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a b s t r a c t

We study a new phenomenon of the behaviour of widths with re-
spect to the optimality of trigonometric system. It is shown that
the trigonometric system is optimal in the sense of Kolmogorov
widths in the case of ‘‘super-high’’ and ‘‘super-small’’ smooth-
ness but is not optimal in the intermediate cases. Bernstein’s
widths behave differently when compared with Kolmogorov in
the case of ‘‘super-small’’ smoothness. However, in the case
of ‘‘super-high’’ smoothness Kolmogorov and Bernstein widths
behave similarly, i.e. are realized by trigonometric polynomials.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

n-Widths were introduced to compare and classify the power of approximation of a wide range
of algorithms. Optimality of the trigonometric system is a frequently discussed topic in the theory
of n-widths [18,22]. We present a new phenomenon in behaviour of the trigonometric system in the
‘‘usual’’ order, i.e. 1, cos kx, sin kx, k ∈ N. Namely, the sequence of subspaces Tn, n ∈ N of trigono-
metric polynomials of degree at most n is optimal in the sense of order of Kolmogorov n-widths
dn
(
K ∗ Up, Lq

)
of convolution classes K∗Up in Lq (where Up is the unit ball in Lp) for all 1 < p, q < ∞

in the case of ‘‘super-high’’ smoothness (analytic and entire), that is in the case

K ∼

∞∑
k=1

λ(k) cos kx,

where

λ(k) = exp (−µkϱ) µ > 0, ϱ ≥ 1
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and in the case

λ(k) = k−

(
1
p −

1
q

)
(ln (k + 1))−ν , ν > 0, (1)

where {2 ≤ p < q < ∞} ∪ {1 < p < 2 ≤ q < ∞}. Observe that the rate of decay of λ(k) as
k → ∞ determines the smoothness of convolution classes K ∗ Up. Hence, it is natural to call the
classes K ∗Up generated by the kernels K of the type (1) as sets of ‘‘super-small’’ smoothness since
for any r > 1

p −
1
q , p < q we have

k−r
≪ k−

(
1
p −

1
q

)
(ln (k + 1))−ν .

Let λ(k) = k−r , where r > 0. In the known intermediate cases of ‘‘small’’ and ‘‘finite’’ smoothness,
which will be discussed later, the sequence of subspaces Tn, n ∈ N is not optimal for Kolmogorov
n-widths dn

(
K ∗ Up, Lq

)
if r > 1

p −
1
q and

{2 ≤ p < q < ∞} ∪ {1 < p < 2 ≤ q < ∞} .

Similarly, Tn, n ∈ N is not optimal for linear n-widths δn
(
K ∗ Up, Lq

)
if

{1 < p < 2 ≤ q < ∞} , r >
1
p

−
1
q
.

We show that Bernstein n-widths behave differently when compared with Kolmogorov and linear
n-widths in the case of ‘‘super-small’’ smoothness. Namely, in the case of ‘‘finite’’ smoothness the
sequence of subspaces Tn is optimal for Bernstein n-widths bn

(
K ∗ Up, Lq

)
in the region 2 ≤ q ≤

p < ∞ and is not optimal in the case of ‘‘small’’ and ‘‘super-small’’ smoothness, where we have
different weak asymptotics. We conjecture that homological widths, introduced in [10], which are
intermediate between Kolmogorov and Bernstein widths, behave like Kolmogorov widths. Although
we consider here just Kolmogorov, linear and Bernstein n-widths, the problem can be considered
for a wider range of n-widths.

2. Sets of smooth functions

Let Tn be the sequence of subspaces of trigonometric polynomials with the ‘‘usual’’ order. As a
model case, we consider usual spaces Lp of p-integrable functions φ on the unit circle T with the
Lebesgue measure dx, i.e. such that ∥φ∥p < ∞, where

∥φ∥p :=

(∫
T
|φ|

p dx
) 1

p

, 1 ≤ p ≤ ∞.

