On the optimality of the trigonometric system

F. Jarad, A. Kushpel ${ }^{*}$, K. Taş
Department of Mathematics, Çankaya University, Turkey

A R T I C L E I N F O

Article history:

Received 9 April 2018
Received in revised form 27 May 2019
Accepted 16 August 2019
Available online 7 September 2019

Keywords:

Optimal subspaces
n-widths
Trigonometric system

Abstract

We study a new phenomenon of the behaviour of widths with respect to the optimality of trigonometric system. It is shown that the trigonometric system is optimal in the sense of Kolmogorov widths in the case of "super-high" and "super-small" smoothness but is not optimal in the intermediate cases. Bernstein's widths behave differently when compared with Kolmogorov in the case of "super-small" smoothness. However, in the case of "super-high" smoothness Kolmogorov and Bernstein widths behave similarly, i.e. are realized by trigonometric polynomials. © 2019 Elsevier Inc. All rights reserved.

1. Introduction

n-Widths were introduced to compare and classify the power of approximation of a wide range of algorithms. Optimality of the trigonometric system is a frequently discussed topic in the theory of n-widths [18,22]. We present a new phenomenon in behaviour of the trigonometric system in the "usual" order, i.e. $1, \cos k x, \sin k x, k \in \mathbb{N}$. Namely, the sequence of subspaces $\mathcal{T}_{n}, n \in \mathbb{N}$ of trigonometric polynomials of degree at most n is optimal in the sense of order of Kolmogorov n-widths $d_{n}\left(K * U_{p}, L_{q}\right)$ of convolution classes $K * U_{p}$ in L_{q} (where U_{p} is the unit ball in L_{p}) for all $1<p, q<\infty$ in the case of "super-high" smoothness (analytic and entire), that is in the case

$$
K \sim \sum_{k=1}^{\infty} \lambda(k) \cos k x,
$$

where

$$
\lambda(k)=\exp \left(-\mu k^{\varrho}\right) \mu>0, \varrho \geq 1
$$

[^0]and in the case
\[

$$
\begin{equation*}
\lambda(k)=k^{-\left(\frac{1}{p}-\frac{1}{q}\right)}(\ln (k+1))^{-v}, v>0, \tag{1}
\end{equation*}
$$

\]

where $\{2 \leq p<q<\infty\} \cup\{1<p<2 \leq q<\infty\}$. Observe that the rate of decay of $\lambda(k)$ as $k \rightarrow \infty$ determines the smoothness of convolution classes $K * U_{p}$. Hence, it is natural to call the classes $K * U_{p}$ generated by the kernels K of the type (1) as sets of "super-small" smoothness since for any $r>\frac{1}{p}-\frac{1}{q}, p<q$ we have

$$
k^{-r} \ll k^{-\left(\frac{1}{p}-\frac{1}{q}\right)}(\ln (k+1))^{-v} .
$$

Let $\lambda(k)=k^{-r}$, where $r>0$. In the known intermediate cases of "small" and "finite" smoothness, which will be discussed later, the sequence of subspaces $\mathcal{T}_{n}, n \in \mathbb{N}$ is not optimal for Kolmogorov n-widths $d_{n}\left(K * U_{p}, L_{q}\right)$ if $r>\frac{1}{p}-\frac{1}{q}$ and

$$
\{2 \leq p<q<\infty\} \cup\{1<p<2 \leq q<\infty\} .
$$

Similarly, $\mathcal{T}_{n}, n \in \mathbb{N}$ is not optimal for linear n-widths $\delta_{n}\left(K * U_{p}, L_{q}\right)$ if

$$
\{1<p<2 \leq q<\infty\}, \quad r>\frac{1}{p}-\frac{1}{q} .
$$

We show that Bernstein n-widths behave differently when compared with Kolmogorov and linear n-widths in the case of "super-small" smoothness. Namely, in the case of "finite" smoothness the sequence of subspaces \mathcal{T}_{n} is optimal for Bernstein n-widths $b_{n}\left(K * U_{p}, L_{q}\right)$ in the region $2 \leq q \leq$ $p<\infty$ and is not optimal in the case of "small" and "super-small" smoothness, where we have different weak asymptotics. We conjecture that homological widths, introduced in [10], which are intermediate between Kolmogorov and Bernstein widths, behave like Kolmogorov widths. Although we consider here just Kolmogorov, linear and Bernstein n-widths, the problem can be considered for a wider range of n-widths.

2. Sets of smooth functions

Let \mathcal{T}_{n} be the sequence of subspaces of trigonometric polynomials with the "usual" order. As a model case, we consider usual spaces L_{p} of p-integrable functions ϕ on the unit circle \mathbb{T} with the Lebesgue measure $d x$, i.e. such that $\|\phi\|_{p}<\infty$, where

$$
\|\phi\|_{p}:=\left(\int_{\mathbb{T}}|\phi|^{p} d x\right)^{\frac{1}{p}}, 1 \leq p \leq \infty .
$$

Let $\phi \in L_{p}$ with the formal Fourier series

$$
\phi \sim \sum_{k=1}^{\infty} a_{k}(\phi) \cos k x+b_{k}(\phi) \sin k x,
$$

where

$$
a_{k}(\phi)=\frac{1}{\pi} \int_{-\pi}^{\pi} \phi(t) \cos k t d t, b_{k}(\phi)=\frac{1}{\pi} \int_{-\pi}^{\pi} \phi(t) \sin k t d t, k \in \mathbb{N}
$$

and

$$
S_{n}(\phi, x)=\sum_{k=1}^{n} a_{k}(\phi) \cos k x+b_{k}(\phi) \sin k x
$$

be its nth Fourier sum. A wide range of sets of smooth functions on the unit circle \mathbb{T} can be introduced using multipliers $\Lambda:=\{\lambda(k), k \in \mathbb{N}\}$ [19]. We say that $f \in \Lambda_{\beta} U_{p}, \beta \in \mathbb{R}$ if

$$
f \sim \sum_{k=1}^{\infty} \lambda(k)\left(a_{k}(\phi) \cos \left(k x-\frac{\beta \pi}{2}\right)+b_{k}(\phi) \sin \left(k x-\frac{\beta \pi}{2}\right)\right), \phi \in U_{p}
$$

where U_{p} is the unit ball in L_{p}. We shall consider multiplier operator Λ_{β} which acts as $L_{p} \ni \phi \rightarrow$ $\Lambda \phi=f \in L_{q}$. In the case $\beta=0$ we will write $\Lambda_{\beta}=\Lambda$. In particular, if there exists $K \in L_{1}$ such that

