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Abstract

In this paper, we derive some sufficient conditions which ensure the existence and
unigueness of a solution for a class of nonlinear three point boundary value problems
of fractional order implicit differential equations (FOIDEs) with some boundary and
impulsive conditions. Also we investigate various types of Hyers—Ulam stability (HUS)
for our concerned problem. Using classical fixed point theory and nonlinear
functional analysis, we obtain the required conditions. In the last section we give an
example to show the applicability of our obtained results.

Keywords: Caputo derivative; Boundary conditions; Hyers—Ulam stability

1 Introduction

Differential equations of fractional order have been attracted the attention of researchers
in the last few decades. It is due to the fact that fractional order derivatives provide power
tools for the description of memory and hereditary characteristics of different processes
and materials in various fields of science and engineering, (see [1-4]).

The impulsive phenomenon, which is a sudden and discontinuous change, is naturally
observed in many physical systems. We model and describe such type of evolutionary
processes via differential equations with some impulsive conditions. Significant and enor-
mous number of applications of impulsive differential equations can be traced in me-
chanics, engineering, medicine, ecology, etc.; see for instance [5-7]. In the literature, the
integer-order impulsive differential equations corresponding to initial and boundary con-
ditions have been investigated extensively; see [8—12] and the references cited therein.
There are many evolutionary processes related to pharmacotherapy, hemodynamics equi-
librium of a person, introduction of bloodstream in the body and problems related to eco-
nomical and national income, which cannot be accurately described by classical implicit
impulsive differential equations. In such a situation the fractional order implicit impulsive
differential equations are proved as powerful tools. The existence theory of the aforesaid
problems have been extensively addressed in many articles; see [13, 14] and the references
therein.

On the other side stability analysis, which is so much important from a numerical and
optimization point of view, has been attracted the attention of researchers. So far various
concepts of stability analysis, including Laypunov stability [15, 16], Mittag-Leftler stability
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[17], exponential stability [18] and Hyers—Ulam stability, have been introduced. Among all
these concepts, Hyers—Ulam type stability analysis has been considered a relatively easy
and simple way of studying the stability of solutions to fractional order implicit differential
equations (FOIDEs). Ulam and Hyers introduced this concept of stability analysis in the
mid of 19th century for functional problems; see [19, 20]. Many mathematicians general-
ized this concept in different directions; see [21-25]. For recent contribution on this area
we refer to the work in [26, 27].

In this paper we study existence and uniqueness of solution as well as stability analysis
to the following problem:

§DPz(t) = F(t,2(t),  §DLz(0), tel,t #t,i=1,2,...,m

Az(O)|pey =Ti(2(8),  AZ@)li=y, = Le(®)), i=1,2,...,m

Z(t)|¢=0 = =2 ()1 =05 2(t)|s=1 = =2 () =0
0€(0,1),0#t;,i=1,2,...,m,

1)

where the notation § Dfi stands for Caputo fractional derivative of order p € (1,2],] = [0, 1],
and F:J x R? — R is a continuous function. Further, the nonlinear functions I;,I; : R —
R, are also continuous for i = 1,2,...,m and Az(t)|,=;, = 2(t]) — 2(t;), AZ'(t)|4=y, = 2/ (&) -
Z'(t7), where z(t) and z(¢]) represent the right and left-hand limit of the function z(¢),
respectively, at £ = ¢;. Also, 0=ty < t1 <ty <+ <ty <ty1 =1, m € Z*, where Z* is the set
of positive integers.

2 Background materials and some auxiliary results

We recall some well-known results, definitions and theorems needed in this study. Split-
ting the interval J into sub intervals [0, 1], (¢1, 2], (t2, 831, . ., (£p-1, ], (£, 1], and denote
these sub intervals by Jo,J1,J2,...,Jm-1,Jm, respectively. Let ] =J\{t1,t2,t3,..., t;n}. We de-
finethespace E = PC(J,R) = {z:] — R:z € C(J;,R),and z(¢}), z(¢] ) exist, for i = 1,2,...,m}.
Obviously (E, ||z||g) is a Banach space with the norm given by ||z||g = max{|z(¢)| : £ € J}.

Definition 1 ([2]) The Caputo fractional derivative of a function z : (0, 00) — R, is defined
as

(t k —p-1
DY (¢ dg,
/ k e

where k = [p] + 1 and [p] represents the integer part of the real number p.

Definition 2 ([3]) The fractional order (0 < p < co) integral of a function z € L*([0, T],R*)
is defined as

t (4 _ £\p-1
oI/ 2(t) = /0 “Ff)) () ds,

such that the right side is point-wise defined on R*.

