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ABSTRACT In this research article, a new analytical technique is implemented to solve system of fractional-
order partial differential equations. The fractional derivatives are carried out with the help of Caputo
fractional derivative operator. The direct implementation of Mohand and its inverse transformation provide
sufficient easy less and reliability of the proposed method. Decomposition method along with Mohand
transformation is proceeded to attain the analytical solution of the targeted problems. The applicability of the
suggested method is analyzed through illustrative examples. The solutions graph has the best contact with
the graphs of exact solutions in paper. Moreover, the convergence of the present technique is sufficiently fast,
so that it can be considered the best technique to solve system of nonlinear fractional-order partial differential
equations.

INDEX TERMS Mohand transform, Adomian decomposition, analytical solution, fractional-order system
of partial differential equations, Caputo derivatives.

I. INTRODUCTION
In a few decades, it has been observed that fractional analysis
has tremendous applications in many branches of science.
It is on the basses that in many physical phenomena, exper-
iments have proved that fractional order derivatives have
good agreements with experimental data or real phenom-
ena as compared to integer order derivatives. For instance,
the non-integer order derivative more effectively delineates
memory, heredity effects properties of different materials and
process the internal friction as well [1]–[4]. The fractional
calculus has nowadays is an essential tool that many phe-
nomena in engineering, physics, chemistry, other sciences
from 1 − 3D can be described very successfully. The recent
applications of fractional calculus in different filed attract
the whole concentration of researchers and from which many
results are concluded. These results have contributed in many
fields of science, numerous applications in various fields
of science, such as fractional diffusion and fractional Buck
master’s equation [5], fractional-order time delay system [59]
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space-fractional telegraph equation [6], fractional KdV-
Burger-Kuramoto equation [7], fractal vehicular traffic
flow [8], fractional Drinfeld-Sokolov-Wilson equation [9],
fractional calculus and dynamic system [10], [11], time frac-
tional modified anomalous sub-diffusion equation [12], frac-
tional model for the dynamics of Hepatitis B virus [13],
fractional model for tuberculosis [14], design of optimal
lighting control strategy based on multi-variable fractional-
order extremum seeking method. [16], fractional-order slid-
ing mode based extremum seeking control of a class of
nonlinear systems [17], fractional order pine wilt disease
model [15], fractional diabetes model [18], anomalous trans-
port in disordered systems [19], percolation in porous
media [20], the diffusion of biological population [21],
fractional diffusion-reaction equation [22]and time-fractional
Klein-Gordon equations [23], [24] etc .

Fractional partial differential equations (FPDEs) are the
major mathematical tools that are used to model various
physical phenomena in different branches of applied science
such as physics, engineering and other social science. The
modeling in the form of FPDEs system appear in many appli-
cations of science and engineering such as material sciences,
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biology, chemistry, fluid dynamics, chemical kinetics and
many other physical processes [25]–[35].

The numerical as well as analytical solution of PDEs
system has been drawn a lot of attention of researchers
and scholars in recent years. Many numerical and analyti-
cal algorithm have been use for solving fractional FPDEs
such as double Laplace transform method [36], first inte-
gral method [37], generalized two-dimensional differential
transformmethod [38], conformable fractional Laplace trans-
formmethod [39], modified variational iterationmethod [40],
He’s Variational iteration method [41], variational iteration
method [42], [43], Fourier transform [44] and fractional
complex differential transformation method [45], Laplace-
Adomian decomposition method [46].

Thus, the aim of this study is to propose an analytic solution
for the one dimensional time fractional system of PDEs by
using new integral transform called Mohand transform. The
Mohand Transform is one of the new integral transform use
for the analytical treatment of different physical phenomena
molded by Ordinary Differential Equations (ODEs), Partial
Differential Equations (PDEs) or Fractional Partial Differen-
tial Equations (FPDEs). Recently, Kumar et al. used Mohand
transform and solved the mechanics and electrical circuit
problems [47]. Sudhanshu Aggarwal have Comparatively
Studied Mohand and Aboodh transforms for the solution
of differential equations. The numerical applications reflect
that both the transforms (Mohand and Aboodh transforms)
are closely connected to each other [48]. Sudhanshu Aggar-
wal have also discussed the comparative study of Mohand
and Laplace transforms, Mohand and Sumudu transforms,
Mohand and Mahgoub transforms [49]–[51]. Sudhanshu
Aggarwal have successfully discussed the Mohand transform
of Bessel’s functions of zero, one and two orders, which is
very useful for solvingmany equations in cylindrical or spher-
ical coordinates such as heat equation, wave equation etc [52].
The exact solution of linear Volterra integral equations of sec-
ond kind get by using Mohand transform. It is claimed that
Mohand transform take very little time and has no large com-
putational work [53]. Mohand transform have also used the
for solution of Abel’s integral equation. The obtained results
show that Mohand transform is a powerful integral transform
for handling Abel’s integral equation [54]. For purpose of
implementation of Mohand transform, we considered a time
fractional system of PDEs in the form

Dϑτ∗ψα(ξ, τ
∗)+<α1

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
+ℵβ1(

ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)
)
= δ1(ξ, τ ∗),

Dϑτ∗ϕβ (ξ, τ
∗)+<α2

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
+ℵβ2(

ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)
)
= δ2(ξ, τ ∗),

(1)

with initial condition

ψα(ξ, 0) = w1(ξ ), ϕβ (ξ, 0) = w2(ξ )

where, 0 < ϑ ≤ 1 and <α1 , <α2 , ℵβ1 , ℵβ2 are linear
and non-linear operators. The rest of the paper is structured

as follows: In the section (2), we present the basic definitions
of fractional calculus and basic concepts of Mohand trans-
form. In section (3) presents the implementation the proposed
transform. In section (4) we represent different system of
PDEs are examined separately and plotted. Finally, we depict
our conclusions.

II. PRELIMINARIES CONCEPTS
In this section, we present some basic necessary definitions
and preliminaries concepts related to fractional calculus and
Mohand transform.

