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Abstract: The present paper investigates the numerical solution of an imprecisely defined nonlinear
coupled time-fractional dynamical model of marriage (FDMM). Uncertainties are assumed to exist in
the dynamical system parameters, as well as in the initial conditions that are formulated by triangular
normalized fuzzy sets. The corresponding fractional dynamical system has first been converted to an
interval-based fuzzy nonlinear coupled system with the help of a single-parametric gamma-cut form.
Further, the double-parametric form (DPF) of fuzzy numbers has been used to handle the uncertainty.
The fractional reduced differential transform method (FRDTM) has been applied to this transformed
DPF system for obtaining the approximate solution of the FDMM. Validation of this method was
ensured by comparing it with other methods taking the gamma-cut as being equal to one.

Keywords: fractional calculus; triangular fuzzy number; double-parametric form; FRDTM,; fractional
dynamical model of marriage

1. Introduction

In the present era, fractional-order derivatives have become widespread due to their wide
interdisciplinary applications and implementation in various fields of science and technology, such
as solid mechanics, fluid dynamics, financial mathematics, social sciences, and other areas of science
and engineering (see References [1-5]). As the solutions of non-integer order differential equations
are more complicated than integer-order differential equations, computationally efficient and reliable
numerical methods need to be developed to handle these. Authors have written different books (see
References [6-10]) in which various studies and analyses on fractional calculus may be found that will
support the authors for better understanding of the concepts of fractional calculus.

The hypothesis of entropy has been connected formerly with thermodynamics only; however, in
present-day, it has additionally been utilized in different areas like data hypothesis, psychodynamics,
biophysical financial aspects, human relations, etc. The second law of thermodynamics expresses that
entropy increases with time. It demonstrates the unpredictability of a structure over some time if there
is nothing to balance out it. Likewise, in human interactions, every day, various associations lead to
some turmoil. Recently, the discussion of the titled model has been attaining recognition throughout
the past few years. Relational relations emerge from numerous points of view, for instance, marriage,
blood relations, close attachments, work, clubs [11,12], and so forth. Many authors have studied
various research related to FDMM. The nonlinear coupled fractional FDMM was first investigated
by Ozalp and Koca [13]. In that paper, they performed a balance situation for equilibrium points.
Khader and Alqgahtani [14] applied the Bernstein collocation method for obtaining the solution of a
nonlinear FDMM, and they also compared their results with the Runge-Kutta fourth-order method.
They defined the fractional derivative in the Riemann-Liouville sense, and via the utilization of
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Bernstein polynomials, they converted the FDMM to a system of nonlinear algebraic equations, which
were solved using Newton’s iterative method. Khader et al. [15] also solved the same model by
implementing the Legendre spectral collocation method and affirmed the natural behavior of the
present system. Singh et al. [16] implemented a g-homotopy analysis method coupled with Sumudu
transform and Adomian decomposition method to solve FDMM and comparison results with the
existing literature are also included. Goyal et al. [17] studied the FDMM utilizing a variation iteration
method and a homotopy perturbation transform method.

Few authors have scientifically investigated the causes of extramarital interactions in marriage.
It is essential and challenging to find out why some wedded couples separate, while a few couples
do not. Moreover, among wedded couples, a few are fulfilled, while some are not fulfilled with each
other. As such, the number of divorce cases are increasing every day all over the globe. A survey
inside the U.S. uncovered that inside a forty-year interval, the probability of a first marriage finishing
in separation are roughly 50 to 67 percent. The record is 10 percent higher for a second marriage.
Around the world, the U.S. has the highest divorce rate. In this regard, experiments may be tough
to conduct and may also be restricted for personal concerns, and so a mathematical model happens
to be advantageous. As such, recently, researchers are investigating different dynamical models for
interpersonal relations.

The most recent model of marriage is the Romeo and Juliet model [18]. Assume that at any
moment , we need to determine Romeo’s adoration or loathing for Juliet, R(#) and Juliet's affection or
hate for Romeo, J(t). Positive estimations of these propose love, and negative values specify hate.

The presumption about this model is that the change in Romeo’s adoration for Juliet is a small
amount of his present love in addition to a small amount of her present love. Also, Juliet’s affection for
Romeo will change by a small amount of her present love for Romeo and a small amount of Romeo’s
adoration for her. This presumption prompts the model as given below [18,19]:

)

where g, b, ¢, and d are constants.

Gottman et al. [20] studied the discrete dynamical model to characterize the connection between
them. Since the layouts of research in those fields are cumbersome and restrained through the moral
reflections, mathematical models may furthermore have a fundamental influence in considering the
elements of relations and conduct highlights. A few models are present for describing the romantic
relationship; however, they may be limited to integer-order differential equations.

An integer order mathematical model of love is given as follows:

= —myp+0i&(1-68%) +c1.

2
B = —m& + bhy(1-592) + ¢, @)

Here, variables ¢ and & measure the adoration of a man or woman for his/her partner.
The parameters a;, b;, c;(1 < i < 2) denote the oblivion, reaction, and attraction constants. We have
measured that the decay of the feelings for one’s partner occurs exponentially quickly within the
absence of a partner. The parameter a; indicates the degree to which one is stimulated by way of
one’s personal feeling. It is used as a level of dependency along with fretfulness regarding other’s
affirmation in relationships. The parameter b; represents the level to which one is supported by one’s
partner and additionally anticipates him/her to be useful. It measures the tendency to keep away from
or seek closeness in a relationship. The term —a;1 and —a;& state that one’s adoration measure decays
exponentially without one’s partner, 1/4; suggests the time needed for love to diminish and 6 is a
compensatory constant.

