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ABSTRACT The aim of this manuscript is to establish common fixed points results for multi-valued
mappings via generalized rational type contractions in complete b-metric spaces. Using the derived results,
existence of solutions to certain integral equations and fractional differential equations in the frame of Caputo
fractional derivative are studied. Examples are provided for the authenticity of the presented work.
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I. INTRODUCTION AND PRELIMINARIES
Fractional calculus has been given proper attention in the
last few decades by researchers. In fact, it is the general-
ization of classical calculus with the rapid development and
advancement in nanotechnology. It has become a powerful
tool (fractional order derivatives and integrals) with succesful
and accurate results in modeling of various complex real
world problems of science and engineering ( [1], [2], [23],
[35]). Fractional calculus is not only emerging and a produc-
tive field, it also represents a new philosophy how to construct
and apply a certain type of nonlocal operators to real world
problems. For detail see ( [8], [29], [31], [32], [37]–[40]).

The problem of the convergence with respect to a mea-
sure of the measurable functions leads to a generalization
of the concept of a metric. Using this notion, Czerwik [12]
and Bakhtin [9] generalized the idea of metric space
and presented metric spaces called b-metric spaces. Many
researchers took the clue of Czerwik [12] and obtained inter-
esting results. For detail see ( [5], [7], [19], [26]–[28]).
Recently, some authors generalized the b−metric space to
more general type of metric type spaces by using control
functions in the triangle inequality. Of special interest, the
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so-called controlled and double controlled metric type spaces
was introduced in [24] and [6], where the contraction princi-
ple was proved under new limit conditions for the controlled
functions.

A metric space (usual) is obviously a b-metric space. How-
ever, in Czerwik [12] and [13] showed that a b-metric on X
need not be a metric(usual) on X (see [10], [14].

In Hilbert space, Alber and Gurre [3] presented weak con-
traction by generalizing contraction and revealed the presence
of fixed points for a self-map. Rhoades [33] demonstrated this
results in metric space under φ-weak contraction. Dutta and
Choudhury [15] generalized φ-weak contraction for (ψ, φ)
weak contraction and examined results for fixed point. Zhang
and Song [41] described weak contraction under two self-
map. The result proved by Zhang and Song [41] was further
generalized by Doric [16], Radenović and Kadelburg [30]
for the presence of common fixed point under (ψ, φ) weak
contraction. Gordji et. al. [36] studied common fixed point
theorems for (ψ, φ) nonlinear weak contraction.
Sehgal [34] ascertained result on periodic points and fixed

points for a class of mappings. Murthy et al. [22] demon-
strated some results for rational contraction in a complex val-
ued metric space. Chen and Sun [11] established fixed points
for the (ψ, φ) weaker contractive mappings in generalized
complete metric spaces.
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In the current work, we discuss unique common fixed point
results for set-valued generalized almost and (ψ, φ) weak
contraction in b-metric spaces with applications. Throughout
the paper, R+, N and N0 stand for the set of non-negative
real numbers, the set of positive integers and the set of non-
negative integers, respectively.

Now, we give some definitions and results for multi-valued
mappings defined in a b-metric space (3, d, s). Define the
function H : CB(3) × CB(3) → R+ for �1, �2 ∈ CB(3)
by

H (�1, �2) = max{ sup
ς∈�1

d(ς,�2), sup
ζ∈�2

d(ζ,�1)},

where

d(ξ,�1) = inf{d(ξ, ζ ) : ζ ∈ �1}.

Then, H is called Hausdorff-Pompeiu metric. Also

δ(�1, �2) = sup{d(ς, ζ ) : ς ∈ �1, ζ ∈ �2}

and

D(�1, �2) = inf{d(ς, ζ ) : ς ∈ �1, ζ ∈ �2}.

The following can be deduced from the definition of δ

δ(�1, �2) = δ(�2, �1),

δ(�1, �3) ≤ δ(�1, �2)+ δ(�2, �3),

δ(�1, �2) = 0⇔ �1 = �2 = {ς},

δ(�1, �1) = diam�1.

Definition 1 [25]: For 3 6= ∅. A fixed point of a multi-
valued map f : 3 → CB(3) is a point p ∈ 3 such that
p ∈ f (p).
Theorem 2 [25]: Let f : 3 → CB(3) defined on

complete (3, d) metric space which hold the condition

H (f ξ, f ζ ) ≤ k(d(ξ, ζ ) ∀ ξ, ζ ∈ 3. (I.1)

Here, k ∈ (0, 1), CB(3) is the collection of bounded closed
and nonempty subset of 3. Then f has a fixed point.
Lemma 3 [12]: Let (3, d, s) be a b-metric space with s >

1. For any �1, �2, �3 ∈ CB(3) and ξ, ζ ∈ 3. We have the
following

1) d(ξ,�2) ≤ d(ξ, ζ ), ∀ ζ ∈ �2;
2) δ(�1, �2) ≤ H (�1, �2);
3) d(ξ,�2) ≤ H (�1, �2), ∀ ξ ∈ �1;
4) H (�1, �1) = 0;
5) H (�1, �2) = H (�2, �1);
6) H (�1, �3) ≤ s[H (�1, �2)+ H (�2, �3)];
7) H (ξ,�1) ≤ s[d(ξ, ζ )+ d(ζ,�1)].’’

Lemma 4 [21]: ‘‘Assume (3, d, s) is a b-metric space and
21,22 ∈ CB(3). Then for h ≥ 1, a ∈ 21 there exist
b(a) ∈ 22 such that d(a, b) ≤ hH (21,22)’’.
The following recent result of Miculescu and Mihail is

useful in the context of b-metric spaces.

