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Abstract: In the present paper, we investigate some Hermite-Hadamard (HH ) inequalities related
to generalized Riemann-Liouville fractional integral (GRLJFZ) via exponentially convex functions.
We also show the fundamental identity for GRLFZ having the first order derivative of a given
exponentially convex function. Monotonicity and exponentially convexity of functions are used with
some traditional and forthright inequalities. In the application part, we give examples and new
inequalities for the special means.

Keywords: convex function; exponentially convex function; fractional integrals; generalized
Riemann-liouville fractional integrals

1. Introduction

Recently, several researchers have attracted the fractional calculus, see References [1-4]. The effect
and motivation of this fractional calculus in both theoretical and applied science and engineering rose
substantially. Numerous studies related to the discrete versions of this fractional calculus have been
established, which benefit from countless applications in the theory of time scales, physics, different
fields of engineering, chemistry and so forth (e.g, see References [4-32] and the references therein).

A few decades ago, a lot of new operator definitions were given and the properties and structures
of these operators have been examined. Some of these operators are very close to classical operators in
terms of their characteristics and definitions. It is known that the GRLFZ, which was introduced in
reference [33], extends several well-known fractional integral operators (see Remark 1 below). Both
the generalized Riemann-Liouville fractional derivative and the integral operator are useful in the
study of transform theory, quantum theory and fractional intgerodifferential equations.

Almost every mathematician knows the importance of convexity theory in every field of
mathematics, for example in nonlinear programming and optimization theory. By using the concept of
convexity, several integral inequalities have been introduced such as Jensen, HH and Slater inequalities,
and so forth. But the well-known one is the celebrated HH inequality.

LetZ C R be an interval and U : Z — R be a convex function. Then the double inequality

dy
dy +d> 1 U(dl) +Z/[(d2)
(15) < L oo < L0 0
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holds for all di,d, € T with di < dj. It is easy to see that if I/ is concave on Z, one has the
reverse of this inequality. This inequality provides bounds for the mean value of a convex function.
Recently, mathematicians have focused on obtaining new variants of the H#H inequality by giving
generalizations, improvements, refinements and extensions, see References [34-36].

Exponentially convex functions have emerged as a significant new class of convex functions,
which have important applications in technology, data science and statistics. The main motivation
of this paper depends on new inequalities that have been proved via GRLFZ and applied for
exponentially convex functions. This identity offers new upper bounds and estimations of HH type
integral inequalities. Some particular cases have been discussed, which can be deduced from these
consequences.

Recall the definition of an exponentially convex function, which is investigated by Dragomir and
Gomm [34]:

Definition 1. (See [34]) A positive real-valued function U : K C R — (0, 00) is said to be exponentially
convex on K if the inequality

M@+ 1=1)y) < 7 U (1 — 1) HW)
holds for x,y € Kand T € [0,1].

Exponentially convex functions are used to manipulate for statistical learning, sequential
prediction and stochastic optimization, see References [37-39].

After the class of exponentially convex functions was introduced by Dragomir and Gomm [34],
Alirezai and Mathar [37] have investigated the mathematical perspectives along with their fertile
applications in statistics and information theory, see References [37,39]. Due to its significance, Pecaric
and Jaksetic [40,41] used another kind of exponentially convex function introduced in Reference [42]
and have provided some applications in Euler-Radau expansions and stolarsky means. Our intention
is to use the exponentially convexity property of the functions as well as the absolute values of their
derivatives in order to establish estimates for GRLFZ.

Definition 2. ([1-3]) Let (d1,dp) (—o0 < dy < dp < c0) be a finite or infinite real interval and p > 0. Let
Y (x) be an increasing and positive monotone function on (dy,dp] with a continuous derivative on (dy,dy).

Then the left and right-sided generalized Riemann-Liouville fractional integrals of a function U on [dy, dp] are
defined by

IZfU(T) = 1”(1p) /‘I”(x)(‘{’(r) —‘I"(x))p_12/{(x)dx, )

di

and .
15;“ (1) = r(lp) / ¥ (x) (F(x) — ¥ ()" U(x)dx, ©)

respectively; with T'(.), the classical gamma function.

Remark 1. Many known defined fractional integral operators are just special cases of (2) and (3).