$$
\begin{equation*}
K \sim \sum_{k=1}^{\infty} \lambda(k) \cos \left(k x-\frac{\beta \pi}{2}\right) \tag{2}
\end{equation*}
$$

then the set $\Lambda_{\beta} U_{p}$ can be represented in the convolution form

$$
f(x)=\int_{\mathbb{T}} K(x-y) \phi(y) d y .
$$

In this case $\Lambda_{\beta} U_{p}=K * U_{p}$. In general, if $K \notin L_{1}$ we should consider generalized convolutions. The smoothness of the function classes $\Lambda_{\beta} U_{p}$ is mainly governed by the rate of decay of the sequence Λ. For instance, if $\lambda(k)=k^{-r}, \beta=r, r>0$ we get Sobolev classes W_{p}^{r}. If $\lambda(k)=\exp \left(-\mu k^{\gamma}\right), \beta \in \mathbb{R}$, $\mu>0,0<\gamma<1$, then the class $\Lambda_{\beta} U_{p}=K * U_{p}$ consists of infinitely differentiable functions. In the cases $\gamma=1$ and $\gamma>1$, we get classes of analytic and entire functions respectively. To simplify technical notations we present our new results just in the case $1<p, q<\infty$ and $\beta=0$. We will need a simple norm estimate for multiplier operators [7].

Lemma 1. Let $1<p<\infty$, then

$$
\begin{align*}
& \left\|\Lambda \mid L_{p} \rightarrow L_{p}\right\| \\
& \leq \chi_{p}\left(\sum_{k=1}^{\infty}|\lambda(k)-\lambda(k+1)|+\sup _{m \in \mathbb{N}}|\lambda(m)|\right), \tag{3}
\end{align*}
$$

where

$$
\chi_{p}=1+2\left\{\begin{array}{lc}
\cot \frac{\pi}{2 p}, & 2<p<\infty \\
\tan \frac{\pi}{2 p}, & 1<p \leq 2
\end{array}\right\}
$$

Proof. Let $U: \phi \rightarrow \widetilde{\phi}$, where

$$
U \phi:=\widetilde{\phi} \sim \sum_{k=1}^{\infty}-b_{k}(\phi) \cos k x+a_{k}(\phi) \sin k x
$$

and

$$
S_{m}^{*}(\phi, x)=\frac{1}{2}\left(S_{m}(\phi, x)+S_{m-1}(\phi, x)\right) .
$$

Then

$$
\begin{aligned}
& S_{m}^{*}(\phi, x)=\sin m x \tilde{g}_{m}(x)-\cos m x \widetilde{h}_{m}(x) \\
& =\sin m x U g_{m}(x)-\cos m x U h_{m}(x),
\end{aligned}
$$

where

$$
g_{m}(x):=f(x) \cos m x, \quad h_{m}(x):=f(x) \sin m x .
$$

Clearly,

$$
\left\|S_{m}^{*}\left|L_{p} \rightarrow L_{p}\|\leq 2\| U\right| L_{p} \rightarrow L_{p}\right\|,
$$

and

$$
\left\|S_{m}-S_{m}^{*} \mid L_{p} \rightarrow L_{p}\right\| \leq 1
$$

Hence, for any $m \in \mathbb{N}$ we get

$$
\begin{align*}
& \left\|S_{m}\left|L_{p} \rightarrow L_{p}\|=\| S_{m}-S_{m}^{*}+S_{m}^{*}\right| L_{p} \rightarrow L_{p}\right\| \\
& \leq 1+\left\|S_{m}^{*}\left|L_{p} \rightarrow L_{p}\|\leq 1+2\| U\right| L_{p} \rightarrow L_{p}\right\| . \tag{4}
\end{align*}
$$

It is known [16] that

$$
\left\|U \mid L_{p} \rightarrow L_{p}\right\|= \begin{cases}\cot \frac{\pi}{2 p}, & 2<p<\infty \tag{5}\\ \tan \frac{\pi}{2 p}, & 1<p \leq 2\end{cases}
$$

Comparing (4) and (5) we get

$$
\sup _{m \in \mathbb{N}}\left\|S_{m} \mid L_{p} \rightarrow L_{p}\right\| \leq 1+2\left\{\begin{array}{ll}
\cot \frac{\pi}{2 p}, & 2<p<\infty \tag{6}\\
\tan \frac{\pi}{2 p}, & 1<p \leq 2
\end{array}\right\}:=\chi_{p}
$$

Application of Abel transform to $S_{m} \Lambda \phi$ yields

$$
\begin{align*}
& S_{m} \Lambda \phi(x)=\sum_{k=1}^{m} \lambda(k)\left(a_{k}(\phi) \cos k x+b_{k}(\phi) \sin k x\right) \\
& =\sum_{k=1}^{m-1}(\lambda(k)-\lambda(k+1)) S_{k}(\phi, x)+\lambda(m) S_{m} \phi(x) . \tag{7}
\end{align*}
$$

Comparing (6) and (7) we find

$$
\begin{aligned}
& \sup _{m \in \mathbb{N}}\left\|S_{m} \Lambda \mid L_{p} \rightarrow L_{p}\right\| \\
& \leq \chi_{p} \sup _{m \in \mathbb{N}}\left(\sum_{k=1}^{m-1}|\lambda(k)-\lambda(k+1)|+|\lambda(m)|\right) \\
& \leq \chi_{p}\left(\sum_{k=1}^{\infty}|\lambda(k)-\lambda(k+1)|+\sup _{m \in \mathbb{N}}|\lambda(m)|\right) .
\end{aligned}
$$

Consequently, by the Banach-Steinhaus Theorem we get the proof.
An analogue of this estimate in the case of compact globally symmetric spaces of rank one is given in [1], Theorem 2. Observe that the estimate (3) is sufficient for a wide range of applications in the theory of n-widths instead of commonly used Marcinkiewicz result [14] which is based on the Littlewood-Paley theory.

3. n-widths in the case of small, finite and infinite smoothness

Let X be a Banach space and let A be a convex, compact and centrally symmetric subset of X. The Kolmogorov n-width of A in X is defined by

$$
d_{n}(A, X):=\inf _{X_{n} \subset X} \sup _{f \in A} \inf _{g \in X_{n}}\|f-g\|_{X},
$$

where X_{n} runs over all subspaces of X of dimension $\leq n$. The linear n-width of A in X is defined by

$$
\delta_{n}(A, X):=\inf _{L_{n}} \sup _{f \in A}\left\|f-L_{n} f\right\|_{X},
$$

where L_{n} varies over all linear operators of rank at most n that map X into itself.