Let φ ∈ Lp with the formal Fourier series

φ ∼

∞∑
k=1

ak (φ) cos kx + bk (φ) sin kx,

where

ak (φ) =
1
π

∫ π

−π

φ (t) cos ktdt, bk (φ) =
1
π

∫ π

−π

φ (t) sin ktdt, k ∈ N

and

Sn (φ, x) =

n∑
k=1

ak (φ) cos kx + bk (φ) sin kx

be its nth Fourier sum. A wide range of sets of smooth functions on the unit circle T can be
introduced using multipliers Λ := {λ (k) , k ∈ N} [19]. We say that f ∈ ΛβUp, β ∈ R if

f ∼

∞∑
k=1

λ (k)
(
ak (φ) cos

(
kx −

βπ

2

)
+ bk (φ) sin

(
kx −

βπ

2

))
, φ ∈ Up,
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where Up is the unit ball in Lp. We shall consider multiplier operator Λβ which acts as Lp ∋ φ →

Λφ = f ∈ Lq. In the case β = 0 we will write Λβ = Λ. In particular, if there exists K ∈ L1 such
that

K ∼

∞∑
k=1

λ (k) cos
(
kx −

βπ

2

)
(2)

then the set ΛβUp can be represented in the convolution form

f (x) =

∫
T
K (x − y) φ (y) dy.

In this case ΛβUp = K ∗ Up. In general, if K /∈ L1 we should consider generalized convolutions. The
smoothness of the function classes ΛβUp is mainly governed by the rate of decay of the sequence Λ.
For instance, if λ (k) = k−r , β = r , r > 0 we get Sobolev classes W r

p . If λ (k) = exp (−µkγ ), β ∈ R,
µ > 0, 0 < γ < 1, then the class ΛβUp = K ∗ Up consists of infinitely differentiable functions. In
the cases γ = 1 and γ > 1, we get classes of analytic and entire functions respectively. To simplify
technical notations we present our new results just in the case 1 < p, q < ∞ and β = 0. We will
need a simple norm estimate for multiplier operators [7].

Lemma 1. Let 1 < p < ∞, thenΛ ⏐⏐Lp → Lp


≤ χp

(
∞∑
k=1

|λ (k) − λ (k + 1)| + sup
m∈N

|λ (m)|

)
, (3)

where

χp = 1 + 2

⎧⎪⎨⎪⎩
cot

π

2p
, 2 < p < ∞,

tan
π

2p
, 1 < p ≤ 2.

⎫⎪⎬⎪⎭ .

Proof. Let U : φ → φ̃, where

Uφ := φ̃ ∼

∞∑
k=1

−bk (φ) cos kx + ak (φ) sin kx

and

S∗

m (φ, x) =
1
2

(Sm (φ, x) + Sm−1 (φ, x)) .

Then

S∗

m (φ, x) = sinmx̃gm (x) − cosmx̃hm (x)

= sinmxUgm (x) − cosmxUhm (x) ,

where

gm (x) := f (x) cosmx, hm (x) := f (x) sinmx.

Clearly,S∗

m

⏐⏐Lp → Lp
 ≤ 2

U ⏐⏐Lp → Lp
 ,

and Sm − S∗

m

⏐⏐Lp → Lp
 ≤ 1.
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Hence, for any m ∈ N we getSm ⏐⏐Lp → Lp
 =

Sm − S∗

m + S∗

m

⏐⏐Lp → Lp


≤ 1 +
S∗

m

⏐⏐Lp → Lp
 ≤ 1 + 2

U ⏐⏐Lp → Lp
 . (4)

It is known [16] that

U ⏐⏐Lp → Lp
 =

⎧⎪⎨⎪⎩
cot

π

2p
, 2 < p < ∞,

tan
π

2p
, 1 < p ≤ 2.

(5)

Comparing (4) and (5) we get

sup
m∈N

Sm ⏐⏐Lp → Lp
 ≤ 1 + 2

⎧⎪⎨⎪⎩
cot

π

2p
, 2 < p < ∞,

tan
π

2p
, 1 < p ≤ 2.

⎫⎪⎬⎪⎭ := χp. (6)

Application of Abel transform to SmΛφ yields

SmΛφ (x) =

m∑
k=1

λ (k) (ak (φ) cos kx + bk (φ) sin kx)

=

m−1∑
k=1

(λ (k) − λ (k + 1)) Sk (φ, x) + λ (m) Smφ (x) . (7)

Comparing (6) and (7) we find

sup
m∈N

SmΛ
⏐⏐Lp → Lp


≤ χp sup

m∈N

(
m−1∑
k=1

|λ (k) − λ (k + 1)| + |λ (m)|

)

≤ χp

(
∞∑
k=1

|λ (k) − λ (k + 1)| + sup
m∈N

|λ (m)|

)
.

