v(0) = d2. (2.5)

By taking t = 1 in (2.3), we get

d1 + d2 +

∫ 1

0

(1− s)β−1

Γ(β)
k(s) ds = v(1) = ψv(θ). (2.6)

Solving the equation (2.5–2.6) for d1 and d2 , we obtain

d1 = Π3

(
(ψ − 1) Π1 Iq+βk(ξ)−

∫ 1

0

(1− τ)β−1

Γ(β)
k(τ) dτ + ψ

∫ θ

0

(θ − τ)β−1

Γ(β)
k(τ) dτ

)
,

d2 = Π1 Iq+βk(ξ) + d1Π2.

Substituting the values of d1 and d2 into (2.3), the desired result (2.2) is obtained. 2

3. Main results

We define

U = {u(t) : u(t) ∈ C1([0, 1])} and V = {v(t) : v(t) ∈ C1([0, 1])},

with the norms

∥u(t)∥ = max{|u(t)|, t ∈ [0, 1]} and ∥v(t)∥ = max{|v(t)|, t ∈ [0, 1]},

respectively. We note that (U, || · ||) and (V, || · ||) are Banach spaces. Moreover, the product space (U ×V, ∥ · ∥)
is a Banach space associated to the norm ∥(u, v)∥ = ∥u∥+ ∥v∥.

Lemma 3.1 (Leray–Schauder alternative [9]) Let F : S → S be a completely continuous operator. Let

S(F) = {x ∈ S : x = ω F(x) for some 0 < ω < 1}.

Then either the set S(F) is unbounded, or F has at least one fixed point.

By using Lemmas 2.5–2.6, we define an operator F : U × V → U × V by

F(u, v)(t) := (F1(u, v)(t),F2(u, v)(t)),

where

F1(u, v)(t) =

∫ t

0

(t− τ)α−1

Γ(α− 1)
f(τ, u(τ), v(τ)) dτ

− ζΓ(p+ 1)

ζµp − Γ(p+ 1)

∫ µ

0

(µ− τ)p+α−1

Γ(p+ α)
f(τ, u(τ), v(τ)) dτ,
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and

F2(u, v)(t) = (Π1 +Π3(ψ − 1) Π1 (t+Π2))

∫ ξ

0

(ξ − τ)q+β−1

Γ(q + β)
g(τ, u(τ), v(τ)) dτ

−Π3 (t+Π2)

∫ 1

0

(1− τ)β−1

Γ(β)
g(τ, u(τ), v(τ)) dτ

+Π3 ψ (t+Π2)

∫ θ

0

(θ − τ)β−1

Γ(β)
g(τ, u(τ), v(τ)) dτ

+

∫ t

0

(t− τ)β−1

Γ(β)
g(τ, u(τ), v(τ)) dτ, t ∈ [0, 1].

For ease of notation in the next theorems, we set

χ1 =

{
1

Γ(α+ 1)
+

µp+α|ζ|Γ(p+ 1)

|Γ(p+ 1)− ζµp|Γ(p+ q + 1)

}
, (3.1a)

χ2 = (|Π1 +Π3 (ψ − 1) Π1 (1 + Π2)|
ξq+β

Γ(q + β + 1)
+

|Π3(1 + Π2)|
Γ(β + 1)

+ |Π3ψ(1 + Π2)|
θβ

Γ(β + 1)
+

1

Γ(β + 1)
), (3.1b)

χ0 = min{1− (χ1 f̂1 + χ2 ĝ1), 1− (χ1 f̂2 + χ2 ĝ2)}. (3.1c)

Now we use Leray–Schauder alternative to justify the existence of the solution of the FDE (1.1).

Theorem 3.2 Let ζ ̸= Γ(p+1)
µp , Γ(q + 1) ̸= ξq , 1−ψθ

ψ−1 ̸= ξq+1

Γ(q+2)−ξq(q+1) ,

|f(t, x1, x2)| ≤ f̂0 + f̂1|x1|+ f̂2|x2|, and |g(t, x1, x2)| ≤ ĝ0 + ĝ1|x1|+ ĝ2|x2|,

with f̂i, ĝi ≥ 0(i = 1, 2) and f̂0 > 0 , ĝ0 > 0 . Moreover,

χ1 f̂1 + χ2 ĝ1 < 1 and χ1 f̂2 + χ2 ĝ2 < 1

hold where χ1 and χ2 satisfy (3.1). Then the FDE (1.1) has at least one solution.

