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Abstract: In this article, we aim to establish several inequalities for differentiable exponentially convex
and exponentially quasi-convex mapping, which are connected with the famous Hermite–Hadamard
(HH) integral inequality. Moreover, we have provided applications of our findings to error estimations
in numerical analysis and higher moments of random variables.
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1. Introduction

Let Ψ : I ⊆ R→ R be a convex function, then

Ψ
(σ1 + σ2

2

)
≤ 1

σ2 − σ1

∫ σ2

σ1

Ψ(x)dx ≤ Ψ(σ1) + Ψ(σ2)

2
.

We call the above double inequality a Hermite–Hadamard (HH) inequality. Equality holds in
either side only for affine functions. This result of Hermite and Hadamard is very simple in nature but
very powerful. Interestingly, both sides of the above integral inequality characterize convex functions.
For some interesting details and applications of HH inequality, we refer readers to [1–19].

There are many famous results known in the theory of inequalities which can be obtained using
functions having the convexity property. One of them is Hermite–Hadamard’s inequality that has wide
application in the field. Many researchers have used different novel and innovative ideas in obtaining
new generalizations of classical inequalities, see [20–26]. The inequality theory has developed and
provided a rapid development of generalizations, improvements and refinements of the classical
concept of convexity. For details, see [2,15–17].

Now, we refresh our memories by giving some preliminary definitions and concepts as follows:

Definition 1. Suppose that K is a subset of R. A function Ψ : K ⊆ R→ R is called a convex function if the
following inequality

Ψ (sσ1 + (1− s) σ2) ≤ sΨ (σ1) + (1− s)Ψ (σ2)
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holds for all σ1, σ2 ∈ K and s ∈ [0, 1].

Recently, the definition of exponentially convex functions has been given and studied by
Awan et al. [2].

Definition 2 ([2]). Suppose that K is a subset of R. The mapping Ψ : K ⊆ R→ R is said to be exponentially
convex, if

Ψ
(
sσ1 + (1− s)σ2

)
≤ seθσ1 Ψ(σ1) + (1− s)eθσ2 Ψ(σ2) (1)

for all σ1, σ2 ∈ K, s ∈ [0, 1] and θ ∈ R. One can say that Ψ is exponentially concave, in the case that in (1) the
reverse inequality holds.

For example, the function Ψ : R → R, defined by Ψ(υ) = −υ2 is a concave function, thus this
function is exponentially convex for all θ > 0.

Exponentially convex functions are used to manipulate for statistical learning,
sequential prediction and stochastic optimization. Exponentially convex functions are very
useful due to their interesting properties. An exponentially convex function on a closed interval is

bounded, it also satisfies the Lipschitzian condition on any closed interval [σ1, σ2] ⊂
◦
I (interior of I).

Therefore an exponentially convex function is absolutely continuous on [σ1, σ2] ⊂
◦
I and continuous on

◦
I. Now we introduce exponentially quasi-convex functions.

Definition 3 ([10]). A mapping Ψ : K ⊆ R→ R is said to be exponentially quasi-convex, if

Ψ
(
sσ1 + (1− s)σ2

)
≤ max

{
eθσ1 Ψ(σ1), eθσ2 Ψ(σ2)

}
for all σ1, σ2 ∈ K, s ∈ [0, 1] and θ ∈ R.

Here we recall some of the results for convex and quasi-convex functions which are closely related
to the research of our paper.

Theorem 1 ([5]). Let Ψ : I ⊆ R → R be a differentiable mapping on
◦
I, where σ1, σ2 ∈ I with σ1 < σ2,

and Ψ′ ∈ L([σ1, σ2]). If |Ψ′| is convex on [σ1, σ2], then

∣∣∣Ψ(σ1) + Ψ(σ2)

2
− 1

σ2 − σ1

σ2∫
σ1

Ψ(υ)dυ
∣∣∣ ≤ (σ2 − σ1)

(
|Ψ′(σ1)|+ |Ψ′(σ2)|

)
8

. (2)

Theorem 2 ([5]). Let Ψ : I ⊆ R → R be a differentiable mapping on
◦
I, where σ1, σ2 ∈ I with σ1 < σ2,

and Ψ′ ∈ L(σ1, σ2). If |Ψ′|
p

p−1 is convex on [σ1, σ2], then

∣∣∣Ψ(σ1) + Ψ(σ2)

2
− 1

σ2 − σ1

σ2∫
σ1

Ψ(υ)dυ
∣∣∣ ≤ (σ2 − σ1)

2(p + 1)
p

p−1

[ (|Ψ′(σ1)|
p

p−1 + |Ψ′(σ2)|
p

p−1
)

2

]
, (3)

where p > 1 and p−1 + q−1 = 1.