A. MOHAND TRANSFORM
Mohand transform first time was defined by Mohand and
Mahgoub of the function ψα(τ ∗) for τ ∗ ≥ 0 in the year 2017.
A new transformation called Mohand transform specified for
the function of the exponential order that we supposed to be
variables in Set A specified by:

A = {f (t) : ∃M , k1, k2 > 0.|f (t)| < Me
|t|
kj ,

iftε(−1)j × [0,∞)}

In the case of a given function in set A, the constantMmust be
a finite number, k1, k2 may be finite or infinite. The Mohand
transform which is represented byM (.) for a function ψα(τ ∗)
is define as [55], [56]

M{ψα(τ ∗)} = R(υ) = υ2
∫
∞

0
ψα(τ ∗)e−υτ

∗

dτ ∗,

k1 ≤ υ ≤ k2 (2)

The Mohand transform of a function ψα(τ ∗) is R(υ) then
ψα(τ ∗) is called the inverse of R(υ) which is expressed as

M−1{R(υ)} = ψα(τ ∗), M−1 (3)

is inverse Mohand operator.

B. MOHAND TRANSFORM FOR NTH DERIVATIVES

M{ψn
α(τ
∗)} = υnR(υ)− υn+1ψα(0)− υnψ ′α(0)

− · · · − υ2ψn−1
α (0) (4)

C. DEFINITION
Caputo operator of fractional partial derivative [57]

Dβτ∗ψα(ξ, τ
∗) =

∂βψα(ξ, τ ∗)
∂τ ∗β

=


In−β [

∂βψα(ξ, τ ∗)
∂τ ∗β

], n− 1 < β < n,

n ∈ N
∂βψα(ξ, τ ∗)

∂τ ∗β
, n = β

(5)
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D. DEFINITION
Function of Mittag-Leffler, Eκ (b) for κ > 0 is defined as

Eκ (b) =
∞∑
m̃=0

bm̃

0(κm̃+ 1)
κ > 0 b ∈ C,

III. IMPLEMENTATION OF MOHAND TRANSFORM
For implementation of the proposed technique we have taken
the time fractional system of PDEs in the form

Dϑτ∗ψα(ξ, τ
∗)+<α1

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
+ℵβ1(

ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)
)
= δ1(ξ, τ ∗),

Dϑτ∗ϕβ (ξ, τ
∗)+<α2

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
+ℵβ2(

ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)
)
= δ2(ξ, τ ∗),

(6)

with initial condition

ψα(ξ, 0) = w1(ξ ), ϕβ (ξ, 0) = w2(ξ )

where, 0 < ϑ ≤ 1 and <α1 ,<α2 ,ℵβ1 ,ℵβ2 are linear and
non-linear operators.
Applying Mohand transform

M [Dϑτ∗ψα(ξ, τ
∗)+<α1

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
+ℵβ1(

ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)
)
] = M

{
δ1(ξ, τ ∗)

}
,

M [Dϑτ∗ϕβ (ξ, τ
∗)+<α2

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
+ℵβ2(

ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)
)
] = M

{
δ2(ξ, τ ∗)

}
, 0 < ϑ ≤ 1

(7)

By using the transform property

υϑ {R(υ)− υu(0)} + <α1 (ψα(ξ, τ
∗)

ϕβ (ξ, τ ∗))+ ℵβ1
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
} = M

{
δ1(ξ, τ ∗)

}
υϑ {R(υ)− υν(0)} + <α2 (ψα(ξ, τ

∗)

ϕβ (ξ, τ ∗))+ ℵβ2
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
} = M

{
δ2(ξ, τ ∗)

}
,

(8)

After some evaluation, equation (8) simplified as

R(υ) = υu(0)−
1
υϑ

M{<α1 (ψα(ξ, τ
∗)ϕβ (ξ, τ ∗))

+ℵβ1

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
} +

1
υϑ

M
{
δ1(ξ, τ ∗)

}
R(υ) = υν(0)−

1
υϑ

M{<α2 (ψα(ξ, τ
∗)ϕβ (ξ, τ ∗))

0+ ℵβ2
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
}+

1
υϑ

M
{
δ2(ξ, τ ∗)

}
,

(9)

By applying inverse Mohand transform

ψα(ξ, τ ∗) = ψα(ξ, 0)−M−1{
1
υϑ

M{<α1
(
ψα(ξ, τ ∗)

ϕβ (ξ, τ ∗)
)
+ ℵβ1

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
}}

+M−1
{

1
υϑ

M
{
δ1(ξ, τ ∗)

}}

ϕβ (ξ, τ ∗) = ϕβ (ξ, 0)−M−1{
1
υϑ

M{<α2(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
+ℵβ2

(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
}}

+M−1
{

1
υϑ

M
{
δ2(ξ, τ ∗)

}}
, (10)

Thus, the first term ψα(ξ, τ ∗), ϕβ (ξ, τ ∗) will be obtain by
using initial conditions
ψ0α(ξ, τ ∗) = ψα(0)+M−1

{
1
υϑ

M
{
δ1(ξ, τ ∗)

}}
ϕ0β (ξ, τ ∗) = ϕβ (0)+M−1

{
1
υϑ

M
{
δ2(ξ, τ ∗)

}} m = 0.

(11)

Finally we obtain the recursive general relation form as

ψ(m+1)α(ξ, τ ∗) = −M−1{
1
υϑ

M{Dϑτ∗ψmα(ξ, τ
∗)

+<α1

(
ψα(ξ, τ ∗)ϕmβ (ξ, τ ∗)

)
+ℵβ1 (ψmα(ξ, τ

∗)

ϕmβ (ξ, τ ∗))}}

m ≥ 0. (12)

The nonlinear terms ℵβ1 ,ℵβ2 is evaluated by using the pro-
cedure of Adomian polynomial given by

ℵβ1 (u, v) =
∞∑
m=0

Am, ℵβ2 (u, v) =
∞∑
m=0

Bm (13)

where,

Am =
1
m

[
dm

dλm

[
ℵβ1

(
∞∑
i=0

λiui,
∞∑
i=0

λiνi

)]]
λ=0

, (14)

m = 0, 1, · · ·

Bm =
1
m

[
dm

dλm

[
ℵβ2

(
∞∑
i=0

λiui,
∞∑
i=0

λiνi

)]]
λ=0

,

m = 0, 1, · · · (15)