We use several universal constants which enter into the estimates. These positive constants are mostly denoted by $C_{1, p}, C_{1, q}$ etc., to underline their dependence on parameters p and q respectively. We did not carefully distinguish between the different constants, neither did we try to get good estimates for them. For the ease of notation we will write $a_{n} \ll b_{n}$ for two sequences, if $a_{n} \leq C b_{n}$ for all $n \in \mathbb{N}$, and $a_{n} \asymp b_{n}$, if $C_{1} b_{n} \leq a_{n} \leq C_{2} b_{n}$ for all $n \in \mathbb{N}$ and some constants C, C_{1} and C_{2}. For $a \in \mathbb{R}$ we put $(a)_{+}=\max \{a, 0\}$.

Let $A \subset L_{q}$,

$$
\mathcal{E}_{n}\left(A, L_{q}\right):=\sup _{f \in A}\left\|f-S_{n}(f)\right\|_{q}
$$

and

$$
\mathrm{E}_{n}\left(A, L_{q}\right):=\sup _{f \in A} \inf _{g \in \mathcal{T}_{n}}\|f-g\|_{q} .
$$

If $\lambda(k)$ is a positive and monotone decreasing to zero sequence such that $\lambda(k) \asymp \lambda(2 k)$ and $\lim _{k \rightarrow \infty} \lambda(k) k^{\left(\frac{1}{p}-\frac{1}{q}\right)_{+}}=0$ then from Theorem 8 [20] we get

$$
\begin{equation*}
\mathrm{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp \mathcal{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp \lambda(n) n^{\left(\frac{1}{p}-\frac{1}{q}\right)_{+}}, \tag{8}
\end{equation*}
$$

where $1<p, q<\infty$. If $\lambda(k), k \in \mathbb{N}$ is a positive and monotone decreasing to zero sequence such that $\sum_{k=1}^{\infty} \lambda(k)<\infty$ then it follows from Theorem 1 in [11] that

$$
\begin{align*}
& \mathrm{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp \mathcal{E}_{n}\left(K * U_{p}, L_{q}\right) \\
& \asymp(\lambda(n+1))^{1-\left(\frac{1}{p}-\frac{1}{q}\right)_{+}}\left(\sum_{k=n+1}^{\infty} \lambda(k)\right)^{\left(\frac{1}{p}-\frac{1}{q}\right)_{+}}, 1<p, q<\infty . \tag{9}
\end{align*}
$$

In particular, let $\lambda(k)=k^{-r}$ in (8) then

$$
\begin{equation*}
\mathrm{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp \mathcal{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp n^{-r+\left(\frac{1}{p}-\frac{1}{q}\right)_{+}}, \tag{10}
\end{equation*}
$$

where $r>\left(\frac{1}{p}-\frac{1}{q}\right)_{+}$. If we put in (9) $\lambda(k)=\exp \left(-\mu k^{\gamma}\right), \mu>0, \gamma>0$, then

$$
\begin{equation*}
\mathrm{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp \mathcal{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp \exp \left(-\mu n^{\gamma}\right) n^{(1-\gamma)_{+}\left(\frac{1}{p}-\frac{1}{q}\right)_{+}} . \tag{11}
\end{equation*}
$$

Let $\lambda(k)=k^{-r}, \beta=r$, then it is well-known [4,22,23] (the case of "finite" smoothness) that

$$
d_{n}\left(W_{p}^{r}, L_{q}\right) \asymp\left\{\begin{array}{ccc}
n^{-r}, & r>0, & 1<q \leq p<\infty, \\
n^{-r+\frac{1}{p}-\frac{1}{q}}, & r>\frac{1}{p}-\frac{1}{q}, & 1<p \leq q \leq 2, \\
n^{-r+\frac{1}{p}-\frac{1}{2}}, & r>\frac{1}{p}, & 1<p<2 \leq q<\infty, \\
n^{-r}, & r>\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right) /\left(\frac{1}{2}-\frac{1}{q}\right), & 2 \leq p \leq q<\infty .
\end{array}\right.
$$

Hence, the sequence of subspaces of trigonometric polynomials $\mathcal{T}_{n}, n \in \mathbb{N}$ is optimal in the sense of order of Kolmogorov n-widths in the "Ismagilov triangle"

$$
\left\{1<p \leq q \leq 2, r>\frac{1}{p}-\frac{1}{q}\right\}
$$

and in the "Makovoz triangle"

$$
\{1<q \leq p<\infty, r>0\} .
$$

In the remaining "Kashin cases",

$$
\left\{1<p<2 \leq q<\infty, r>\frac{1}{p}\right\} \cup\left\{2 \leq p<q<\infty, r>\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right) /\left(\frac{1}{2}-\frac{1}{q}\right)\right\}
$$

the sequence \mathcal{T}_{n} is not optimal. In the case of linear n-widths we have (see [22,23] for more details)

$$
\delta_{n}\left(W_{p}^{r}, L_{q}\right) \asymp n^{-r+\left(\frac{1}{p}-\frac{1}{q}\right)_{+}}
$$

if $r>\left(\frac{1}{p}-\frac{1}{q}\right)_{+}$and

$$
\{1<p \leq q \leq 2\} \cup\{2 \leq p \leq q<\infty\} \cup\{1 \leq q \leq p<\infty\}
$$

If

$$
r>\theta:=\max \left\{1-\frac{1}{q}, \frac{1}{p}\right\} \quad 1<p<2 \leq q<\infty
$$

then

$$
\begin{equation*}
\delta_{n}\left(W_{p}^{r}, L_{q}\right) \asymp n^{-r+\theta-\frac{1}{2}} . \tag{12}
\end{equation*}
$$

Comparing (12) and (10) we get that \mathcal{T}_{n} is not optimal if $1<p<2 \leq q<\infty$.
If $\frac{1}{p}-\frac{1}{q}<r<\frac{1}{p}, 1<p<2 \leq q<\infty$ then Kolmogorov n-widths change the order of decay. Namely,

$$
\begin{equation*}
d_{n}\left(W_{p}^{r}, L_{q}\right) \asymp n^{\frac{q}{2}\left(-r+\frac{1}{p}-\frac{1}{q}\right)} . \tag{13}
\end{equation*}
$$