In the present study, a time-fractional order dynamical system has been considered instead of its
integer order system because fractional order equations are generalizations of integer order differential
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equations and fractional order models hold memory. Interpersonal relationships are influenced by
memory, which makes the modeling more appropriate than the integer one for this kind of dynamical
system. This fact confirms that fractional modeling is best suited for this kind of system. Hence, the
investigation of the time-fractional systems is significant. The FDMM is given as:

12“71){1 = —ap,b + b]é(l - 652) +Cq.

a ®)
b = —a2& + boy(1- 592) + .
where0<a<1a; 20
with initial conditions (ICs):
¥(0) =0=¢&(0) )

It is observed that all the authors mentioned above have considered the parameters and variables
involved in FDMM as crisp or precise. However, in real life, it may not always be possible to take crisp
values due to errors in experiments, observations, and many other errors. Therefore, the parameters
and variables may be considered as uncertain. Here, the uncertainties are considered as intervals/fuzzy.
The parameters a;, b;, c;(1 < i < 2) and 6 denote the oblivion, reaction, attraction, and compensatory
constants, respectively. As these parameters are related to attractions and reactions of the model,
its values may not always be fixed. As such, the main targets of the authors are to consider these
parameters as fuzzy and then solve this fuzzy fractional model using an efficient method.

Let us consider the coupled fuzzy FDMM as given below:

T8 — (@) —0.02,a1,81 + 0.02)¢ + (by — 0.02,by, by +0.02)&
{1-(6-0.01,6,6+0.01)&2} + (c1 - 0.2,¢1,¢1 +0.2).

ac ~ ~ (5)
‘;T;E = —(ﬂZ —-0.02,a5,a, + 002)5 -+ (bz —0.02,by, by + 002)1/)
{1-(6-0.01,8,6 +0.01)g2} + (c2 = 0.2, c2,c2 + 0.2).
with fuzzy ICs _

where variables 1/7 and & describe the uncertain adoration of a man or woman for his/her partner.

The basic concepts of fuzzy variables were first presented by Chang and Zadeh [21], where
they suggested the theory of a fuzzy derivative. The extensive analysis in Chang and Zadeh [21]
was well-defined and studied by Dubois and Prade [22]. Kaleva [23] and Seikkala [24] studied
the fuzzy differential equations (FDEs) and initial value problems. Various problems related to the
differential FDEs are broadly studied by Chakraverty et al. (see References [25-27]). As fuzzy fractional
differential equations (FFDEs) are quite challenging to solve as compared to fractional differential
equations, computationally efficient numerical methods should be developed. In this research, we have
applied a fractional reduced differential transform method (FRDTM) along with imprecisely defined
parameters involved in the FDMM in order to study this dynamical system. Also, the convergence
analysis of the present solution has been discussed with an increasing number of terms of the solution.
The double-parametric form of a fuzzy number is applied to find the solution of the fractional fuzzy
dynamical model of marriage. This model has not yet been studied using FRDTM. The main benefit
of using this technique are: First, this procedure achieves the expansions of the solutions. Second,
this technique does not require any discretization, perturbations, or modification of the ICs. Also,
this technique needs fewer computations with high precision, as well as less time compared to other
techniques. In view of the above literature, FFDEs are first changed to a differential equation using
a double-parametric form (DPF). Then, the equivalent equation is solved using FRDTM to have an
interval/fuzzy solution in terms of the DPF.

The remaining parts of the manuscript are arranged as follows. In the “Preliminaries” section, we
give essential information related to fuzzy arithmetic, triangular fuzzy number, and double-parametric
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form of a fuzzy number. In section “Fractional Reduced Differential Transform Method,” we discuss
methodology and important theorems related to this technique. The double-parametric form-based
solution of FDMM is given in section “Double-Parametric-Based Solution of Uncertainty FDMM Using

FRDTM.” Next, numerical outcomes and deliberations are given in the “Results and Discussions
section. Finally, conclusions are drawn.

2. Preliminaries
In this segment, some basic definitions, and notations of fuzzy variables are discussed (see

References [25-27]).

Definition 1. (Fuzzy Number) A fuzzy number {{7 is a convex normalized fuzzy set 17; of the real line R
such that:
{%(x) RS [0, 1], Vxe 9&}

where T is a membership function and is piecewise continuous.

Definition 2. (Triangular Fuzzy Number) A triangular fuzzy number 1? is a convex normalized fuzzy set 1;
of the real line R such that:

(a)  There exists exactly one xo € R with “1;7(’(0) (xg is called the mean value of {/7), where [ is called the
membership function of the fuzzy set.
(b) yl;(x) is piecewise continuous.

The membership function My of a triangular fuzzy number lpl; = (a1, by, c1) is defined as:

0, x <a,
() = e m<x<b,
Hp ) = 9, h<x<a,
0, xX2cq.