Lemma 5 [20]: ‘‘Every sequence (xn)n∈N of elements
from a b-metric space (3, d, s), having the property that there
exists γ ∈ [0, 1) such that

d(xn+1, xn) ≤ γ d(xn, xn−1),

for every n ∈ N, is Cauchy.’’
Lemma 6 [4]: ‘‘Let (3, d, s) be a b-metric with s ≥ 1,

and suppose that (xn)n∈N and (yn)n∈N are b-convergent to x, y
respectively then we have

1
s2
d(x, y) ≤ lim

n→∞
inf d(xn, yn)

≤ lim
n→∞

sup d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn = 0.
Moreover for each z ∈ X we have
1
s
d(x, z)≤ lim

n→∞
inf d(xn, z)≤ lim

n→∞
sup d(xn, z) ≤ sd(x, z).’’

Geraghty [17] generalized Banach contraction principle by
using the following definition.
Definition 7: Assume 2 signify the set of functions κ :

R+→ (0, 1] with
(i) R+ = {θ ∈ R | θ > 0},
(ii) κ(θn)→ 1 implies θn→ 0.
Example 8 [18]: Let ϕ : R+→ [0, 1) define by,

ϕ(ω) =

1−
ω3

2
, if ω ≤ 1

β < 1, if ω > 1.

Clearly, ϕ ∈ 2.

II. MAIN RESULTS
In this section, we prove our fixed point theorems for multi-
valued mapping on b−metric spaces.
Theorem 9: Let Q and R be two multi-valued mapping

from 3 to CB(3) in a complete b-metric space (3, d, s)
with s > 1. Suppose for each ς, ϑ ∈ 3, the following
condition holds:

ψ(sH (Qς,Rϑ)) ≤ ψ(M (ς, ϑ))

−ϕ(ψ(M (ς, ϑ)))+ θ (N (ς, ϑ)), (II.1)

where

M (ς, ϑ) = max
{
d(ς,Qς )d(ϑ,Rϑ)

1+ d(ς, ϑ)
, d(ς, ϑ)

}
, (II.2)

N (ς, ϑ) = min
{
d(ς, ϑ), d(ς,Qς ), d(ϑ,Rϑ), d(ς,Rϑ),

d(ϑ,Qς )
}
, (II.3)

(i) ψ : R+ → R+ is non-decreasing and continuous
function such that ψ(t) = 0 if and only if t = 0;

(ii) ϕ : R+ → R+ is non-decreasing function and a lower
semi continuous function such that ϕ(t) = 0 if and only
if t = 0;

(iii) θ : R+ → R+ is a continuous function such that
θ (t) = 0 if and only if t = 0;
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(iv) s > 1.
Then Q and R has a unique common fixed point.

Proof: Fix any ς ∈ 3. Define ς0 = ς and let ς1 ∈ Qς0
by Lemma 4 there exist ς2 ∈ Rς1 such that

d(ς1, ς2) ≤
√
sH (Qς0,Rς1),

for ς2 ∈ Rς1 there exist ς3 ∈ Qς2 such that

d(ς2, ς3) ≤
√
sH (Qς1,Rς2).

In this way, we get ς2n+1 ∈ Qς2n and ς2n+2 ∈ Rς2n+1.
If ς2n+1 = ς2n+2, then ςn is a Cauchy sequence. Suppose

ς2n+1 6= ς2n+2. Then by (II.16) we have

ψ(
√
sd(ς2n+1, ς2n+2))

≤ ψ(sH (Qς2n,Rς2n+1)) ≤ ψ(M (ς2n, ς2n+1))

−ϕ(ψ(M (ς2n, ς2n+1)))+ θ (N (ς2n, ς2n+1)), (II.4)

where

M (ς2n, ς2n+1) = max
{
d(ς2n,Qς2n)d(ς2n+1,Rς2n+1)

1+ d(ς2n, ς2n+1)
,

(II.5)

d(ς2n, ς2n+1)
}
. (II.6)

By using Lemma 3, we have

M (ς2n, ς2n+1) ≤ max
{
d(ς2n, ς2n+1)d(ς2n+1, ς2n+2)

1+ d(ς2n, ς2n+1)
,

d(ς2n, ς2n+1)
}

≤ max
{
d(ς2n+1, ς2n+2), d(ς2n, ς2n+1)

}
.

Suppose now

max
{
d(ς2n+1, ς2n+2), d(ς2n, ς2n+1)

}
= d(ς2n+1, ς2n+2).

Then (II.4) becomes

ψ(
√
sd(ς2n+1, ς2n+2))

≤ ψ(d(ς2n+1, ς2n+2))

−ϕ(ψ(d(ς2n+1, ς2n+2)))+ θ (N (ς2n, ς2n+1)). (II.7)

But

N (ς2n, ς2n+1) = min
{
d(ς2n, ς2n+1), d(ς2n,Qς2n),

d(ς2n+1,Rς2n+1),

d(ς2n,Rς2n+1), d(ς2n+1,Qς2n)
}

≤ min
{
d(ς2n, ς2n+1),

d(ς2n, ς2n+1)),

d(ς2n+1, ς2n+2),

d(ς2n, ς2n+2), d(ς2n+1, ς2n+1)
}

which implies that

N (ς2n, ς2n+1) = 0. (II.8)

Then, from equation (II.7) contradiction arises. Therefore

M (ς2n, ς2n+1) ≤ d(ς2n, ς2n+1). (II.9)

Using equations (II.8) and (II.9), from equation (II.4) we have

ψ(
√
sd(ς2n+1, ς2n+2)) ≤ ψ(sH (Qς2n,Rς2n+1))

≤ ψ(d(ς2n, ς2n+1))

−ϕ(ψ(d(ς2n, ς2n+1)))

≤ ψ(d(ς2n, ς2n+1)).

Hence
√
sd(ς2n+1, ς2n+2)≤d(ς2n, ς2n+1) for all n ∈ N. (II.10)

Similarly, replacing ς by ς2n+2 and ϑ by ς2n+3, we have
√
sd(ς2n+2, ς2n+3) ≤ d(ς2n+1, ς2n+2) for all n ∈ N.