Also, if

$$
\frac{1}{p}-\frac{1}{q}<r<\frac{1}{2}\left(\frac{1}{p}-\frac{1}{q}\right) /\left(\frac{1}{2}-\frac{1}{q}\right), \quad 2 \leq q<p<\infty,
$$

then again

$$
\begin{equation*}
d_{n}\left(W_{p}^{r}, L_{q}\right) \asymp n^{\frac{q}{2}\left(-r+\frac{1}{p}-\frac{1}{q}\right)} . \tag{14}
\end{equation*}
$$

Similarly, in the case of linear n-widths we have [23]

$$
\begin{equation*}
\delta_{n}\left(W_{p}^{r}, L_{q}\right) \asymp n^{\frac{1}{2}\left(-r+\frac{1}{p}-\frac{1}{q}\right) \min \left\{p^{\prime}, q\right\}}, \tag{15}
\end{equation*}
$$

where $1<p<2 \leq q<\infty, \frac{1}{p}-\frac{1}{q}<r<\theta, \frac{1}{p}+\frac{1}{p^{\prime}}=1$. This phenomenon was discovered by Kashin [5] (see also [6]) and is known as "small" smoothness. Comparing (11) with (13)-(15) we see that \mathcal{T}_{n} is not optimal in these cases.

If in (2)

$$
\lambda(k)=\exp \left(\mu k^{\gamma}\right), \mu>0, \beta=0,0<\gamma<1,
$$

i.e. $K * U_{p}$ is a class of infinitely differentiable functions, then

$$
\begin{align*}
& d_{2 n}\left(K * U_{p}, L_{q}\right) \\
& \asymp\left\{\begin{array}{cc}
\exp \left(-\mu n^{\gamma}\right) n^{(1-\gamma)\left(\frac{1}{p}-\frac{1}{q}\right)}, & 1<p \leq q \leq 2, \\
\exp \left(-\mu n^{\gamma}\right), & 1<q \leq p \leq 2 \text { or } 2 \leq p, q<\infty, \\
\exp \left(-\mu n^{\gamma}\right) n^{(1-\gamma)\left(\frac{1}{p}-\frac{1}{2}\right)}, & 1<p<2 \leq q<\infty
\end{array}\right. \tag{16}
\end{align*}
$$

(see [8-11,21], for details). Comparing (16) and (11) we get that the sequence \mathcal{T}_{n} is not optimal if $1<p<2 \leq q<\infty$ and $2 \leq p<q<\infty$ similarly to the case of "small" and "finite" smoothness.

If in (2) $\lambda(k)=\exp \left(\mu k^{\gamma}\right), \mu>0, \beta=0, \gamma \geq 1$, then we have the case of "super-high" smoothness. Comparing (11) and [8] we get

$$
\begin{aligned}
& d_{2 n}\left(K * U_{p}, L_{q}\right) \asymp \mathrm{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp \mathcal{E}_{n}\left(K * U_{p}, L_{q}\right) \\
& \asymp \exp \left(-\mu k^{\gamma}\right), 1<p, q<\infty .
\end{aligned}
$$

Hence, in this case the sequence \mathcal{T}_{n} is optimal for any $1<p, q<\infty$ like in the case of "super-small" smoothness.

4. n-widths in the case of "super-small" smoothness

We consider the case of "super-small" smoothness here.
Theorem 1. Let $\phi(k), k \in \mathbb{N}$, be a sequence of positive numbers which is decreasing for $k \geq N$ for some N and satisfies the following conditions: $\lim _{k \rightarrow \infty} \phi(k)=0$ and $\phi\left(k^{s}\right) \asymp \phi(k)$ for any fixed $s>0$. Let $\lambda(k)=\phi(k) k^{-\left(\frac{1}{p}-\frac{1}{q}\right)}+$ and

$$
K(x) \sim \sum_{k=1}^{\infty} \lambda(k) \cos k x
$$

be the associated kernel. Then

$$
\begin{aligned}
& \mathrm{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp \mathcal{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp d_{n}\left(K * U_{p}, L_{q}\right) \\
& \asymp \delta_{n}\left(K * U_{p}, L_{q}\right) \asymp \phi(n), 1<p, q<\infty
\end{aligned}
$$

and the sequence of subspaces \mathcal{T}_{n} of trigonometric polynomials in the "usual" order is optimal for any $1<p, q<\infty$.

Proof. We present the proof only for Kolmogorov widths, the statement for linear widths follows similarly. The following upper bounds follow from (8),

$$
\begin{equation*}
d_{n}\left(K * U_{p}, L_{q}\right) \ll \phi(n), 1<p, q<\infty . \tag{17}
\end{equation*}
$$

We turn to the lower bounds now. As usual, we reduce the problem to a finite dimensional one. For given $m \in \mathbb{N}$, consider the multiplier operator

$$
\begin{equation*}
\Lambda_{m}^{-1}=\left\{\frac{1}{\lambda(1)}, \frac{1}{\lambda(2)}, \ldots, \frac{1}{\lambda(m)}, 0,0, \ldots\right\} . \tag{18}
\end{equation*}
$$

Applying (3) we get $\left\|\Lambda_{m}^{-1} \mid L_{p} \longrightarrow L_{p}\right\| \leq C_{p} \frac{1}{\lambda(m)}$, which implies

$$
\begin{equation*}
C_{p} \lambda(m) \cdot U_{p} \cap \mathcal{T}_{m} \subset K * U_{p} . \tag{19}
\end{equation*}
$$

From the definition of Kolmogorov n-widths and (19) we get

$$
d_{n}\left(K * U_{p}, L_{q}\right) \geq C_{p} \lambda(m) d_{n}\left(U_{p} \cap \mathcal{T}_{m}, L_{q}\right)
$$