Definition 3. (Single-Parametric Form of Fuzzy Numbers) The triangular fuzzy number = (ay, by, c1)
can be characterized by an ordered pair of functions through the y-cut approach |¥(y), ¥(y)] =
[(by —a1)y +a1, —(c1 = b1)y + c1], where y € [0, 1]. The y-cut form is well-known as the single-parametric
form of fuzzy numbers. It is observed that the lower and upper bounds of the fuzzy numbers satisfy the

below statements:

(i) Y(y) is a left-bounded nondecreasing continuous function over [0, 1].

(i) (y) is a right-bounded nonincreasing continuous function over [0, 1].
(iii) ¥(y) <U(y), where0 <y <1.

Definition 4. (Double-Parametric Form of Fuzzy Number) Using the single-parametric form, as discussed

in Definition 3, we have = [(y), ¥ (7)].
Now we can write this as crisp with DPF as:

P, 8) =B - () + ()

where y and B € [0, 1].

Definition 5. (Fuzzy Arithmetic) For arbitrary fuzzy numbers x = |x(y), X(y)1, v = Ly(y), y(y)] and
scalar m, fuzzy arithmetics are well-defined as below:
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(i) x=yifandonlyif x(y) = y(y) and X(y) = y(y)

(i) x+y=Lx(y)+y()x()+y()]

(i) FxT— [ min(x(y) X y(7), x(v) x¥(), F(y) x y(), () x¥(»)),
Y max(x(y) X y(), () X¥(), X(7) x y(), () x(7)

o= | [kx(y), kx(y)], k<0

i = L ko

3. Fractional Reduced Differential Transform Method

Let us take an analytic and k-times continuously differentiable function ¢(x,t). Assume that
Y(x, t) is denoted as a product of two functions as ¥ (x, t) = a(x)b(t). From Momani and Odibat [28],
this function is written as follows

i A(m)xm][i B(n)t”] = i i F(m,n) x™t" (7)
n=0 m=0

m=0 n=0

Y(xt) =

where F(m,n) = A(m)B(n) is named as the spectrum of i (x, t).

Lemma 1. The fractional reduced differential transform (FRDT) of an analytic function Y (x, t) is defined as:

1

Pi(x) = m[mklp(x, By, fork=0,1,2, ... 8)

The inverse transform of Yy (x) is well-defined as

Pl t) = Y Pr(x)(t—t)™ ©)
k=0
From Equations (8) and (9), we obtain:
(o] 1 N
P (xt) = Z m[DaklP( D]y, (= t0)™" (10)
k=0
In particular, at ty = 0, we have:
- 1
P t) = ) ————[D¥y(x,1)],_t*F (11)
kZé Flak+1) ! =0

Theorem 1. Let y(x,t), &(x,t), and C(x,t) be three analytical functions such that(x,t) = R yi(x)],
&(x,t) = RpM&(x)], and T(x, t) = R5'[Ci(x)]. Hence from References [29-32]):

(i) If(x,t) =c1& (x,t) £l (x, 1), then Yy (x) = c1& (x) £ ek (x), where c1 and ¢y are constants.
(i) If Y1) = a gl b), then i (x) = a &(x).
(ii) If P(x, t) = x™", then Yy (x) = x™ 6(k —n) where 6(k) = { (1)' I;{Zg .

(x,1) =

(iv) If P(x,t) = x""E(x, t), then Pr(x) = x™Ep_y (x).
© I 9lt) = & (o0 (), then 9i6) = 5 & (Gt () = 5 G (0S40 )
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i) If P(x,t) = &(x, )T (%, t)c (x, 1), then Py (x) = Xkl é &i (2)Cji (%) ck—j (%)-

j=0i=0

Theorem 2. Let ¢(x,t) and &(x,t) are two analytical functions such that {(x,t) = Rp'[e(x)], and
E(x,t) = RBl [Ex(x)]. Hence:

(i) Ifp(x,t) = LR&(x,t), then Pi(x) = L5 &(x).

(i) If () = Gmé(x,1), then i (x) = SR £ (v)

Corollary 1. If {(x,t) = 0%, then (i (x) = %(ee".

Corollary 2. If &(x,t) = sin(6t + ux) and C(x,t) = cos(Ot + ux), then &(x) = % sin(’% + yx) and
Ge(x) = % cos(’% + ,ux).

In order to explain the concept of FRDTM, let us consider the following equation in the operator
form as:
L(x, t) + RY(x, t) + Ny(x, t) = h(x,t) (12)
with IC:
¥(x,0) = g(x) (13)
where L = % ; R, N are linear, nonlinear operators; and #(x, t) is an inhomogeneous source term.

Using Theorem 2 and Equations (8) and (12), this reduces to:

Irl+ak+a)

T+ ak) Yrer1(x) = Hi(x) = Ry (x) = Ny (x) fork = 0,1,2... (14)

where 1 (x) and Hy(x) are the transformed form of ¢ (x, t) and h(x, t), respectively.
Applying FRDTM on the IC, we obtain:

Yo(x) = g(x) (15)

Using Equations (14) and (15), ¥k (x) fork =1, 2, 3, ... can be determined.
Then, taking the inverse transformation of {i/;(x)};_, gives the n-term approximate solution as:

Pult) = ) () (16)
k=0

Therefore, the analytical result of Equation (12) is written as ¢ (x, ) = 7}1_{1010 Un(x, t).