(II.11)

From (II.10) and (II.11), we have

d(ςn, ςn+1) ≤
1
√
s
d(ςn−1, ςn) for all n ∈ N.

Now, from Lemma 5, we obtain that the sequence {ςn} is
a Cauchy sequence. Since 3 is complete, every Cauchy
sequence in 3 is convergent and converges to some point u
in 3. Suppose u /∈ R(u). Then,

d(ς2n+1,Ru)≤ d(Qς2n,Ru)≤ψ(M (ς2n, u))

−ϕ(ψ(M (ς2n, u)))+θ (N (ς2n, u)), (II.12)

where

M (ς2n, u) = max
{
d(ς2n,Qς2n)d(u,Ru)

1+ d(ς2n, u)
, d(ς2n, u)

}
≤ max

{
d(ς2n, ς2n+1)d(u,Ru)

1+ d(ς2n, u)
, d(ς2n, u)

}
≤ max

{
d(ς2n, ς2n+1)d(u,Ru), d(ς2n, u)

}
,

Taking the upper limit n→∞ and using Lemma6, we have

lim sup
n→∞

M (ς2n, u)≤max
{
s2d(u, u)lim sup

n→∞
d(u,Ru), sd(u, u)

}
which implies that Taking the upper limit n→∞ and using
Lemma 6, we have

lim sup
n→∞

N (ς2n, u)≤min
{
sd(u, u), s2d(u, u), lim sup

n→∞
d(u,Ru),

lim sup
n→∞

d(ς2n,Ru), sd(u, u)
}
.

Which gives that

lim sup
n→∞

N (ς2n, u) = 0.

Taking the upper limit n→∞ in (II .12) and using

lim sup
n→∞

N (ς2n, u) = 0

and

lim sup
n→∞

M (ς2n, u) = 0,
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we have

lim sup
n→∞

d(ς2n+1,Ru) = 0.

But from Lemma 3

d(u,Ru) ≤ d(u, ςn+1)+ d(ςn+1,Ru).

By passing limit we have d(u,Ru) → 0. Therefore u ∈ Ru.
Correspondingly, we can show that u ∈ Qu and so u is a
common fixed point of Q and R. Now, we shall show that
this point is unique. If possible, let v be a different common
fixed point of Q and R. i.e. v ∈ Qv and v ∈ Rv. Then

ψ(d(u, v)) ≤ ψ(H (Qu,Rv))

≤ ψ(M (u, v)) (II.13)

−ϕ(ψ(M (u, v)))+ θ (N (u, v)), (II.14)

where

M (u, v) = max
{
d(u,Qu)d(v,Rv)

1+ d(u, v)
, d(u, v)

}
= d(u, v),

N (u, v) = min
{
d(u, v), d(u,Qv),

d(v,Rv), d(v,Rv), d(v,Qu)
}
= 0. (II.15)

So, (II.13) implies that u = v. Therefore u is a unique
common fixed point of Q and R.
Remark1: The author in [36] proved common fixed

points for single valued mapping in metric spaces while in
Theorem 2.1 we proved common fixed points for multi-
valued mapping in b-metric space.

ψ(sH (Qς,Rϑ)) ≤ ψ(M (ς, ϑ))− ϕ(ψ(M (ς, ϑ)))

+ θ (N (ς, ϑ)), (II.16)

Theorem 10: Let η and θ be two multi-valued mapping
from3 to CB(3) in a complete b-metric space (3, d, s) with
s > 1. Suppose for all ς, ϑ ∈ 3,

sH (ης, θϑ)≤α(d(ς, ϑ))9(ς, ϑ)+β(d(ς, ϑ))8(ς, ϑ),

(II.17)

where

9(ς, ϑ) = max
{
d(ς, ης)d(ϑ, θϑ)

1+ d(ς, ϑ)
, d(ς, ϑ)

}
, (II.18)

8(ς, ϑ) = min
{
d(ς, ϑ), d(ς, ης), d(ϑ, θϑ),

d(ς, θϑ), d(ϑ, ης)
}

(II.19)

and α(ς ), β(ς ) ∈ 2. Then, η and θ has a unique common
fixed point.

Proof: Fix any ς ∈ 3, define ς0 = ς and let ς1 ∈ ης0.
By Lemma 4, there exists ς2 ∈ θς1 such that

d(ς1, ς2) ≤ H (ης0, θς1).

Now, for ς2 ∈ θς1 there exists ς3 ∈ ης2 such that

d(ς2, ς3) ≤ H (ης1, θς2).

Similarly, in this way we can obtain ς2n+1 ∈ ης2n and
ς2n+2 ∈ θς2n+1.

If ς2n+1 = ς2n+2, then ςn is a Cauchy sequence.
Suppose ς2n+1 6= ς2n+2. Then

sd(ς2n+1, ς2n+2) ≤ sH (ης2n, θς2n+1).

Using (II.17), one has

sH (ης2n, θς2n+1) ≤ α(d(ς2n, ς2n+1))9(ς2n, ς2n+1)

+ β(d(ς2n, ς2n+1))8(ς2n, ς2n+1).

Thus,

sd(ς2n+1, ς2n+2)

≤ α(d(ς2n, ς2n+1))9(ς2n, ς2n+1)

+β(d(ς2n, ς2n+1))8(ς2n, ς2n+1), (II.20)

where

9(ς2n, ς2n+1)

= max
{
d(ς2n, ης2n)d(ς2n+1, θς2n+1)

1+ d(ς2n, ς2n+1)
, d(ς2n, ς2n+1)

}
.

By using Lemma 3, we have

9(ς2n, ς2n+1)

≤ max
{
d(ς2n, ς2n+1)d(ς2n+1, ς2n+2)

1+ d(ς2n, ς2n+1)
, d(ς2n, ς2n+1)

}
.

Hence,

9(ς2n, ς2n+1) ≤ max
{
d(ς2n+1, ς2n+2), d(ς2n, ς2n+1)

}
.