In [24], Pearce and Pecaric gave an upgrading and overview of upper bounds as follows. It is
clear that the upper bound of (4) is less than the one in the inequality (3).

Theorem 3 ([24]). Let Ψ : I ⊆ R → R be a differentiable mapping on
◦
I, where σ1, σ2 ∈ I with σ1 < σ2,

and Ψ′ ∈ L([σ1, σ2]). If |Ψ′|
p

p−1 is convex on [σ1, σ2], then
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∣∣∣Ψ(σ1) + Ψ(σ2)

2
− 1

σ2 − σ1

σ2∫
σ1

Ψ(υ)dυ
∣∣∣ ≤ (σ2 − σ1)

4

[ (|Ψ′(σ1)|q + |Ψ′(σ2)|q
)

2

] 1
q
, (4)

where p > 1 and p−1 + q−1 = 1.

Recently in 2011, Hwang [27] derived the following identity and presented certain useful results
via this identity.

Lemma 1 ([27]). Let Ψ : I ⊆ R→ R be a differentiable mapping on
◦
I, where σ1, σ2 ∈ I with σ1 < σ2, and let

u : [σ1, σ2]→ [0, ∞) be a differentiable mapping. If Ψ′ ∈ L([σ1, σ2]), then

1
2

([
u(σ2)− 2u(σ1)

]
Ψ(σ1) + u(σ2)Ψ(σ2)

)
−

σ2∫
σ1

Ψ(υ)u′(υ)dυ

=
σ2 − σ1

4

{ 1∫
0

[
2u
(1 + s

2
σ1 +

1− s
2

σ2

)
− u(σ2)

]
Ψ′
(1 + s

2
σ1 +

1− s
2

σ2

)
ds

+

1∫
0

[
2u
(1− s

2
σ1 +

1 + s
2

σ2

)
− u(σ2)

]
Ψ′
(1− s

2
σ1 +

1 + s
2

σ2

)
ds

}
. (5)

Theorem 4 ([27]). Let Ψ : I ⊆ R → R be a differentiable mapping on
◦
I, where σ1, σ2 ∈ I with σ1 < σ2,

and h : [σ1, σ2]→ [0, ∞) be continuous and symmetric with respect to σ1+σ2
2 , where σ1, σ2 ∈

◦
I with σ1 < σ2.

(1) If Ψ′ ∈ L([σ1, σ2]) and |Ψ′| is convex on [σ1, σ2], then

∣∣∣[Ψ(σ1) + Ψ(σ2)

2

] σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(x)h(υ)dv
∣∣∣ ≤ σ2 − σ1

4
[
|Ψ′(σ1)|+ |Ψ′(σ2)|

] 1∫
0

χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυds. (6)

(2) If Ψ′ ∈ L([σ1, σ2]) and |Ψ′| is convex on [σ1, σ2] for q ≥ 1, then

∣∣∣[Ψ(σ1)+Ψ(σ2)
2

] σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ
∣∣∣ ≤ σ2−σ1

2

[
|Ψ′(σ1)|q+|Ψ′(σ2)|q

2

] 1
q 1∫

0

χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυds. (7)

In order to derive new results and generalizations in inequality theory studies sometimes it may
be necessary for additional features to be added to the function, while sometimes some constraints can
be needed in the conditions of functions. Functions may provide various features at the same time or a
function class may look like another function class by means of some features. In our study, we can
see that inequalities can be provided also for different convexity classes for special conditions while
proving various integral inequalities for various convex functions. So, we aim to contribute to the
literature by proving some new estimations.

In the present paper, firstly, we consider the identities obtained by Hwang [27] for the classical
convex functions. Secondly, using these results for convex and quasi-convex functions, we establish
some new weighted HH type inequalities for exponentially convex and exponentially quasi-convex
functions. Finally, applications of our findings have been given for numerical analysis and the rth

moment of random variables.
For the sake of brevity, let the notation χ1(σ1, σ2, s) = 1+s

2 σ1 +
1−s

2 σ2 and χ2(σ1, σ2, s) = 1−s
2 σ1 +

1+s
2 σ2.