Consequently, by the Banach–Steinhaus Theorem we get the proof. ■

An analogue of this estimate in the case of compact globally symmetric spaces of rank one is
given in [1], Theorem 2. Observe that the estimate (3) is sufficient for a wide range of applications
in the theory of n -widths instead of commonly used Marcinkiewicz result [14] which is based on
the Littlewood–Paley theory.

3. n-widths in the case of small, finite and infinite smoothness

Let X be a Banach space and let A be a convex, compact and centrally symmetric subset of X .
The Kolmogorov n-width of A in X is defined by

dn (A, X) := inf
Xn⊂X

sup
f∈A

inf
g∈Xn

∥f − g∥X ,

where Xn runs over all subspaces of X of dimension ≤ n. The linear n-width of A in X is defined by

δn (A, X) := inf
Ln

sup
f∈A

∥f − Lnf ∥X ,

where Ln varies over all linear operators of rank at most n that map X into itself.
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We use several universal constants which enter into the estimates. These positive constants are
mostly denoted by C1,p, C1,q etc., to underline their dependence on parameters p and q respectively.
We did not carefully distinguish between the different constants, neither did we try to get good
estimates for them. For the ease of notation we will write an ≪ bn for two sequences, if an ≤ Cbn
for all n ∈ N, and an ≍ bn, if C1bn ≤ an ≤ C2bn for all n ∈ N and some constants C , C1 and C2. For
a ∈ R we put (a)+ = max {a, 0}.

Let A ⊂ Lq,

En
(
A, Lq

)
:= sup

f∈A
∥f − Sn(f )∥q

and

En
(
A, Lq

)
:= sup

f∈A
inf
g∈Tn

∥f − g∥q .

If λ (k) is a positive and monotone decreasing to zero sequence such that λ (k) ≍ λ (2k) and

limk→∞ λ(k)k
(
1
p −

1
q

)
+ = 0 then from Theorem 8 [20] we get

En
(
K ∗ Up, Lq

)
≍ En

(
K ∗ Up, Lq

)
≍ λ (n) n

(
1
p −

1
q

)
+ , (8)

where 1 < p, q < ∞. If λ (k), k ∈ N is a positive and monotone decreasing to zero sequence such
that

∑
∞

k=1 λ (k) < ∞ then it follows from Theorem 1 in [11] that

En
(
K ∗ Up, Lq

)
≍ En

(
K ∗ Up, Lq

)
≍ (λ (n + 1))

1−
(
1
p −

1
q

)
+

(
∞∑

k=n+1

λ (k)

)( 1
p −

1
q

)
+

, 1 < p, q < ∞. (9)

In particular, let λ (k) = k−r in (8) then

En
(
K ∗ Up, Lq

)
≍ En

(
K ∗ Up, Lq

)
≍ n

−r+
(
1
p −

1
q

)
+ , (10)

where r >

(
1
p −

1
q

)
+

. If we put in (9) λ (k) = exp (−µkγ ), µ > 0, γ > 0, then

En
(
K ∗ Up, Lq

)
≍ En

(
K ∗ Up, Lq

)
≍ exp (−µnγ ) n

(1−γ )+

(
1
p −

1
q

)
+ . (11)

Let λ (k) = k−r , β = r , then it is well-known [4,22,23] (the case of ‘‘finite’’ smoothness) that

dn
(
W r

p , Lq
)

≍

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−r , r > 0, 1 < q ≤ p < ∞,

n−r+ 1
p −

1
q , r >

1
p

−
1
q
, 1 < p ≤ q ≤ 2,

n−r+ 1
p −

1
2 , r >

1
p
, 1 < p < 2 ≤ q < ∞,

n−r , r >
1
2

(
1
p

−
1
q

)
/

(
1
2

−
1
q

)
, 2 ≤ p ≤ q < ∞.