Proof The continuity of f and g implies that the operator F is continuous. Assume that Ω ⊂ U × V is a

bounded set and Lf and Lg are positive real numbers with

|f(t, u(t), v(t))| ≤ Lf , |g(t, u(t), v(t))| ≤ Lg, ∀(u, v) ∈ Ω.

First, by [11, Thm. 3.2], the following estimate holds:

|F1(u, v)(t)| ≤ Lf

{
1

Γ(α+ 1)
+

µp+α|ζ|Γ(p+ 1)

|Γ(p+ 1)− ζµp|Γ(p+ q + 1)

}
= Lf χ1. (3.2)
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On the other hand, we show that

|F2(u, v)(t)|

≤
∣∣∣Π1 +Π1 Π3(ψ − 1) (t+Π2)

∣∣∣ ∫ ξ

0

(ξ − s)q+β−1

Γ(q + β)
|g(s, u(s), v(s))| ds

+
∣∣∣Π3 (t+Π2)

∣∣∣ ∫ 1

0

(1− s)β−1

Γ(β)
|g(s, u(s), v(s))| ds

+
∣∣∣ψ (t+Π2) Π3

∣∣∣ ∫ θ

0

(θ − s)β−1

Γ(β)
|g(s, u(s), v(s))| ds

+

∫ t

0

(t− s)β−1

Γ(β)
|g(s, u(s), v(s))| ds

≤ Lg(
∣∣∣Π1 +Π3(ψ − 1) Π1 (1 + Π2)

∣∣∣ ξq+β

Γ(q + β + 1)
+

|Π3(1 + Π2)|
Γ(β + 1)

+
∣∣∣Π3ψ(1 + Π2)

∣∣∣ θβ

Γ(β + 1)
+

1

Γ(β + 1)
) = Lg χ2. (3.3)

The estimates (3.2)–(3.3) show that F is uniformly bounded. Now we prove that F is equicontinuous. We fix

0 ≤ t1 ≤ t2 ≤ 1. By [11, Thm. 3.2], we have∣∣∣F1(u(t2), v(t2))−F1(u(t1), v(t1))
∣∣∣

=

∣∣∣∣∫ t2

0

(t2 − s)α−1

Γ(α− 1)
f(s, u(s), v(s)) ds−

∫ t1

0

(t1 − s)α−1

Γ(α− 1)
f(s, u(s), v(s)) ds

∣∣∣∣
≤ Lf

Γ(α+ 1)
(tα2 − tα1 ). (3.4)

On the other hand, for the operator F2(u, v)(t), we obtain∣∣∣F2(u(t2), v(t2))−F2(u(t1), v(t1))
∣∣∣

=
∣∣∣Π3(ψ − 1) Π1 (t2 − t1)

∫ ξ

0

(ξ − τ)q+β−1

Γ(q + β)
g(τ, u(τ), v(τ)) dτ

∣∣∣
+
∣∣∣Π3 (t2 − t1)

∫ 1

0

(1− τ)β−1

Γ(β)
g(τ, u(τ), v(τ)) dτ

∣∣∣
+
∣∣∣Π3 ψ (t2 − t1)

∫ θ

0

(θ − τ)β−1

Γ(β)
g(τ, u(τ), v(τ)) dτ

∣∣∣
+

∣∣∣∣∫ t2

0

(t2 − τ)β−1

Γ(β)
g(τ, u(τ), v(τ)) dτ −

∫ t1

0

(t1 − τ)β−1

Γ(β)
g(τ, u(τ), v(τ)) dτ

∣∣∣∣
≤ Lg

{
tβ2 − tβ1
Γ(β + 1)

+
( |Π3 Π1 (ψ − 1)|

Γ(q + β + 1)
ξq+β +

|Π3|
Γ(β + 1)

(1 + ψ θβ
)
(t2 − t1)

}
. (3.5)

Thus, F is completely continuous according to the inequalities (3.4)–(3.5).
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As the last step of the proof, we will justify that

S = {(u, v) ∈ U × V | (u, v) = ω F(u, v), 0 ≤ ω ≤ 1}

is bounded. For (u, v) ∈ S , (u, v) = ω F(u, v) holds. Then, for all t ∈ [0, 1], we get

u(t) = ω F1(u, v), v(t) = ω F2(u, v).

Then, by [11, Thm. 3.2], we have

|u(t)| ≤
{

1

Γ(α+ 1)
+

|ζ|µp+αΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− ζµp|

}
(f̂0 + f̂1|u(t)|+ f̂2|v(t)|).