IV. APPLICATIONS AND DISCUSSION
Here, we have implemented the Mohand transform on some
time fractional system of PDEs.

EXAMPLE 4.1:
Considering the time fractional system of PDE in the
form [45], [58]

Dϑτ∗ψα(ξ, τ
∗)− ϕβξ (ξ, τ ∗)+ ψα(ξ, τ ∗)+ ϕβ (ξ, τ ∗) = 0

Dϑτ∗ϕβ (ξ, τ
∗)− ψαξ (ξ, τ ∗)+ ψα(ξ, τ ∗)+ ϕβ (ξ, τ ∗) = 0,

0 < ϑ ≤ 1

(16)

with initial source

ψα(ξ, 0) = sinh(ξ ), ϕβ (ξ, 0) = cosh(ξ )
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The exact solution of equation (16) at ϑ = 1

ψα(ξ, τ ∗) = sinh(ξ − τ ∗), ϕβ (ξ, τ ∗) = cosh(ξ − τ ∗)

Taking Mohand transform of equation (16), we get

υϑ {R(υ)−υu(0)} = M
{
ϕβξ (ξ, τ ∗)−ψα(ξ, τ ∗)−ϕβ (ξ, τ ∗)

}
υϑ {R(υ)−υν(0)} = M

{
ψαξ (ξ, τ ∗)−ψα(ξ, τ ∗)−ϕβ (ξ, τ ∗)

}
(17)

After some evaluation, equation (17) is simplified as

R(υ) = υu(0)+
1
υϑ

M
{
ϕβξ (ξ, τ ∗)−ψα(ξ, τ ∗)−ϕβ (ξ, τ ∗)

}
R(υ) = υν(0)+

1
υϑ

M
{
ψαξ (ξ, τ ∗)−ψα(ξ, τ ∗)−ϕβ (ξ, τ ∗)

}
(18)

By applying inverse Mohand transform, we get

ψmα(ξ, τ ∗) = u(ξ, 0)+M−1{
1
υϑ

M{ϕβξ (ξ, τ ∗)

−ψα(ξ, τ ∗)− ϕβ (ξ, τ ∗)}}

ϕβ (ξ, τ ∗) = ϕβ (ξ, 0)+M−1{
1
υϑ

M{ψαξ (ξ, τ ∗)

−ψα(ξ, τ ∗)− ϕβ (ξ, τ ∗)}} (19)

Thus, by using the define recursive scheme of equation (11),
(12), we get

ψ0α(ξ, τ ∗) = ψα(ξ, 0), ϕ0β (ξ, τ ∗) = ϕβ (ξ, 0)

= cosh(ξ ) (20)

ψ(m+1)α(ξ, τ ∗) = M−1{
1
υϑ

M{ϕmβξ (ξ, τ ∗)

−ψmα(ξ, τ ∗)− ϕmβ (ξ, τ ∗)}}

ϕ(m+1)β (ξ, τ ∗) = M−1{
1
υϑ

M{ψmαξ (ξ, τ ∗)

−ψmα(ξ, τ ∗)− ϕmβ (ξ, τ ∗)}}

(21)

From the recursive formula (17), for m = 0

ψ1α(ξ, τ ∗) = M−1{
1
υϑ

M{ϕ0βξ (ξ, τ ∗)− ψ0α(ξ, τ ∗)

−ϕ0β (ξ, τ ∗)}}

ϕ1β (ξ, τ ∗) = M−1{
1
υϑ

M{ψ0αξ (ξ, τ ∗)− ψ0α(ξ, τ ∗)

−ϕ0β (ξ, τ ∗)}}

(22)

ψ1α(ξ, τ ∗) =+M−1
{

1
υϑ

M {sinh(ξ )− sinh(ξ )− cosh(ξ )}
}

ϕ1β (ξ, τ ∗) = M−1
{

1
υϑ

M {cosh(ξ )− sinh(ξ )− cosh(ξ )}
}

(23)

By using transform property

ψ1α(ξ, τ ∗) = M−1
{
− cosh(ξ )
υϑ−1

}
ϕ1β (ξ, τ ∗) = M−1

{
− sinh(ξ )
υϑ−1

}
(24)

By using inverse transform, we get

ψ1α(ξ, τ ∗) =
− cosh(ξ )τ ∗ϑ

ϑ !

ϕ1β (ξ, τ ∗) =
− sinh(ξ )τ ∗ϑ

ϑ !
(25)

similarly for m = 1

ψ2α(ξ, τ ∗) =
sinh(ξ )τ ∗2ϑ

2ϑ !

ϕ2β (ξ, τ ∗) =
cosh(ξ )τ ∗2ϑ

2ϑ !
(26)

for m = 2

ψ3α(ξ, τ ∗) =
− cosh(ξ )τ ∗3ϑ

3ϑ !

ϕ3β (ξ, τ ∗) =
− sinh(ξ )τ ∗3ϑ

3ϑ !
(27)

for m = 3

ψ4α(ξ, τ ∗) =
sinh(ξ )τ ∗4ϑ

4ϑ !

ϕ4β (ξ, τ ∗) =
cosh(ξ )τ ∗4ϑ

4ϑ !
(28)

for m = 4

ψ5α(ξ, τ ∗) =
− cosh(ξ )τ ∗5ϑ

5ϑ !

ϕ5β (ξ, τ ∗) =
− sinh(ξ )τ ∗5ϑ

5ϑ !
... (29)

The Mohand transform solution for example 4.1 is

ψα(ξ, τ ∗) = ψ0α(ξ, τ ∗)+ ψ1α(ξ, τ ∗)+ ψ2α(ξ, τ ∗)
+ψ3α(ξ, τ ∗)+ ψ4α(ξ, τ ∗)+ · · ·

ϕβ (ξ, τ ∗) = ϕ0β (ξ, τ ∗)+ ϕ1β (ξ, τ ∗)+ ϕ2β (ξ, τ ∗)
+ϕ3β (ξ, τ ∗)+ ϕ4β (ξ, τ ∗)+ · · ·

(30)

ψα(ξ, τ ∗) = sinh(x∗)−
cosh(ξ )τ ∗ϑ

ϑ !
+

sinh(ξ )τ ∗2ϑ

2ϑ !