2. New Estimations for Exponentially Convex Functions

We prove new integral inequalities via Lemma 1.
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The exponentially convex version of a weighted HH inequality can be represented as follows.

Theorem 5. Let Ψ : I ⊆ R → R be a differentiable mapping on
◦
I and h : [σ1, σ2] → R be continuous and

symmetric with respect to σ1+σ2
2 , where σ1, σ2 ∈

◦
I with σ1 < σ2. If Ψ′ ∈ L([σ1, σ2]) and |Ψ′| is exponentially

convex on [σ1, σ2], then

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣
≤ σ2 − σ1

4

[
|eθσ1 Ψ′(σ1)|+ |eθσ2 Ψ′(σ2)|

] 1∫
0

( χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυ

)
ds. (8)

Proof. If we set u(s) =
s∫

σ1

h(υ)dυ for all s ∈ [σ1, σ2], in Lemma 1, one obtains

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣
≤ σ2 − σ1

4

[ 1∫
0

∣∣∣∣2u(1 + s
2

σ1 +
1− s

2
σ2

)
− u(σ2)

∣∣∣∣∣∣∣∣Ψ′(1 + s
2

σ1 +
1− s

2
σ2

)∣∣∣∣ds

+

1∫
0

∣∣∣∣2u(1− s
2

σ1 +
1 + s

2
σ2

)
− u(σ2)

∣∣∣∣∣∣∣∣Ψ′(1− s
2

σ1 +
1 + s

2
σ2

)∣∣∣∣ds
]

(9)

Since h(υ) is symmetric with respect to υ= σ1+σ2
2 , we have

∣∣2u(1 + s
2

σ1 +
1− s

2
σ2

)
− u(σ2)

∣∣ = χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυ

and

∣∣2u(1− s
2

σ1 +
1 + s

2
σ2

)
− u(σ2)

∣∣ = χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυ (10)

for all s ∈ [0, 1].
By (9) and (10), we have

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣
≤ σ2 − σ1

4

[ 1∫
0

( χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυ

)∣∣∣∣Ψ′(1 + s
2

σ1 +
1− s

2
σ2

)∣∣∣∣ds

+

1∫
0

( χ2(σ1,σ1,s)∫
χ1(σ1,σ2,s)

h(υ)dυ

)∣∣∣∣Ψ′(1− s
2

σ1 +
1 + s

2
σ2

)∣∣∣∣ds
]

. (11)

Using the exponential convexity of |Ψ′|, we have
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[ 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ

)∣∣∣∣Ψ′( 1 + s
2

σ1 +
1− s

2
σ2

)∣∣∣∣ds +
1∫

0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ

)∣∣∣∣Ψ′( 1− s
2

σ1 +
1 + s

2
σ2

)∣∣∣∣ds

≤
( χ2(σ1 ,σ2 ,s)∫

χ1(σ1 ,σ2 ,s)

h(υ)dυ

)
×
(

1 + s
2
|eθaΨ′(σ1)|+

1− s
2
|eθσ2 Ψ′(σ2)|+

1− s
2
|eθσ1 Ψ′(σ1)|+

1 + s
2
|eθσ2 Ψ′(σ2)|

)
ds

=

[
|eθσ1 Ψ′(σ1)|+ |eθσ2 Ψ′(σ2)|

] 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ

)
ds. (12)

A combination of (11) and (12), we have (8). This ends the proof.

Corollary 1. If h(x) = 1 in Theorem 5, then we have

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2
−

σ2∫
σ1

Ψ(υ)dυ

∣∣∣∣ ≤ σ2 − σ1

4

[
|eθσ1 Ψ′(σ1)|+ |eθσ2 Ψ′(σ2)|

]
.

Remark 1. In Theorem 5:

(i) If we choose θ = 0, then we attain inequality (6) in [27],
(ii) If h(x) = 1, θ = 0, then we obtain inequality (2) in [5].