Lemma 1 ([28]) For p > 0, the given result holds

1 (0)
off [CDp t, wherek=[p]+1.

i=0
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Lemma 2 ([28]) For p > 0, the differential equation D} z(t) = h(t), has the following solu-
tion:

ti

10
A0) = ollh(t)+ Y & ;O)
=0 7

where k = [p] + 1.

Theorem 1 ([2]) Let p >0, then
ol [§DV ()] =2(8) + eo + ert + ext? + e3> + -+ + e_1 ",
wheree; €R,i=0,1,2,3,..., k- 1,k =[p] + 1.

We give the following three sets of inequalities.
If z € E, then, for some constants ¢ > 0, € > 0 with a nondecreasing function 6 : ] — R,
the results given below hold for i = 1,2,...,m:

§Drz(t) - F(t,2(t), §Dr2(t))| <€, t€];

|AZ(8) |1y, — Li(2(t)] <€, )
|AZ (8) ]y, — Li(2(t)] <€,

§Drz(t) - F(t,2(2), §DL2(e) | < 0(8), €],
[AZ(8)1=; — Li(z(t:)] < @, (3)
|AZ (8) = — Liz(t)] < o,

§D2(t) — E(t,2(2), § D 2(2)| < €6(t), t€];

[AZ(t)1=, — Li(2(t:))] < €9, (4)
|AZ (8) |1y, — Li(2(t:))] < €.

Definition 3 ([25]) The problem (1) is known to be UH stable if for € > 0 there exists a
constant C,, , > 0 such that, for every solution z € E of the inequality (2), one has a unique
solution z € E to problem (1) satisfying

|2(t) - 2(t)| < Cmpe, te].

Definition 4 ([25]) The problem (1) is known to be GHU stable if for every solution z € E
of the inequality (3) and € > 0, with a constant v, , € C(R*,R"), there is unique solution
z € E of problem (1) satisfying

|2() = 2(8)| < Ymp(e), tE].

Definition 5 ([25]) The problem (1) is known to be HUR stable corresponding to (6, ¢)
if for every € > 0 there exists a real number C,,,4 > 0, such that, for any solution z € E of
the inequality (4), one has a unique solution z € E of problem (1) satisfying

lé(t) - z(t)‘ < Cppoe(0(t) +9), te].
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Definition 6 ([25]) The problem (1) is known to be GHUR stable with respect to (0, ¢),
if there exists a constant C,, ,» > 0, such that, for each solution z € E of the inequality (3),

one has a solution z € E of problem (1) satisfying
2(t) = 2(t)] < Ceampo (0() + ), te].

Remark1 The function z € E is called a solution for the inequality (2) if one has a function
¢ € E together with a sequence ¢;, i = 1,2,...,m, depending on z such that
(i) lp@)| <€, |pil <e,t€);,i=12,...,m;
(i) §Dpz(t) = F(t,2(2), {Dyz(t)) + p(t), t €)1, i=1,2,...,m
(iii) Az(t)le=y, =Ti(z(t)) + it €Jini=1,2,...,m;
(iv) AZ )|y = Li(z(t) + Pt €)ii=1,2,...,m

Remark 2 A function z € E is a solution of the inequality (4) if one has a function ¢ € E
and a sequence ¢;, i = 1,2,...,m depending on z with:
(@) @) <eb(t), |pil <ep, t€]i=12,...,m;
(i) §D7z(t) = F(t,2(2), §DL2(t)) + p(2), £ € )iy i = 1,2,...,m
(iii) Az(t)l=y, = L(z() + it €)ii=1,2,...,m;
(i) AZ Oy =Ti(2(t:) + pin t €1 i=1,2,...,m

Similarly one can state such a remark for the inequality (3).

Theorem 2 (Schaefer’s fixed point theorem [29]) Let E be a Banach space and 7 : E — E
is completely continuous operator and the set W ={z € E:z2=172,0 < n < 1} is bounded.
Then  has a fixed point in E.

Lemma 3 Let p € (1,2], 0 : ] = R be a continuous function, then the function z € E is the

solution to the following problem:

§Drz(t)=0(), O<t<lt#t,i=12,...,m

AZ(t)) =, = Liz(8)), AZ (Oli=y; = Lz(t), i=1,2,...,m

2O)|t=0 = ~Z' O)le=0,  2(O)le=1 = -2 (0),
0€(0,1),0#t;fori=1,2,....,m

(5)

if and only if z satisfies the following integral equation:

o Jot =€) o (§)dE + AL -1), tey;
2(t) = szk(t_‘f)p IU(S)d§+—Zk tz1(t‘ E)p_lo‘(g)d5~ ©
* D Z, l(t 8 [ (6= €20 () di + XLy (¢ - 1)Le(t)