−
cosh(ξ )τ ∗3ϑ

3ϑ !
+

sinh(ξ )τ ∗4ϑ

4ϑ !

−
cosh(ξ )τ ∗5ϑ

5ϑ !
· · ·

ϕβ (ξ, τ ∗) = cosh(ξ )−
sinh(ξ )τ ∗ϑ

ϑ !
+

cosh(ξ )τ ∗2ϑ

2ϑ !

−
sinh(ξ )τ ∗3ϑ

3ϑ !
+

cosh(ξ )τ ∗4ϑ

4ϑ !

−
sinh(x)τ 5ϑ

5ϑ
· · · (31)

By simplifying

ψα(ξ, τ ∗) = sinh(ξ )
{
1+

τ ∗2ϑ

2ϑ !
+

4τ ∗ϑ

4ϑ !
+ · · ·

}
− cosh(ξ )

{
τ ∗ϑ

ϑ !
+
τ ∗3ϑ

3ϑ !
+
τ ∗5ϑ

5ϑ !
+ · · ·

}
150040 VOLUME 7, 2019
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FIGURE 1. ψα(ξ, τ∗) Represents the analytical solution of example 4.1.

ϕβ (ξ, τ ∗) = cosh(ξ )
{
1+

τ ∗2ϑ

2ϑ !
+

4τ ∗ϑ

4ϑ !
+ · · ·

}
− sinh(ξ )

{
τ ∗ϑ

ϑ !
+
τ ∗3ϑ

3ϑ !
+
τ ∗5ϑ

5ϑ !
+ · · ·

}
(32)

For particular case ϑ = 1, the Mohand transform solution
become as

ψα(ξ, τ ∗) = sinh(ξ )
{
1+

τ ∗2

2!
+
τ ∗4

4!
+ · · ·

}
− cosh(ξ )

{
τ ∗ +

τ ∗3

3!
+
τ ∗5

5!
+ · · ·

}
ϕβ (ξ, τ ∗) = cosh(ξ )

{
1+

τ ∗2

2!
+
τ ∗4

4!
+ · · ·

}
− sinh(ξ )

{
τ ∗ +

τ ∗3

3!
+
τ ∗5

5!
+ · · ·

}
(33)

The calculated result provide the exact solution in the close
form

ψα(ξ, τ ∗) = sinh(ξ − τ ∗), ϕβ (ξ, τ ∗) = cosh(ξ − τ ∗) (34)

EXAMPLE 4.2
Consider the time fractional PDE system the form [45], [58]

D∗ϑτ ψα(ξ, τ
∗)− ϕβξ (ξ, τ ∗)− ψα(ξ, τ ∗)+ ϕβ (ξ, τ ∗) = −2

Dϑτ∗ϕβ (ξ, τ
∗)+ ψαξ (ξ, τ ∗)− ψα(ξ, τ ∗)+ ϕβ (ξ, τ ∗) = −2,

0 < ϑ ≤ 1

(35)

with initial condition

ψα(ξ, 0) = 1+ eξ , ϕβ (ξ, 0) = −1+ eξ

The exact solution of equation (35) is

ψα(ξ, τ ∗) = 1+ eξ+τ
∗

, ϕβ (ξ, τ ∗) = −1+ eξ−τ
∗

FIGURE 2. ψα(ξ, τ∗) Represents the exact solution of example 4.1.

FIGURE 3. ψβ (ξ, τ∗) Represents the analytical solution of example 4.1.

FIGURE 4. ψβ (ξ, τ∗) Represents the exact solution of example 4.1.

Taking Mohand transform of equation (35)

R(υ)− υu(0)+M
{
−ϕβξ (ξ, τ ∗)+ ψα(ξ, τ ∗)− ϕβ (ξ, τ ∗)

}
= M{−2}
R(υ)− υν(0)+M

{
−ψαξ (ξ, τ ∗)+ ψα(ξ, τ ∗)− ϕβ (ξ, τ ∗)

}
= M{−2}, (36)
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FIGURE 5. ψα(ξ, τ∗) Represents the solution at different fractional order
of example 4.1.

FIGURE 6. ϕβ (ξ, τ∗) Represents the solution at different fractional order
of example 4.1.

After some evaluation, equation (27) is simplified as

R(υ) = υu(0)+
1
ϑ
M
{
ϕβξ (ξ, τ ∗)+ ψα(ξ, τ ∗)− ϕβ (ξ, τ ∗)

}
+

1
ϑ
M{−2}

R(υ) = υν(0)+
1
ϑ
M
{
−ψαξ (ξ, τ ∗)− ψα(ξ, τ ∗)

+ϕβ (ξ, τ ∗)
}
+

1
ϑ
M{−2}, (37)

Taking inverse Mohand transform of equation (37)

ψα(ξ, τ ∗) = ψα(ξ, 0)+M−1{
1
ϑ
M{ϕβξ (ξ, τ ∗)+ ψα(ξ, τ ∗)

−ϕβ (ξ, τ ∗)}}+M−1
{
1
ϑ
M{−2}

}
ϕβ (ξ, τ ∗) = ϕβ (ξ, 0)+M−1{

1
ϑ
M{−ψαξ (ξ, τ ∗)+ψα(ξ, τ ∗)

−ϕβ (ξ, τ ∗)}} +M−1
{
1
ϑ
M{−2}

}
, (38)

By using the recursive scheme equation (11), we get

ψα(ξ, τ ∗) = ψα(ξ, 0)+M−1
{
1
ϑ
M{−2}

}
= 1+ eξ − 2

τ ∗ϑ

ϑ !