Theorem 6. Under conditions of Theorem 5 and q ≥ 1. If |Ψ′|q is convex on [σ1, σ2], then

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣
≤ σ2 − σ1

2

[
|eθσ1 Ψ′(σ1)|q + |eθσ2 Ψ′(σ2)|q

2

] 1
q

1∫
0

( χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυ

)
ds. (13)

Proof. Using Hölder’s inequality for (11) in the proofs of Theorem 5, one has

∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ
∣∣∣

≤ σ2 − σ1

4

[{ 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ
)}1− 1

q
×
{ 1∫

0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ
)∣∣∣Ψ′( 1 + s

2
σ1 +

1− s
2

σ2

)∣∣∣qds
} 1

q

+

{ 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ
)}1− 1

q
×
{ 1∫

0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ
)∣∣∣Ψ′( 1− s

2
σ1 +

1 + s
2

σ2

)∣∣∣qds
} 1

q
]

≤ σ2 − σ1

4

{ 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ
)}1− 1

q
×
[{ 1∫

0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ
)∣∣∣Ψ′( 1 + s

2
σ1 +

1− s
2

σ2

)∣∣∣qds
} 1

q

+

{ 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(υ)dυ
)∣∣∣Ψ′( 1− s

2
σ1 +

1 + s
2

σ2

)∣∣∣qds
} 1

q
]

. (14)

By an application of the discrete power-mean inequality (σa
1 + σa

2 < 21−a(σ1 + σ2)
a) for

σ1 > 0, σ2 > 0 and a < 1), one has



Mathematics 2019, 7, 727 6 of 12

[{ 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(ω)dω
)∣∣∣Ψ′( 1 + s

2
σ1 +

1− s
2

σ2

)∣∣∣qds
} 1

q

+

{ 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(ω)dω
)∣∣∣Ψ′( 1− s

2
σ1 +

1 + s
2

σ2

)∣∣∣qds
} 1

q
]

≤ 21− 1
q

[ 1∫
0

( χ2(σ1 ,σ2 ,s)∫
χ1(σ1 ,σ2 ,s)

h(ω)dω

)[∣∣∣Ψ′( 1 + s
2

σ1 +
1− s

2
σ2

)∣∣∣q + ∣∣∣Ψ′( 1− s
2

σ1 +
1 + s

2
σ2

)∣∣∣q]ds

] 1
q

. (15)

From definition of the exponential convexity of |Ψ|q on [σ1, σ2], we have∣∣∣Ψ′( 1 + s
2

σ1 +
1− s

2
σ2

)∣∣∣q + ∣∣∣Ψ′( 1− s
2

σ1 +
1 + s

2
σ2

)∣∣∣q
≤ 1 + s

2
|eθσ1 Ψ′(σ1)|q +

1− s
2
|eθσ2 Ψ′(σ2)|q +

1− s
2
|eθσ1 Ψ′(σ1)|q +

1 + s
2
|eθσ2 Ψ′(σ2)|q

= |eθσ1 Ψ′(σ1)|q + |eθσ2 Ψ′(σ2)|q. (16)

A combination of (14)–(16) gives the desired inequality (13).

Corollary 2. If we choose h(υ) = 1, then Theorem 6 reduces to

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣
≤ σ2 − σ1

4

[
|eθσ1 Ψ′(σ1)|q + |eθσ2 Ψ′(σ2)|q

2

] 1
q

.

Remark 2. In Theorem 6:

(i) If we choose θ = 0, then we attain the inequality (7) in [27].
(ii) If h(υ) = 1, θ = 0, then we get inequality (3) in [5].

3. Hermite–Hadamard’s Inequalities for Exponentially Quasi-Convex Functions

For obtaining new results, we deal with the exponential quasi-convexity of Ψ′ as follows:

Theorem 7. Under conditions of Theorem 5. If the mapping |Ψ′| is exponentially quasi-convex on [σ1, σ2], then

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣ ≤ σ2 − σ1
4

×
[

max
{
|eθσ1 Ψ′(σ1)|,

∣∣∣eθ
(

σ1+σ2
2

)
Ψ′
(σ1 + σ2

2
)∣∣∣}+ max

{
|eθσ2 Ψ′(σ2)|,

∣∣∣eθ
(

σ1+σ2
2

)
Ψ′
(σ1 + σ2

2
)∣∣∣}]

×
1∫

0

χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(ω)dωds. (17)

Proof. Using the inequality (11) in the proofs of Theorem 5 and by exponential quasi-convexity of |Ψ′|,
we have ∣∣∣Ψ′(1 + s

2
σ1 +

1− s
2

σ2

)∣∣∣ = max
{
|eθσ1 Ψ

′
(σ1)|,

∣∣∣eθ
(

σ1+σ2
2

)
Ψ
′(σ1 + σ2

2
)∣∣∣} (18)

and ∣∣∣Ψ′(1− s
2

σ1 +
1 + s

2
σ2

)∣∣∣ = max
{
|eθσ2 Ψ

′
(σ2)|,

∣∣∣eθ
(

σ1+σ2
2

)
Ψ
′(σ1 + σ2

2
)∣∣∣}. (19)

A combination of (11), (18) and (19) gives the required inequality (17).
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Remark 3. In Theorem 7:

(i) If we choose θ = 0, then we get Theorem 2.8 in [27],
(ii) If we choose θ = 0 along with h(υ) = 1, then we get Theorem 2.2 in [1].