+le N+ A1 -¢t), teluk=1,23,...,m,
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where
) 1 m+1 t; .
A'Tp);/n_l(t_w o(E)d + - 1)2 / -§) 20 (§))dk
vt [Co-ero@de s Z / Y-8y o) ds
ro-nlt, ¢~ 1) o
+Z ZI z(t Z ( ))
i=1 =1

Proof Assume that, for ¢ € Jo, zis a solution of (5). Then, by Lemma 1, there exist a;,a; € R

such that
2(t) = olf o (t) — a1 —ast = = /t(t— ) o(§)ds —ar - ast, 7
' L'(p) Jo
which also yields
Z(t) = I -§)0(§)d§ - a. ®)

Let for ¢t € J1, we have dq,d» € R, with

2(t) = ﬁ (E- £ 0 (&) dE — dy — d(t - 1),

0= [ ey -
0=y ), -8 @ de -

This leads to

t

Z(ﬁ)=$ t (-6 lo(§)ds —ar —ast;,  2(t]) = —dy,

)1 | -9 0@ dE e () -
Due to impulsive conditions, we have
Az(ty) = Z(tf) - z(tl_) = Il(z(tl)) and AZ(t)= z’(t{') - z/(tl_) =L (z(tl)),

we have

t
~dy = %p) ) (t1 - &) "o (8)dE — a1 — axty + 11 (2(t1)),

= o | -0 0@ ds -y T ete).
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Thus (9) implies

z(t):%p) (t-£) la<s>d5+m / (L -eyloe)de

+ F’(fp— _tll) fo 1(t1 - &) 20 (8)dE + Li(z(t)) + (¢ — t)Lh (2(t1))

—a; —ayt, tE]l.

Similarly for ¢ € Ji, one has

z(t)=$ (t-&yo <s>d5+—2 (-8 o6 de
=1 Y1

1 t a .
— (t —t) | -6 0@E)dE+ Y (t-t)li(z(t)

k
+Y L(et) —a1 - ast, tefik=12...,m (10)
i=1

Using the given boundary conditions in (7), (8) and (10), we obtain a; + a; = 0 and

)= F()/(1 & lo ds+—2fmt—p1 ) ds

l—‘(pl 1) t,)/ (t - &) 20 (£) dE + Z(l—tz)l (t))
+ Zli(z(ti)) —a) —ay,
i=1
“@= ﬁ -8 @) dt + Z Y- 6o ds
fn =1 ti-1

n

L’ (Z(t,')) —aj.

i=1
Therefore, in view of z(1) = —Z'(0) and a; + a, = 0, we get

m+1

z / -90)d 1)2(1 t / (ti- €20 () ds
1 L
- (Q )"~ 20(5)61&— (ti— )"0 (£)dE
L(p-1) J; Zl !

Zl t)li(z ZI Z (1)),
i=1 i=1
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m+1

) -1 ;m ot f L -2

1

+mfg(g £ 06)dt + — Z/ £1 20 (£)d
+Z(1—r)1 (2(t) ZI (2(t)) Z (a(t)).

i=1

Inserting these values of a; and 4, in (7) and (10), respectively, with A = a5, we get (6).
Conversely if (6) has a solution z, then it is obvious that the solution z(¢) satisfies problem
(5) under the given conditions. d

Corollary 1 In view of Lemma 3, our problem (1) has the following solution:

r(,, 5 Jo (6= &) UE(E,2(8), § D) 2(E)) dE + BA-1), t€o;

5 i (6 = E)PTE(§, 2(8), § DL 2(€))

0=+ i (- &) TEE 2(6), D) 2(%))) dE

¥ T i 1(t L) [} (6 - £)°7F(§,2(8), § D 2(6)) dE

+ 3N -t + Y L) + BA—t), telnk=1,2,3,...,m,

where

m+1

_ _ 1 P
B Z/tl(t ) UE (s, 2(6), DL (6))) d

i

)Z( —t) / — ) 2F(,2(6),SD)2(6))) d

1 e

-2 CyP
-1, (0 —£)"7°F(&,2(8), D7 2(€)) de

TTp- 1)2_[ —€)°7F(£,2(€), DL 2(8)) d&

m

+Z(1—ti ZI )+ Y Li(z(t).
i=1

i=1

We use the notation 9(¢) = F(t,z(t), § Df (1))

3 Main results

To transform our problem to a fixed point problem, we define the operator .7 : E — E by

(720 = F(l) (t- &)y~ 1ﬁ<s>d5+mz (e o) e
L O<ti<t Li-1
1

* T(p-1) Z / (ti =€) ™"0,(8) dE + Z(t—t,)l,(z(t,))