ϕβ (ξ, τ ∗) = ϕβ (ξ, 0)+M−1
{
1
ϑ
M{−2}

}
= −1+ eξ − 2

τ ∗ϑ

ϑ !
,

(39)

ψ(m+1)α(ξ, τ ∗) = M−1{
1
ϑ
M{ϕmβξ (ξ, τ ∗)− ϕmβ (ξ, τ ∗)

+ ψmα(ξ, τ ∗)}}

ϕ(m+1)β (ξ, τ ∗) = M−1{
1
ϑ
M{−ψmαξ (ξ, τ ∗)+ ψmα(ξ, τ ∗)

− ϕmβ (ξ, τ ∗)}} (40)

From the recursive formula (40),
for m = 0

ψ1α(ξ, τ ∗) = M−1{
1
ϑ
M{ϕ0βξ (ξ, τ ∗)− ϕ0β (ξ, τ ∗)

+ ψ0α(ξ, τ ∗)}}

ϕ1β (ξ, τ ∗) = M−1{
1
ϑ
M{−ψ0αξ (ξ, τ ∗)+ ψ0α(ξ, τ ∗)

− ϕ0β (ξ, τ ∗)}} (41)

we get

ψ1α(ξ, τ ∗) = (eξ − 2)
τ ∗ϑ

ϑ !

ϕ1β (ξ, τ ∗) = (eξ − 2)
τ ∗ϑ

ϑ !
(42)

for m = 1

ψ2α(ξ, τ ∗) = eξ
τ ∗2ϑ

2ϑ !

ϕ2β (ξ, τ ∗) = exξ
τ ∗2ϑ

2ϑ !
(43)

for m = 2

ψ3α(ξ, τ ∗) = eξ
τ ∗3ϑ

3ϑ !

ϕ3β (ξ, τ ∗) = eξ
τ ∗3ϑ

3ϑ !
... (44)

The Mohand transform solution for example 4.2 is

ψα(ξ, τ ∗) = ψ0α(ξ, τ ∗)+ ψ1α(ξ, τ ∗)+ ψ2α(ξ, τ ∗)

+ψ3α(ξ, τ ∗)+ · · ·

ϕβ (ξ, τ ∗) = ϕ0β (ξ, τ ∗)+ ϕ1β (ξ, τ ∗)+ ϕ2β (ξ, τ ∗)a

+ϕ3β (ξ, τ ∗)+ · · · (45)

ψα(ξ, τ ∗) = 1+ eξ − 2
τ ∗ϑ

ϑ !
+ (eξ + 2)

τ ∗ϑ

ϑ !
+ eξ

τ ∗2ϑ

2ϑ !

+
τ ∗3ϑ

3ϑ !
+ · · ·
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FIGURE 7. ψα(ξ, τ∗) Represents the analytical solution of example 4.2.

ϕβ (ξ, τ ∗) = −1+ eξ − 2
τ ∗ϑ

ϑ !
+ (eξ + 2)

τ ∗ϑ

ϑ !
+ eξ

τ ∗2ϑ

2ϑ !

+
τ ∗3ϑ

3ϑ !
+ · · · (46)

By simplify, we get

ψα(ξ, τ ∗) = 1+ eξ
{
1+

τ ∗ϑ

ϑ !
+
τ ∗2ϑ

2ϑ !
+
τ ∗3ϑ

3ϑ !
+ · · ·

}
ϕβ (ξ, τ ∗) = −1+ eξ

{
1+

τ ∗ϑ

ϑ !
+
τ ∗2ϑ

2ϑ !
+
τ ∗3ϑ

3ϑ !
+ · · ·

}
(47)

For particular case ϑ = 1, the Mohand transform solution
become as

ψα(ξ, τ ∗) = 1+ eξ
{
1+ τ ∗ +

τ ∗2

2!
+
τ ∗3

3!
+ · · ·

}
ϕβ (ξ, τ ∗) = −1+ eξ

{
1+ τ ∗ +

τ ∗2

2!
+
τ ∗3

3!
+ · · ·

}
(48)

The calculated result provide the exact solution in the close
form

ψα(ξ, τ ∗) = 1+ eξ+τ
∗

ϕβ (ξ, τ ∗) = −1+ eξ+τ
∗

(49)

EXAMPLE 4.3
Consider the third order time fractional PDE system the
form [33]

D∗ϑτ ψα(ξ, τ
∗)− ψαξξ (ξ, τ ∗)− 2ψα(ξ, τ ∗)ψαξ (ξ, τ ∗)

+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
= 0

D∗ϑτ ϕβ (ξ, τ
∗)− ϕβξξ (ξ, τ ∗)− 2ϕβ (ξ, τ ∗)ϕβξ (ξ, τ ∗)

+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
= 0

0 < ϑ ≤ 1 (50)

with initial condition

ψα(ξ, 0) = sin(ξ ), ϕβ (ξ, 0) = sin(ξ )

The exact solution of equation (50) is

ψα(ξ, τ ∗) = sin(ξ )e−τ
∗

, ϕβ (ξ, τ ∗) = sin(ξ )e−τ
∗

FIGURE 8. ψα(ξ, τ∗) Represents the exact solution of example 4.2.

FIGURE 9. ψβ (ξ, τ∗) Represents the analytical solution of example 4.2.

FIGURE 10. ψβ (ξ, τ∗) Represents the exact solution of example 4.2.

Taking Mohand transform of equation (50), we get

υϑ {R(υ)− υu(0)} = M{ψαξξ (ξ, τ ∗)

− 2ψα(ξ, τ ∗)ψαξ (ξ, τ ∗)

+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
}
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FIGURE 11. ψα(ξ, τ∗) Represents the solution at different fractional order
of example 4.2.

FIGURE 12. ϕβ (ξ, τ∗) Represents the solution at different fractional order
of example 4.2.

