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The article addresses a time-fractional modified Kawahara equation through a 
fractional derivative with exponential kernel. The Kawahara equation describes 
the generation of non-linear water-waves in the long-wavelength regime. The nu-
merical solution of the fractional model of modified version of Kawahara equation 
is derived with the help of iterative scheme and the stability of applied technique 
is established. In order to demonstrate the usability and effectiveness of the new 
fractional derivative to describe water-waves in the long-wavelength regime, nu-
merical results are presented graphically. 
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Introduction, definitions, and preliminaries

Fractional derivatives and integrals have been gaining more and more interest of sci-
entists due to their extensive applications in different directions of science, social science, en-
gineering and finance [1-9] when the relaxation process have to accounted for. In this context, 
Atangana [10] analyzed the fractional non-linear Fisher’s reaction-diffusion equation associ-
ated with Caputo-Fabrizio (CF) fractional derivative. Kumar et al. [11] studied the fractional 
non-linear shock wave equation by using homotopy analysis transform algorithm. In another 
work Bulut et al. [12] analyzed the non-linear fractional KdV-Burgers-Kuramoto equations 
with the help of modified trial equation method. Kumar et al. [13] investigated a fractional 
differential-difference equation occurring in nanotechnology and shown that fractional model 
describes the physical problem with high accuracy. Singh et al. [14] examined a Tricomi equa-
tion associated with local fractional derivative describing fractal transonic flow and obtained 
the non-differentiable solution of the problem. In an attempt Choudhary et al. [15] investi-
gated fractional model of temperature distribution and heat flux in the semi infinite solid by 
using integral transform technique. Singh et al. [16] introduced a novel analytical technique 
for non-linear fractional differential equations and reported the numerical solution of coupled 
Burgers equations of arbitrary order. Heydari et al. [17] obtained the numerical solution of frac-
tional optimal control problems with the help of the wavelets approach. In a recent investigation 
Atangana and Baleanu [18] proposed a novel fractional derivative and shown its efficiency to 
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describe heat transfer. Gomez-Aguilar et al. [19] examined the electrical RLC circuit pertaining 
to fractional derivatives by using Liouville-Caputo operators. Coronel-Escamilla et al. [20] 
studied a fractional model of Euler-Lagrange and Hamilton equations containing fractional de-
rivatives having exponential kernel. In view of great importance of fractional calculus, various 
approaches of fractional calculus have been discovered for example the Riemann-Liouville 
definition, the Caputo definition, etc. 

In a recent work Caputo and Fabrizio [1] presented a new derivative of arbitrary order 
with exponential and non-singular kernel. The newly fractional is much better and efficient 
over the classical Caputo derivative is that by using new one the full outcome of the memory 
can be predicted. In this article, we use the newly fractional derivative approach suggested by 
CF to analyze a modified Kawahara equation and show that compare to ancient edition, the CF 
fractional derivative has additional stimulus effects.

Definition 1. Let us consider that 1( , ), , 0 1,Hϕ α β β α γ∈ > ≤ ≤  then the CF deriva-
tive of fractional order discovered by Caputo and Fabrizio [1] is written in the following man-
ner:

	 [ ] ( )D ( ) ( )exp d
1 1

t

t
M ttγ

α

γ τϕ ϕ τ γ τ
γ γ

 −′= − − − 
∫ 	 (1)

In this expression ( )M γ  is indicating normalization function, which holds the proper-
ty (0) (1) 1M M= =  [1]. 

In an attempt Losada Nieto [2] suggested the associate integral of the CF fractional 
derivative as presented in the following manner.

Definition 2. Let us consider that ( )tϕ  be a function, then the fractional integral oper-
ator of ( )tϕ  of order ,0 1γ γ< <  is written [2]: 
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It is to be worth noting that the CF derivative can easily be derived from the Cattaneo 
concept of the flux relaxation if the damping function is the Jeffrey memory kernel. This was 
demonstrated recently by Hristov for time-fractional [21] and space fractional [22] CF deriva-
tives. 