0<t;<t ¥ ti-1 0<t;<t
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m+1
+Zli(z(ti>)+<1—t)[ )Z / - &)1 0.(6) dk

O<t;<t

1 “ t ,
" TooD) ;(l—ti)/“(ti—é)" 0.(€) d&

i

o ) e ds e )Z / (8- £ 20,(6) ds
+Z —t)Ti(2(t:)) + > Ti(z(t:)) Zli(z(ti)):|.
i=1 i=1

Obviously, the fixed points of 7 are the solutions of problem (1).
We assume the following hypotheses for i = 1,2,...,m
(H;) The nonlinear function F: [0,1] x R*> — R is continuous;
(Hz) let us have constants K > 0, L € (0, 1), which satisfy

|F(t,2,2) = F(t,u, )| <

(H3) the relation |1;(z(;)) — L;(z(%;))| < b|z(t;) — z(¢;)|, holds with b > 0;
(Hy) the relation |I;(z(t;)) — Li(z(t:))| < b*|2(t;) — Z(t;)|, holds with b* > 0;
(Hs) there exist functions p, g,r € C(J,R*), with

|E(t,2(6).5 DY 2(8)| < p(t) + q(®)l2] + ()]s Dy

forte],z€E,

such that r* = sup,; [(£) < 1;
(He) under the continuity of I,,L; : R — R there exist some constants M*, N*, F*, G* > 0,
with |L(z)| < M*|z| + N* and |Li(z)| < F*|z| + G*, foreachz€R,i=1,2,...,m

Theorem 3 If the hypotheses (H;)—(Hg) hold then the considered problem (1) has at least
one solution.

Proof This proof consists of a number of steps:
Step 1: To show that .7 is continuous, take {z,} to be a sequence such that z, — z € E.
Then, corresponding to every ¢ € ], we take

(T2)0- (720 < 1 / = 61 9n(6) - 0.(6) | de

S -8 |9n) - 0.6 |

0<t;<t ¥ ti-1

L
I'(p)

oD & = €2 9.(6) - 0.(6) |

0<t <tV li-1
+ Z(t t)|Li(za(t) - I |+ > (@) - Ti(z() |
O<tj<t O<t;<t

m+1

1 ki 9
+ m;/ti_l(ti—s)ﬂ |920(8) = 0,(5)| d&
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1 i t R
+ F(p—l) ;(l_ti)/[;l(ti_g)p |ﬁz,n(§)_ﬁz(§)|d$

Q
S g R ORI
1 & [

- (ti = £)° 2|9 u(§) — 02(8)| dE

I'(p-1) ; /t,.l
+ Z(l - ti)|ii(zn(ti)) - ii(Z(’fi))| + Zﬁi(zn(ti)) - ii(Z(ti))|

i=1 i=1
+ Y |i(za(®) - L(2(®)], (11)

i=1

where 9., 9, € C(], R) satisfy the functional equations
ﬁz,n(t) = F(t;zn(t): 0z,n(t)): D.(t) = F(t, z(t), ﬂz(t)): (12)

respectively. By (H,), we get

K
|ﬂz,n(t) - ﬁz(t)| = ﬁ ”Zn - Z”PC- (13)

Here z, — z as n — oo implies ¥, ,(£) — U,(¢) as n — o0, for each t € J. Also as every
convergent sequence is bounded and we let there exist a real constant k > 0 such that, for
each ¢ € ], we have |9,,(t)| <k and |9,(¢)] <k, then

(=) 020(8) = 0:(8)| = (£ = &) 71|92 (8)] +[9:(8)]
= Zk(t_g)p_lr

(& =87 92(8) = 0:(6)| < (6 = §) 71 (|92 (8)] + [9:(8)]
< 2k(t; - §)°7,

(t - %‘)p72|ﬂz,n($) - ﬁz($)| = (t_ E)p72(|192,n(§)| + |l92($)|
<2k(t-§)"72,

and

(tz' - g)p72|ﬁz,n(§) - ﬁz(€)| = (ti - $)p72(|ﬁz,n(§)| + |ﬁz($)|
<2k(t; - )"
The functions & — 2k(t - £)*~1, &€ — 2k(t; - £)*~1, &€ — 2k(t - £)*~2 and & — 2k(¢; — £)7~2
are integrable for each ¢ € J on [0, £]. Also since F, I, J are continuous, hence by Lebesgue

dominated convergent theorem, from (11), we have

| T z4(t) = T2(t)] > 0 asn— oo.
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Hence
1Tz, — Tzllpc — 0 asun— oo.
Therefore, the operator T is continuous.
Step 2: Next we show that .7 maps bounded sets into bounded sets. Indeed, we just need

to show that, for any X > 0, there exists a constant & > 0 such that, for everyz € ®, = {z €
E:|lzllpc <A}, one has | T z||pc < @. For every ¢ € ], we obtain