υϑ {R(υ)− υν(0)} = M{ϕβξξ (ξ, τ ∗)

− 2ϕβ (ξ, τ ∗)ϕβξ (ξ, τ ∗)

+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
} (51)

After some evaluation, equation (51) is simplified as

R(υ) = υu(0)+
1
υϑ

M{ψαξξ (ξ, τ ∗)− 2ψα(ξ, τ ∗)ψαξ (ξ, τ ∗)

+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
}

R(υ) = υν(0)+
1
υϑ

M{ϕβξξ (ξ, τ ∗)− 2ϕβ (ξ, τ ∗)ϕβξ (ξ, τ ∗)

+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
} (52)

By applying inverse Mohand transform, we get

u(x∗, τ ∗) = u(x∗, 0)+M−1{
1
υϑ

M{ψαξξ (ξ, τ ∗)

− 2ψα(ξ, τ ∗)ψαξ (ξ, τ ∗)

+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
}}

ν(x∗, τ ∗) = ν(x∗, 0)+M−1{
1
υϑ

M{ϕβξξ (ξ, τ ∗)

− 2ϕβ (ξ, τ ∗)ϕβξ (ξ, τ ∗)

+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
}} (53)

Thus, by using the define recursive scheme of equation (11),
(12), we get

ψ0α(ξ, τ ∗) = ψα(ξ, 0) = sin(ξ ), ϕ0β (ξ, τ ∗) = ϕβ (ξ, 0)

= sin

(54)

ψ(m+1)α(ξ, τ ∗) = M−1{
1
υϑ

M{ψαξξ (ξ, τ ∗)− 2ψα(ξ, τ ∗)

ψαξ (ξ, τ ∗)+
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
}}

ϕ(m+1)β (ξ, τ ∗) = M−1{
1
υϑ

M{ϕβξξ (ξ, τ ∗)− 2ϕβ (ξ, τ ∗)

ϕβξ (ξ, τ ∗)
(
ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)

)
ξ
}} (55)

The non-linear term is obtained by using equation (13),
the recursive scheme (55) become as

ψ(m+1)α(ξ, τ ∗) = M−1{
1
υϑ

M{ψαξξ (ξ, τ ∗)+ 2
∞∑
m=0

Am

−

∞∑
m=0

Bm}}

ϕ(m+1)β (ξ, τ ∗) = M−1{
1
υϑ

M{ϕβξξ (ξ, τ ∗)+ 2
∞∑
m=0

Am

−

∞∑
m=0

Bm}} (56)

From the recursive formula (56),
for m = 0

ψ1α(ξ, τ ∗) = M−1
{

1
υϑ

M
{
ψ0αξξ (ξ, τ ∗)+ 2A0 − B0

}}
ϕ1β (ξ, τ ∗) = M−1

{
1
υϑ

M
{
ϕ0βξξ (ξ, τ ∗)+ 2A0 − B0

}}
(57)

We get

ψ1α(ξ, τ ∗) = M−1
1
υϑ

M{ψαξξ (ξ, τ ∗)

+ 2ψα(ξ, τ ∗)ψαξ (ξ, τ ∗)}

− {ψα(ξ, τ ∗)ϕβ (ξ, τ ∗)ξ }

ϕβ (ξ, τ ∗) = M−1
1
υϑ

Mϕ0β (ξ, τ ∗)

+ 2ϕβ (ξ, τ ∗){ϕ0βξ (ξ, τ ∗)

−{ψα(ξ, τ ∗)ϕ0β (ξ, τ ∗)ξ }} (58)

By putting the values and using transform property, we get

ψ1α(ξ, τ ∗) = − sin(ξ )
τ ∗ϑ

ϑ !

ϕ1β (ξ, τ ∗) = − sin(ξ )
τ ∗ϑ

ϑ !
(59)
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for m = 1, we will find the non-linear term by using equa-
tion (13)

ψ2α(ξ, τ ∗) = M−1
{

1
υϑ

M
{
ψ1αξξ (ξ, τ ∗)+ 2A1 − B1

}}
ϕ2β (ξ, τ ∗) = M−1

{
1
υϑ

M
{
ϕ1βξξ (ξ, τ ∗)+ 2A1 − B1

}}
(60)

ψ2α(ξ, τ ∗) = sin(ξ )
τ ∗2ϑ

2ϑ !

ϕ2β (ξ, τ ∗) = sin(ξ )
τ ∗2ϑ

2ϑ !
(61)

for m = 2

ψ3α(ξ, τ ∗) = − sin(ξ )
τ ∗3ϑ

3ϑ !

ϕ3β (ξ, τ ∗) = − sin(ξ )
τ ∗3ϑ

3ϑ !
(62)

for m = 3

ψ4α(ξ, τ ∗) =
sin(ξ )τ ∗4ϑ

4ϑ !

ϕ4β (ξ, τ ∗) =
sin(ξ )τ ∗ϑ

4ϑ !
(63)

for m = 4

ψ5α(ξ, τ ∗) =
− sin(ξ )τ ∗5ϑ

5ϑ !

ϕ5β (ξ, τ ∗) =
− sin(ξ )τ ∗5ϑ

5ϑ !
... (64)

The Mohand transform solution for example 4.3 is

ψα(ξ, τ ∗) = ψ0α(ξ, τ ∗)+ ψ1α(ξ, τ ∗)+ ψ2α(ξ, τ ∗)

+ψ3α(ξ, τ ∗)+ ψ4α(ξ, τ ∗)+ · · ·

ϕβ (ξ, τ ∗) = ϕ0β (ξ, τ ∗)+ ϕ1β (ξ, τ ∗)+ ϕ2β (ξ, τ ∗)

+ϕ3β (ξ, τ ∗)+ ϕ4β (ξ, τ ∗)+ · · ·

(65)

ψα(ξ, τ ∗) = sin(ξ ){1−
τ ∗ϑ

ϑ !
+
τ ∗2ϑ

2ϑ !
−
τ ∗3ϑ

3ϑ !
+
τ ∗4ϑ

4ϑ !

−
τ ∗5ϑ

5ϑ !
· · · }

ϕβ (ξ, τ ∗) = sin(ξ ){1−
τ ∗ϑ

ϑ !
+
τ ∗ 2ϑ
2ϑ !

−
τ ∗3ϑ

3ϑ !
+
τ ∗4ϑ

4ϑ !

−
τ ∗5ϑ

5ϑ !
· · · } (66)

For particular case ϑ = 1, the Mohand transform solution
become as

ψα(ξ, τ ∗) = sin(ξ ){1− τ ∗ +
τ ∗2

(2)!
−
τ ∗3

(3)!
+
τ ∗4

(4)!

−
τ ∗5

(5)!
+ · · · }

FIGURE 13. ψα(ξ, τ∗) Represents the analytical solution of example 4.3.

FIGURE 14. ψα(ξ, τ∗) Represents the exact solution of example 4.3.