Now we show that

|v(t)| ≤
(
|Π1 +Π3(ψ − 1) Π1 (1 + Π2)|

ξq+β

Γ(q + β + 1)
+

|Π3(1 + Π2)|
Γ(β + 1)

+ |Π3ψ(1 + Π2)|
θβ

Γ(β + 1)
+

1

Γ(β + 1)

)
(ĝ0 + ĝ1|u(t)|+ ĝ2|v(t)|)

holds. These inequalities imply that

∥u(t)∥ ≤ χ1 (f̂0 + f̂1|u(t)|+ f̂2|v(t)|), ∥v(t)∥ ≤ χ2 (ĝ0 + ĝ1|u(t)|+ ĝ2|v(t)|).

Then we obtain

∥u(t)∥+ ∥v(t)∥ = (χ1 f̂0 + χ2 ĝ0) + (χ1 f̂1 + χ2 ĝ1)∥u(t)∥+ (χ1 f̂2 + χ2 ĝ2)∥v(t)∥.

Thus,

∥(u, v)∥ ≤ χ1 f̂0 + χ2 ĝ0
χ0

, for all t ∈ [0, 1].

Now we conclude that S is bounded. By Theorem 3.1, there is at least one fixed point of F , which means that

the FDE (1.1) has at least one solution. 2

Banach’s contraction principle is used to prove the existence and uniqueness of the solution of the FDE

(1.1).

Theorem 3.3 Let f, g : [0, 1]× R2 → R be continuous functions such that

|f(t, u1, u2)− f(t, v1, v2)| ≤ f̃1|u1 − v1|+ f̃2|u2 − v2|,

|g(t, u1, u2)− g(t, v1, v2)| ≤ g̃1|u1 − v1|+ g̃2|u2 − v2|,

where f̃i, g̃i are positive constants and ui, vi ∈ R for i = 1, 2 for all t ∈ [0, 1] . Suppose that

χ1 (f̃1 + f̃2) + χ2 (g̃1 + g̃2) < 1.

Then the FDE (1.1) has a unique solution.
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Proof Let supt∈[0,1] f(t, 0, 0) = S1 <∞ , supt∈[0,1] g(t, 0, 0) = S2 <∞ with

ε ≥ S1χ1 + S2χ2

1− χ1 (f̃1 + f̃2)− χ2 (g̃1 + g̃2)
.

For Bε = {(u, v) ∈ U × V : ∥(u, v)∥ ≤ ε}, we show that FBε ⊂ Bε . By [11, Thm. 3.3], we have

|F1(u, v)(t)|

≤
{

1

Γ(α+ 1)
+

|ζ|µp+αΓ(p+ 1)

Γ(p+ q + 1)|Γ(p+ 1)− ζµp|

}
(f̃1∥u∥+ f̃2∥v∥+ S1)

≤ χ1 ((f̃1 + f̃2)ε+ S1), (u, v) ∈ Bε.

It implies that

∥F1(u, v)(t)∥ ≤ χ1 ((f̃1 + f̃2)ε+ S1). (3.6)

Furthermore, we show that

|F2(u, v)(t)|

≤
|Π1 + Π3(ψ − 1) Π1 (t+ Π2)|

Γ(q + β)

∫ ξ

0

(ξ − τ)
q+β−1

(|g(τ, u(τ), v(τ)) − g(0, u(0), v(0))| + |g(0, u(0), v(0))|) dτ

+
|Π3 (t+ Π2)|

Γ(β)

∫ 1

0

(1 − τ)
β−1

(|g(τ, u(τ), v(τ)) − g(0, u(0), v(0))| + |g(0, u(0), v(0))|) dτ

+
|Π3 ψ (t+ Π2)|

Γ(β)

∫ θ

0

(θ − τ)
β−1

(|g(τ, u(τ), v(τ)) − g(0, u(0), v(0))| + |g(0, u(0), v(0))|) dτ

+
1

Γ(β)

∫ t

0

(t− τ)
β−1

(|g(τ, u(τ), v(τ)) − g(0, u(0), v(0))| + |g(0, u(0), v(0))|) dτ

≤ χ2 ((g̃1 + g̃2)ε+ S2).

It means that

∥F2(u, v)(t)∥ ≤ χ2 ((g̃1 + g̃2)ε+ S2). (3.7)

By the inequalities (3.6)–(3.7), we have

∥F(u, v)(t)∥ ≤ ε.

