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In this paper, we apply a new technique, namely local fractional variational itera-
tion transform method on homogeneous/non-homogeneous non-linear gas dynam-
ic and coupled KdV equations to obtain the analytical approximate solutions. The
iteration procedure is based on local fractional derivative and integral operators.
This method is the combination of the local fractional Laplace transform and vari-
ational iteration method. The method in general is easy to implement and yields
good results. Illustrative examples are included to demonstrate the validity and
applicability of the new technique.
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Introduction

The variational iteration method was first proposed by He [1, 2] and was applied to deal
with Helmholtz equations in [3], Burger’s and coupled Burger’s equations in [4], Klein-Gor-
don equations in [5], in KdV in [6], the oscillation equations in [7], Schrodinger equation in
[8], diffusion equation in [9], Bernoulli equation in [10], and others. The extended variational
iteration method, called the fractional variational iteration method, was developed and applied
to handle some fractional differential equations within the modified Riemann-Liouville deriv-
ative in [11-15]. More recently, the local fractional variational iteration method, initiated in
[16], was used to find the non-differentiable solutions for the heat conduction equation, Poisson
equation in [17], coupled KdV equation in [18], damped and dissipative wave equation in [19],
Fokker-Planck equation in [20], and non-linear PDE in [21] with local fractional derivative
operators.
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In recent years, a many of approximate and analytical methods have been utilized to
solve the PDE with local fractional derivative operators such as the local fractional Adomian
decomposition method in [22, 23], local fractional differential transform method in [24-26],
local fractional series expansion method in [27], local fractional Sumudu transform method
in [28], local fractional Laplace transform method in [29], local fractional reduced differential
transform method in [30, 32], local fractional Laplace variational iteration method in [31].

The standard form of non-linear gas dynamic equation involving local fractional de-
rivative operators can be written:

“u(x,y) . 104> (x,y)
ox*” 2 of
subject to the initial conditions

—u(x,y)[l—u(x,y)]:g(x,y), O<a<l (1)

u(0,y)=4(») (2)

The KdV equation describes the theory of water waves in shallow channels. It is a
non-linear equation which exhibits special solutions, known as Solutions, which are stable and
do not disperse with time. The coupled KdV equations involving local fractional derivative
operators can be written:

a 3a a o
“u(x,y) . 0 u(}x,y) +2u(x,y)a u(x,y) +2v(x,y)a u(x,y) o
axa a.)/ a @}(1 aya (3)
o"v(x,y) 0v(x,y o“v(x,y o"v(x,y
agca )+ 8)53“ )+2v(x,y)%+2u(x,y)%:0
subject to the initial conditions
u(0,y)=x,
(0.7)=x(») @

v(0,y)=1,(y)

In this paper, our aims are to present the coupling method of local fractional Laplace
transform and variational iteration method, which is called as the local fractional variational
iteration transform method, and to use it to solve the non-linear gas dynamic and coupled KdV
equations with local fractional derivative.

Analysis of the method
We consider a general non-linear local PDE:
Lau(x,y)+Rau(x,y)+Nau(x,y):g(x,y), O0<a<l (5)
where L, =0"/0x"*, ne N is the linear LFDO, R, denotes a lower order LFDO, N, represent-
ed the general non-linear LFDO, and g(x, y) is the non-differentiable source term.

Applying the Yang-Laplace transform (denoted by £«) on both sides of eq. (5), we
get:

La {Lau(x,y)} +Ea {Rau(x,y)} +£a {Nau(x,y)} =fa {g(x,y)} (6)

Using the property of the Yang-Laplace transform, we have:
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" Ea {u(x,y)} - S("_l)au(O,y) — sty (0,y)-.. [ (+-1)a] (0,y)=
=La{g(x.y)— Ru(x.y) —Nau(x,y)} (7)
or
1 I (@ 1 fenal
B fu () = (0.7) + 7 (0.) oot I (0,9) +
1
+—=a {g(x,y)—Rau(x,y)—Nau(x,y)} (8)
Operating with the Yang-Laplace inverse on both sides of eq. (8) gives:
xa x(n—l)a
,y)=u(0, (0, —["'a]0
W)= O Ty O ey )
)1
+1f:,1l {Fta [g(x,y) -R,u (x,y) -N,u (x,y)]} 9)

Deriving both side eq. (9) with respect to x, we have:

0” -
M(X,y)_ 0 fal{ 1
axfl axa na

[a(50) R )~ N,a(x)]| -
(e

X ] _
r[1+(n—2)a]u* (0.7)=0 (10)