ϕβ (ξ, τ ∗) = sin(ξ ){1− τ ∗ +
τ ∗2

(2)!
−
τ ∗3

(3)!
+
τ 4

(4)!

−
τ ∗5

(5)!
+ · · · } (67)

The calculated result provide the exact solution in the close
form

ψα(ξ, τ ∗) = e−τ
∗

sin(ξ ), ϕβ (ξ, τ ∗) = e−τ
∗

sin(ξ ) (68)

EXAMPLE 4.4
Consider the time fractional PDE system the form [59]

D∗ϑτ ψα(ξ, ζ, τ
∗)− ϕβξ (ξ, ζ, τ ∗)φγ ζ (ξ, ζ, τ ∗) = 1

D∗ϑτ ϕβ (ξ, ζ, τ
∗)− φγ ξ (ξ, ζ, τ ∗)ψαζ (ξ, ζ, τ ∗) = 5

D∗ϑτ φγ (ξ, ζ, τ
∗)− ψαξ (ξ, ζ, τ ∗)ϕβζ (ξ, ζ, τ ∗) = 5

0 < ϑ ≤ 1 (69)

with initial source

ψα(ξ, ζ, 0) = ξ + 2ζ, ϕβ (ξ, ζ, 0) = ξ − 2ζ, φγ (ξ, ζ, 0)

= −ξ + 2ζ
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FIGURE 15. ψα(ξ, τ∗) Represents the solution at different fractional order
of example 4.3.

The exact solution of equation (69) is ϑ = 1

ψα(ξ, ζ, τ ∗) = ξ + 2ζ + 3τ ∗,

ϕβ (ξ, ζ, τ ∗) = ξ − 2ζ + 3τ ∗,

φγ (ξ, ζ, τ ∗) = −ξ + 2ζ + 3τ ∗

Taking Mohand transform of equation (69)

υϑ (R(υ)− υψα(0))−M
{
ϕβξ (ξ, ζ, τ ∗)φγ ζ (ξ, ζ, τ ∗)

}
= M{1}

υϑ (R(υ)− υϕβ (0))−M
{
φγ ξ (ξ, ζ, τ ∗)ψαζ (ξ, ζ, τ ∗)

}
= M{5}

υϑ (R(υ)− υφγ (0))−M
{
ψαξ (ξ, ζ, τ ∗)ϕβζ (ξ, ζ, τ ∗)

}
= M{5}, (70)

After some evaluation, equation (70) is simplified as

R(υ) = υψα(0)+
1
ϑ
M
{
ϕβξ (ξ, ζ, τ ∗)φγ ζ (ξ, ζ, τ ∗)

}
+

1
ϑ
M{1}

R(υ) = υϕβ (0)+
1
ϑ
M
{
φγ ξ (ξ, ζ, τ ∗)ψαζ (ξ, ζ, τ ∗)

}
+

1
ϑ
M{5}

R(υ) = υφγ (0)+
1
ϑ
M
{
ψαξ (ξ, ζ, τ ∗)ϕβζ (ξ, ζ, τ ∗)

}
+

1
ϑ
M{5}, (71)

Taking inverse Mohand transform of equation (71)

ψα(ξ, ζ, τ ∗) = ψα(ξ, ζ, 0)+M−1{
1
ϑ
M{ϕβξ (ξ, ζ, τ ∗)

φγ ζ (ξ, ζ, τ ∗)}} +M−1
{
1
ϑ
M{1}

}
ϕβ (ξ, ζ, τ ∗) = ϕβ (ξ, ζ, 0)+M−1{

1
ϑ
M{φγ ξ (ξ, ζ, τ ∗)

ψαζ (ξ, ζ, τ ∗)}} +M−1
{
1
ϑ
M{5}

}

φγ (ξ, ζ, τ ∗) = φγ (ξ, ζ, 0)+M−1{
1
ϑ
M{ψαξ (ξ, ζ, τ ∗)

ϕβζ (ξ, ζ, τ ∗)}} +M−1
{
1
ϑ
M{5}

}
, (72)

By using the recursive scheme equation (11), we get

xψ0α(ξ, ζ, τ ∗) = ψα(ξ, ζ, 0)+M−1
{
1
ϑ
M{1}

}
= ξ + 2ζ +

τϑ

ϑ !

ϕ0β (ξ, ζ, τ ∗) = ϕβ (ξ, ζ, 0)+M−1
{
1
ϑ
M{5}

}
= ξ − 2ζ +

5τ ∗ϑ

ϑ !

φ0γ (ξ, ζ, τ ∗) = φγ (ξ, ζ, 0)+M−1
{
1
ϑ
M{5}

}
= −ξ + 2ζ +

5τ ∗ϑ

ϑ !
(73)

ψ(m+1)αζ (ξ, ζ, τ ∗) = M−1
{
1
ϑ
M
{
ϕmβξ (ξ, ζ, τ ∗)

φmγ ζ (ξ, ζ, τ ∗)
}}

ϕ(m+1)βξ (ξ, ζ, τ ∗) = M−1
{
1
ϑ
M
{
φmγ ξ (ξ, ζ, τ ∗)

ψmαζ (ξ, ζ, τ ∗)
}}

φ(m+1)γ ξ (ξ, ζ, τ ∗) = M−1
{
1
ϑ
M
{
ψmαξ (ξ, ζ, τ ∗)

ϕmβζ (ξ, ζ, τ ∗)
}}

(74)

The non-linear term can calculated by using equation (13),
we get

ψ(m+1)αζ (ξ, ζ, τ ∗) = M−1
{
1
ϑ
M

{
∞∑
m=0

Am

}}

ϕ(m+1)βξ (ξ, ζ, τ ∗) = M−1
{
1
ϑ
M

{
w
∞∑
m=0

Bm

}}

φ(m+1)γ ξ (ξ, ζ, τ ∗) = M−1
{
1
ϑ
M

{
∞∑
m=0

Cm

}}
(75)

From the recursive formula (75),
for m = 0

ψ1αζ (ξ, ζ, τ ∗) = M−1
{
1
ϑ
M {A0}

}
ϕ1βξ (ξ, ζ, τ ∗) = M−1

{
1
ϑ
M {B0}

}
φ1γ ξ (ξ, ζ, τ ∗) = M−1

{
1
ϑ
M {C0}

}
(76)

we get

ψ1αζ (ξ, ζ, τ ∗)

= M−1
{
1
ϑ
M
{
ϕ0βξ (ξ, ζ, τ ∗)φ0γ ζ (ξ, ζ, τ ∗)

}}
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FIGURE 16. ψα(ξ, ζ, τ∗) Represents the analytical solution of example 4.4.