1. Setting U(T) = T, it turns into the both sided (RLI).
2. Setting U(T) = log T, the Hadamard fractional integrals are obtained [1,3].

3. Setting U(T) = %, B > 0 it turns into the both sided Katugampola fractional integrals given in
4. SettingU(T) = (T?)ﬁ, B > 0, the operators in reference [43] are obtained.
5. SettingU(t) = %;, it turns into the both sided generalized conformable fractional integrals defined by

Reference [33].
b,
Khan et al. in reference [44].
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The principal objective of this paper is to use a new convex class and a new integral operator to
obtain new versions of HH-inequality that give bounds for the mean value of convexity. Also, we will
establish some more general estimates and related modulus inequalities for GR LFT via exponentially
convex functions. In addition, the accuracy of the results was tested with applications of special means
and with some examples.

2. HH Inequality for GRLFT

Theorem 1. Let U : [dy,da] — R be a positive function, for 0 < dy < do, and e € Ly([dy,d3]). Let ¥(x) is
an increasing and positive monotone function on (dy,dy|, with continuous derivative ¥'(x) on (d1,dy). Let U
is an exponentially convex function and p € (0,1). Then

e (dr) 4 oU(d2)

L{(M) < (P+1) 0¥ oY/ U 1 <
M) < [ 5 [ (o) (471 ) + I (M o) (¥ () | < - @)
Proof. Since U is an exponentially convex function for [d1,d»], we have
4o Uu) 4 oU(©)
2
Letu = tdy + (1 — 7)dy and v = (1 — T)dy + Tdp, we get
2t (13%2) < lxdi+(1-0)dy) | U((1=)dr+7ds), ©)

Multiplying by 70! on both sides of inequality (6) and then integrating w.r.t T over [0, 1], implies

1
2 L{(d1+d2) < /Tp 1,U(vdy+(1-7)dy) dTJr/Tp 1,U((1-T)dy+7da) g @)
o .
0

Now consider,

2(dy —dy)F

1 1

/TP 1 M (td1+(1—1)dp) dT—l—/Tp 1 U((l T)d1+Td2)dT:|
0

di1+

52),
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by using (7). Thus the first inequality of (4) is proved.
Next, we again use the exponential convexity of I/, that is,

eu(Td1+(1_T)d2) + eu((l_T)dl+Td2) S eu(dl) + eu(dZ) (8)

Multiplying by T#~! on both sides of inequality (8), and then integrating w.r.t T over [0, 1], implies

1

i d d
/TP—leU(Td1+(1—T)d2)dT+/Tp—leU((l—T)d1+Td2)dT < M‘
0

0

That s,

eu(dl) + eu(dZ)

PO D 0 (o) (v ) + 7 (o) (¥ ()] <

(dy —dq)P
Hence the proof is completed. [

Our next result is the subsequent lemma, which is useful for our coming results.

Lemma 1. Let U : [dy,da] — R be a differentiable mapping, for 0 < dy < dp, and e € Ly([d1,d3]). Let
Y (x) is an increasing and positive monotone function on (dy,d,], with continuous derivative ¥’ (x) on (dy,dy)
and p € (0,1). Then

eU(dr) | eu(dz) T(o+1) , _
. TCAREAL [1’”’(6 o) (¥ (d2)) + I (M o) (¥ He))]
[ ¥(z) —dy\
—2[ / ‘I”(z)(d(j)_dll) (Mo ¥) (2)U' (¥(z))dz
¥1(d)
¥ ()
- / T’(z)(ﬁ) (M o %) (2)U' (¥ (2))dz|. )
¥1(dy)
Proof. Consider
1
I dz—d1/ 1- 1) “((1*T)d1+Td2)Z/l’((1—T)d1+Td2)dr
0
1

dz—dl

/1—1’ )Pt (a- T)dﬁrdz)l/{'((l—T)dl—i—rdz)d"r

L — |
()

1
—/Tpeu((l_ﬂdlﬂdz)u’((l —T)dy + 1dy)dt
0

By making a change of variable in the above equation ¥(z) = (1 — 7)d; + 1dp, we have
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=1L+ (10)