Next, we need to reduce L_{q} to $L_{q} \cap \mathcal{T}_{m}$. Let $S_{m}(\phi)$ be the Fourier sum of $\phi \in L_{q}$ of order m. Since the projection operator $S_{m}: \phi \longrightarrow S_{m}(\phi)$ is bounded if $1<q<\infty$, i.e. $\left\|S_{m} \mid L_{q} \longrightarrow L_{q} \cap \mathcal{T}_{m}\right\|<C_{q}$, then for any $t_{m} \in \mathcal{T}_{m}$ and $y \in L_{q}$ we get $\left\|S_{m}\left(t_{m}-y\right)\right\|_{q}=\left\|t_{m}-S_{m} y\right\|_{q} \leq C_{q}\left\|t_{m}-y\right\|_{q}$ or $\left\|t_{m}-y\right\|_{q} \geq C_{q}^{-1}\left\|t_{m}-S_{m} y\right\|_{q}$ (Ismagilov lemma on projections [3]). Since $S_{m} y \in L_{q} \cap \mathcal{T}_{m}$ and for any $X_{n} \subset L_{q}, \operatorname{dim} X_{n}=n$ we have $\operatorname{dim} S_{m} X_{n} \leq n$, then by the definition of n-widths

$$
\begin{equation*}
d_{n}\left(U_{p} \cap \mathcal{T}_{m}, L_{q}\right) \geq \mathcal{C}_{q}^{-1} d_{n}\left(U_{p} \cap \mathcal{T}_{m}, L_{q} \cap \mathcal{T}_{m}\right) \tag{20}
\end{equation*}
$$

Finally, applying Marcinkiewicz inequality [12,13],

$$
\begin{equation*}
C_{1, p}\left\|t_{m}\right\|_{p} \leq\left(\frac{1}{m} \sum_{k=1}^{2 m+1}\left|t_{m}\left(\frac{2 \pi k}{2 m+1}\right)\right|^{p}\right)^{\frac{1}{p}} \leq C_{2, p}\left\|t_{m}\right\|_{p} \tag{21}
\end{equation*}
$$

which is valid for any $t_{m} \in \mathcal{T}_{m}$ and $1<p<\infty$, we get

$$
\begin{aligned}
& d_{n}\left(K * U_{p}, L_{q}\right) \gg \lambda(m) m^{\frac{1}{p}-\frac{1}{q}} d_{n}(B(p, 2 m+1), l(q, 2 m+1)) \\
& =\phi(m) d_{n}(B(p, 2 m+1), l(q, 2 m+1)),
\end{aligned}
$$

where the norm in $l(q, 2 m+1)$ is defined as usual,

$$
\begin{aligned}
& \|x\|_{l(q, 2 m+1)}=\left(\sum_{k=1}^{2 m+1}\left|x_{k}\right|^{q}\right)^{\frac{1}{q}}, \\
& x=\left(x_{1}, \ldots, x_{2 m+1}\right) \in \mathbb{R}^{2 m+1}, 1 \leq q \leq \infty
\end{aligned}
$$

and $B(p, 2 m+1)$ is the unit ball in $l(p, 2 m+1)$. To get the lower bounds for Kolmogorov n-widths we will need the following result [22]

$$
C_{1, p, q} \leq \frac{d_{n}(B(p, 2 m+1), l(q, 2 m+1))}{\Phi(m, n, p, q)} \leq C_{2, p, q}
$$

for any $m>n$, where

$$
\begin{equation*}
\Phi(m, n, p, q):=\left(\min \left\{1, m^{\frac{1}{q}} n^{-1 / 2}\right\}\right)^{\left(\frac{1}{p}-\frac{1}{q}\right) /\left(\frac{1}{2}-\frac{1}{q}\right)} \tag{22}
\end{equation*}
$$

if $2 \leq p \leq q \leq \infty$ and

$$
\begin{equation*}
\Phi(m, n, p, q):=\max \left\{m^{\frac{1}{q}-\frac{1}{p}}, \min \left\{1, m^{\frac{1}{q}} n^{-\frac{1}{2}}\right\}\left(1-\frac{n}{m}\right)^{\frac{1}{2}}\right\}, \tag{23}
\end{equation*}
$$

if $1 \leq p<2 \leq q \leq \infty$. Let $2 \leq p \leq q \leq \infty$. Let us put in (22) $m=n^{\frac{q}{2}}$ then $\min \left\{1, m^{\frac{1}{q}} n^{-\frac{1}{2}}\right\}=1$ and

$$
d_{n}\left(B\left(p, 2 n^{\frac{q}{2}}+1\right), l(q, 2 m+1)\right) \geq C_{1, p, q} \Phi\left(n^{\frac{q}{2}}, n, p, q\right)=C_{1, p, q} .
$$

Hence, in this case

$$
\begin{aligned}
& d_{n}\left(K * U_{p}, L_{q}\right) \geq C_{p, q} \phi\left(n^{\frac{q}{2}}\right) d_{n}\left(B\left(p, 2 n^{\frac{q}{2}}+1\right), l\left(q, 2 n^{\frac{q}{2}}+1\right)\right) \\
& \geq C_{p, q} \phi\left(n^{\frac{q}{2}}\right) \asymp \phi(n) .
\end{aligned}
$$

Similarly, if $1 \leq p<2 \leq q \leq \infty$ then we put in (23) $m=n^{\frac{q}{2}}$. This gives

$$
\max \left\{m^{\frac{1}{q}-\frac{1}{p}}, \min \left\{1, m^{\frac{1}{q}} n^{-\frac{1}{2}}\right\}\left(1-\frac{n}{m}\right)^{\frac{1}{2}}\right\} \asymp 1
$$

and

$$
\begin{aligned}
& d_{n}\left(K * U_{p}, L_{q}\right) \geq C_{p, q} \lambda\left(n^{\frac{q}{2}}\right) n^{\frac{q}{2}\left(\frac{1}{p}-\frac{1}{q}\right)} d_{n}\left(B\left(p, 2 n^{\frac{q}{2}}+1\right), l\left(q, 2 n^{\frac{q}{2}}+1\right)\right) \\
& \geq C_{p, q} \phi\left(n^{\frac{q}{2}}\right) \asymp \phi(n) .
\end{aligned}
$$

In the case of linear n-widths $\delta_{n}\left(K * U_{p}, L_{q}\right)$ we just need to apply a finite dimensional result [22]

$$
C_{1, p, q} \leq \frac{\delta_{n}(B(p, 2 m+1), l(q, 2 m+1))}{\Psi(m, n, p, q)} \leq C_{2, p, q},
$$

where

$$
\Psi(m, n, p, q):=\left\{\begin{array}{lc}
\Phi(m, n, p, q), & 1 \leq p<q \leq p^{\prime} \\
\Phi(m, n, p, q), & \max \left\{p, p^{\prime}\right\}<q<\infty
\end{array}\right.
$$

and $\Phi(m, n, p, q)$ was defined in (22) and (23) and repeat the line of arguments we used for Kolmogorov n-widths.