ϕ1βξ (ξ, ζ, τ ∗)

= M−1
{
1
ϑ
M
{
φ0γ ξ (ξ, ζ, τ ∗)ψ0αζ (ξ, ζ, τ ∗)

}}
φ1γ ξ (ξ, ζ, τ ∗)

= M−1
{
1
ϑ
M
{
ψ0αξ (ξ, ζ, τ ∗)ϕ0βζ (ξ, ζ, τ ∗)

}}
(77)

ψ1αζ (ξ, ζ, τ ∗) = 2
τ ∗ϑ

ϑ !

ϕ1βξ (ξ, ζ, τ ∗) = −2
τ ∗ϑ

ϑ !

φ1γ ξ (ξ, ζ, τ ∗) = −2
τ ∗ϑ

ϑ !
(78)

for m = 1

ψ2αζ (ξ, ζ, τ ∗) = 0
ϕ2βξ (ξ, ζ, τ ∗) = 0
φ2γ ξ (ξ, ζ, τ ∗) = 0 (79)

for m = 2

ψ3αζ (ξ, ζ, τ ∗) = 0
ϕ3βξ (ξ, ζ, τ ∗) = 0
φ3γ ξ (ξ, ζ, τ ∗) = 0

... (80)

The Mohand transform solution for example 4.4 is

ψαζ (ξ, ζ, τ ∗) = ψ0αζ (ξ, ζ, τ ∗)+ ψ1αζ (ξ, ζ, τ ∗)
+ψ2αζ (ξ, ζ, τ ∗)+ ψ3αζ (ξ, ζ, τ ∗)+ · · ·

ϕβξ (ξ, ζ, τ ∗) = ϕ0βξ (ξ, ζ, τ ∗)+ ϕ1βξ (ξ, ζ, τ ∗)
+ϕ2βξ (ξ, ζ, τ ∗)+ ϕ3βξ (ξ, ζ, τ ∗)+ · · ·

φγ ξ (ξ, ζ, τ ∗) = φ0γ ξ (ξ, ζ, τ ∗)+ φ1γ ξ (ξ, ζ, τ ∗)
+φ2γ ξ (ξ, ζ, τ ∗)+ φ3γ ξ (ξ, ζ, τ ∗))+ · · ·

(81)

ψαζ (ξ, ζ, τ ∗) = ξ + 2ζ +
τ ∗ϑ

ϑ !
+ 2

τ ∗ϑ

ϑ !
+ 0+ 0+ · · ·

ϕβξ (ξ, ζ, τ ∗) = ξ − 2ζ +
5τ ∗ϑ

ϑ !
− 2

τ ∗ϑ

ϑ !
+ 0+ 0+ · · ·

φγ ξ (ξ, ζ, τ ∗) = −ξ + 2ζ +
5τ ∗ϑ

ϑ !
− 2

τ ∗ϑ

ϑ !
+ 0+ 0+ · · ·

(82)

FIGURE 17. ψα(ξ, ζ, τ∗) Represents the exact solution of example 4.4.

FIGURE 18. ψβ (ξ, ζ, τ∗) Represents the analytical solution of example 4.4.

FIGURE 19. ψβ (ξ, ζ, τ∗) Represents the exact solution of example 4.4.

By simplify, we get

ψαζ (ξ, ζ, τ ∗) = ξ + 2ζ +
3τ ∗ϑ

ϑ !

ϕβξ (ξ, ζ, τ ∗) = ξ − 2ζ +
3τ ∗ϑ

ϑ !

φγ ξ (ξ, ζ, τ ∗) = −ξ + 2ζ +
3τ ∗ϑ

ϑ !
(83)
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FIGURE 20. ψγ (ξ, ζ, τ∗) Represents the analytical solution of example 4.4.

FIGURE 21. ψγ (ξ, ζ, τ∗) Represents the exact solution of example 4.4.

FIGURE 22. ψα(ξ, ζ, τ∗) Represents the solution at different fractional
order of example 4.3.

For particular case ϑ = 1, the Mohand transform solution
become as

ψαζ (ξ, ζ, τ ∗) = ξ + 2ζ + 3τ ∗

ϕβξ (ξ, ζ, τ ∗) = ξ − 2ζ + 3τ ∗

φγ ξ (ξ, ζ, τ ∗) = −ξ + 2ζ + 3τ ∗ (84)

FIGURE 23. ϕβ (ξ, ζ, τ∗) Represents the solution at different fractional
order of example 4.3.

FIGURE 24. φγ (ξ, ζ, τ∗) Represents the solution at different fractional
order of example 4.3.

The calculated result provide the exact solution in the close
form

ψαζ (ξ, ζ, τ ∗) = ξ + 2ζ + 3τ ∗

ϕβξ (ξ, ζ, τ ∗) = ξ − 2ζ + 3τ ∗

φγ ξ (ξ, ζ, τ ∗) = −ξ + 2ζ + 3τ ∗ (85)

V. CONCLUSION
Mohand transformation along with Decomposition method is
a hybrid analytical technique that can be used effectively to
solve system of fractional-order nonlinear partial differential
equations. The fractional-order derivatives are defined the
term of Caputo operator. The applicability and credibility
of the suggested method is investigated through illustration
examples. Higher rate of convergence is achieved of the pro-
posed method. Moreover, the closed form analytical solution
is obtained, which has classified the current method among

150048 VOLUME 7, 2019



R. Shahet al.: New Analytical Technique to Solve System of Fractional-Order Partial Differential Equations

the best analytical techniques. The easy and straightforward
implementations of the method have extended the idea to
solve other nonlinear systems of fractional-Order differential
equations.
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