Corollary 3. Let Ψ as in Theorem 7, if in addition

(1) |Ψ′ | is increasing, then we have

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣ ≤ σ2 − σ1

4

×
{
|eθσ2 Ψ

′
(σ2)|+

∣∣∣eθ
(

σ1+σ2
2

)
Ψ
′(σ1 + σ2

2
)∣∣∣} 1∫

0

χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυds, (20)

(2) |Ψ′ | is decreasing, then we have

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣ ≤ σ2 − σ1

4

×
{
|eθσ1 Ψ

′
(σ1)|+

∣∣∣eθ
(

σ1+σ2
2

)
Ψ
′(σ1 + σ2

2
)∣∣∣} 1∫

0

χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυds. (21)

Remark 4. In Corollary 3:

(i) If we choose θ = 0, then we get Remark 2.9 in [27].
(ii) If we choose θ = 0 along with h(υ) = 1, then we get Corollary 2.1 in [1].

Theorem 8. Under conditions of Theorem 5 and q ≥ 1. If |Ψ′ |q is exponentially quasi-convex on [σ1, σ2], then

∣∣∣∣Ψ(σ1) + Ψ(σ2)

2

σ2∫
σ1

h(υ)dυ−
σ2∫

σ1

Ψ(υ)h(υ)dυ

∣∣∣∣ ≤ σ2 − σ1

4

×
[(

max
{
|eθσ1 Ψ

′
(σ1)|q,

∣∣∣eθ
(

σ1+σ2
2

)
Ψ
′(σ1 + σ2

2
)∣∣∣q})

1
q

+

(
max

{
|eθσ2 Ψ

′
(σ2)|q,

∣∣∣eθ
(

σ1+σ2
2

)
Ψ
′(σ1 + σ2

2
)∣∣∣q})

1
q ]

×
1∫

0

χ2(σ1,σ2,s)∫
χ1(σ1,σ2,s)

h(υ)dυds. (22)

Proof. Using the inequality (11) in the proofs of Theorem 5 and by exponential quasi-convexity of
|Ψ′|q, we have∣∣∣Ψ′(1 + s

2
σ1 +

1− s
2

σ2

)∣∣∣q = max
{
|eθσ1 Ψ

′
(σ1)|q,

∣∣∣eθ
(

σ1+σ2
2

)
Ψ
′(σ1 + σ2

2
)∣∣∣q} (23)

and ∣∣∣Ψ′(1− s
2

σ1 +
1 + s

2
σ2

)∣∣∣ = max
{
|eθσ2 Ψ

′
(σ2)|q,

∣∣∣eθ
(

σ1+σ2
2

)
Ψ
′(σ1 + σ2

2
)∣∣∣q}. (24)
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A combination of (11), (23) and (24) gives the required inequality (22).

Remark 5. In Theorem 8:

(i) If we choose q = 1, then we attain Theorem 7 in the present paper,
(ii) If we choose θ = 0, then we attain Theorem 2.10 in [27],

(iii) If we choose θ = 0 along with h = 1, then we attain Theorem 2.4 of [1].

4. Error Estimations with the Trapezoidal Formula

In this part of the article, results related to the trapezoidal rule, which has an important place in
numerical analysis, will be given. In the numerical analysis, our findings suggest an approach for the
error term are in the nature of confirming the results obtained previously and the findings regarding
their special cases are included. Let p be the partition σ1 = ω0 < ω1 < ... < ωn−1 < ωn = σ2 of [σ1, σ2],
and recall the quadrature formula as

σ2∫
σ1

Ψ(υ)h(υ)dx = T(Ψ, h, p) + E(Ψ, h, p), (25)

where

T(Ψ, h, p) =
n−1

∑
i=0

Ψ(υi) + Ψ(υi+1)

2

υi+1∫
υi

h(υ)dυ

for the trapezoidal version and E(Ψ, h, p) is approximation error term.