—uia) (O,y) _

We now structure the correctional local fractional function in the form:

b (50) =1 () s

o“u, (§,y) - 0%

£ {S%fa [g(&.y)-Ru, (&)~ Nu, (&, y)]}

j Ay | eer et L e an
0 F(l + 0!) _( )(a) (0 y) f—(u )[(nfl)a] (0 y)
LT[+ (n-2)a] " :
Making the local fractional variation, we get:
5aum+1 (x’y) = 5aum (x’y) + 0" F(li- a) .
o , @
N « ug (f y)_; —£, { 1{1 [g(é,y)—Raum (§,y)—Naum (‘f,y)]}_
] A($) 3 & s o
F(l + a) _(u )(a) (O,y) é:(n—Z)a [(n bl (O’y)

' F[1+ a]

The extremum condition of u,,,(x, ) is given:
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o‘u,,,, (x,y)=0 (13)

In view of eq. (13), we have the following stationary conditions:

« « @
1+ M =0, ﬂ =0 (14)
r(l+a) . r(l+a) B

This is turn gives:

—/1(5) =-1 (15)

(1+a)
Substituting eq. (15) into eq. (11), we obtained:

1
U, (%,3)=u,(x,y) _1"(1—+a).

0” , L
W) Ot [a() - R (60) - N (6]

P 0 o0& .
i f o . () (16)
0 _ a 0, - A n—-l)a 0’
(um)é ( y) 1—«[1+(n_2)a:|(um)§ ( y)
Finally, the solution u(x, y) is given:
u(x,y)z limu, (x,y) (17)

Applications

Example 1. Consider the following homogeneous non-linear gas dynamic equation
involving local fractional derivative operator:

aa , 160; 2 ,
L;E; y) + 5 ua)fj y) —u(x,y)[l—u(x,y)]zo (18)

and the initial condition

u(0,y)=E,(-»") (19)
In view of egs. (16) and (18) the local fractional iteration algorithm can be written:
1
Uy (x,y) =u, (x,y) —m'
o 0u,(r,y) o | af 1 10%u°,(7,y) a
. - 0| —Fg——————F— V) 1= , d 20
.([[ aTa +az_a I:t [saf {2 aya u"(T y)l: u"(T y):' ( T) ( )

We can use the initial condition to select u,(x,y)=u(0,y)=E_(—y“). Using this se-
lection into the correction functional (20) gives the following successive approximations:
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uy (%,3)=E, (-»") 1)
1
. (x’y):uo(x’y)_l“(ua)'
o 0%uy (7, y) " | o 1 l@“uzo(r,y)_ B “
}[[ az_a az_a lf" (Sa ﬁa {2 aya uO(T’y)[l u, (T’y)] (dT) -
a xa
=E,(-y ){HF(Ha)} (22)
1
() =1 () r(1+a)

E[a o) [ (IO (,,y)[l_ul(T,yﬂﬂn(m)a:

- ey ) =

X
= SLE ) 24
u, (x,) a( y )kZOF(1+ka) (24)
Finally, the solution u(x, y) is given:
@ ka
. o X
u(X,y)zlggun (x,y)=Ea (—y );m (25)
and in closed form:
u(x.y)=E,(-")E,(x")=E,(x" - ) (26)

Example 2. Consider the following non-homogeneous non-linear gas dynamic equa-
tion involving local fractional derivative operator:

6au(x,y) 1 aauZ (xny) a a
P +§ & —u(x,y)[l—u(x,y)] =-E, (x -y ) (27)
with the initial condition:
u(0.y)=1-E,(-") (28)
Applying egs. (16) and (21), we obtain the correction function:
1
o (7)< (x’y)_r(1+a)'

.Haauggmaa; [f;,[Siafa{5%_%(”)@_%(TMHD(M)& o
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We can use the initial condition to select u,(x,y) =u(0,y)=1-E_(—y“) Using
this selection into the correction functional (29) gives the following successive approximations:
uy(x,y)=1-E, (—y“) (30)

1

”1(x’y)=“o(x’y)—m'

ST

oy

(a7 =

o'-;.x

+E, (r" - y")

“1-, () - (llw)f[Ea (e =) |(de)" -

0

:1—Ea(—y“)—Ea(x“ —y“)+Ea(—y“):

:1—Ea(x“—y“) (31)
1
uz(x’y):ul(x’y)_l—‘(l+a)‘
o“u (r,y) o | [ 1 10%u} (z,y)
P f{l - a -~ ~ ., - o 1_ b
f| o +ara[ [Sa 2 {2 o aEy)t-u@n] (e -
0
+E, (r“ —y”)
S1-E, (x - y7) (32)
u, (x.y)=1-E, (x = y*) (33)
Finally, the solution u(x, y) is given:
u(x,y)z}lj_r}gun (x,y)zl—Ea (xa —y“) (34)