Now

and

It follows that
U U
e (da) + e (dr) Ch-hL=1

This completes the proof. [
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Theorem 2. Let U : [d1,dy] — R be a differentiable mapping, for 0 < dy < dp, and & € Ly([d1,d,]). Let
¥ (x) be an increasing and positive monotone function on (dy,ds], with continuous derivative ¥’ (x) on (dy,dy)
and p € (0,1). If |U'| is exponentially convex and g > 1, then

2 2(dp—dy)?

s (21(0-3)) [l 5] [eoonrtanr ]’

M) @) T(p+1) [Igf’ (M o) (¥ () + 177 (M 0 ¥) (‘If—l(dl))”
1 2
(11)

Proof. First note that, for every z € (‘I’_l(dl)‘lf_l(dz)), we have d; < ¥(z) < dp. Let T = dé;ﬁ}?,

then we have ¥(z) = td; + (1 — 7)dy. Applying Lemma 1, Holder’s inequality and exponentially
convexity of |{'|, we obtain

‘eu(dl);-eu(d) (d(ZPj—dll)) [[P‘Y(e O‘Ij) (‘Y (dz)) +[§;:Y(6U0T) (T—l(dl))”
Y1(dy) N i
<3 Té) () - (B2 o n @law <‘P<z>>>]

-1, 1 1
/| 11— —flar) ' ( /| 1= ) — 70 || 08 (rdy 4 (1 — 7)) e )
0
_dy—di | -1
2_ 1 /| l—Tp—Tp|dT) !
0
1 1
([ 100 )P = 2| {4 (1= )9} (! () |9+ (1= ) ()| )T
0

-1 1
_dy—dy [ 2 1 ! o o[ 20U q
- (p—l—l(l_Z/))) <O/|(1—T) —T|[T|e VU (dy)]
l

+(1 = [ (d) [T+ T(1 = o) {[ U ()T + [0 (dy) | }} )

:
- (5 0-3)
1

1 q
% (/ (1 —1)° — 1| [T2|eu(d1)ul(d1)“7 +(1- 7)2‘eu(d2)z,{/(d2) ’q + (1 — T)A(dl,dz)}dr>
0

)
_d22dl<p2+1(1_21p)) (S1+ Sy). (12)
where
S = / [(1= )P — ] [ ()| + (1 = T ()| + (1 = 7)A(dn, )| dT,
0
1
S o= [ [ = (1= 0P [RIE@OU @)+ (1 RO @)+ (1= D) ) ar.
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Now
2 1
/T2(1 —1)Pdt = / (1 — 1)%dT = /3%(319 +1),
0 2
1 1
/TP(l — 1)2dt = /T2(1 —T)fdt =B, (p+1,3),
0 2

1

0241 = /(1 — 1) 24t = !

(0 + 327

S —on

1
2

1 1

ot24r — _
COTT 0T T (p a2

(1— 1) 2dr =

S — o
M\»ﬂ\H

(1—1)fr - (1—1)]dr = Bilp+2,2)—p1(2,p+2) =0,

1
2

[t (1—1) - (1-7)ti7]dr = 5%(,) +2,2) —B1(2,0+2) =0.

1
2

M S— L P — e

By substituting the above integral values in (12) and after some simplification, we get the required
inequality (13). O

Corollary 1. Letting g = 1, then under the assumption of Theorem 2, we have

= [m o) (4 )+ 2 (o) (2 a)
Sdzgdl [Pi3< 29+2)H dy)| + | M@ (d )‘} 4

Proof. Since ¥ is differentiable and strictly increasing function, we can write (¥ (x) — ¥( T))pil <

(Y(x) — ‘I’(dl))p_l, where as x € [dy,dp] and T € [dy,x], p > 1, and ¥/(7) > 0. Then, the subsequent
inequality holds true

¥(7) (¥ (x) = ¥(1)" 7 < ¥ () (F(x) — ¥ ()" (14)

By exponentially convexity of I/, we have

U < X=T ) T4 )
e _x—d1 +x—d1 . (15)

From (14) and (15), one has
/ ¥ (1) (¥(x) — ¥(1)" e Ddr

) [ (=¥ (e + 0 [(x—dn¥ (v,
dl dl

(F(x) — ¥ ()

X—dl
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By using (2) of Definition 2, we get
I (p) 1o U™ (16)
1

