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Abstract. In this study, the local fractional variational iteration method (LFVIM) and the local fractional series 
expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) 
within local fractional derivative operators (LFDOs). The efficiency of the considered methods is illustrated by 
some examples. The results reveal that the suggested algorithms are very effective and simple and can be applied 
for linear and nonlinear problems in mathematical physics. 

Keywords: Local fractional operators; Local fractional variational iteration method; Local fractional series expansion method; 
Korteweg-de Vries. 

1. Introduction 

   The local fractional calculus was successfully utilized to describe the PDEs arising in mathematical physics, such as the 
diffusion equations [1-4], the gas dynamic equation [5], the telegraph equation [6], the wave equation [7], the Fokker Planck 
equation [8,9], the Laplace equation [10], the Klein-Gordon equations [11,12], the Helmholtz equation, [13,14] and the 
Goursat problem [15] on Cantor sets. Recently, the KdVE with LFDOs was given by [16, 17]: 
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3

( , ) ( , ) ( , )
0 , 0 1.

u x t u x t u x t

t x x

  

         
  

 (1) 

subjected to initial condition as: 

( ,0) ( ).u x x  (2) 

The local fractional VIM [18–20] and local fractional SEM [21, 22] are powerful approximate techniques for various kinds of 
partial and integral differential equations with LFDOs. Jafari et al. [18, 19] utilized LFVIM to solve linear and nonlinear PDEs, 
Yang, et al. [20] solved fractal heat conduction problem using LFVIM, Jassim [21] found the approximate analytical solutions 
of Fractal Vehicular Traffic Flow by LFSEM, and Yang, et al. [22] applied LFSEM to the wave equation. 
It is worth mentioning that entropy plays an important role in the analysis of anomalous diffusion processes and fractional 
diffusion equations. These fractional novel entropy indices and fractional operators allow their implementation in complex 
dynamical systems [23-25]. Another application is related to local fractional wave equations under fixed entropy arising in 
fractal hydrodynamics [26]. 
In the present study, the local fractional variational iteration method and the local fractional series expansion method were 
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applied to solve the local fractional Korteweg-de Vries equation. The advantage of these methods with respect to other 
numerical methods is that they don’t need discretization. 

2. Basic Definitions of Local Fractional Calculus 

 In this section, some basic definitions and properties of the fractional calculus theory [10-13] are provided. 
 
Definition 1. A function )(xf  is local fractional continuous at 0x x , if it holds 

0( ) ( ) ,0 1f x f x       (3) 

with 0x x   , for , 0  , and , R   . For ( , )x a b , it is so called local fractional continuous on ( , )a b , denoted by 

( ) ( , )f x C a b . 

 
Definition 2. Setting ( ) ( , )f x C a b , the local fractional derivative of ( )f x  at 0x x  is defined as: 

0

( ) 0

0

( ( ) ( ))
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( )x x

f x f x
f x

x x



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 
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 (4) 

where 0 0( ( ) ( )) ( 1)( ( ) ( )).f x f x f x f x        

Not that the local fractional derivative of high order is written in the following form: 

( )( ) ( ) ... ( ) ,

k times

k k
x x x xD f x f x D D D f x
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and the local fractional partial derivative of high order as: 
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Definition 3. Let’s denote a partition of the interval ],[ ba  as ,),( 1jj tt  ,1,...,0  Nj and btN   with 1j j jt t t    

and 0 1max{ , , ...}.t t t     The local fractional integral of ( )f x  in the interval [ , ]a b  is given by: 

1
( )

0
0

1 1
( ) ( ) ( ) lim ( ) ( ) .