4. Double-Parametric-Based Solution of an Uncertain FDMM Using FRDTM

To begin with, by applying the single parametric form, the FDMM is changed to an interval-based
FDE. At that moment, by applying the DPF, the interval-based FDE is transformed into an FDMM
having two parameters that may control the uncertainty. Finally, FRDTM is then applied to solve
the corresponding double parametrized FDMM for obtaining the needed solution in terms of
intervals/fuzzy variables.
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Equations (5) and (6) can now be modified in single-parametric form as:

[5w(t;y), &9 (ty)] = =002y +ay - 0.02), (<0.02y +ay +0.02)] [(t;7), ¥ (t;7)
+[(0.02y + by - 0.02), (=0.02y + by +0.02)] [&(¢; y ( ;)

[1—{(0.01y+5—0.01),( 0.01y + 5+ 0.01)}{&(¢;y), )]

+[(0.2y +¢1-0.2), (-0.2y +¢1 +0 2)]

[£6(t:7), £ E(t;7)] = =[(0.02y + a2 - 0.02), (<0.02) + a2+ 0.02)] [£(t;7), E(t;7)]
+[(0.02y + b2 = 0.02), (=0.02y + by +0.02)][Y(t;7), ¥ (t;7)]

[1 —{(0.01y + 6 -0.01), (~0.01y + 5+ 0.01)}{f(t,-y),i(t;y)}2
+1(02y + ¢ -0.2), (-0.2y + ¢z +0.2)].

|
|

with fuzzy ICs:

[£(0;7),9(0;9)] = [£0;7),E(0;7)] = [0.1y = 0.1, =0.1y +0.1]

7 of 16

(17)

(18)

where Equations (17) and (18) are in interval form. One can find out the solution of this interval equations,
but sometimes it is complicated to handle such types of interval equations. Therefore, one may require

the double-parametric form to handle this interval computation. Applying double-parametric form to

Equations (17) and (18), we have:

(j— =t y)) %f(t;y)} = {(0.04 — 0.04y) + 0.02y — 0.02 + a1}

Bty )—i—z,b(t )/)} + {B(0.04 — 0.04y) + 0.02y + by —0.02)
1—-{B(0.02 = 0.02y) + 0.01y + 5 —0.01}
t; _

{ﬁ( )+5( V)}[ {ﬁ(ff(f;)/)—é(t;y))—i—é(t;y)}z ]
+{B(0.4-0.4y) + 0.2y +c1 —0.2}.
(B(EE(ty) - S £(t59)) + 42 £(¢57)) = 1B(0.04 - 0.04y) +0.02y - 0.02 +a)
(B(E(t:7) = £(t:7)) + &(t57)) + [B(0.04 — 0.04y) +0.02y + b, — 0.02)

1-{B(0.02-0.02y) 4 0.01y + 6 —0.01}

{ﬁ(xp(t;y) —9(t;7)) +g(t;y)} {ﬁ@(tn/) - 9(t;7)) +f(t;y)}2

+{B(0.4—0.4y) + 0.2y 4 c; —0.2}.

with fuzzy ICs:
{ﬁ@(o;w —9(0;7)) + g(o;w} ={B(E(0;7) = £(0;7)) + £(0;7))
= B(=0.2y 4+0.2) + (0.1y —0.1)
Let us take: o : i

(B(&ee(tiy) - &(t:7)) + S=é(ty)) = &&(t7,p)

{ﬁ(%@(f;y)—%f(t;y)%%f(t 7/)} = &v(t;y,B)
{ﬁ(@(t;y>—g<t;y>)+g<t;y> §< 7.8)
{5(3( ; t; )

(19)

(20)

(21)
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{B(0.04 — 0.04y) + 0.02y + by —0.02} = by.
{B(0.04 — 0.04y) + 0.02y + by — 0.02} = b,.
{B04—04y) +02y +c; —02) =7;.
{B(0.4—-0.4y) +0.2y + 2 - 0.2} =c3.
{8(0.02 - 0.02y) + 0.01y + 6 - 0.01} = 6.
{ﬂ@(O;V) - 9(0;7)) +f(0;y)} = (0;7,8)
and B N
{BE(0;7) = £(0;9)) +£(0;9)} = £(0;7,8)

Substituting all the above equations in Equations (19)—(21), we get:

d“%ij"ﬁ) = —y(t;y,B) +Elg(f}yrﬁ)(1 _3‘?(“%5)) +ar.
LL2D — 58 (157.,8) + 520 (57.8) (1~ 59 (457, 6)) + &

(22)

with ICs: _ _
P(0;y,8) =&(0;7,8) =B(-02y +0.2) + (0.1y -0.1) =17 (23)

Solving Equation (22) with the ICs in Equation (23), we have i (t;y, B) and (t;y, B) in terms of y
and . To find the lower and upper bounds of the solutions in single parametric form, we have to
substitute § = 0 and § = 1, respectively. Mathematically these are written as:

U(t;7,0) = P(t;7),E(;7,0) = E(t;y) and (¢ 7,1) = P(t;7), E(t57,1) = E(t;y)