Fractional model of modified Kawahara equation

The Kawahara equation [23] is used to unfold the theory of the water-waves in the 
long-wave regime for modest values of surface tension, precisely for Weber numbers close to 
1/3 [24, 25]. For such values of the Weber number the general model of long water-waves 
through the KdV equation is not adequate due to the cubic term in the linear modelling ends and 
fifth order dispersion proves applicable at leading order, 5 3( )w k k kλ= + . 

The Kawahara equation and its modified versions are intensively investigated, see 
[26-29] and the references therein and generally can be expressed:

	 2 0t x x xx xxxxxv v v v vλ µ+ + + = 	 (3)
with the initial condition:

	 0( ,0) ( )v x v x= 	 (4)

Replacing the time-derivative in eq. (3) by a derivative of fractional order termed in 
any sense (Riemann-Liouville, Caputo, etc.) we may transform eq. (3) to the modified Kawa-
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hara equation of fractional order. In the reference of the introductory analysis we consider the 
case when the time-fractional derivative is of CF sense, then the fractional modified Kawahara 
equation:

	 CF 2
0D ( , ) 0t x x xx xxxxxv x t v v v vγ λ µ+ + + = 	 (5)

along with the initial condition (4).

Solution of fractional model of modified Kawahara  
equation by iterative approach

The solution approach of the time factional modified Kawahara eq. (5) addresses a 
numerical scheme. For this purpose initially the model of eq. (5) has to be transformed by the 
Laplace transform, namely:

	 21 (1 )[ ( , )] ( ,0)
( ) x x xx xxxxx

p pL v x t v x L v v v v
p M p

γ λ µ
γ

+ −  = − + +  	 (6)

Now, applying the inverse of Laplace transform to eq. (6) we get:
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Therefore, the recursive formula can be expressed: 

	 0 ( , ) ( ,0)v x t v x= 	 (8)

and
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Finally, the solution of the time fractional modified Kawahara eq. (5) can be attained, 
that is:

	 ( , ) lim ( , )nn
v x t v x t

→∞
= 	 (10)

Stability analysis of iterative technique

As it is well known that the stability of iterative scheme plays a crucial role to find the 
solution of investigated equation. Thus, below we give a detailed proof of this issue.

It is assumed that ( , )X ⋅  represents a Banach space and H  indicates a self-map of 
.X  We consider a specific recursive procedure 1 ( , ).n ny H yϕ+ =  It is considered that ( )G H  be 

the fixed point set of H  has at least one element and that ny  converges to a point ( ).s G H∈  If 
{ }nx X⊆  and it is defined that 1 ( , )n n ne x H xϕ+= − . If the lim e 0n

n→∞
=  results to lim n

n
x s

→∞
= , then 

the iteration scheme 1 ( , )n ny H yϕ+ =  is known as H -Sable. Furthermore, it is assumed that the 
sequence { }nx  has an upper boundary otherwise it can not be expected possibility of conver-
gence. Whenever all these restrictions are fulfilled for 1 ( , )n ny H yϕ+ =  which is said to be 
Picard’s iteration, as a result the iteration will be H -Stable. Below we will present the result 
expressed by Theorem 1.

Before doing this issue we recall the following important result mentioned in [30].
We assume that ( , )X ⋅  be a Banach space and H  be a self-map of X  that satisfies the 

following inequality:
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	 x y xH H W x H w x y− ≤ − + − 	 (11)

for all the values of ,x y in ,X  where the values of W  and w such that 0 , 0 1W w≤ ≤ ≤ . It is 
assumed that H  is Picard’s H -Stable.

Now, let us consider the iterative formula connected to the time fractional modified 
Kawahara eq. (5) expressed in the form:
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

 	 (12)

In eq. (12) the term [ (1 )]/[ ( ) ]p p M pγ γ+ −  is the Lagrange’s multiplier whereas nv  
denotes a restricted variation satisfying the condition 2 ( / ) 0n nv v xδ ∂ ∂ =  .

Next, we would like to prove the subsequent result expressed in the form of the the-
orem.