Hence, the sequence of subspaces of trigonometric polynomials Tn, n ∈ N is optimal in the sense of
order of Kolmogorov n-widths in the ‘‘Ismagilov triangle’’{

1 < p ≤ q ≤ 2, r >
1
p

−
1
q

}
and in the ‘‘Makovoz triangle’’

{1 < q ≤ p < ∞, r > 0} .
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In the remaining ‘‘Kashin cases’’,{
1 < p < 2 ≤ q < ∞, r >

1
p

}
∪

{
2 ≤ p < q < ∞, r >

1
2

(
1
p

−
1
q

)
/

(
1
2

−
1
q

)}
the sequence Tn is not optimal. In the case of linear n-widths we have (see [22,23] for more details)

δn
(
W r

p , Lq
)

≍ n
−r+

(
1
p −

1
q

)
+

if r >

(
1
p −

1
q

)
+

and

{1 < p ≤ q ≤ 2} ∪ {2 ≤ p ≤ q < ∞} ∪ {1 ≤ q ≤ p < ∞} .

If

r > θ := max
{
1 −

1
q
,
1
p

}
1 < p < 2 ≤ q < ∞

then

δn
(
W r

p , Lq
)

≍ n−r+θ−
1
2 . (12)

Comparing (12) and (10) we get that Tn is not optimal if 1 < p < 2 ≤ q < ∞.
If 1

p −
1
q < r < 1

p , 1 < p < 2 ≤ q < ∞ then Kolmogorov n-widths change the order of decay.
Namely,

dn
(
W r

p , Lq
)

≍ n
q
2

(
−r+ 1

p −
1
q

)
. (13)

Also, if

1
p

−
1
q

< r <
1
2

(
1
p

−
1
q

)
/

(
1
2

−
1
q

)
, 2 ≤ q < p < ∞,

then again

dn
(
W r

p , Lq
)

≍ n
q
2

(
−r+ 1

p −
1
q

)
. (14)

Similarly, in the case of linear n-widths we have [23]

δn
(
W r

p , Lq
)

≍ n
1
2

(
−r+ 1

p −
1
q

)
min{p′,q}

, (15)

where 1 < p < 2 ≤ q < ∞, 1
p −

1
q < r < θ , 1

p +
1
p′ = 1. This phenomenon was discovered by

Kashin [5] (see also [6]) and is known as ‘‘small’’ smoothness. Comparing (11) with (13)–(15) we
see that Tn is not optimal in these cases.

If in (2)

λ (k) = exp (µkγ ) , µ > 0, β = 0, 0 < γ < 1,

i.e. K ∗ Up is a class of infinitely differentiable functions, then

d2n
(
K ∗ Up, Lq

)

≍

⎧⎪⎨⎪⎩
exp (−µnγ ) n(1−γ )

(
1
p −

1
q

)
, 1 < p ≤ q ≤ 2,

exp (−µnγ ) , 1 < q ≤ p ≤ 2 or 2 ≤ p, q < ∞,

exp (−µnγ ) n(1−γ )

(
1
p −

1
2

)
, 1 < p < 2 ≤ q < ∞

(16)

(see [8–11,21], for details). Comparing (16) and (11) we get that the sequence Tn is not optimal if
1 < p < 2 ≤ q < ∞ and 2 ≤ p < q < ∞ similarly to the case of ‘‘small’’ and ‘‘finite’’ smoothness.
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If in (2) λ (k) = exp (µkγ ) , µ > 0, β = 0, γ ≥ 1, then we have the case of ‘‘super-high’’
smoothness. Comparing (11) and [8] we get

d2n
(
K ∗ Up, Lq

)
≍ En

(
K ∗ Up, Lq

)
≍ En

(
K ∗ Up, Lq

)
≍ exp (−µkγ ) , 1 < p, q < ∞.

Hence, in this case the sequence Tn is optimal for any 1 < p, q < ∞ like in the case of ‘‘super-small’’
smoothness.

4. n-widths in the case of ‘‘super-small’’ smoothness

We consider the case of ‘‘super-small’’ smoothness here.