Applying FRDTM to both sides of Equation (22), and using Theorems 1 and 2, we have:

— _— ki
ST 0) = ) + D0 -D £ 1 5| 4B
s el
W{#f&k-&-l(%ﬁ) = —m2& (7, B) +batr(y, B) = b20| X. X i jthjPri |+ c20(k)
I+ i=0 j=0
Where:
1, k=0
o(k) = { 0, k#0
Using FRDTM on the IC, we get:
Po(y,B) = Eo(r,B) =1 (25)

Using Equation (25) in Equation (24), the following values o ~k an ~k ork=1,2,... are obtained:
g Eq (25) in Eq (24), the following values of y; and & for k btained

g1 = —@n+bin-bidn +7.

o T (26)
&1 = —axn + ban — byon° + c3.
o = =@ (a1 + b1 = b1 + € ) + by (—@n + bon = badn® + )
— 3b1502(=aan + ban — bad1 +33).
177( 21+ bon —brdn 2) @)

& = ~@(—aan + ban — ba01 + C) + by(=a@1n + by = byon® + )
—3by6r2(—a1n + bin — bion® + 7).
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Continuing the above procedure, all the values of {% 51} _, can be calculated. Therefore, according to
FRDTM, the n-term solutions of Equation (22) with Equation (23) are written as:

117 (7, ).
5 (y, )tk

P(t;y,p) =

_ (28)
&ty B) =

IT[\’J:\ I} M:

Substituting f = 0 and = 1, the lower and upper bounds of the solution can be calculated, which,
respectively, are as follows:

U700 = ¥ Uy, 0)1ok,
= . (29)
E(t;7,0) = X &(y,0)tok,
k=0
and )
P(t;7,1) = ¥ gy, 1)k,
k=0 30)

£ty = L &

5. Results and Discussion

In this section, an approximate solution of a fuzzy FDMM using FRDTM has been studied. Various
numerical computations have been carried out by taking different values of parameters involved in
the equation and ICs. In this article, all the figures and tables are included by considering the values
of the parameters as a; = 0.05,b; = 0.04,c1 = 0.2,ap = 0.07,bp = 0.06,c = 0.3 and 6 = 0.01 (see
References [16,17]). The achieved outcomes are compared with the solution of Singh et al. [16] and
Goyal et al. [17], which show the validation of the present study. Calculated results are displayed in
terms of plots.

Here, all the numerical calculations have been computed by truncating the infinite series to a
finite number of terms (n = 5). Fuzzy solutions of FDMM are portrayed in Figures 1-6 by changing
time t from 0 to 1 and for different values of a. Next, interval solutions for different values of a have
been illustrated in Figures 7-12 by considering y — cut 0.4, 0.8 and 1, and varying time ¢ from 0 to 10.
From these Figures 7-12, one may see that the line at y = 1 is the central line, and all other solutions
are present on both sides of the y = 1 line.

0.4+

0.3+

Fuzzy 5
solution J
0.1

H

~0.1
' 08060402 § 02040608 |

! Y — cuat

Figure 1. Lower and upper bounds fuzzy solutions of (t) at @ = 1.
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0.5
(.44
Fuzzy 0.3+
solution ;5]

0.1

=01+

v

0 l

!

4 5 02 04 06 08
v — CHY

Figure 2. Lower and upper bounds fuzzy solutions of &(t) ata = 1.

0.5

[]_4—_

Fuzrzy 0'3_-.
solution 0.2
0.1

o

-0
l

v

0.8 0.6 D4n2 0 02 n40.6 B !

¢ v— cut

Figure 3. Lower and upper bounds fuzzy solutions of (t) at @ = 0.5.

e —————— e

0.6]

0.4

Fuzzy 0.3
solution 0.7
0.1

o

I 08060402 o p2 040608 1

t v — cit

Figure 4. Lower and upper bounds fuzzy solutions of &(t) at a = 0.5.

(.57
[}_4-
[}.3-_
[}.2-_
[}_l-
N
0
Los 060402 o D204 0.6

¢ ¥ — cut

Furzy
solution

ng |

Figure 5. Lower and upper bounds fuzzy solutions of (t) at @ = 0.75.
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G.(:j
ﬂ.ﬁj
0.4+
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Figure 12. Lower and upper bounds interval solutions of &(t) at @ = 0.75.