Theorem 1. Let us suppose that F  be a self-map defined in the following manner:
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then the iteration is F-Stable in 2 ( , )L α β  if the following condition is satisfied:
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Proof. Initially we will show that F has a fixed point. In order to establish this result, 
we compute the subsequent result for ( , ) .n m ∈Ν×Ν
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Next with the help of the properties of norm, we get:
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Since ( , )nv x t  and ( , )mv x t  are bounded functions so we are able to get two distinct 
constants & 0A B >  s. t. for all the values of t:

	 ( , ) , ( , )n mv x t A v x t B≤ ≤ 	 (16)

Further, using the result of eq. (16) with respect to eq. (15) we have:

	 [ ] [ ] 2 2 3 5
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	 ( , ) ( , )n mv x t v x t⋅ − 	 (17)

where 1 2,ψ ψ , and 3ψ  are functions arising from: 
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with
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Thus, the non-linear F-self mapping attains a fixed point. Now, we shall prove that F 
fulfill the conditions with the inequality (11). Precisely, let eq. (17) be held, then we have:

	 2 2 3 5
1 1 2 2 3 3

10, 1 ( ) ( ) ( ) ( )
3

w W A B ABρ ψ η λρ ψ η µρ ψ η= = + + + + + 	 (18)

Therefore eq. (18) reveals that for the non-linear mapping F along with the inequality 
(11) holds. In addition, for the assumed non-linear mapping F along with all the conditions pre-
sented with inequality (11) satisfied, then F is Picard’s F-Stable. It closes the proof and verifies 
the Theorem 1.

Numerical simulations

In the present section numerical simulations of the special solution of eq. (5) as func-
tion of the physical variables t and x for distinct values of γ  at 1λ =  and 1µ = −  are developed.

For the numerical computation the initial condition is taken: 

	 23( ,0) sech ( )
10

v x xλ ω
µ

=
−

 

where 1/2(1/2)( /5 )ω λ µ= −  is a constant. Solutions for particular values of γ  are shown in  
figs. 1-4. From figs. 1-4, it can be noticed that the solutions of time-fractional modified Kawa-
hara equation is in wave form and describes the displacements of water-waves in a very effi-
cient manner. The time-fractional modified Kawahara equation reveals new characteristics for 

0.75,γ =  0.50,γ =  and 0.25γ =  which were invisible in the integer-order version ( 1γ = ). As it 
is shown in fig. 5 with the increase in γ , the displacement ( , )v x t  of water-waves decreases but 
afterward its nature is opposite i. e. after some time with increase in γ , the displacement ( , )v x t  
of water-waves increases. The response displacement ( , )v x t  of water-waves against the space 
variable x for different value of γ  is presented in fig. 6. It can be observed from fig. 6 that the 
displacement ( , )v x t  of water-waves increases with decreasing the value of γ  but afterward its 
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nature is opposite i. e. after some distance with increase in γ , the displacement ( , )v x t  of wa-
ter-waves increases. 

t

v

x t

v

x

Figure 1. The surface of ( , )v x t  w.r.t space 
x and time t are found at = 1,λ   
μ = –1, and = 1γ

Figure 2. The surface of ( , )v x t  w.r.t 
space x and time t are found at = 1,λ   
μ = –1, and = 0.75γ

t

v

x t

v

x

Figure 3. The nature of ( , )v x t  w.r.t x and t are 
found at = = −1, 1,λ µ  and = 0.50γ

Figure 4. The response of ( , )v x t  w.r.t 
space x and time t are found at = 1,λ   
μ = –1, and = 0.25γ
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Conclusion

In this work, we have considered the fractional model of modified Kawahara equation 
associated with CF fractional derivative. Its numerical solution is obtained with the help of it-
erative scheme. In order to examine the stability of the iterative approach we employed the 
theory of F-stable mapping and the fixed-point approach. Some interesting numerical result for 
different values of γ  at 1λ =  and 1µ = −  are obtained. The numerical results for fractional 
model of modified Kawahara equation shows that with increasing the order of time-fractional 
derivative the displacement of water-waves decreases but after some time with increasing the 
order of time-fractional derivative, the displacement of water-waves increases. The newly CF 
derivative has many useful and worth mentioning qualities for instance at distinct scales it can 
illustrate the matter diversities and configurations, where in local theories clearly it can not be 
controlled. The numerical results demonstrate that the new CF derivative can be employed to 
represent the real world problems.
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