(II.21)

Now, suppose that

max
{
d(ς2n+1, ς2n+2), d(ς2n, ς2n+1)

}
= d(ς2n+1, ς2n+2).

Then, (II.20) becomes

sd(ς2n+1, ς2n+2) ≤ α(d(ς2n, ς2n+1))d(ς2n+1, ς2n+2)

+β(d(ς2n, ς2n+1))8(ς2n, ς2n+1).

(II.22)

But

8(ς2n, ς2n+1) = min
{
d(ς2n, ς2n+1), d(ς2n+1, ης2n),

d(ς2n, ης2n),

d(ς2n+1, θς2n+1), d(ς2n, θς2n+1)
}

≤ min
{
d(ς2n, ς2n+1), d(ς2n+1,

ς2n+1), d(ς2n, ς2n+1),

d(ς2n+1, ς2n+2), d(ς2n, ς2n+2)
}
=0.

This implies that

8(ς2n, ς2n+1) = 0. (II.23)
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Then, by using (II.23) in (II.22), we get contradiction.
Therefore,

9(ς2n, ς2n+1) ≤ d(ς2n, ς2n+1).

From equation (II.20), we have

sd(ς2n+1, ς2n+2) ≤ sH (ης2n, θς2n+1)

≤ α(d(ς2n, ς2n+1))d(ς2n, ς2n+1).

Which implies that

sd(ς2n+1, ς2n+2) ≤ α(d(ς2n, ς2n+1))d(ς2n, ς2n+1). (II.24)

Similarly, replacing ς by ς2n+2 and ϑ by ς2n+3, we have

sd(ς2n+2, ς2n+3) ≤ α(d(ς2n+1, ς2n+2))d(ς2n+1, ς2n+2).

(II.25)

From (II.24) and (II.25), we have

sd(ςn, ςn+1) ≤ α(d(ςn−1, ςn))d(ςn−1, ςn)

for all n ∈ N, which implies that

d(ςn, ςn+1) ≤
1
s
d(ςn−1, ςn).

Now, from Lemma 5, we obtain that {ςn} is a Cauchy
sequence. Since 3 is complete, therefore every Cauchy
sequence in 3 is convergent and converges to a point u (say)
in 3. Suppose u /∈ θ (u)

d(ς2n+1, θu) (II.26)

≤ d(ης2n, θu) ≤ α(d(ς2n, u))9(ς2n, u)

+β(d(ς2n, u))8(ς2n, u), (II.27)

where

9(ς2n, u) = max
{
d(ς2n, ης2n)d(u, θu)

1+ d(ς2n, u)
, d(ς2n, u)

}
≤ max

{
d(ς2n, ς2n+1)d(u, θu)

1+ d(ς2n, u)
, d(ς2n, u)

}
≤ max

{
d(ς2n, ς2n+1)d(u, θu), d(ς2n, u)

}
.

Taking the upper limit n→∞ and using Lemma6, we have

lim sup
n→∞

9(ς2n, u)≤max
{
s2d(u, u)lim sup

n→∞
d(u, θu), sd(u, u)

}
which gives

lim sup
n→∞

9(ς2n, u) = 0.

8(ς2n, u) = min
{
d(ς2n, u), d(ς2n, ης2n), d(u, θu),

d(ς2n, θu), d(u, ης2n)
}

≤ min
{
d(ς2n, u), d(ς2n, ς2n+1),

d(u, θu), d(ς2n, θu), d(u, ς2n+1)
}
.

Taking the upper limit n→∞ and using Lemma6, we have

lim sup
n→∞

8(ς2n, u)

≤ min
{
sd(u, u), s2d(u, u), lim sup

n→∞
d(u, θu),

lim sup
n→∞

d(ς2n, θu), sd(u, u)
}
.

lim sup
n→∞

8(ς2n, u) = 0.

Put on upper limit n→∞ in (II.26), and using

lim sup
n→∞

9(ς2n, u) = 0, lim sup
n→∞

8(ς2n, u) = 0,

we have

lim sup
n→∞

d(ς2n+1, θu) = 0.

But, from Lemma3

d(u, θu) ≤ d(u, ςn+1)+ d(ςn+1, θu).

By taking limit we get d(u, θu) = 0. Thus u ∈ θu. We can
show similarly that u ∈ ηu, so u is a common fixed point of η
and θ . Now to show that this point is unique. Let v be another
common fixed point of η and θ i.e u ∈ ηu and v ∈ θv. Then,

d(u, v) ≤ sH (ηu, θv)

≤ α(d(u, v))9(u, v)+ β(d(u, v))8(u, v),

where

9(u, v)=max
{
d(u, ηu)d(v, θv)

1+ d(u, v)
, d(u, v)

}
= d(u, v),

(II.28)
8(u, v)=min

{
d(u, v), d(u, ηv), d(v, θv), d(v, θv), d(v, ηu)

}
= 0. (II.29)

By using (II.28) and (II.29) from (II.28) since 0 <

α(d(u, v)) ≤ 1, we have u = v. Hence, u is a unique common
fixed point of η and θ .
Remark2: The author in [22] proved periodic points for

single valued mapping while in Theorem 2.3 we proved
common fixed points for multi-valued mapping in b-metric
space.
Theorem 11: Let E and F be two multi-valued mapping

from3 to CB(3) in a complete b-metric space (3, d, s) with
s > 1. Suppose for all ς, ϑ ∈ 3,

sH (Eς,Fϑ)≤ α(d(ς, ϑ))13(ς, ϑ)+β(d(ς, ϑ))14(ς, ϑ),

where

13(ς, ϑ)=max
{
d(ς,Eς )d(ϑ,Fϑ)

1+ d(ς, ϑ)
,

d(ς,Eς )d(ς,Fϑ)+ d(ϑ,Fϑ)d(ϑ,Eς )
1+ d(ς,Fϑ)

,

d(ς, ϑ)
}
,

14(ς, ϑ) = max
{
d(ς, ϑ),

d(ς,Eς )+ d(ϑ,Fϑ)
2s

,

d(ς,Fϑ)+ d(ϑ,Eς )
2s

}
.
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and α(ς ), β(ς ) ∈ 2 such that, α(ς )+β(ς ) < 1. Then, E and
F has a unique common fixed point.