Also, it can be seen that the central line (crisp result, i.e., at y — cut = 1) of Figures 7-12 gradually
decreased with a decrease in a. Alternatively, we may say that a decrease in the values of o decreased
the adoration of man or woman for his/her partner. From Tables 1-6, it is clear that the lower and
upper bounds at different values of & were the same at y = 1 and the obtained results matched with
the solutions of Singh et al. [16] and Goyal et al. [17].
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Table 1. Fuzzy and crisp solution of ¢/(t) ata = 1and y = 1.
g
No of Approximation 0 0.2 0.4 0.6 0.8 1
n=1[p, 9| [0,0] [0.040.03999] [0.08,0.07999]  [0.12,0.119999]  [0.16,0.159999]  [0.20,0.199999]
n=2[p 9] [0,0] [0.04,0.04003] [0.0801,0.0802] [0.1203,0.120359] [0.1606,0.16064]  [0.2009,0.20099]
n=3 LlP, JJ [0,0] [0.04,0.04003] [0.0801,0.08015] [0.1203,0.120342] [0.1606,160599]  [0.2009,0.20092]
n=4 [t,b, aJ [0,0] [0.04,0.04004] [0.0801,0.08015] [0.1203,0.120342] [0.1606,160597]  [0.2009,0.20092]
n=5|y, 9] [0,0] [0.04,0.04004] [0.0801,0.08015] [0.1203,0.120342] [0.1606,160597]  [0.2009,0.20092]
Refs. [16,17]
Crisp value at 0 0.04 0.0801 0.1203 0.1606 0.2009
y=1
Table 2. Fuzzy and crisp solution of &(t) ataw = 1and y = 1.
d
No of Approximation ¢ 0.2 0.4 0.6 0.8 1
n=1 é,z [0,0] [0.06,0.059999] [0.12,0.1199] [0.18,0.179999]  [0.24,0.239999] [0.30,0.29999]
n=2 é,g [0,0] [0.0598,0.0598] [0.1192,0.1197] [0.1783,0.178389] [0.2371,0.237189] [0.2954,0.29549]
n=3 g,E [0,0] [0.0598,0.0598] [0.1192,0.1192] [0.1784,0.178406] [0.2371,0.237182] [0.2956,0.29562]
n=4[&% [0,0] [0.0598,0.0598] [0.1192,0.1192]  [0.1784,0.178405] [0.2371,0.237179] [0.2956,0.29561]
n=>5 é,z [0,0] [0.0598,0.0598] [0.1192,0.1192] [0.1784,0.178405] [0.2371,0.237179] [0.2956,0.29561]
Refs. [16,17]
Crisp value at 0 0.0598 0.1192 0.1784 0.2371 0.2956
y=1
Table 3. Fuzzy and crisp solution of ¢(t) at « = 0.5.
-
Ji-cut 0 0.2 0.4 0.6 0.8 1
y=0[p,9|  [-01,01] [-0.991,03016] [-0.098503853] [-0.0980,04496] [-0.0975,0.5038] ~[-0.0970,0.5515]
y=02[p, 9] [-008008] [-0.059,02616] [-0.0501,0.3370] [-0.0432,0.3949] [-0.0373,0.4437] ~[0.0321,0.4867]
y =04 M, EJ [-0.06,0.06] [-0.0189,0.2215] [-0.0017,0.2886]  [0.0115,0.3401] [0.0228,0.3836] [0.0328,0.4219]
y =06 M, EJ [-0.04,0.04] [0.0211,0.1814] [0.0467,0.2402] [0.0663,0.2854]  [0.0829,0.3234]  [0.0976,0.3570]
y =038 M, JJ [-0.02,0.02]  [0.0613,0.1414] [0.0950,0.1918] [0.1211,0.2306] [0.1431,0.2633]  [0.1625, 0.2922]
y=1|p,9] [0,0] [0.1013,0.1013]  [0.1434,0.1434]  [0.1759,0.1758] ~ [0.2032,0.2032]  [0.2273,0.2273]
Refs. [16,17]
Crisp value at 0 0.1013 0.1434 0.1759 0.2032 0.2273
y=1
Table 4. Fuzzy and crisp solution of &(t) at & = 0.5.
-
y-cut 0 0.2 0.4 0.6 0.8 1
y=0 [é, EJ [-0.1,0.1] [-0.0500,0.3493] [-0.0299,0.4511] [-0.0146,0.5288] [-0.0019,0.5938]  [0.0092,0.6509]
y=02 E,E [-0.08,0.08] [-0.0101,0.3094] [0.0182,0.4030] [0.0397,0.4744]  [0.0577,0.5343]  [0.0734,0.5867]
y =04 §,E [-0.06,0.06]  [0.0298,0.2694] [0.0663,0.3549] [0.0940,0.4200] [0.1172,0.4747] [0.1375,0.5226]
y =06 é,g [-0.04,0.04] [0.0698,0.2295] [0.1144,0.3068] [0.1484,0.3657] [0.1768,0.4151]  [0.2017, 0.4584]
y =038 é,z [-0.02,0.02]  [0.1097,0.1896] [0.1625,0.2587] [0.2027,0.3114] [0.2364,0.355] [0.2659, 0.3942]
y=1 lé, EJ [0,0] [0.1496,0.1496] [0.2106,0.2106] [0.2570,0.2570] [0.2960,0.2960] [0.3300,0.3300]
Refs. [16,17]
Crisp value at 0 0.1496 0.2106 0.2570 0.2960 0.3300

r=1
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Table 5. Fuzzy and crisp solution of ¢(t) at @ = 0.75.