(1 ) (1 )

b N

a b j jt
ja

I f x f t dt f t t  

 



  
  

      (7) 

 
Definition 4. In fractal space, the Mittage Leffler function, sine function, and cosine function are defined as: 
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The following results are valid: 
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 
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3. Analysis of the Methods 

   A general nonlinear local fractional partial differential equation is considered as follows: 

( , ) ( , ) ( , ) ( , ) ,L u x t R u x t N u x t f x t      (16) 

where /L t 
   and R are linear local fractional derivative operators of order, N   denotes nonlinear local fractional 

operator, and ),( txf  is the source term. 

 
3.1. Analysis of the LFVIM 

   According to the rule of local fractional variational iteration method, the correction local fractional functional for (3.1) is 
constructed as: 

 ( )
1 0( ) ( ) ( ) ( ) ( ) ( )

(1 )n n t n n nu t u t I L u R u N u f 



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          
 (17) 

where / (1 )    is a fractal Lagrange multiplier. Making the local fractional variation of (17) yields: 
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The extremum condition of 1nu is given by: 

1( ) 0nu t    (19) 

This yields the stationary conditions as: 
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This in turn gives Lagrange multiplier as: 

1.
(1 )





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 (21) 

By substituting this value of the Lagrange multiplier into Eq. (17), one gives the iteration formula as: 

  ( )
1 0( ) ( ) ( ) ( ) ( ) ( ) .n n t n n nu t u t I L u R u N u f

            (22) 

Finally, from Eq. (22), the solution of Eq. (16) is obtained as follows: 

( , ) lim ( , ).nn
u x t u x t


  (23) 

3.2. Local Fractional SEM. 

   Equation (16) can be written in the following form: 

( , )
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
  


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where   is a linear local fractional derivative operator with respect to x  and ),( txu is a local fractional continuous function. 

Suppose that: 

0
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where ( )iT t  and ( )iU x  are local fractional continuous functions. Regarding Eq. (25), it is considered that: 
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Making use of Eq. (27), we get 
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Regarding Eqs. (28) and (29), we have 
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Therefore, from Eq. (30), a recursion is obtained as 

 1( ) ( )i iU x U x    (31) 

By using the recursion formula of Eq. (31), the solution of Eq. (24) is obtained as: 
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4. Application 

   In this section, to give a clear overview of the LFVIM and LFSEM for KdVE within LFDOs, the following example is 
presented. 

Example: Let us consider the following KdV equation involving LFDOs: 
3
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subjected to the initial condition 
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I. Busing LFVIM: 

From Eqs. (22) and (33), the local fractional iteration algorithm can be written as follows: 
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Therefore, from Eqs. (34) and (35), the components are provided as follows:   
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Consequently, it yields 
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II. By using LFSEM: 

   From Eq. (31), the following recursive formula is obtained: 
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Regarding Eqs. (37) and (38), the following equations are obtained: 
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In Figs. 1, 2, 3 and 4, the approximate solutions of Eq. (33) along with initial condition of Eq. (34) are shown for different 
values of 1/ 2, ln(2) / ln(3) , ln(3) / ln(4) , 1  respectively. 
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Fig. 1. The plot of solution to local fractional Korteweg-
de Vries equation with fractal dimension 1 / 2  

Fig. 2. The plot of solution to local fractional Korteweg-de Vries 
equation with fractal dimension ln(2) / ln(3)  
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Fig. 3. The plot of solution to local fractional Korteweg-de Vries 

equation with fractal dimension ln(3) / ln(4)  
Fig. 4. The plot of solution to local fractional Korteweg-

de Vries equation with fractal dimension 1   

5. Conclusions 

The LFVIM and LFSEM are successfully applied to find the approximate analytical solutions for KdVE with LFDOs. The 
approximate analytical solutions for the Korteweg-de Vries equation on Cantor sets involving local fractional derivatives are 
successfully developed by recurrence relations resulting in convergent series solutions. The suggested methods are a potential 
tool for developing approximate solutions for local fractional partial differential equations with fractal initial value conditions, 
which of course, draws new problems beyond the scope of the present study. LFSEM provides us with less computations as 
compared with LFVIM. 
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