(70| < 5 f(t &1 [0.0)] de + = Zf (6 - 6171 |9.(6) | de

0<t<t ti-1
2
* o 2 ) / (8- €2 [0.(6)| ds
+ Y (=)L) + Y (=)
O<t;<t O<t;j<t

m+1

* 05 Z/ (6~ )" [9:(6)] d +
TooD 1_ D Z(l_ti)/i(ti—é;_)p_2|l71(§)|d.§
i=1 ti-1

1 W "
+F(p_1)i=21/m(ti—5)ﬂ [9.(6)] ds

o
)
5 / (0 - £)[9.(8)| &

+Z(1—t)|l (=(%)] Z|1 |+ |L(z(w)], (14)
i=1 i=1

where ¥, is given in (12). Using (Hs), for each ¢ € ] and using p* = sup, |p(t)|, ¢* =
sup,; l4(t)|, we have

9.(t)| = [E(t:2(£), 9.())| < p(8) + q(B)I2] + r(8)]9.(8)]

<p +qr+ r*|z9z(t) ,

which yields

e (AR S (15)

Thanks to (15), the inequality (14) yields

m+1

(0] = w5 [ e-ertae s oo 2/ (- ey de
Q
"To- 1)2/ (i =§)""dE + & _1)L<e—s>ﬂ2ds

+2mb + 3mb*
< 2m+3 3m+1
+
F'(e+1) T(p)

) +m(2b + 3b%),

Page 10 of 21
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which further gives

2 3 3 1
||92||PC§M< mES [ 2mE ) m(2b+3b*) = w

I'(p+1) T(p)

Step 3: To show that .7 is equi-continuous, let ©; C E, then, for z € ®; and ¢, £, €]
with #; < £;, we get

|(T2)(t2) - (T2)(t1))|

w
< |—

_g)p-1 _L f eve-l ‘
<ty ), @ - / (6 — £)0(6) d

i Y [Cw-erp@lde s Y - m)[le)

I'p) 0<t;<(ty—t1) ¥ ti-1 0<t;<(ta—t1)

Y o) o tn@ldse Y )

"To-1)
p= 0<t;<(ty—t1) li-1 0<ti<(ty—t1)

SM(F( 1 _ 1 )+ :u'(tz—tl) +(t2_t1)(t2—t1)(F*|Z| +G*)

p+1) T(p+1) C'(p+1)

ity —t1)
+ P ——

(r—t)+ (- t1))(M*|z| + N*) > 0 ast; — t.
C() ( ) 1

Hence
[(Z72)(tr) - (T2)(t)| =0, asty— b
Thanks to Ascoli-Arzela theorem, the operator .7 : E — E is completely continuous.

Step 4: Finally, we show that the set W = {z € E: z = n.7'z, for some 0 < 1 < 1} is bounded,
such that, for z € W, and z = .7z, with 0 < 7 < 1, hold. Then for every ¢ € J, we take

(0 = s [ (-6 0.t ds+—2/ £ 10.(6) de

O<t;<t ¥ ti-1

o Z(t—t)f (-6 20, ds +n Y (¢ - )] (0)]

O<tj<t O<t;<t
m+1
. . _ 1
1 L e + )Z/ (6~ ) 9.(6) ds
2(§) dé

n 3 . i . -2
"To-1 ;(1—'%) / G- de

n [ 2
D& [ -erneae

+1n Z(l - t)[Li(z(8))| +n Z’L(Z(tim +1n Z’L‘(Z(E)) . (16)
i1

i=1 i=1

Page 11 of 21
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By using (15) and 0 < 1 < 1 (16) implies that

1
12(¢) —rp)f(t YL |,(6)| de

f -1
F()Z (& - &) [0:(5)| dE

O<t;<t ti-1
+ 'r(pl_ 5 o;t(t —t) /t i(t,» —&)P72|0,(8)| dE + O;t(t —1)[Ti(z(2)) |
m+1
+ D (=) + F() / (5~ )71 |0.(6)| a

O<tj<t
e
- _g)2
I 1)£(Q £)72[.(8)| dg

1
F(p 1)

1 "Lt N
*To-1 ;/ti_l(ti—é‘)” |0.(&)| d&

m/ (- £)2|0,(6)| d

m m

+ Y A= 8)|T(z)| + D [T(z@)| + D [T(z(e)]
i=1 i=1 i=1
t m+1l
1% _ pl 2“ _ pl
s—r(p)L<t dt + z[ (t- £ de
3u o2
Wi / (- )2 de