14 of 16

-
)icut 0 0.2 0.4 0.6 0.8 1
y=0 [lp, JJ [-0.1,0.1]  [-0.0995,0.2210] [-0.0991,0.3187] [-0.0986,0.3965] [-0.0980,0.4681] [-0.0974,0.5353]
y =02 _lpﬂ [-0.08,0.08] [-0.0666,0.1970] [-0.0573,0.2769] [-0.0491,0.3470] [-0.0414,0.4115] [-0.0342,0.4720]
y =04 M EJ [-0.06,0.06] [-0.0336,0.1640] [-0.0155,0.2351]  [0.0005,0.2975]  [0.0152,0.3549]  [0.0291,0.4087]
y =06 M EJ [-0.04,0.04] [-0.0007,0.1311] [0.0263,0.1933]  [0.0410,0.2480]  [0.0718,0.2983]  [0.0924,0.3455]
y =08 M, EJ [-0.02,0.02] [0.0323,0.0982] [0.0680,0.1516] [0.0995,0.1985]  [0.12843,0.2417]  [0.1557,0.2822]
y=1 M JJ [0,0] [0.0652,0.0652] [0.1098,0.1098] [0.1490,0.1490] [0.1850,0.1850] [0.2189,0.2189]
Refs. [16,17]
Crisp value at 0 0.0652 0.1098 0.1490 0.1850 0.2189
y=1
Table 6. Fuzzy and crisp solution of &(f) at a = 0.75.
—)
icut 0 0.2 0.4 0.6 0.8 1
y=0 [é, EJ [-0.1,0.1] [-0.0675,0.2615] [-0.0457,0.3707] [-0.0268,0.4658] [—0.0097,0.5526]  [0.0063,0.6336]
y =02 é, & [-0.08,0.08] [-0.0346,0.2286] [—0.0040,0.3290]  [0.0225,0.4165] [0.0466,0.4963] [0.0690,0.5709]
y=04[5Z| [-0.06006] [-0.0017,0.1957] [0.0376,02874]  [0.0717,0.3672]  [0.1028,0.4401]  [0.1317,0.5081]
y =06 g,E [-0.04,0.04] [0.0312,0.1628] [0.0792,0.2457] [0.1210,0.3179] [0.1590,0.3839] [0.1945,0.4454]
y =038 é,z [-0.02,0.02] [0.0641,0.1299] [0.1209,0.2041] [0.1702,0.2687] [0.2152,0.3276] [0.2572,0.3827]
y=1 [é, EJ [0,0] [0.0970,0.0970]  [0.1625,0.1625]  [0.2195,0.2195]  [0.2714,0.2714]  [0.3199,0.3199]
Refs. [16,17]
Crisp value at 0 0.097 0.1625 0.2195 0.2714 0.3199
y=1

6. Conclusions

In this paper, approximate solutions of a fuzzy FDMM were found with the help of an efficient
method, namely FRDTM. In the procedure, the DPF of fuzzy number was applied. This methodology
was found to be straight forward as it converted FDEs to an advantageous form involving two
parameters that controlled the uncertainty. Attained outcomes were compared with the existing
results and were found to be in agreement. The main benefit of applying this method is that it does
not require any assumption, perturbation, or discretization for solving the governing time-fractional
dynamical model. Also, the computation time was less compared to other techniques. From this study,
it is concluded that the decrease in the values of @ decreased romantic relations between the couple.

Author Contributions: Each author has contributed equally towards preparing and finalizing the whole research
work of the present paper.

Funding: This research received no external funding.

Acknowledgments: The first-named author acknowledges the Department of Science and Technology of the
Government of India for providing INSPIRE Fellowship (IF170207) in order to carry out the present research.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Jena, RM.; Chakraverty, S.; Jena, S.K. Dynamic Response Analysis of Fractionally Damped Beams Subjected
to External Loads using Homotopy Analysis Method. J. Appl. Comput. Mech. 2019, 5, 355-366.

2. Jena, RM.; Chakraverty, S. Solving time-fractional Navier-Stokes equations using homotopy perturbation
Elzaki transform. SN Appl. Sci. 2019, 1, 16. [CrossRef]

3.  Jena, RM.,; Chakraverty, S. Residual Power Series Method for Solving Time-fractional Model of Vibration
Equation of Large Membranes. J. Appl. Comput. Mech. 2019, 5, 603-615.


http://dx.doi.org/10.1007/s42452-018-0016-9

Mathematics 2019, 7, 689 15 of 16

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Jena, RM.; Chakraverty, S. A new iterative method based solution for fractional Black-Scholes option pricing
equations (BSOPE). SN Appl. Sci. 2019, 1, 95-105. [CrossRef]

Edeki, S.0.; Motsepa, T.; Khalique, C.M.; Akinlabi, G.O. The Greek parameters of a continuous arithmetic
Asian option pricing model via Laplace Adomian decomposition method. Open Phys. 2018, 16, 780-785.
[CrossRef]

Podlubny, 1. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.

Kilbas, A.A.; Srivastava, HM.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations;
North-Holland Mathematical Studies; Elsevier Science Publishers: Amsterdam, The Netherlands; London,
UK; New York, NY, USA, 2006; Volume 204.

Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World
Scientific: Boston, MA, USA: 2012.

Baleanu, D.; Machado, J.A.T.; Luo, A.C. Fractional Dynamics and Control; Springer: Berlin, Germany, 2012.
Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations;
A Wiley-Interscience Publication; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane,
Australian; Toronto, ON, Canada; Singapore, 1993.