The upper bounds in the "Makovoz triangle", i.e. if $1<q<p<\infty$ follow from (17). The respective lower bounds are the consequence of (19), (20), (21) and a well-known result [22], p. 209,

$$
d_{n}(B(p, 2 m+1), l(q, 2 m+1))=(2 m-n)^{-\left(\frac{1}{p}-\frac{1}{q}\right)}, \quad 1 \leq q \leq p \leq \infty .
$$

A typical example of the sequence $\lambda(k), k \in \mathbb{N}$ which satisfies the conditions of Theorem 1 is given by

$$
\lambda(k)=k^{-\left(\frac{1}{p}-\frac{1}{q}\right)}+(\ln (k+1))^{-v}(\ln \ln (k+3))^{e}, k \in \mathbb{N},
$$

where $v>0$ and $\varrho \in \mathbb{R}$.
The Gel'fand n-width of $A \subset X$ is defined by

$$
d^{n}(A, X):=\inf _{X^{n}} \sup _{x \in A \cap X^{n}}\|x\|_{X}
$$

where X^{n} runs over all subspaces of X of codimension at most n. Let \widetilde{X} be a Banach space and let $i: X \longrightarrow \widetilde{X}$ be a linear isometry. We denote the pairing of these objects by (\widetilde{X}, i). The absolute linear n-width, $\Lambda_{n}(A, X)$ is defined as

$$
\Lambda_{n}(A, X):=\inf _{(\widetilde{x}, i)} \delta_{n}(A, X)
$$

where inf is taken over all extensions (\widetilde{X}, i) of X. It is known [3] that

$$
\Lambda_{n}(A, X)=d^{n}(A, X) .
$$

Applying duality between Kolmogorov and Gelfand n-widths [22],

$$
d^{n}\left(K * U_{p}, L_{q}\right)=d_{n}\left(K * U_{q^{\prime}}, L_{p^{\prime}}\right), \frac{1}{p}+\frac{1}{p^{\prime}}=\frac{1}{q}+\frac{1}{q^{\prime}}=1,
$$

we get

$$
\Lambda_{n}\left(K * U_{p}, L_{q}\right)=d_{n}\left(K * U_{q^{\prime}}, L_{p^{\prime}}\right)
$$

which implies that an analogue of Theorem 1 remains valid for absolute linear n-widths.
To underline an opposite situation with respect to the "super-small" smoothness we consider Bernstein n-width of A in X defined as

$$
b_{n}(A, X):=\sup _{X_{n+1}} \sup _{\epsilon>0}\left\{\epsilon B_{X} \cap X_{n+1} \subset A\right\},
$$

where X_{n+1} is any $(n+1)$-dimensional subspace of X and B_{X} is the unit ball of X.
It is known (see [15] Remark 5.6, Theorem 2.2 and [22] p. 212) that in the case of "finite" smoothness

$$
\begin{align*}
& b_{n}\left(W_{p}^{r}, L_{q}\right) \\
& \asymp\left\{\begin{array}{cc}
n^{-r}, & r>\frac{1}{p}-\frac{1}{q}, 1<p \leq q<\infty, \\
n^{-r}, & r>0,1<q \leq p \leq 2,1<q=p<\infty, \\
n^{-r+\frac{1}{p}-\frac{1}{q}}, & r>\frac{\frac{1}{q}-\frac{1}{p}}{\frac{p}{2}-1}, 2 \leq q<p<\infty, \\
n^{-r+\frac{1}{p}-\frac{1}{2}}, & r>\frac{1}{p}, 1<q \leq 2<p<\infty
\end{array}\right. \tag{24}
\end{align*}
$$

and in the case of "small" smoothness

$$
\begin{equation*}
b_{n}\left(W_{p}^{r}, L_{q}\right) \asymp n^{-\frac{r p}{2}}, \tag{25}
\end{equation*}
$$

where

$$
2 \leq q<p<\infty, \quad 0<r<\frac{\frac{1}{q}-\frac{1}{p}}{\frac{p}{2}-1},
$$

or

$$
1<q \leq 2<p<\infty, 0<r<\frac{1}{p}
$$

Comparing (24) and (3) we get that in the case of "finite" smoothness the sequence \mathcal{T}_{n} is not optimal if either $1<q<p \leq 2$ or $1<q \leq 2<p<\infty$ and is optimal if either $1<p \leq q<\infty, r>\frac{1}{p}-\frac{1}{q}$ or $2 \leq q<p<\infty, r>0$. In the case of "small" smoothness (25) \mathcal{T}_{n} is not optimal in both cases $2 \leq q<p<\infty$ and $1<q \leq 2<p<\infty$.

Next statement shows that in the case of "super-small" smoothness the asymptotic behaviour of Bernstein widths changes and the sequence \mathcal{T}_{n} remains not optimal if $2 \leq q<p<\infty$.

Theorem 2. Let $\lambda(k), k \in \mathbb{N}$, be a sequence of positive numbers which is decreasing for $k \geq N$ for some N and satisfies the following conditions: $\lim _{k \rightarrow \infty} \lambda(k)=0$ and $\lambda\left(k^{s}\right) \asymp \lambda(k)$ for any fixed $s>0$. Let

$$
K(x) \sim \sum_{k=1}^{\infty} \lambda(k) \cos k x
$$

be the associated kernel. Then

$$
\mathcal{E}_{n}\left(K * U_{p}, L_{q}\right) \asymp b_{n}\left(K * U_{p}, L_{q}\right) \asymp \lambda(n), \quad 2 \leq q<p<\infty
$$

and the sequence of subspaces \mathcal{T}_{n} of trigonometric polynomials in the "usual" order is not optimal.
Proof. Let $2 \leq q<p<\infty$. Since $b_{n}\left(K * U_{p}, L_{q}\right) \leq d_{n}\left(K * U_{p}, L_{q}\right)$, the upper bounds follow from (8),

$$
b_{n}\left(K * U_{p}, L_{q}\right) \ll \lambda(n) .
$$

We turn to the lower bounds now. From the definition of Bernstein n-widths and (19) we get

$$
\begin{align*}
& b_{n}\left(K * U_{p}, L_{q}\right) \geq b_{n}\left(K * U_{p} \cap \mathcal{T}_{m}, L_{q} \cap \mathcal{T}_{m}\right) \\
& \geq \lambda(m) b_{n}\left(U_{p} \cap \mathcal{T}_{m}, L_{q} \cap \mathcal{T}_{m}\right) \tag{26}
\end{align*}
$$