Theorem 1. Let φ (k), k ∈ N, be a sequence of positive numbers which is decreasing for k ≥ N for some
N and satisfies the following conditions: limk→∞ φ(k) = 0 and φ (ks) ≍ φ (k) for any fixed s > 0. Let

λ (k) = φ (k) k
−

(
1
p −

1
q

)
+ and

K (x) ∼

∞∑
k=1

λ (k) cos kx

be the associated kernel. Then

En
(
K ∗ Up, Lq

)
≍ En

(
K ∗ Up, Lq

)
≍ dn

(
K ∗ Up, Lq

)
≍ δn

(
K ∗ Up, Lq

)
≍ φ (n) , 1 < p, q < ∞

and the sequence of subspaces Tn of trigonometric polynomials in the ‘‘usual’’ order is optimal for any
1 < p, q < ∞.

Proof. We present the proof only for Kolmogorov widths, the statement for linear widths follows
similarly. The following upper bounds follow from (8),

dn
(
K ∗ Up, Lq

)
≪ φ (n) , 1 < p, q < ∞. (17)

We turn to the lower bounds now. As usual, we reduce the problem to a finite dimensional one.
For given m ∈ N, consider the multiplier operator

Λ−1
m =

{
1

λ (1)
,

1
λ (2)

, . . . ,
1

λ (m)
, 0, 0, . . .

}
. (18)

Applying (3) we get
Λ−1

m

⏐⏐Lp −→ Lp
 ≤ Cp

1
λ(m)

, which implies

Cpλ (m) · Up ∩ Tm ⊂ K ∗ Up. (19)

From the definition of Kolmogorov n-widths and (19) we get

dn
(
K ∗ Up, Lq

)
≥ Cpλ (m) dn

(
Up ∩ Tm, Lq

)
.

Next, we need to reduce Lq to Lq ∩ Tm. Let Sm (φ) be the Fourier sum of φ ∈ Lq of order m. Since
the projection operator Sm : φ −→ Sm (φ) is bounded if 1 < q < ∞, i.e.

Sm|Lq −→ Lq ∩ Tm
 < Cq,

then for any tm ∈ Tm and y ∈ Lq we get ∥Sm (tm − y)∥q = ∥tm − Smy∥q ≤ Cq ∥tm − y∥q or
∥tm − y∥q ≥ C−1

q ∥tm − Smy∥q (Ismagilov lemma on projections [3]). Since Smy ∈ Lq ∩ Tm and for
any Xn ⊂ Lq, dim Xn = n we have dim SmXn ≤ n, then by the definition of n-widths

dn
(
Up ∩ Tm, Lq

)
≥ C−1

q dn
(
Up ∩ Tm, Lq ∩ Tm

)
. (20)

Finally, applying Marcinkiewicz inequality [12,13],

C1,p ∥tm∥p ≤

(
1
m

2m+1∑
k=1

⏐⏐⏐⏐tm ( 2πk
2m + 1

)⏐⏐⏐⏐p
) 1

p

≤ C2,p ∥tm∥p , (21)
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which is valid for any tm ∈ Tm and 1 < p < ∞, we get

dn
(
K ∗ Up, Lq

)
≫ λ (m)m

1
p −

1
q dn (B (p, 2m + 1) , l (q, 2m + 1))

= φ (m) dn (B (p, 2m + 1) , l (q, 2m + 1)) ,

where the norm in l (q, 2m + 1) is defined as usual,

∥x∥l(q,2m+1) =

(
2m+1∑
k=1

|xk|q
) 1

q

,

x = (x1, . . . , x2m+1) ∈ R2m+1 , 1 ≤ q ≤ ∞

and B (p, 2m + 1) is the unit ball in l (p, 2m + 1). To get the lower bounds for Kolmogorov n-widths
we will need the following result [22]

C1,p,q ≤
dn (B (p, 2m + 1) , l (q, 2m + 1))

Φ (m, n, p, q)
≤ C2,p,q

for any m > n, where

Φ (m, n, p, q) :=

(
min

{
1,m

1
q n−1/2

})( 1
p −

1
q

)
/

(
1
2 −

1
q

)
(22)

if 2 ≤ p ≤ q ≤ ∞ and

Φ (m, n, p, q) := max
{
m

1
q −

1
p , min

{
1,m

1
q n−

1
2

}(
1 −

n
m

) 1
2
}
, (23)

if 1 ≤ p < 2 ≤ q ≤ ∞. Let 2 ≤ p ≤ q ≤ ∞. Let us put in (22) m = n
q
2 then min

{
1,m

1
q n−

1
2

}
= 1

and

dn
(
B
(
p, 2n

q
2 + 1

)
, l (q, 2m + 1)

)
≥ C1,p,qΦ

(
n

q
2 , n, p, q

)
= C1,p,q.