Proposition 1. Under conditions of Theorem 6 and using |Ψ′ |q is exponentially convex on [σ1, σ2], then in (25),
for every partition p of [σ1, σ2], then

|E(Ψ, h, p)| ≤ 1
2

n−1

∑
i=0

(υi+1 − υi)

(
|eθυi Ψ

′
(υi)|q + |eθυi+1 Ψ

′
(υi+1)|q

2

) 1
q

1∫
0

χ2(υi ,υi+1,s)∫
χ1(υi ,υi+1,s)

h(υ)dυds

.

Proof. By taking into account Theorem 6 on the intervals [υi, υi+1](i = 0, 1, ..., n− 1) of the partition p,
we get

∣∣∣∣Ψ(υi) + Ψ(υi+1)

2

υi+1∫
υi

h(υ)dυ−
υi+1∫
υi

Ψ(υ)h(υ)dυ

∣∣∣∣
≤ υi+1 − υi

2

[ |eθυi Ψ
′
(υi)|q + |eθυi+1 Ψ

′
(υi+1)|q

2

] 1
q

1∫
0

χ2(υi ,υi+1,s)∫
χ1(υi ,υi+1,s)

h(υ)dυds.

By summation over i from 0 to n− 1 and applying exponential convexity of |Ψ′ |q and by the
triangle inequality, we deduce that

∣∣T(Ψ, h, p)−
σ2∫

σ1

Ψ(υ)h(υ)dυ
∣∣

≤ 1
2

n−1

∑
i=0

(υi+1 − υi)

(
|eθυi Ψ

′
(υi)|q + |eθυi+1 Ψ

′
(υi+1)|q

2

) 1
q

1∫
0

χ1(υi ,υi+1,s)∫
χ1(υi ,υi+1,s)

h(υ)dυds.
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This completes the proof.

Remark 6. If we set θ = 0 in Proposition 1, then we have Proposition 3.1 in [27].

Proposition 2. Suppose the hypothesis of Theorem 8 is satisfied and using |Ψ′ |q is exponentially quasi-convex
on [σ1, σ2], then in (25), for every partition p of [σ1, σ2], then

|E(Ψ, h, p)| ≤ 1
4

n−1

∑
i=0

(υi+1 − υi)

[[
max

{
|Ψ′(υi)|q,

∣∣Ψ′(υi + υi+1

2

)∣∣∣∣q}] 1
q

+

[
max

{
|Ψ′(υi+1)|q,

∣∣Ψ′(υi + υi+1

2

)∣∣∣∣q}] 1
q
] 1∫

0

χ2(υi ,υi+1,s)∫
χ1(υi ,υi+1,s)

h(υ)dυds.

Proof. Applying Theorem 8 on the intervals [υi, υi+1](i = 0, 1, ..., n− 1) of the partition p, we get

∣∣∣∣Ψ(υi) + Ψ(υi+1)

2

υi+1∫
υi

h(υ)dυ−
υi+1∫
υi

Ψ(υ)h(υ)dυ

∣∣∣∣
≤ υi+1 − υi

4

[[
max

{
|eθυi Ψ

′
(υi)|q,

∣∣eθ
( υi+υi+1

2

)
Ψ
′(υi + υi+1

2

)∣∣∣∣q}] 1
q

+

[
max

{
|eθυi+1 Ψ

′
(υi+1)|q,

∣∣eθ
( υi+υi+1

2

)
Ψ
′(υi + υi+1

2

)∣∣∣∣q}] 1
q
] 1∫

0

χ2(υi ,υi+1,s)∫
χ1(υi ,υi+1,s)

h(υ)dυds.

By summation over i from 0 to n− 1 and by definition of |Ψ′ |q, also by using the triangle inequality,
we obtain that

∣∣T(Ψ, h, p)−
σ2∫

σ1

Ψ(υ)h(υ)dυ
∣∣

≤ υi+1 − υi
4

[[
max

{
|eθυi Ψ

′
(υi)|q,

∣∣eθ
( υi+υi+1

2

)
Ψ
′(υi + υi+1

2

)∣∣∣∣q}] 1
q

+

[
max

{
|eθυi+1 Ψ

′
(υi+1)|q,

∣∣eθ
( υi+υi+1

2

)
Ψ
′(υi + υi+1

2

)∣∣∣∣q}] 1
q
] 1∫

0

χ2(υi ,υi+1,s)∫
χ1(υi ,υi+1,s)

h(υ)dυds.