Proof: Fix any ς ∈ 3. Define ς0 = ς and let
ς1 ∈ Eς0. By Lemma 4, there exists ς2 ∈ Fς1 such
that

d(ς1, ς2) ≤ H (Eς0,Fς1).

Now, for ς2 ∈ Fς1, there exists ς3 ∈ Eς2 such that

d(ς2, ς3) ≤ H (Eς1,Fς2).

Similarly, in this way we can obtain ς2n+1 ∈ Eς2n and
ς2n+2 ∈ Fς2n+1.
If ς2n+1 = ς2n+2, then ςn is a Cauchy sequence.
Suppose ς2n+1 6= ς2n+2. Then

sd(ς2n+1, ς2n+2) ≤ sH (Eς2n,Fς2n+1)

and

sH (Eς2n,Fς2n+1) ≤ α(d(ς2n, ς2n+1))13(ς2n, ς2n+1)

+ β(d(ς2n, ς2n+1))13(ς2n, ς2n+1),

Thus,

sd(ς2n+1, ς2n+2) ≤ α(d(ς2n, ς2n+1))13(ς2n, ς2n+1)

+β(d(ς2n, ς2n+1))14(ς2n, ς2n+1),

(II.30)

where 13(ς2n, ς2n+1), as shown at the top of the next
page.

By using Lemma 3, we have 13(ς2n, ς2n+1), as shown at
the top of the next page.

so,

13(ς2n, ς2n+1) ≤ max
{
d(ς2n+1, ς2n+2), d(ς2n, ς2n+1)

}
.

(II.31)

Now, suppose that

max
{
d(ς2n+1, ς2n+2), d(ς2n, ς2n+1)

}
= d(ς2n+1, ς2n+2).

Then, (II.30) becomes

sd(ς2n+1, ς2n+2) ≤ α(d(ς2n, ς2n+1))d(ς2n+1, ς2n+2)

+β(d(ς2n, ς2n+1))14(ς2n, ς2n+1).

(II.32)

But

14(ς2n, ς2n+1)

= max
{
d(ς2n, ς2n+1),

d(ς2n,Eς2n)+ d(ς2n+1,Fς2n+1)
2s

,

d(ς2n,Fς2n+1)+ d(ς2n+1,Eς2n)
2s

}
. (II.33)

14(ς2n, ς2n+1)

= max
{
d(ς2n, ς2n+1),

d(ς2n, ς2n+1)+ d(ς2n+1, ς2n+2)
2s

,

d(ς2n, ς2n+2)+ d(ς2n+1, ς2n+1)
2s

}
. (II.34)

Which implies

14(ς2n, ς2n+1) ≤ d(ς2n+1, ς2n+2).

By (II.32), we get contradiction. Therefore

13(ς2n, ς2n+1) ≤ d(ς2n, ς2n+1).

and
14(ς2n, ς2n+1) ≤ d(ς2n, ς2n+1).

From equation (II.30), we have

sd(ς2n+1, ς2n+2) ≤ sH (Eς2n,Fς2n+1)

≤ α(d(ς2n, ς2n+1))d(ς2n, ς2n+1)

+β(d(ς2n, ς2n+1))d(ς2n, ς2n+1).

Which implies that

sd(ς2n+1, ς2n+2) ≤ α(d(ς2n, ς2n+1))d(ς2n, ς2n+1)

+β(d(ς2n, ς2n+1))d(ς2n, ς2n+1).

(II.35)

Similarly, replacing ς by ς2n+2 and ϑ by ς2n+3, we have

sd(ς2n+2, ς2n+3)

≤ α(d(ς2n+1, ς2n+2))d(ς2n+1, ς2n+2)

+β(d(ς2n+1, ς2n+2))d(ς2n+1, ς2n+2). (II.36)

From (II.35) and (II.36), we have

sd(ςn, ςn+1) ≤ α(d(ςn−1, ςn))d(ςn−1, ςn)

+ β(d(ςn−1, ςn))d(ςn−1, ςn)

for all n ∈ N, which implies that

d(ςn, ςn+1) ≤
1
s
d(ςn−1, ςn).

Now, from Lemma 5, we obtain that {ςn} is a Cauchy
sequence. Since3 is complete, it converges to a point u (say)
in 3. Suppose u /∈ F(u). We have

d(ς2n+1,Fu) ≤ d(Eς2n,Fu) ≤ α(d(ς2n, u))13(ς2n, u)

+β(d(ς2n, u))14(ς2n, u), (II.37)

where

13(ς2n, u)

= max
{
d(ς2n,Eς2n)d(u,Fu)

1+ d(ς2n, u)
,

d(ς2n,Eς2n)d(ς2n,Fu)+ d(u,Fu)d(u,Eς2n)
1+ d(ς2n,Fu)

,

d(ς2n, ς2n+1)
}
,
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13(ς2n, ς2n+1) = max
{
d(ς2n,Eς2n)d(ς2n+1,Fς2n+1)

1+ d(ς2n, ς2n+1)
,

d(ς2n,Eς2n)d(ς2n,Fς2n+1 + d(ς2n+1,Fς2n+1)d(ς2n+1,Eς2n)
1+ d(ς2n,Fς2n+1)

, d(ς2n, ς2n+1)
}
,

13(ς2n, ς2n+1) ≤ max
{
d(ς2n, ς2n+1)d(ς2n+1, ς2n+2)

1+ d(ς2n, ς2n+1)
,

d(ς2n, ς2n+1)d(ς2n,Fς2n+1)+ d(ς2n+1, ς2n+2)d(ς2n+1, ς2n+1)
1+ d(ς2n,Fς2n+1)

, d(ς2n, ς2n+1)
}
,

13(ς2n, u)

≤ max
{
d(ς2n, ς2n+1)d(u,Fu)

1+ d(ς2n, u)
,

d(ς2n, ς2n+1)d(ς2n,Fu)+ d(u,Fu)d(u, ς2n+1)
1+ d(ς2n,Fu)

,

d(ς2n, ς2n+1)
}
,

13(ς2n, u)

≤ max
{
d(ς2n, ς2n+1)d(u,Fu), d(ς2n, ς2n+1)d(ς2n,Fu)

+ d(u,Fu)d(u, ς2n+1), d(ς2n, ς2n+1)
}
.