-2 *
F( _1)/(Q EYPdE + 2mb + 3mb

2m+3 3m+1 "
(F(,o+1) ) >+m(2b+3b )-

This further gives

2m+3 3m+1
< 2b + 3b").
IIZIIpc_M<F(p+1)+ - )+m( +35%)

Thus, we conclude that the set W is bounded. Hence as a consequence of Schaefer’s fixed

point theorem 7 has at least one fixed point which is the solution of problem (1). d

Theorem 4 The boundary value problem (BVP) (1) has a unique solution under the hy-
potheses (H1)—(Hy) and the inequality

K 2m+3 3m+1 i
T:[ (F(p+1) + ) >+m(2b+3b )] <1. 17)
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Proof Letz,z € E and t €], then one has

t

|(§Z)(t)—(32)(t)|_r(p) . (= 8)""19.(6) - 5:(8)| dt

/ (1 — €11 [9.(8) - :(6)| d

Yo T Z[t (6 - £2]9.(6) - 5:(6) | e

O<t <t

+ Y (- ) [L(e) - I (2@) | + D |L(z()) - L(z(2)) |

O<t;<t O<tj<t
m+1
ti— &) d
F<>ZI:,1( |9:(6) - 5:(€)| d&

o 00 [ -6 o) - 060 de
1 ti-1

1 0 s
R ), @8I - 6] s

m

1 b -
+ir(p_1); tH(ti—E)” |9:(6) - 8:(5) | d

+Z(1 ) |Ti(=( Z\I (2(8)) - T (2|

+ Z|Ii(2(ti)) - L(z(t))),
i=1
where
D.(t) = F(t,2(6), 92(8)),  82(2) = F(£,2(2), 82(2)). (19)
With the use of (H;), one has
¥, — 83 < K Z (20
10; = 8zllpc < 1_L||Z_Z||PC- )
Therefore, using (20) in (18), we obtain
. _ Klz=Zlpc [* 4 21<||z Zllpc o 4
Tz2-TZ|lpc £ ———— t-&)~d t—-&)"d
I lee = Fya—p) J, 8 E T Zl A 1( £)"~! dt

3Kz — | pc / oy
d
T -1 - L)Z :
Kllz -zl pc / p-2
1z Zllec _£)24
Tp-Da-D ), @ 9%
+2mb||z - Z||pc + 3mb* ||z - Z||pc

= Tllz-Z|rc.

(18)

Page 13 of 21
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Therefore, we get
|7z~ Tzllpc < Yllz~Zllpc.
Thus in view of Banach’s contraction principle, problem (1) has a unique solution. d

4 Ulam-Hyers stability analysis
In this section we investigate results concerning the Hyers—Ulam stability to the problem

(1).

Theorem 5 Ifthe hypotheses (Hy)—(Hy) together with the inequality (17) are satisfied then
the proposed problem (1) is Hyers—Ulam stable and generalized Hyers—Ulam stable.

Proof Corresponding to any solution z € E of the inequality (2) let z € E be the unique

solution to the given problem

§Drz(t) =9,(t), O<t<lt#t,i=1,2,...,m
Az(t)|t=tl' = Ii(Z(ti))r AZ/(t)|t=t,' = Ii(z(ti))’ i= 1) 2; e, m

2(t)] =0 = =2 ()| 1=0, 2(t) =1 = =2 () s=0>
0€(0,1),0 #t;fori=,1,2,...,m,.

Then, inview of Lemma 3, we have

0 = s [ (677 s)d5+—2f (6 - £)19.(6) d

1 i ti - i B m
i DD / (690 de + Y- 0l ele) + D 1(ew)
m+1
_eypo-l
[ opd / (ti— £ 0.(6) d

1 " ti "
R - / -9 e ds

1
+
F(p-1) t

+Z(1 )i (2(2:)) ZI (a(t) Zi(z(ti)):|.

i=1

o-ereds + 1)2/ (682 0.(6)

Further if Z is the solution of inequality (2) and using Remark 1, we get

§DYZ(t) = F(6,2(), SDLZ(E) + 9(t), t€)ii=1,2,...,m
Az(t)h:t,' = Ik(z(tl)) + ¢i! l = 1’ 2) ceoym, (21)
AZ ()|, = 1)) + iy i=1,2,...,m
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The solution of (21) is