(F(x) —¥(dy))""
X — dl

(3 = ) [ )0 — O8] = (@) = 20) [y
dq

Now for x € [dy,dp], T € [x,dp] and 6 > 1, the subsequent inequality holds true
¥ (1) (F(1) — ¥(x)" " < ¥ (1) (F(da) — ¥ ()" (17)
By exponentially convexity of U/, we have

U « T=X ud) | 2= Ty
e < dz—xe +d2—xe . (18)

Adopting the same procedure as we did for (14) and (15), one can get from (17) and (18) the
coming inequality

T (8) 17 M) (19)
5-1 @
< (M) -Y0) <@—mwwﬁmm—ﬂmwwywﬂ%ﬂ¢“5/“ﬂ“}
-

From inequalities (16) and (19), we get (13). Hence the proof is completed. [

Particular cases are stated as follows.
Corollary 2. Choosing p = ¢ in (13), then we have a new inequality for GRLFL;

YU (x YU (x
1"(p)I§Ir Ml )+T(p)152_ M)

(¥(x) — ¥ ()
x—d1

[(x —dp) [¥(x)eH ) — MDY ()] — (M) — Hld)) /T(T)dT:|

1 dy

(Y(d2) — ¥(x))"
+
dz — X
X
Corollary 3. Choosing x = dy and x = dy in (13), adding the resulting inequalities, then the conditions of
Theorem 1 are satisfied, we have

(ng—wwnvl+%TMﬁ—wwnfl) 0)

dy —dq

F(p)IZL:Peu(dZ) —l—l"((S)Ingeu(dl) < (
1 2
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Corollary 4. If we take p = 6 in (20), then we get the following inequality for GRLFT

2(¥(d2) —‘F(d1))p_l)

p+1,¥ p+1,¥ <
ro) (15 )+ 15 ) < (AR

da
X ((dz —dy) [1 )Y (dy) — MY (dy)] — [ME) — Hld)] / ‘I’(T)dr).
d
Theorem 3. Let U, Y : [d1,da] — R be the functions such that e be differentiable function, ¥ is also
differentiable and strictly increasing with ¥' € Ly ([dy,d3]). Then for p,é6 > 0, x € [dy,dy]| we have

IT(o+ 1)15;‘%“(") HT(E+ 1) M) — (¥(x) = ¥(dh)) @) + (¥(dp) - ¥ (x)) () |
1 2

(P(0) =¥ ()" (v—dn) U () |+ (¥ ()~ ¥ (x)) (da—) DU ()]
3

<
(@) ¥0) (o) (¥ ¥(a) (o) 00 ()
3
N () ¥(d))" (x—d1) AL+ () ¥ () (da—x)A(d )
6 7
(21)
where
A(dy, x) = |4 (dy)] + | DU (x)|, (22)
A(da, x) = [0 (dy)| + MU () . (23)
respectively.
Proof. From the convexity of |(e/!)/|, we obtain
Uy XoT U@ T | [ X T Todiy
O] < | F ) TR | | I )+ T g )] (24)
< X—T z‘eu(dl)ul(d )‘_'_ T;dl 2|€M(x)ul(x)|
- x—dq ! x—dq
- —d
(355 ) (G20 et o+ 4 )
_ X—T z‘eu(dl)ur(d )+ T—dy 2|e“(")2/l’(x)|+ X—T T—dp Aldy, %)
X—dl ! X—dl X—d1 x—d1 1
From (24), we have
2 2
() < (5 ) )|+ () 190w @)+ (55 ) (2 ) s, (25)

Since Y is a differentiable and strictly increasing function, we have the subsequent inequality
(¥(x) —¥(0)" < (¥((x) = ¥(@)", (26)

where as x € [dy,dp] and T € [dy,x], p > 0.
From (25) and (26), one has
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and

Integrating over [d1, x], we have

f (¥ (x) — ¥ (1)) MU (1)dT

dq

%{W(mw (dy) |f x — )2t + | MO (x) \fx T dy)2de 4 Ay, %) [ (x — ©)(t — dy)de
dq

1
{\e (d1) L{’(dl)HIe“ ! (x }+A(d1x)