Taking the upper limit n → ∞ and using Lemma 6, we
have

lim sup
n→∞

13(ς2n, u)

≤ max
{
s2d(u, u)lim sup

n→∞
d(u,Fu),

s2d(u, u)lim sup
n→∞

d(ς2n,Fu), sd(u, u)
}

(II.38)

which gives

lim sup
n→∞

13(ς2n, u)

= 0.

14(ς2n, u) = max
{
d(ς2n, u),

d(ς2n,Eς2n)+ d(u,Fu)
2s

,

d(ς2n,Fu)+ d(u,Eς2n)
2s

}
.

14(ς2n, u) ≤ max
{
d(ς2n, u),

d(ς2n, ς2n+1)+ d(u,Fu)
2s

,

d(ς2n,Fu)+ d(u, ς2n+1)
2s

}
.

Taking the upper limit n→∞ and using Lemma 6, we have

lim sup
n→∞

14(ς2n, u) ≤
d(u,Fu)

2s
.

Put on upper limit n→∞ in (II.37), and using

lim sup
n→∞

13(ς2n, u) = 0 and lim sup
n→∞

14(ς2n, u) ≤
d(u,Fu)

2s
,

we have

lim sup
n→∞

d(ς2n+1,Fu) <
d(u,Fu)

2s
.

But from Lemma 3

d(u,Fu) ≤ d(u, ςn+1)+ d(ςn+1,Fu).

By taking limit sup we get d(u,Fu) = 0. Thus u ∈ Fu. We
can show similarly that u ∈ Eu, so u is a common fixed point
of E and F . Now to show that this point is unique. Let v
be another common fixed point of E and F i.e u ∈ Eu and
v ∈ Fv. Then

d(u, v) ≤ sH (Eu,Fv) ≤ α(d(u, v))13(u, v)

+β(d(u, v))14(u, v), (II.39)

where

13(u, v) = max
{
d(u,Eu)d(v,Fv)

1+ d(u, v)
,

d(u,Eu)d(u,Fv)+ d(v,Fv)d(v,Eu)
1+ d(u,Fv)

, d(u, v)
}
,

which implies

13(u, v) = d(u, v), (II.40)

Similarly, we have

14(u, v) = d(u, v). (II.41)

By using (II.40) and (II.41) from (II.39) since 0 <

α(d(u, v)) + β(d(u, v)) ≤ 1, but α(ς ), β(ς ) ∈ 2, we have
u = v. Hence u is a unique common fixed point of E and F .
Remark3: The author in [22] proved periodic points for

single valued mapping while in Theorem 2.5 we proved com-
mon fixed points for set-valued mapping in b-metric space by
using generalized type contraction.
Example 12: Suppose3 = R.Ametric d : 3×3→ R+

is defined by,

d(ς, ϑ) = |ς − ϑ |l,

for all ς, ϑ ∈ 3 with l > 1. Then (3, d) is b-metric space.
We defineQ,R : 3→ CB(3) andψ, ϕ : R+→ R+ defined
by

Qϑ =
[
0,

ϑ2m

s(k + 2)

]
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and

Rς =
[
0,

ς2n

s(k + 2)

]
∀k ≥ s

ψ(t) = t, ϕ(t) =
s

k + 1
t

Now,

sH (Rς,Qϑ) = sH
([

0,
ς2m

s(k + 2)

]
,

[
0,

y2n

s(k + 2)

])
= s

1
s(k + 2)

|ς2m − ϑ2n
|
l

≤
1

k + 1
d(ς, ϑ)

≤
1

k + 1
M (ς, ϑ)

≤ ψ(M (ς, ϑ))−ϕ(ψ(M (ς, ϑ)))+ θ (N (ς, ϑ)).

Thus, for different value of m, n and k we have Q and R
satisfying all conditions of Theorem 9 soQ andR has a unique
common fixed point.
Example 13: Let 3 = [0,∞). Define d : 3 × 3 → R+

by,

d(ς, ϑ) = |ς − ϑ |2.

Then (3, d, s) is b-metric space. Let η, θ : 3→ CB(3), and
α, β : R+→ [0, 1) define by,

η(ς ) =
[
ς

2
,
ς

4

]
θ (µ) =

[
ϑ

2
,
ϑ

4

]
α(t) = β(t) = k < 1 ∀ t ∈ [0,∞)

H (ης, θϑ) = max
{

sup
ς∈ης

d(ς, θϑ), sup
ζ∈θϑ

d(ζ, ης)
}
,

H (ης, θϑ) = max
{

sup
ς∈ης

d(ς, [0,
µ

4
]), sup

ζ∈θϑ

d(ζ, [
µ

2
, 1])

}
,

H (ης, θϑ) = max
{∣∣ϑ

2
−
ς

2

∣∣2, ∣∣ϑ
4
−
ς

4

∣∣2}
H (ης, θϑ) = max

{
1
4

∣∣ϑ − ς ∣∣2, 1
16

∣∣ϑ − ς ∣∣2}
≤

1
4
max

{∣∣ϑ − ς ∣∣2, ∣∣ϑ − ς ∣∣2}
≤

1
4
max

{∣∣ϑ − ς ∣∣2, ∣∣ϑ − ς ∣∣2}
≤

1
4
max

{
d(ς, ης)d(ϑ, θϑ)

1+ d(ς, ϑ)
, d(ς, ϑ)

}
,

which implies that

sH (ης, θϑ) ≤ α(d(ς, ϑ))11(ς, ϑ)+ β(d(ς, ϑ))12(ς, ϑ).