Barley, K.; Cherif, A. Stochastic nonlinear dynamics of interpersonal and romantic relationships.
Appl. Math. Comput. 2011, 217, 6273-6281. [CrossRef]

Rinaldi, S. Love dynamics: The case of linear couples. Appl. Math. Comput. 1998, 95, 181-192. [CrossRef]
Ozalp, N.; Koca, I. A fractional order nonlinear dynamical model of interpersonal relationships. Adv. Differ. Equ.
2012, 189, 1-7. [CrossRef]

Khader, M.M.; Alqahtani, R. Approximate solution for system of fractional non-linear dynamical marriage
model using Bernstein polynomials. J. Nonlinear Sci. Appl. 2017, 10, 865-873. [CrossRef]

Khader, M.M.; Shloof, A.; Ali, H. On the numerical simulation and convergence study for system of non-linear
fractional dynamical model of marriage. NTMSCI 2017, 5, 130-141. [CrossRef]

Singh, J.; Kumar, D.; Qurashi, M.A.; Baleanu, D. A Novel Numerical Approach for a Nonlinear Fractional
Dynamical Model of Interpersonal and Romantic Relationships. Entropy 2017, 19, 375. [CrossRef]

Goyal, M; Prakash, A.; Gupta, S. Numerical simulation for time-fractional nonlinear coupled dynamical
model of romantic and interpersonal relationships. Pramana J. Phys. 2019, 92, 82. [CrossRef]

Martin, M.T.C.; Bumpass, B.L. Recent trends in marital disruption. Demography 1989, 26, 37-51. [CrossRef]
[PubMed]

Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering;
Reading, M.A., Ed.; Addison-Wesley: Boston, MA, USA, 1994.

Gottman, ].M.; Murray, ].D.; Swanson, C.C.; Tyson, R.; Swanson, K.R. The Mathematics of Marriage; MIT Press:
Cambridge, MA, USA, 2002.

Chang, S.L.; Zadeh, L.A. On fuzzy mapping and control. IEEE Trans. Syst. Man Cybern. 1972, 2, 30-34.
[CrossRef]

Dubois, D.; Prade, H. Towards fuzzy differential calculus part 3: Differentiation. Fuzzy Sets Syst. 1982, 8,
225-233. [CrossRef]

Kaleva, O. The Cauchy problem for fuzzy differential equations. Fuzzy Sets Syst. 1990, 35, 389-396. [CrossRef]
Seikkala, S. On the fuzzy initial value problem. Fuzzy Sets Syst. 1987, 24, 319-330. [CrossRef]

Chakraverty, S.; Tapaswini, S.; Behera, D. Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations
and Applications; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016.

Chakraverty, S.; Tapaswini, S.; Behera, D. Fuzzy Differential Equations and Applications for Engineers and
Scientists; Taylor and Francis Group: Boca Raton, FL, USA, 2016.

Chakraverty, S.; Sahoo, D.M.; Mahato, N.R. Concepts of Soft Computing: Fuzzy and ANN with Programming;
Springer: Singapore, 2019.

Momani, S.; Odibat, Z. A generalized differential transform method for linear partial differential equations
of fractional order. Appl. Math. Lett. 2008, 21, 194-199.

Singh, B.K.; Kumar, P. FRDTM for numerical simulation of multi-dimensional, time-fractional model of
Navier-Stokes equation. Ain Shams Eng. |. 2018, 9, 827-834. [CrossRef]

Singh, J.; Kumar, D.; Swroop, R.; Kumar, S. An efficient computational approach for time-fractional
Rosenau-Hyman equation. Neural Comput. Appl. 2018, 30, 3063-3070. [CrossRef]


http://dx.doi.org/10.1007/s42452-018-0106-8
http://dx.doi.org/10.1515/phys-2018-0097
http://dx.doi.org/10.1016/j.amc.2010.12.117
http://dx.doi.org/10.1016/S0096-3003(97)10081-9
http://dx.doi.org/10.1186/1687-1847-2012-189
http://dx.doi.org/10.22436/jnsa.010.03.02
http://dx.doi.org/10.20852/ntmsci.2017.223
http://dx.doi.org/10.3390/e19070375
http://dx.doi.org/10.1007/s12043-019-1746-y
http://dx.doi.org/10.2307/2061492
http://www.ncbi.nlm.nih.gov/pubmed/2737357
http://dx.doi.org/10.1109/TSMC.1972.5408553
http://dx.doi.org/10.1016/S0165-0114(82)80001-8
http://dx.doi.org/10.1016/0165-0114(90)90010-4
http://dx.doi.org/10.1016/0165-0114(87)90030-3
http://dx.doi.org/10.1016/j.asej.2016.04.009
http://dx.doi.org/10.1007/s00521-017-2909-8

Mathematics 2019, 7, 689 16 of 16

31. Rawashdeh, M.S. An Efficient Approach for Time-Fractional Damped Burger and Time—Sharma—
Tasso—Olver Equations Using the FRDTM. Appl. Math. Inf. Sci. 2015, 9, 1239-1246.

32. Keskin, Y.; Oturan, G. Reduced Differential Transform Method for Partial Differential Equations. Int. ].
Nonlinear Sci. Numer. Simul. 2009, 10, 741-749. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1515/IJNSNS.2009.10.6.741
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Fractional Reduced Differential Transform Method 
	Double-Parametric-Based Solution of an Uncertain FDMM Using FRDTM 
	Results and Discussion 
	Conclusions 
	References