(¥(x) —¥(dr)) (x — dy) {

fx (¥(x) =¥ (1)) ! OU (1)dt = 4T (¥(x) — ‘I’(T))p|j§1 +pfx (¥(x)— ‘Y(T))p_leu<T>‘Y’(T)dT
dq dq

= ) (F(x) —¥(dy))° +r(p+1)1f"f U)
Therefore (28) takes the form

D + )1 H00 — M) (¥ (x) — ¥ ()

2{| MU (dy)| + MU (x)|} + A(dl,x)]
6

< (‘Y(x) —‘I’(dl))p(x—dl)

Also from (24), one has

£) (o]

2
aonre) 2 | (21 ) Wy + () o)+ (2
Following the same procedure as we did for (25), we also have

) (F(x) =¥ () ~ T (o + DI )
1

2{ | U (dy)| + MU (x)|} + A(dl,x)]

< (¥(x) = ¥(d1)’ (x —dy) 6

From (29) and (31), we get

[T(p -+ DI HO) — M) (¥ (x) — ¥ (d)) |
2{ MY (dy)] + | MU (x)|} + A(dl,x)}

< (¥(x) = ¥(d)’ (x — ) 6

By convexity of | (e)’|, we have

2 2
U@ < (7)) (2T) e

dy — x X

() (a2

Now for x € [d1,dp] and T € [x,d;] and 6 > 0, the following inequality holds true

10 0of 18

(x = )P ()| + (7 = )2 (x)] + (x = T) (T = dl)A(dlrx)} :

| @

(28)

(29)

(30)

(31)

(32)

(33)
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(F(1) —¥(x) < (¥(da) — ¥(x))". (34)

Following the same way as we have done for (25), (26) and (30) we can get from (33) and (34)
the subsequent inequality

[T(6+ DI M0 — ) (9 () - ¥(x))°| (35)

) 2{ |0’ (dp) | + |0 (x) |} + B(da, x)

< (¥(dy) — ¥(x))(dr — x :

From inequalities (32) and (35) using triangular inequality, we get (21) which is desired. O
Particular cases are stated as follows.
Corollary 5. Choosing p = ¢ in (21), then we have a new inequality for GRLFL
IT(p+1) [IZ%Y M) 4 15;}’ M) — (F(x) — ¥ (d1)) e ™) 4 (F(da) — ¥ (x)) M D)
(Y (x) = ¥ ()" (x — dy) [0 (dy)| + (¥ (d2) — ¥ (x))" (d2 — x) | RU ()|

3
+{(‘1’(0772) —¥(x))"(d2 — x) + (¥(x) = ¥(d1))" (x — dy) } U (x)]
3
n (¥(x) = ¥(d))" (x — dy)A(dy, x) + (F(d2) — ¥ (x))" (d2 — x)A(da, x)
: .

To prove our next result we need the following Lemma.

Lemma 3. Suppose that U : [dy,d»] — R is an exponentially convex function which is symmetric about dl;—dz.
Then we have

dq+dy

M(22) < ) e [dy, do). (36)

Proof. Write

d1+d271 X*d1 dz*x 1 X*d1 dz—x
> —2( dy + 1d1>+2(d2—d1d1+d2—d1d2>‘

U

Since ¢ is convex, therefore we have

M(52) o L u(Ghargga) |1 u(Ggas i)
-2 2
1
_ E [eu(x) + eu(d1+dz—x)] .
Also, ¢ is symmetric about ‘%Ldz, therefore we have ¢/(Y) = U(@1+%-) and the inequality
in (36) holds. O



Mathematics 2019, 7, 807 12 of 18

Theorem 4. Suppose that U : [dy,dy] —> R be an exponentially convex function such that ! is
positive convex and symmetric about %, Y is a differentiable and strictly increasing function having
Y’ € Li([dy,d2)). Then p,5 > 0, we have

oM (15%2) [ (F(d2) = ¥()"™ | (¥(da) T(dl»w} (37)

p+1 o+1

< T+ DI ¥ (dy) +T(6+ 1)1 ¥ (dy)
1 2

Proof. Since ¥ is differentiable and strictly increasing function therefore (¥ (x) — ‘Y(dl))5 < (¥(d2) —

‘P(dl))é, where as x € [dy,dz], 6 > 0,and ¥/(x) > 0. Hence, the following inequality holds true
[ 3
Y (x) (F(x) —¥(d1))" <¥'(x)(¥(d2) —¥(d1))". (38)
From the exponential convexity of I/, it can be obtained