Thus, all the conditions of Theorem 10 hold. Therefore η and
θ have a unique fixed point.
Example 14: Let3 = [0, 1].Define d : 3×3→ R+ by,

d(ς, ϑ) = |ς − ϑ |2.

Then (3, d, s) is b-metric space.

Let E,F : 3 → CB(3) defined by Fϑ = { ϑ49 } and
Eς =

[
0, ς49

]
,

H (Eς,Fϑ) = max
{

sup
ς∈Eς

d(ς,Fϑ), sup
ζ∈Fϑ

d(ζ,Eς )
}
,

H (Eς,Fϑ) = max
{

sup
ς∈Eς

d(ς, {
ϑ

49
}), sup

ζ∈Fϑ
d(ζ, [0,

ς

49
])
}
,

H (Eς,Fϑ) = max
{∣∣ ϑ

49
−
ς

49

∣∣2, ∣∣ ϑ
49

∣∣2}
=

1
7
max

{
|ϑ − ς |2,

∣∣ϑ − ϑ
7

∣∣2}
≤

1
7
max

{
|ϑ − ς |2,

∣∣ϑ − ϑ

49

∣∣2}
≤

1
7
max

{
|ϑ − ς |2,

∣∣ϑ − ϑ

49

∣∣2}
=

1
7
max

{
d(ς, ϑ),

1
4
d(ϑ,Fϑ))

}
≤

1
7
max

{
d(ς, ϑ),

d(ς,Eς )+ d(ϑ,Fϑ)
4

,

d(ς,Fϑ)+ d(ϑ,Eς )
4

}
.

≤
1
7
max

{
d(ς, ϑ),

d(ς,Eς )+ d(ϑ,Fϑ)
2s

,

d(ς,Fϑ)+ d(ϑ,Eς )
2s

}
.

This implies that

sH (Eς,Fϑ) ≤ α(d(ς, ϑ))13(ς, ϑ)+ β(d(ς, ϑ))14(ς, ϑ).

By taking natural log both side and then consider s = 2,
α(ς ) = β(ς ) = 1

7 . All axiom of Theorem 11 are held.
therefore, E and F have a unique common fixed point ς = 0.

III. APPLICATIONS
In this section we discuss an existence results for the solution
of the system of non-linear integral, fractional differential and
surface integral equations.

Consider the following general system of nonlinear Fred-
holm integral equations of the 2nd kind

ς (γ ) = κ(γ )+
∫ ϑ

θ

λ1(γ, s, ς(s))ds, γ ∈ [θ, ϑ],

ϑ(γ ) = κ(γ )+
∫ ϑ

θ

λ2(γ, s, ϑ(s))ds, γ ∈ [θ, ϑ].

(III.1)

Let 3 = C[θ, ϑ] be the set of all continuous function
defined on [θ, ϑ]. Define d : 3 × 3 → R+ by d(η, ζ ) =(
supγ∈I |η(γ ) − ζ (γ )|

)p
for all η, ζ ∈ 3 Then (3, d, s) is

a complete b-metric space on 3 with s = 2p−1 and p > 1.
For the derivation of existence results for the solution of the
system (III.1) we provide the below theorem.
Theorem 15: Assume that the assumptions below hold
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(A1) λj : [θ, ϑ] × [θ, ϑ] × R+ → R+, for j = 1, 2 and
κ : R+→ R+ is continuous;

(A2) there exist a continuous function K : [θ, ϑ]× [θ, ϑ]→
[0,∞) such that,

|λ1(γ, s, u)− λ2(γ, s, v)| ≤ K (γ, s)|u− v|

for each γ, s ∈ [θ, ϑ],
(A3) supγ,s∈[θ,ϑ]

∫ 1
0 |K (γ, s)| ≤ q for q < 1.

Then, the system (III.1) has a unique solution in C([θ, ϑ]).
Proof: Define Q,R : C([θ, ϑ])→ C([θ, ϑ]) by,

Qς (γ ) = κ(γ )+
∫ ϑ

θ

λ1(γ, s, ς(s))ds, γ ∈ [θ, ϑ].

Rϑ(γ ) = κ(γ )+
∫ ϑ

θ

λ2(γ, s, ϑ(s))ds, t ∈ [θ, ϑ].

Now we have,

2p−1d(Qς (γ ),Rϑ(γ ))

= 2p−1
(

sup
γ∈[θ,ϑ]

|Qς (γ )− Rϑ(γ )|
)p

≤ 2p−1
(

sup
γ∈[θ,ϑ]

∫ ϑ

θ

|λ1(γ, s, ς(s))− λ2(γ, s, ϑ(s))|ds
)p

≤ 2p−1
(

sup
γ∈[θ,ϑ]

∫ ϑ

θ

K (γ, s)|ς (s)− ϑ(s)|ds
)p

≤ 2p−1
(

sup
γ∈[θ,ϑ]

|ς (γ )− ϑ(γ )|
)p(

sup
γ∈[θ,ϑ]

∫ ϑ

θ

K (γ, s)ds
)p

≤ 2p−1
(

sup
γ∈[θ,ϑ]

|ς (γ )− ϑ(γ )|
)p

= d(ς (γ ), ϑ(γ )).

This implies that

2p−1d(Qς (γ ),Rϑ(γ )) ≤ 2p−1d(ς (γ ), ϑ(γ ))

≤ 2p−1M (ς (γ ), ϑ(γ )).