Hence, in this case

dn
(
K ∗ Up, Lq

)
≥ Cp,qφ

(
n

q
2

)
dn
(
B
(
p, 2n

q
2 + 1

)
, l
(
q, 2n

q
2 + 1

))
≥ Cp,qφ

(
n

q
2

)
≍ φ (n) .

Similarly, if 1 ≤ p < 2 ≤ q ≤ ∞ then we put in (23) m = n
q
2 . This gives

max
{
m

1
q −

1
p , min

{
1,m

1
q n−

1
2

}(
1 −

n
m

) 1
2
}

≍ 1

and

dn
(
K ∗ Up, Lq

)
≥ Cp,qλ

(
n

q
2

)
n

q
2

(
1
p −

1
q

)
dn
(
B
(
p, 2n

q
2 + 1

)
, l
(
q, 2n

q
2 + 1

))
≥ Cp,qφ

(
n

q
2

)
≍ φ (n) .

In the case of linear n-widths δn
(
K ∗ Up, Lq

)
we just need to apply a finite dimensional result [22]

C1,p,q ≤
δn (B (p, 2m + 1) , l (q, 2m + 1))

Ψ (m, n, p, q)
≤ C2,p,q,

where

Ψ (m, n, p, q) :=

{
Φ (m, n, p, q) , 1 ≤ p < q ≤ p

′

,
Φ (m, n, p, q) , max

{
p,p

′
}

< q < ∞,
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and Φ (m, n, p, q) was defined in (22) and (23) and repeat the line of arguments we used for
Kolmogorov n-widths.

The upper bounds in the ‘‘Makovoz triangle’’, i.e. if 1 < q < p < ∞ follow from (17). The
respective lower bounds are the consequence of (19), (20), (21) and a well-known result [22], p.
209,

dn (B(p, 2m + 1), l(q, 2m + 1)) = (2m − n)−
(
1
p −

1
q

)
, 1 ≤ q ≤ p ≤ ∞. ■

A typical example of the sequence λ (k), k ∈ N which satisfies the conditions of Theorem 1 is
given by

λ (k) = k
−

(
1
p −

1
q

)
+ (ln (k + 1))−ν (ln ln (k + 3))ϱ , k ∈ N,

where ν > 0 and ϱ ∈ R.
The Gel’fand n-width of A ⊂ X is defined by

dn(A, X) := inf
Xn

sup
x∈A∩Xn

∥x∥X

where Xn runs over all subspaces of X of codimension at most n. Let X̃ be a Banach space and let
i : X −→ X̃ be a linear isometry. We denote the pairing of these objects by

(̃
X, i
)
. The absolute

linear n-width, Λn (A, X) is defined as

Λn (A, X) := inf
(X̃,i)

δn (A, X) ,

where inf is taken over all extensions
(̃
X, i
)
of X . It is known [3] that

Λn (A, X) = dn(A, X).

Applying duality between Kolmogorov and Gelfand n-widths [22],

dn
(
K ∗ Up, Lq

)
= dn

(
K ∗ Uq ′ , Lp ′

)
,
1
p

+
1
p ′

=
1
q

+
1

q
′

= 1,

we get

Λn
(
K ∗ Up, Lq

)
= dn

(
K ∗ Uq ′ , Lp ′

)
which implies that an analogue of Theorem 1 remains valid for absolute linear n-widths.

