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This paper adopts the Adomian decomposition method and the Padé approxima-
tion technique to derive the approximate solutions of a conformable heat transfer 
equation by considering the new definition of the Adomian polynomials. The Padé 
approximate solutions are derived along with interesting figures showing the ap-
proximate solutions.
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Introduction

It is well-known that the majority of the real-world physical phenomena are modeled 
by mathematical equations, especially PDE [1]. The investigations of the exact and numerical 
solutions of various PDE have become a very important practice by different scholars [2]. In 
recent time, fractional derivatives have been applied in various fields of physical sciences such 
as reaction diffusion, heat transform, control, and many more. Fractional derivatives have many 
kinds of definitions [3-5]. We consider the non-linear conformable heat transfer equation in the 
following form [6]:
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with the initial condition:
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Equation (1) has been solved using different techniques, including the fractional com-
plex transform along with He’s variational iteration method [6], homotopy perturbation method 
[7], sub-equation method [8]. This paper applies the Adomian decomposition method and the 
Padé approximation technique [9] to search for an approximate solutions of the model problem. 
Several research results have been report in the last few decades in this avenue [10-20].
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Conformable fractional derivative

In what follows, we give a brief description of the conformable derivative given by 
Khalil et al. [5]: 

Definition 1. Let

	 [ ] ( ): , 0,× →f a b ∞  	 (3)

then the conformable fractional derivative of f  is defined:
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for all 0.>t  
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Padé approximation

Consider a system of fractional differential equations [9]:
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Subject to the initial or boundary conditions:
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Applying the inverse 1−
iL  on both sides of eq. (5) gives:
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in which the iφ  engulf the constants of integration w.r.t the variable .t  The solution iu  can be 
dissolve into a series as [9]:
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and the non-linear terms 1 2 ), , ..( . ,i sN u u u  are assumed to be decomposed into a multivariable 
Adomian polynomials (AP) given:

	 ,
0

( ) ( )
=

= ∑ m
i 1 2 s i m 1,0 2,0 2,m s,0 s,m

m
N u ,u ,...,u A u ,...,u ,...,u ,u ,...,u

∞
λ 	 (10)

which are defined by

	 ( ) ( )( )
, 1

0

1 ,...,
!

d
d =

= 
m

m
i m i smA N u u

m
λ

λ λ
λ

and where ,i mA  can be generated for the four classes of the AP as shown by the cases:
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–– Class III. The AP (III)
,i mA  is represented:
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–– Class IV. The AP (IV)
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and
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Substitution eqs. (8) and (10), and utilizing the Adomian-Rach double decomposition 
approach, one can get:
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For the specified initial value problems [12], with /d d=L tα α  being the operator, 
1 ,− < ≤i ik kα  we have:
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i j iC j k . For fractional IVP we have:
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Thus, , ( )0≥i mu m  can be derived from:
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The solutions of the approximants are:
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From eq. (23), using ,0iu  all other solution terms , ,   1,2,...,=i ju j  can be obtained. 
Thus, the approximation ,i rφ  for the solutions ,   1,2,...,=iu i s are derived.

The Padé approximation

To fasten the convergence of the series solutions, the Padé approximants method is 
also assimilated into the previous described algorithm given as: The main concept of Padé ap-
proximants is to replace a series function 0( ) ∞

== ∑ n
nnf z c z  [11] by:
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given by [ / ]L M  called the Padé approximants.
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Application to the conformable heat transfer equation

We will consider the Class (IV) AP eq. (17) to compute the truncated series solutions 
and then compare the exact eq. (2) and approximate solutions. For each of the cases to be con-
sidered, we will use Padé approximant sizes of [ ]10 / 10  and [ ]20 / 20 . 
–– If we select 0.5,=α  using 7 terms of an Adomian power series, Padé approximant size of 

[10/10] and using the Class (IV) AP, we obtain the following expression of the Padé approx-
imant for this case (figs. 1 and 2):
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–– If we select 1,=α  using 10 terms of an Ado-
mian power series, Padé approximant size of 
[10/10] and using the Class (IV) AP, we ob-
tain the following expression of the Padé ap-
proximant for this case (figs. 3 and 4):
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–– If we select 0.8,=α  using 10 terms of an 
Adomian power series, Padé approximant 
size of [ ]20/20  and using the Class (IV) AP, 
we obtain the following expression of the 
Padé approximant for this case (figs. 5 and 6):
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Concluding remarks

In this work, we have success fully used the Padé approximation technique to derive 
the approximate solutions of a conformable heat transfer equation. The result shows that the 
method is powerful and efficient for solving the non-linear fractional differential equations 
arising in engineering and science. It is observed that the numerical solutions are in closed 
agreement with the exact solution. Some interesting figures have been given the comparison 
approximate solutions for the different steps in figs. 1-6. 

Figure 2: The decomposition solution for the 
3rd-order series for 0 1x≤ ≤ , 0 1t≤ ≤  and 
0 60u≤ ≤  with eq. (2) 
(for color image see journal web site)
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Figure 1. Comparison of the Adomian-Padé approximate solutions eq. (25) for the 
different steps and 0 1t≤ ≤  and 0 100u≤ ≤   (for color image see journal web site)
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Figure 3. Comparison of the Adomian-Padé approximate solutions eq. (26) for the 
different steps 0 1t≤ ≤  and 0 100u≤ ≤  (for color image see journal web site)
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Figure 4. The decomposition solution for the 
10th- order series for 0 1x≤ ≤ , 0 1t≤ ≤  
and 0 60u≤ ≤  with eq. (2) 
(for color image see journal web site)
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Figure 5. Comparison of the Adomian-Padé approximate solutions eq. (27) for the 
different steps 0 1t≤ ≤  and 0 100u≤ ≤   (for color image see journal web site)
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