Example 3. Consider the system of local fractional coupled KdV equations with local
fractional derivative:

aa 3a a a
00) S ) T ) T2
Ox oy oy oy (35)
a Ja a a
o“v(x,y) . 0 v(}x,y) c20(xy) o“u(x,y) +2u(x,) o“v(x,y) o
ox“ ™ " ”
subject to the initial conditions:
u(0,y)=E, (—»"

v(0,)=E,(-»%)
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Applying local fractional Laplace transform on eq. (35) and using the initial condi-
tions (36), we have:

1 o1 o u(x,y 0“u(x,y 0“u(x,y
B fu(x )= E, (") =t {%M“(%Y)%”V(%Y) aia )

aya
Operating with the local fractional Laplace transform inverse on both sides of eq. (37)
we obtain:

u(x,y) =E, (_ya) £, (Slafa {w+ 2u (X,J’)% + 2v(x,y) O (x’J/)}]

o . . 37)
1 o1 0 v(x,y o“v(x,y o“v(x,y
£, {v(x, y)} = E, (—y )__s” £, {—63/(3“ ) +2v(x, y)—a)(}a ) +2u (x,y)—( )}

6y3“ aya
& (x, ) v (x,) 5w (x,) (38)
a - 1 “y X,y %y X,y ‘v X,y
v(x,y)=E,(-y")- £, (s_“ E, {—6y3“ +2v(x, y)@y—a +2u(x, y)ﬁy—“H

Deriving both sides of eq. (38) with respect to x, we get:

oy” ,

axa axa a ay3a aya
- (39)
a a 3a o a
il Gl P (ifa {8 2 4y ) T 1) v(x,y)m=o
axa axa a a aya aya
Making the correction function is given:
1
um+l (x’y) :um ('x’y)_ F(l +(Z) :
3a 2a
1 T (23) gy (5, )t B0)
[ Fup (1), 0|l Ly » » (dr)”
! a o a a a @ a
0 ’ ’ * +2v, (x,J’)—a ug (;’y)
y
| (40)
vm+1 (x’y) = m ('x’y)_ F(1+a)
3a a
a 0 V’”gj’y)+2vm(r,y)a v, (,,T’y)+
J Iy (roy) Ol Ly | » (dzr)"
o a Fl a a a T a
0 ’ ‘ * +2v, (x,)’)—a vg(z',y)
Y

We can use the initial conditions to select u,(x,y) =—E_ (=), v,(x,y) =—E_(-y“).
Using this selection into the correction functional (40) gives the following successive approxi-
mations:
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N (x,y) =-E, <_ya)

vy (x.y)=~E, (_ya)

1
ul(x,y):uo(x,y)—r(l+a)
o*u, (z, *u, (,
X afl a Oga y)+2u0(r,y) O(a y)
J- uo(r,y)+ 0 £ Lfa oy oy (de)’
o or” or* s7 6“u0(1,y)

1
Vl(X,J’)=Vo(X,J/)—m'
3a a
| A @Vo_g;y)+2vo(f,y)w+
| vg(Z’y) :a gl Lel @ ) < (dr)” =
T T Ky @
0 +2v0(x,y) vg)gz,y)
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S173
1
uZ(x’y)zul()Qy)_r(l_}_a)'
3a 2a
0 ul(r,y)+2ul(r,y)8 ul(r,y)+
tlou(ry) o |, 4] 1 oy " .
J. a a +a a ﬁ”‘ _afa a (dT)
T T Ky @
0 +2v, (x,y)—u] (Z’y)
1
vz(x,y)zvl(x,y)—r(1+a)'
3a a
J. vé Z’y)+a a f;l Lazfo‘ g P ay (dr)a =
T T s “
0 +2u, (x,y)—v(;(z,y)
» 4
X
=F (—y” E (-y%)-
(o )+F(1+a) )

a

T

1+a)J:F(1+a)E“ (_ya)(df)a =

) et ) e )6

-E, (—y“){“ r(ia) ’ r(1xja2a)} )

a
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Therefore, the series solutions can be written in the form:

u(x,y) =limu,, (x,y) =E, (x“ - y“)
v(x,y) =limv, (x,y) =-FE, (x“ - y”’)

m—>o0

Conclusions

In this work, local fractional variational iteration transform method has been success-
fully applied to finding the non-differentiable solution of non-linear gas dynamic and coupled
KdV equations involving local fractional operator. The method is very powerful and efficient in
finding analytical as well as numerical solutions for wide classes of linear and non-linear local
fractional PDE.
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