0= riy | (-9 50 v s [ - oreas

v 2 - S)d§+—2/ b(6) d
i=1 Yti-1 ti-1

1 [ S .
f oD ), GO dE o 1)Zt (6 - £ 2(€) dt
i=1 vhi-1 =1 Yl-1

+ (- 0T(EE) + Y (- tdgi+ Y L(EE) + Y
i=1 i=1 i=1 i=1

m+1 m+1
+(1- [ Z/ - £)718(8) dk + m Z (t, — )P p(8) dt
i1 -1 ti1

_1) Z / )2y de

ﬁDl—m / (-0 20(e) de
i=1 li-1

L (eerrn@de s — L [(o-er2ew)a
M- ), @8 P&y ) em8ek
Li o t N

+ o I); | (=IO dE ¢ 21 | (-6t ds
+ Y A -a)L(Ew) + Y _(1-1) ¢,+21 )+ ¢

i=1 i=1 i=1 i=1

£y L(zw) Z¢,], tel:

i=1

Hence, for every ¢ € J;, one has
2(¢ z(t>|_F f(t £ [32(6) 9.6 di + = /(t £ (6)| de

Z Yl 8 5200) - 0.06)]

i=1 ti-1

Z " - o)) de

j=1 Yli-1

_ 02
o I)Z/Mt 15:(6) - 9.(8)|

S d
Yo 1)21 m(t )] 4

m m

+ Y (= t)|L(E) - T(=@) | + D (- )il

i=1 i=1

Page 15 of 21
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m

+ Y |L(z) - L) | Zm

i=1

m+1

L [ o - ve) ae

m+1

1
* T ); m(t’ &) o) de

(6= §)18:(8) - O
+Z —t)f 1 50 046

+/Q (0 =£)7215:(8) = V(8|

d
F'(p-1) 5

o ) [ -6 o) ds
i=1 ti-1
1 Q
+m V(Q—é)p_2|¢($)’d$
- ]5:6) - 0.(6)| de

F(P 1)21: i1

r(p—l)zft u= 8ol
+Z 1-1)[L(2(t:)) - L(2(®)) | 2(1 )il

+Z{I (z(8)) - Li(=(%)) | Z|¢l|+Z|I (z(:)) - L(z(t))| Z|¢,.

Hence by (H;)—(Ha4) and using (20) along with (i) of Remark 1, one has

L|z-zlpc . 2Lz - zllpc .
|20 -2 = 5 L)/ =8 ds+ T L)Z1 L e
3L|1z - z|lpc & ' 9
"To-Da-1) L)le e
L|z-zllpc vQ(Q—E)”_sz

F(p-1(A-1) J,

t
+ 2mbl ~ 2l + 3mb I~ 2l + f (t—£)yds

m+1

-1
P o

3e 5 -2
+7F(p_l)i2/mt_ s+ (g—s)p d + 5me

_ 2m+3) 3m+1
<Ylz-zllpc + 5m |e

o+ T "
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This yields
[(2m+3) 3m+1 + 51’1’1]6
= I'(p+1) I'(p)
z-z <
I lpc < e
Hence we have
”2 - Z”PC =< Cm,p€1
where
(2m+3) 3m
c - [r(p+1) + 7 p L} 5m)
e 1-7

Thus the solution of (1) is HU stable. Also by setting ¥ (¢) = C,,,,,€; ¥ (0) = 0, the solution
of (1) becomes GHU stable. O

Assume that:
(Hg) For a nondecreasing function 6 € C(J, R), there exists 8y > 0, such that, for any ¢ €]
IP0(t) < BpB(t); consequently I°710(8) < ByO(2).

Theorem 6 If the hypotheses (H;)—(Hy), (H
problem (1) is HUR stable with respect to (6,

g) and the inequality (17) are satisfied, then
¢) and consequently GHUR stable.

Proof We address for any solution z € E of inequality (4) and for unique solution z the

given problem

§Drz(t) =0.(t), O<t<lLt#t;,i=1,2,...,m
Az(t)|1=y; = Li(2(t:), AZ(8)=y, = Lie(t:)),
2(t)]=0 = =2 (t)|1=0, 2()i=1 = 2 ()s=0>

0€(0,1),0 #t; fori=,1,2,...,m

i=12,...,m,

From the proof of Theorem 5, we get
_ 1 1
0 - =00 < - )/u £)71[5:(6) - z?<s>|ds+r( )f (t-£y ()| de

L § g1 S- _9 d
F(p);/til(tl £)778:(8) - v.()| d&
BRI

+r(p>;fti_l(tl &7 o(®)| s

; N N L E=\0-2] s _ d
+F(p—1);/til(tl £)°7]8:(6) - 0.(8)| de

I & [l
+ (i
F(p-1) ; /;1

-6 (8)| dt

Page 17 of 21
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+Z(t £)|Ti(z(8)) - Ti(z(2) Z(t )1l

i=1

+Z|1 (z(t:)) - L( Z"’”

m+1
T ); A 1“ — Y7 [8:(6) - 0.(6)| e
m+1
Z o — &)Y |p(&)| dt
-1 Y-l
ot — £)P2185(8) — 0,(8)|
+Z(1_tl)/ T 1) ds
(0 - £)77218:(8) - 0.(8)|
+/tl L(p-1) s