U) « X = u@y) . 2= X )
< dz—dle dz—dle . (39)

From (38) and (39), one can have

do
/ MY () (¥ (x) — ¥(dy)) dx (40)
dq
) dy do
Y(dy) —Y(d '
< (¥(d) () M(d2) /(x —dy)Y (x)dx + (1) /(dz x)‘I”(x)dx].
d2 =i d d
1 1
By using (2) of Definition 2, we get
I(6+ 1)13:&-1,‘1’611(111) (41)
2
(¥(da) ~ ¥(h))’ f
< SR Ly ) [0 ) — )] — () — ) [ o]
2 —d1
dq
Now for x € [dq,dz], T € [x,dz] and p > 0, the following inequality holds true
¥ (x) (F(da) — ¥ (x))° < ¥ (x) (¥(da) — ¥ (). )

Adopting the same procedure as we did for (38) and (39) one can get from (40) and (42) the
subsequent inequality

T'(p+ 1)15113624(,12) (43)
_ p %
< L 2O [y ) ) - ()] - () — 490 [ ¥
2 — U
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From (41) and (43), we get

Using Lemma 3 and multiplying (36) with (¥(x) — ‘P(dl))(s‘*}” (x) and integrating over [dq, 3],
we get

M(1572) / (¥(x) = ¥(d1) ¥ (x)dx < / M) (¥ (x) — ¥(dy)) ¥’ (x)dx. (45)
& dl

By using (2) of Definition 2 we get

H(52) {(‘F(dz) —¥(d))""!

5T } < r(5+1)13;’e“<d1>. (46)

Similarly, using Lemma 3 and multiplying (36) with (‘I’(dz) — ‘I’(x))p ¥’(x) and integrating over
[d1,d3], we get

M(152) [ (¥(d) — ¥(d1))""
p+1

From (44) and (47), we get (37) which is the required result. [

} <T(p+ 1)1 e (), (47)
1

Corollary 6. Choosing p = ¢ in (37), then we have a new inequality for GRLFL

¥(dy) — ¥ (dr))""
o (Fd2) — ¥(dh)) ew@>gr(p+1)[1§]jl""*1f(d2>+1*’+1""11f(d1)}(

2(¥(ds) —‘I’(dl))pl)

p+1 dy dy —dq
da
X ((dz —dp) [M )Y (dy) — MY (dy)] — [Hd2) — (@) /‘F(T)dr)
dq

3. Examples
Example 5. Let dy = 2,dy = 4,0 = 2,6 = 2,U(x) = 2Inx,e! ™) = x2,¥(x) = x2 and x € [2,4]. Then all
the assumptions in Theorem 1 are satisfied.

Clearly,

X

T = [¥(0)(¥() - ¥ (1) Hde

3
-2 / (9 — 12)73dt ~ 70.83,
2
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and

dy
T(8) 1 M) :/‘If’(t)(\lf(r)_qf(x))f’*leu(r)dT

4
2 / (7 — 9)T3dt ~ 334.83.
3

Adding the above equations, we have the left-hand side term of (13)

T(p) 17" ™) 1+ T(5)15¥ () ~ 405.66. (48)
1 2

On the other hand,

(F(x) = ¥(d)) " f
x—d11 /‘I’ dt

L () =¥ B 7
dz — X

4
+ (146_—39) [(4-3)[16(16) ~ 9(9)] — (16— 9) / 2]
3

— 166.675 + 620.83 ~ 785.50. (49)
It is nice to see that the following implications hold in (48) and (49),
405.66 < 785.50.
Example 6. Let di = 2,dy = 4,p = 2,6 = 2,U(x) = 2lnx, M) = x%,¥(x) = x? and x € [2,4].

where A(x,dq) and A(x,dy) are given in (22) and (23), respectively. Then all the assumptions in Theorem 3 are
satisfied.