This completes the proof.

Remark 7. If we set θ = 0 in Proposition 2, then we get Proposition 3.3 in [27].

Remark 8. If |Ψ′ | is nondecreasing in Proposition 2, then

|E(Ψ, h, d)| ≤ 1
4

n−1

∑
i=0

(υi+1 − υi)
[∣∣eθ

(
ωi+1+ωi

2

)
Ψ
′
(ωi+1 + ωi

2

)∣∣+ |eθυi+1 Ψ
′
(υi+1)|

] 1∫
0

χ2(ωi ,ωi+1,s)∫
χ1(ωi ,ωi+1,s)

h(υ)dυds

and if |Ψ′ | is nonincreasing in proposition 2, then

|E(Ψ, h, d)| ≤ 1
4

n−1

∑
i=0

(υi+1 − υi)
[∣∣eθ

(
υi+1+υi

2

)
Ψ
′
( υi+1 + υi

2

)∣∣+ |eθυi Ψ
′
(υi)|

] 1∫
0

χ2(ωi ,ωi+1,s)∫
χ1(ωi ,ωi+1,s)

h(υ)dυds.
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5. Application to Random Variables

In this section, by giving various applications to the results of our study, we will prove that the
findings obtained are effective. In addition, approaches to the expected value function will be obtained
with the help of the probability density function in the field of statistics. Let X be a random variable in
[σ1, σ2], with the probability density function h : [σ1, σ2]→ [0, ∞), and symmetric with respect to σ1+σ2

2
with 0 < σ1 < σ2, r ∈ R, then the rth-moment

Er(υ) :=
σ2∫

σ1

trh(s)ds,

which is supposed to be finite.

Theorem 9. The inequality

∣∣σr
1 + σr

2
2

− Er(υ)
∣∣ ≤ r(σ2 − σ1)

4
[eθσ1 σr−1

1 + eθσ2 σr−1
2 ],

holds for 0 < σ1 < σ2 and r ≥ 2.

Proof. Let Ψ(s) = sr on [σ1, σ2] for r ≥ 2, we have |Ψ′(s)| = rsr−1 is exponentially convex. Since

σ2∫
σ1

Ψ(υ)h(υ)dυ = Er(υ),

and
χ2(σ1,σ2,s)∫

χ1(σ1,σ2,s)

h(υ)dυ ≤
σ2∫

σ1

h(υ)dυ = 1, ∀s ∈ [0, 1].

From (8), one has
Ψ(σ1) + Ψ(σ2)

2
=

σr
1 + σr

2
2

and
|eθσ1 Ψ

′
(σ1)|+ |eθσ2 Ψ

′
(σ2)| = r(eθσ1 σr−1

1 + eθσ2 σr−1
2 ).

By the inequality (8), the desires are obtained immediately.

Remark 9. In Theorem 9, we have the following assumptions:

(1) If we choose r = 1 and h(υ) = 1
σ
√

2π
e−

(υ−µ)2

2σ2 , for −∞ < υ < ∞, and σ > 0 is normally distributed,
where µ is the mean, σ is the standard deviation and e(= 2.71828...) are constants, then we have inequality

∣∣σ1 + σ2

2
− µ

∣∣ ≤ σ2 − σ1

4
[
eθσ1 + eθσ2

]
,

which holds for 0 < σ1 < σ2.
(2) If we choose r = 1 and h(υ) = λe−λυ for ω > 0 with parameter λ is exponentially distributed, then we

have inequality ∣∣σ1 + σ2

2
− 1

λ

∣∣ ≤ σ2 − σ1

4
[
eθσ1 + eθσ2

]
,

which holds for 0 < σ1 < σ2.
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By applying Theorems 6–8, similar relations can be established; we have omitted the details here.

Remark 10. Applications can be given based on the obtained results to special means, and we omit the details.

6. Conclusions

In this article, we have provided several new weighted HH inequalities for exponentially convex
and exponentially quasi-convex functions. Our findings can be considered as refinements and
significant improvements to the new classes of convex functions by extraordinary choices of θ. It is clear
that our new results can be reduced for θ = 0 to previously known results. Also, we have presented
their applications to the Trapezoidal formula and in statistics for the rth moment for the derived results.
The obtained results can be extended for different kinds of convex functions. These ideas may stimulate
further research in this captivating field.
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