2p−1d(Qς (γ ),Rϑ(γ )) ≤ 2p−1M (ς (γ ), ϑ(γ ))

≤ ψ(M (ς, ϑ))

−ϕ(ψ(M (ς, ϑ)))+ θ (N (ς, ϑ)).

Define ψ(γ ) = 4p−1γ , ϕ(γ ) = γ

16p−1
, then by The-

orem 9 the system (III.1) has a unique common solution
in 3.

Next we notice that one can also show the existence of solu-
tion to the following system of nonlinear fractional ordered
differential equations

cDβu(γ )+ Q(v(γ )) = 0, 1 < β ≤ 2, γ ∈ [0, 1],
cDβv(γ )+ R(w(γ )) = 0, 1 < β ≤ 2, γ ∈ [0, 1]
u(0) = v(0) = l, u(1) = v(1) = m,
where l,m are constants.

(III.2)

Here Q,R : [0, 1] × [0,∞) → [0,∞), and cDβ represent
the Caputo derivative of order β. The equivalent system of
integral equations corresponding to (III.2) is given by

u(γ ) = κ(γ )+
∫ 1

0
G(γ, s)Q(v(s)ds, γ ∈ [0, 1],

v(γ ) = κ(γ )+
∫ 1

0
G(γ, s)R(w(s)ds, γ ∈ [0, 1].

(III.3)

Here, the Green’s function G(γ, s) is continuous on [0, 1] ×
[0, 1] and defined as

G(γ, s) =


(γ − s)β−1 − γ (1− s)β−1

0(β)
, 0 ≤ s ≤ γ ≤ 1,

−γ (1− s)β−1

0(β)
, 0 ≤ s ≤ γ ≤ 1,

(III.4)

Moreover sup
γ∈[0,1]

∫ 1
0 |G(γ, s)|ds ≤ 1. By letting λ(γ, s,

ς (s)) = G(γ, s)Q(v(s) etc. Then, the system (III.3) turns into
ς (γ ) = κ(γ )+

∫ 1

0
λ1(γ, s, ς(s))ds, γ ∈ [0, 1],

ϑ(γ ) = κ(γ )+
∫ 1

0
λ2(γ, s, ς(s))ds, γ ∈ [0, 1].

(III.5)

By using Theorem 9, one can say that the system (III.5)
has a unique common solution, which is the corresponding
unique common solution of the system of nonlinear fractional
differential equation (III.2).

Finally, we derive sufficient conditions for the existence of
solutions for the following general non-linear surface integral
equation

R(t, µ(ς, t)) =
∫ 1

0

∫ 1

0
W (t, ζ, s, µ(ζ, s))dζds, t ∈ [ς, σ ],

(III.6)

where µ ∈ Lp(C([0, 1] × [0, 1])), 1 < p < ∞ and t, ζ,
s ∈ [0, 1].

Let 3 = C[η, ζ ] be the set of all continuous function
defined on [η, ζ ]. Define d : 3×3→ R+ by

d(η, ζ ) =
(
max
t∈I
|η(t)− ζ (t)|

)p
for all η, ζ ∈ 3.

Then d is a complete b-metric space with s = 2p−1 and p > 1.
For the existence we have the following result.
Theorem 16: Assume that the assumptions below holds.

(A1) R(t, µ(ς, t)) − R(t, ν(ς, t)) ≤ α1/p(d(µ(ς,t),ν(ς,t)))

2
p−1
p

(µ(ς, t)− ν(ς, t)) α ∈ S ;
(A2) W (t, ζ, s, µ(ζ, s)) ≥ R(t, µ(ς, t)) for all ζ, t,

s ∈ [0, 1];
(A3) W (t, ζ, s, µ(ζ, s)) ≤ µ(ς, t) for all t ∈ [0, 1].

Then the system (III.6) has a solution in Lp(C([0, 1]×[0, 1])).
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Proof: Define η(µ(ς, t)) = R(t, µ(ς, t)) and
θ (µ(ς, t)) =

∫ 1
0

∫ 1
0 W (t, ζ, s, µ(ζ, s))dζds, we have

2p−1
∣∣η(µ(ς, t))− θ (ν(ς, t)∣∣p
= 2p−1

∣∣R(t, µ(ς, t))
−

∫ 1

0

∫ 1

0
W (t, ζ, s, ν(ζ, s))dζds

∣∣p
≤ 2p−1

∣∣R(t, µ(ς, t))− ∫ 1

0

∫ 1

0
R(t, ν(ς, t))dζds

∣∣p
= 2p−1

∣∣R(t, µ(ς, t))− R(t, ν(ς, t)∣∣p.
Using assumption (A1) and takingmax on both sides, we have

2p−1
(
max |η(µ(ς, t))− θ (ν(ς, t)

∣∣)p
≤ 2p−1

α(d(µ(ς, t), ν(ς, t)))

(2
p−1
p )p

(max{µ(ς, t)− ν(ς, t)})p

= α(d(µ(ς, t), ν(ς, t)))(d(µ(ς, t), ν(ς, t)))

≤ α(d(µ, ν))d(µ, ν)+
d(µ, ν)

1+ d(µ, ν)
≤ α(d(µ, ν))9((µ, ν))+ β(d(µ, ν))8(d(µ, ν)).

Which implies that

sd(η(µ(ς, t)), θ(ν(ς, t)) ≤ α(d(µ, ν))9(µ, ν)

+ β(d(µ, ν))8(µ, ν).

By taking s = 2p−1 from Theorem 10 the integral
equation (III.6) has a solution in 3.

IV. CONCLUSION
During modeling, real-world problems in more accurate and
significant ways related to engineering and scientific field’s
fractional order differential equation and integrals equation
are the best tools. One of the most preferable research areas
in this field is the existence theory of solutions. In the current
work, we have discussed some new fixed point theorem for
multi-valued mapping in b-metric spaces with application
to the existence of solutions to certain fractional differential
equations and integral equations in the frame of Caputo frac-
tional derivative.
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