Clearly,

X

T(p+ 1)1;?’ M) (¥ (x) —¥(dy))HD = / (¥ (x) —¥(1))"H O (1)dr

d
3
=2 / (9 — 12)2dt ~ 41.67
2
and

dy

(6 +1)I¥ ) — (¥(dy) —¥(x)) @) = [ (¥(1) = ¥(x) HOU (v)dr

2

X

4
2 / (72 — 9)%d7 ~ 114.33,
3
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Adding the above equations, we get the left-hand term of (21)

IT(p + 1)1§fe“<x> — (¥(x) = ¥(d)) ™) +T(5+ 1)1§;e“<x) — (¥(d) — ¥(x)) H(®)|
= 41.67 + 114.33 ~ 156. (50)

Next,

(¥(x) = ¥(eh))" (x — dy) | (dy)| + (¥ (da) = ¥(x))° (da — )| (do)|
3
(9—4)*(B—-2)[4(3)| + (16 —9)*(4 — 3)[16()|

_ =164
3 64,

{(F(da) — ¥ (x))" (d2 — x) + (F(x) = F(d1))" (x — dy) }HOU (x)]
3
(16 —9)2(4—3)+ (9—-4)2(3-2)

2
= 2) =14

(F(x) = F(d)) (x — d1)A(dy, x) + (F(d2) —F (%))’ (da — x)A(da, %)
6

~ 172.47.
Adding the above equations we get the right-hand side term of (21)

(¥(x) = ¥(eh))" (x = d0) | (dy)| + (¥(da) = ¥(x))° (da — )| (do)|

3
A () — ¥ ()’ (d =)+ (¥(x) = ¥()" (x = o) } 4O ()|
3
I (‘F(X) — ‘Y(dl))p(x — dl)A(dl, JC) + (‘Ij(dz) — "F(x))é(dz — X)A(dz, JC)
6
= 164 + 148 + 172.47 ~ 484.47. (51)

It is nice to see that the following implications hold (50) and (51),

156 < 484.47.

4. Applications

We consider the following special means for arbitrary real numbers y, v,y # v :

Ay =P wver,
2uv
7 - 7 7 R 0 7
H(pv) it PVERAMO
_ V—H
;C(‘Z/l,l/) - ln|1/\ —11’1‘}4, “‘M| 7é |1/‘,]«l1/ 7& 0/
Vn—',-li‘un—&-l
Ln(p,v) {m}, ne Z\{-1,0},p,ve R, u#v.

Now using the results in Section 1, we have some applications to the special means of real
numbers.
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Proposition 6. For aj,a, € R, a1 < ap, then

ar, —a 7\% z
A, o) = £(e, )] < 2t (55) [Jen e+ e
q

Proof. Apply Theorem 2 with e (¥) = ¢¥, ¥(x) = x,0 = 1, and we obtain the desired result. [J

Proposition 6. Foray,a, € R, ay < ap, then

—a1 /7 \if 1 1 o014
1 el cB=m (T Nal L2 L2 1
M ) = £ )| < 2 (55) [ P+ 1)

Proof. Apply Theorem 2 with ¢/(*) = 1 ¥(x) = x,p = 1, and we obtain the desired result. [J

x’

Proposition 6. Let aj,a, € R™, a1 < ay, then

=

1
a—a1 /7 \jq
|A(a3,a3) — L3(ay,a2)| < o (372)‘7{|a1|‘1+\a2\’1] .
q

Proof. Apply Theorem 2 with /() = x2, ¥(x) = x,p = 1, and we obtain the desired result. [J

Proposition 6. Let aj,a, € R", a1 < ap, then

==

non " n(a; —a 7\¢ n_ e
Ala af) — £3ar,a2)] < 2B (7)1 10y 000 - oy (-]

2%q
Proof. Apply Theorem 2 with é¥(*) = ¥, ¥(x) = x,p = 1, and we obtain the general result. [J

5. Conclusions

In this article, we have investigated a few fractional integral inequalities for GRLFZ via
exponentially convexity. These inequalities have bounds of the sum of left-sided and right-sided
fractional integrals and inequalities for the function, and their first derivative in absolute value is
exponentially convex. Also, fractional inequalities of HH type for a symmetric and exponentially
convex function are proved. These estimates, bounds and inequalities exist for all fractional operators
are stated in Remark 1. The method followed to produce fractional inequalities is innovative and
simple. It could be followed to broaden further consequences for other classes of functions related to
exponentially convex functions, using convenient fractional integral operators.
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