For (u2, v2), (u1, v1) ∈ U × V and for any t ∈ [0, 1], by [11, Thm. 3.3], we have

∥F1(u2, v2)(t)−F1(u1, v1)(t)∥ ≤ χ1 (f̃1 + f̃2)(∥u2 − u1∥+ ∥v2 − v1∥). (3.8)

On the other hand, we get∣∣∣F2(u2, v2)(t) − F2(u1, v1)(t)
∣∣∣

≤
∣∣∣Π1 + Π3(ψ − 1) Π1 (t+ Π2)

∣∣∣ ∫ ξ

0

(ξ − τ)q+β−1

Γ(q + β)
|g(τ, u2(τ), v2(τ)) − g(τ, u1(τ), v1(τ))| dτ

+
∣∣∣Π3 (t+ Π2)

∣∣∣ ∫ 1

0

(1 − τ)β−1

Γ(β)
|g(τ, u2(τ), v2(τ)) − g(τ, u1(τ), v1(τ))| dτ

+
∣∣∣Π3 ψ (t+ Π2)

∣∣∣ ∫ θ

0

(θ − τ)β−1

Γ(β)
|g(τ, u2(τ), v2(τ)) − g(τ, u1(τ), v1(τ))| dτ

+

∫ t

0

(t− τ)β−1

Γ(β)
|g(τ, u2(τ), v2(τ)) − g(τ, u1(τ), v1(τ))| dτ

≤ χ2 (g̃1 + g̃2)(∥u2 − u1∥ + ∥v2 − v1∥).
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Then:

∥F2(u2, v2)(t)−F2(u1, v1)(t)∥ ≤ χ2 (g̃1 + g̃2)(∥u2 − u1∥+ ∥v2 − v1∥). (3.9)

From the inequalities (3.8–3.9), we obtain

∥F(u2, v2)(t)−F(u1, v1)(t)∥

≤ [χ1 (f̃1 + f̃2) + χ2 (g̃1 + g̃2)](∥u2 − u1∥+ ∥v2 − v1∥).

The operator F is a contraction operator under the condition χ1 (f̃1 + f̃2) + χ2 (g̃1 + g̃2) < 1. By the Banach

theorem, F has a unique fixed point and it shows that the FDE has a unique solution. 2

3.1. An example

We consider the FDE

CD7/10u(t) =
1√

25 + t2
+ e−3t |u(t)|

25(1 + |u(t)|)
+ t2

sin2(v(t))

50
, 0 < t < 1, (3.10a)

CD10/7v(t) =
1√

36 + t4
+

sin2(u(t))

2
√
144 + t2

+ e−2t |v(t)|
72(1 + |v(t)|)

, 0 < t < 1, (3.10b)

u(0) =
√
5I6/5u(1/3), (3.10c)

v(0) =
√
7I2/5v(1/2), v(1) =

v(2/5)

3
. (3.10d)

We note that Γ(p+1)
µp ≈ 4.1176 ̸= ζ =

√
5, Γ(q + 1) ≈ 0.8873 ̸= ξq ≈ 0.7579, 1−ψθ

ψ−1 ≈ −1.3 ̸= ξq+1

Γ(q+2)−ξq(q+1) ≈

2.0916. Moreover, f̂0 = 1/5, f̂1 = 1/25 = f̂2 , ĝ0 = 1/6, ĝ1 = 1/12, ĝ2 = 1/72, which lead to

χ1 f̂1 + χ2 ĝ1 ≈ 0.2332 < 1, χ1 f̂2 + χ2 ĝ2 ≈ 0.0897 < 1.

Then, by Thm. (3.2), there exists a solution to the FDE (3.10). In addition,

|f(t, u1, v1)− f(t, u2, v2)| ≤
1

25
|u1 − u2|+

1

25
|v1 − v2|,

|g(t, u1, v1)− g(t, u2, v2)| ≤
1

12
|u1 − u2|+

1

72
|v1 − v2|,

where f̃1 = 1
25 , f̃2 = 1

25 , g̃1 = 1
12 , g̃2 = 1

72 , χ1 ≈ 1.5250, χ2 ≈ 2.0668, and

χ1 (f̃1 + f̃2) + χ2 (g̃1 + g̃2) ≈ 0.0897 < 1.

Thus, by Thm. 3.3, the solution to the FDE (3.10) is unique.
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