for a given $m>n$. Let $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{k=1}^{n} x_{k} y_{k}$ be the canonic scalar product of vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^{n} and $|\mathbf{x}|=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2}$. Let $\mathbb{S}^{n-1}=\left\{\mathbf{x}\left|\mathbf{x} \in \mathbb{R}^{n},|\mathbf{x}|=1\right\}\right.$ be the unit sphere with the normalized invariant surface measure $d \mu$. Denote by $E=\left(\mathbb{R}^{n},\|\cdot\|\right)$ a Banach space with the norm $\|\cdot\|$. Let I $: \mathbb{R}^{2 n} \longrightarrow \mathcal{T}_{2 n}$ be the coordinate isomorphism that assigns to $\mathbf{a}=\left(a_{1}, \ldots, a_{2 n}\right) \in \mathbb{R}^{2 n}$ the polynomial la $=t_{n}^{\mathbf{a}}(\cdot)=\sum_{k=1}^{n} a_{k} \cos k(\cdot)+a_{n+k} \sin k(\cdot)$. The definition $\|\mathbf{a}\|_{(p)}:=\left\|t_{n}^{\mathbf{a}}(\cdot)\right\|_{p}$ induces a norm on $\mathbb{R}^{2 n}$. We will get an upper bound for the expectation,

$$
\mathbf{E}[\|\cdot\|]=\int_{\mathbb{S}^{2 n-1}}\|\mathbf{a}\| d \mu(\mathbf{a})
$$

or the Lévy mean, of the function $\|\cdot\|: \mathbb{S}^{2 n-1} \longrightarrow \mathbb{R}_{+}$in the case $\|\cdot\|=\|\cdot\|_{(p)}, p \geq 2$ with respect to the normalized invariant measure $d \mu$. Let $r_{k}(\theta), \theta \in(0,1), k \in \mathbb{N}$ be the Rademacher functions. Since $d \mu$ is invariant on $\mathbb{S}^{2 n-1}$ then for any $\theta \in(0,1)$

$$
\begin{aligned}
& \mathbf{E}\left[\|\cdot\|_{(p)}\right]=\int_{\mathbb{S}^{2 n-1}}\|\mathbf{a}\|_{p} d \mu(\mathbf{a})=\int_{\mathbb{S}^{2 n-1}}\left\|t_{n}^{\mathbf{a}}(\cdot)\right\|_{p} d \mu(\mathbf{a}) \\
& =\int_{\mathbb{S}^{2 n-1}}\left(\int_{\mathbb{T}}\left|\sum_{k=1}^{n} a_{k} \cos k \tau+a_{n+k} \sin k \tau\right|^{p} d \tau\right)^{\frac{1}{p}} d \mu(\mathbf{a})
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{S}^{2 n-1}}\left(\int_{\mathbb{T}}\left|\sum_{k=1}^{n} r_{k}(\theta) a_{k} \cos k \tau+r_{n+k}(\theta) a_{n+k} \sin k \tau\right|^{p} d \tau\right)^{\frac{1}{p}} d \mu(\mathbf{a}) \\
& =\int_{0}^{1} \int_{\mathbb{S}^{2 n-1}}\left(\int_{\mathbb{T}}\left|\sum_{k=1}^{n} r_{k}(\theta) a_{k} \cos k \tau+r_{n+k}(\theta) a_{n+k} \sin k \tau\right|^{p} d \tau\right)^{\frac{1}{p}} d \mu(\mathbf{a}) d \theta .
\end{aligned}
$$

Hence, by Jensen inequality and Fubini theorem,

$$
\begin{aligned}
& \mathbf{E}\left[\|\cdot\|_{(p)}\right] \\
& \leq\left(\int_{\mathbb{S}^{2 n-1}} \int_{\mathbb{T}} \int_{0}^{1}\left|\sum_{k=1}^{n} r_{k}(\theta) a_{k} \cos k \tau+r_{n+k}(\theta) a_{n+k} \sin k \tau\right|^{p} d \theta d \tau d \mu(\mathbf{a})\right)^{\frac{1}{p}} .
\end{aligned}
$$

Applying Khinchin inequality [17, p.41],

$$
\left(\int_{0}^{1}\left|\sum_{k=1}^{n} c_{k} r_{k}(\theta)\right|^{p} d \theta\right)^{\frac{1}{p}} \leq C(p)\left(\sum_{k=1}^{n} c_{k}^{2}\right)^{\frac{1}{2}}
$$

where

$$
C(p):=2^{\frac{1}{2}}\left(\frac{\Gamma\left(\frac{1+p}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}\right)^{\frac{1}{p}}
$$

we obtain

$$
\begin{align*}
& \mathbf{E}\left[\|\cdot\|_{(p)}\right] \leq C(p)\left(\int_{\mathbb{S}^{2 n-1}} \int_{\mathbb{T}}\left(\sum_{k=1}^{n} a_{k}^{2} \cos ^{2} k \tau+a_{n+k}^{2} \sin ^{2} k \tau\right)^{\frac{p}{2}} d \tau d \mu(\mathbf{a})\right)^{\frac{1}{p}} \\
& <C(p)\left(\int_{\mathbb{S}^{2 n-1}}\left(\sum_{k=1}^{n} a_{k}^{2}+a_{n+k}^{2}\right)^{\frac{p}{2}} d \mu(\mathbf{a})\right)^{\frac{1}{p}}=C(p)\left(\int_{\mathbb{S}^{2 n-1}}|\mathbf{a}|^{p} d \mu(\mathbf{a})\right)^{\frac{1}{p}} \\
& =C(p)\left(\int_{\mathbb{S}^{2 n-1}} d \mu(\mathbf{a})\right)^{\frac{1}{p}}=2^{\frac{1}{2}}\left(\frac{\Gamma\left(\frac{1+p}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}\right)^{\frac{1}{p}} \asymp p^{\frac{1}{2}} . \tag{27}
\end{align*}
$$