1 " 7 R
To-D g(l—mftil(ti—w |p(&)| d

1 Q
e AR QUL
2
. I)met— £)772[3:(6) — 9.(6)] ds

t; - 5
* T 1)21 tl_l(t’ £)72|p(&)| d&

1 -1)|L(z@) - L(z(8))]

(1 - )¢l + Z|I (2(2) - Ti(2(@) |

i=1

¢>L|+Z|I (2(2)) - Ti(z(2)) | me

i=1 i=1

= FMs HM§

Thanks to (H;)—(Hy), (20) and part (i) of Remark 2, we have

m+1

_ L||z-zllpc 1 2L|1z - z|lpc
-0 = f s [Me-ortas o RS

3LIIZ—zllnc .
"Te-Da-D) Z/ e

Lz -zl pc )
"To-na-0l, o5

( )

i=1 Yti-1

(t -£)tds

+2mb|z -zl pc + 3mb*||Z — zllpc + —— (t £)710(5)dk
Ik

Page 18 of 21
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m+1

3¢ wa— _
F( )Z/ (t:-&)0E)dE T o1 ;/til(fi—‘&)p *0(&) d

€ 2
+m/t: (0 —&)7"0(&)dE + 5meg

<7Y|z-z|pc + 6[,39(5}’7’1 +4) + Sm]((p + G(t)).

This finally yields

[Bo(5m + 4) + 5m]

lz-zllpc < T (o +0(0)e,

”2 - Z”PC = Cm,pé(qj + e(t));

where

[Bo(5m +4) + Sm]
1-7

Cup=
Hence the solution to problem (1) is HUR stable and consequently GHUR stable. O

5 Example
Consider the following implicit BVP of FODEs with impulsive conditions:

Example 1

3
2
c |2(8)| sin | Dtlz(t)\ 1

Dtlz(t) weney a0 LELEE 5

2t)li=0 = -2 (t)lt:O: 2(1) = -Z(3), (22)
Az(b) = )\ AZ(L)= l2(3)]

60+ | Ok 45+|z I’

,m=1.Set

In this example, we see that p = %, 0= %

|2(2)| N sin|gD§1z(t)|
20(¢ + 1)(1 + |z(2)|) 20 + £2

|F(t,2(2),8.(2))| =

The continuity of F is obvious.
Forz,ze Eand §,,8; € C(,R), t €],

|F(t,2(2), 8.(8)) - F(£,2(2), 8:(2)) | < zl(|z(t) Z(8)] +18.(6) - 8:(9)]).

This satisfies (Hy) with K = L = %. Further, for ¢, = %, let

|z(21)]
60 + |z(t1)]

|z(21)]

AZ(E)] it = 45+ 1z
2()| =1, 45 + |z(t1)|

and  A(z(t))]—, = where z € E.

For any z,z € E, we have

lz(¢1)] |Z(t1)]

1(z(t1) - 1(z(t0)| = 60 + [z(t1)] 60 +Z(t1) |~ = 60

|Z(t1) Z(f1)|
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and

= (s |z(t1)] |z(t1)] I
[9(zte0) - 3Ee) | = 45-Z+ |;(t1)| B 45Z+ ;(tl) SaseH

These satisfy (H3) and (Ha) with b = %, b =1,
Also

T =0.04355 < 1.

In view of Theorem 4, the uniqueness of solution to (22) follows. Thanks to Theorem 5
analogously one can see that the solution of problem (22) is HU stable and consequently
GHU stable.

Further, assuming 6(¢) = 1, we have

1 ! 3, 1
9(1‘:)—@\/0‘ (l—S) Sds_ﬁ.

Thus (Hg) holds with 8y = ﬁ and 6(t) = 1, therefore, in view of Theorem 6, the solution
of (22) is HUR stable corresponding to (6, ¢) and consequently GHUR stable with respect

to (6, ).

6 Conclusion

By successful applications of nonlinear analysis and classical fixed point theory, we have
developed adequate conditions under which the proposed class of implicit impulsive
FODEs has at least one solution. Further, some useful results were also obtained that en-
sure different kinds of HUS which is important for the nonlinear problems from optimiza-
tion and numerical point of view and plays a main role in numerical solutions where the
exact solution is quite difficult.
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