Let X_{m} be an m-dimensional Banach space with the norm $\|\cdot\|$ and $|\mathbf{x}| \leq\|\mathbf{x}\| \leq b|\mathbf{x}|$ for any $\mathbf{x} \in X$. Then there is a subspace

$$
\begin{equation*}
Y_{n} \subset X_{m}, \operatorname{dim} Y_{n}=n \geq\left[C_{X_{m}} m(\mathbf{E}[\|\cdot\|])^{2} b^{-2}\right] \tag{28}
\end{equation*}
$$

such that $\|\mathbf{x}\| \leq C_{X}|\mathbf{x}|$ for all $\mathbf{x} \in Y_{n}$ [2]. In particular, let $\|\mathbf{x}\|=\|\mathbf{x}\|_{(p)}$, then $b=C m^{\frac{1}{2}-\frac{1}{p}}$ and by (27) $\mathbf{E}\left[\|\cdot\|_{(p)}\right]<C p^{\frac{1}{2}}$. Hence, by (28) there is such subspace $Y_{n} \subset\left(\mathbb{R}^{2 m},\|\mathbf{x}\|_{(p)}\right)$, $\operatorname{dim} Y_{n}=n=\left[C_{p} m^{\frac{2}{p}}\right]$ that $\|\mathbf{x}\|_{(p)} \leq|\mathbf{x}|$ for all $\mathbf{x} \in Y_{k}$ or there is $L_{n}=I Y_{n} \subset \mathcal{T}_{m}$ such that $\left\|t_{m}\right\|_{p} \leq\left\|t_{m}\right\|_{2}$ for any $t_{m} \in L_{n}$. This implies

$$
b_{n}\left(U_{p} \cap \mathcal{T}_{m}, L_{2} \cap \mathcal{T}_{m}\right) \geq C_{p}
$$

Consequently, from (26) we get $b_{n}\left(K * U_{p}, L_{2}\right) \geq \lambda(m) C_{p}$ and by embedding

$$
b_{n}\left(K * U_{p}, L_{q}\right) \geq C_{p, q} \lambda(m), 2 \leq q<p<\infty,
$$

or

$$
b_{n}\left(K * U_{p}, L_{q}\right) \geq C_{p, q} \lambda\left(C_{p} n^{\frac{p}{2}}\right) \gg \lambda(n), 2 \leq q<p<\infty .
$$

Finally, applying (3) for the multiplier sequence (18) we get

$$
\begin{equation*}
\left\|\Lambda_{n}^{-1} t_{n}\right\|_{p} \leq \frac{C_{p}}{\lambda(n)}\left\|t_{n}\right\|_{p} \leq \frac{C_{p, q} q^{\frac{1}{9}-\frac{1}{p}}}{\lambda(n)}\left\|t_{n}\right\|_{q} \tag{29}
\end{equation*}
$$

for any $t_{n} \in \mathcal{T}_{n}$ or $C_{p, q} \lambda(n) n^{\frac{1}{p}-\frac{1}{q}} U_{q} \cap \mathcal{T}_{n} \subset K * U_{p}$. Observe that (29) is sharp in the sense of order. Hence \mathcal{T}_{n} is not optimal if $2 \leq q<p<\infty$.

Acknowledgments

The authors wish to thank referees and Communicating Editor for valuable comments.

References

[1] B. Bordin, A.K. Kushpel, J. Levesley, S.A. Tozoni, Estimates of n-widths of Sobolev's classes on compact globally symmetric spaces of rank one, J. Funct. Anal. 202 (2003) 307-326.
[2] T. Fiegel, J. Lindenstrauss, V.D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977) 53-94.
[3] R.S. Ismagilov, n-Widths of sets in linear normed spaces and approximation of functions by trigonometric polynomials, Usp. Mat. Nauk 29 (1977) 161-178.
[4] B.S. Kashin, n-Widths of some finite dimensional sets and classes of smooth functions, Izv. Acad., Nayk. USSR 41 (1977) 334-351.
[5] B.S. Kashin, Widths of Sobolev classes of small-order smoothness, Vestnik MGU 5 (1981) 334-351.
[6] E.D. Kulanin, Estimates for diameters of Sobolev classes of small-order smoothness, Vestnik MGU 2 (1983) 24-30.
[7] A. Kushpel, On an estimate of widths of sets in some function spaces, in: Some Problems in the Theory of Approximation of Functions, Kiev, Inst. Math Acad. Nauk Ukrain. SSR, 1988, pp. 92-95.
[8] A. Kushpel, Estimates of widths of classes of classes of analytic functions, Ukrainian Math. J. 41 (4) (1989) 493-496, Springer.
[9] A. Kushpel, Estimation of the widths of classes of smooth functions in the space L_{q}, Ukrainian Math. J. 42 (2) (1990) 248-249, Springer.
[10] A. Kushpel, Estimates of the Bernstein widths and their analogs, Ukrainian Math. J. 45 (1) (1993) 59-65, Springer.
[11] A. Kushpel, J. Levesley, K. Wilderotter, On the asymptotically optimal rate of approximation of multiplier operators, Constr. Approx. 14 (1998) 169-185.
[12] J. Marcinkiewicz, Sur l'interpolation, Studia Math. 6 (1936) 1-17, 67-81.
[13] J. Marcinkiewicz, Quelques remarques sur l'interpolation, Acta Litt. Acad. Sci. Szeged. 8 (1937) 127-130.
[14] J. Marcinkiewicz, Sur les multiplicateurs des series de Fourier, Studia Math. 8 (1939) 78-91.
[15] V.K. Nguyen, Bernstein numbers of embeddings of isotropic and dominating mixed Besov spaces, Math. Nachr. 288 (2015) 14-15, 1694-1717.
[16] S. Pichorides, On the best value of the constants in the theorem of Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972) 165-179.
[17] A. Pietsch, Operator Ideals, North-Holland Publ. Co., Amsterdam, 1980.
[18] A. Pinkus, N-Widths in Approximation Theory, Springer, London/New York, 1985.
[19] A.I. Stepanets, Classification and Approximation of Periodic Functions, Naukova Dumka, Kiev, 1987.
[20] A.I. Stepanets, A.K. Kushpel, Convergence rate of Fourier series and best approximations in the space L_{p}, Ukrainian Math. J. 39 (4) (1987) 389-398.
[21] V.N. Temlyakov, On estimates of widths of sets of infinitely differentiable functions, Mat. Zametki 47 (1990) $155-157$.
[22] V.M. Tikhomirov, Approximation theory II, in: Modern Problems in Mathematics, Vol. 14, VINITI, Moscow, 1987.
[23] J. Vybíral, Widths of embeddings in function spaces, J. Complexity 24 (4) (2008) 545-570.

[^0]: Communicated by A. Hinrichs.

 * Corresponding author.

 E-mail address: kushpel@cankaya.edu.tr (A. Kushpel).