To underline an opposite situation with respect to the ‘‘super-small’’ smoothness we consider
Bernstein n-width of A in X defined as

bn (A, X) := sup
Xn+1

sup
ϵ>0

{ϵBX ∩ Xn+1 ⊂ A} ,

where Xn+1 is any (n + 1)-dimensional subspace of X and BX is the unit ball of X .
It is known (see [15] Remark 5.6, Theorem 2.2 and [22] p. 212) that in the case of ‘‘finite’’

smoothness

bn
(
W r

p , Lq
)

≍

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−r , r >
1
p

−
1
q
, 1 < p ≤ q < ∞,

n−r , r > 0, 1 < q ≤ p ≤ 2, 1 < q = p < ∞,

n−r+ 1
p −

1
q , r >

1
q −

1
p

p
2 − 1

, 2 ≤ q < p < ∞,

n−r+ 1
p −

1
2 , r >

1
p
, 1 < q ≤ 2 < p < ∞

(24)
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and in the case of ‘‘small’’ smoothness

bn
(
W r

p , Lq
)

≍ n−
rp
2 , (25)

where

2 ≤ q < p < ∞, 0 < r <

1
q −

1
p

p
2 − 1

,

or

1 < q ≤ 2 < p < ∞, 0 < r <
1
p
.

Comparing (24) and (3) we get that in the case of ‘‘finite’’ smoothness the sequence Tn is not optimal
if either 1 < q < p ≤ 2 or 1 < q ≤ 2 < p < ∞ and is optimal if either 1 < p ≤ q < ∞, r > 1

p −
1
q

or 2 ≤ q < p < ∞, r > 0. In the case of ‘‘small’’ smoothness (25) Tn is not optimal in both cases
2 ≤ q < p < ∞ and 1 < q ≤ 2 < p < ∞.

Next statement shows that in the case of ‘‘super-small’’ smoothness the asymptotic behaviour
of Bernstein widths changes and the sequence Tn remains not optimal if 2 ≤ q < p < ∞.

Theorem 2. Let λ (k), k ∈ N, be a sequence of positive numbers which is decreasing for k ≥ N for some
N and satisfies the following conditions: limk→∞ λ(k) = 0 and λ (ks) ≍ λ (k) for any fixed s > 0. Let

K (x) ∼

∞∑
k=1

λ (k) cos kx

be the associated kernel. Then

En
(
K ∗ Up, Lq

)
≍ bn

(
K ∗ Up, Lq

)
≍ λ (n) , 2 ≤ q < p < ∞

and the sequence of subspaces Tn of trigonometric polynomials in the ‘‘usual’’ order is not optimal.

Proof. Let 2 ≤ q < p < ∞. Since bn
(
K ∗ Up, Lq

)
≤ dn

(
K ∗ Up, Lq

)
, the upper bounds follow from (8),

bn
(
K ∗ Up, Lq

)
≪ λ (n) .

We turn to the lower bounds now. From the definition of Bernstein n-widths and (19) we get

bn
(
K ∗ Up, Lq

)
≥ bn

(
K ∗ Up ∩ Tm, Lq ∩ Tm

)
≥ λ (m) bn

(
Up ∩ Tm, Lq ∩ Tm

)
(26)

for a given m > n. Let ⟨x, y⟩ =
∑n

k=1 xkyk be the canonic scalar product of vectors x and y in
Rn and |x| = ⟨x, x⟩1/2. Let Sn−1

= {x |x ∈ Rn, |x| = 1 } be the unit sphere with the normalized
invariant surface measure dµ. Denote by E = (Rn, ∥·∥) a Banach space with the norm ∥·∥. Let
I : R2n

−→ T2n be the coordinate isomorphism that assigns to a = (a1, . . . , a2n) ∈ R2n the
polynomial Ia =tan (·) =

∑n
k=1 ak cos k (·) + an+k sin k (·). The definition ∥a∥(p) :=

tan (·)

p induces a

norm on R2n. We will get an upper bound for the expectation,

E [∥·∥] =

∫
S2n−1

∥a∥ dµ (a) ,

or the Lévy mean, of the function ∥·∥ : S2n−1
−→ R+ in the case ∥·∥ = ∥·∥(p), p ≥ 2 with respect

to the normalized invariant measure dµ. Let rk (θ), θ ∈ (0, 1), k ∈ N be the Rademacher functions.
Since dµ is invariant on S2n−1 then for any θ ∈ (0, 1)

E
[
∥·∥(p)

]
=

∫
S2n−1

∥Ia∥p dµ (a) =

∫
S2n−1

tan (·)

p dµ (a)

=

∫
S2n−1

(∫
T

⏐⏐⏐⏐⏐
n∑

k=1

ak cos kτ + an+k sin kτ

⏐⏐⏐⏐⏐
p

dτ

) 1
p

dµ (a)
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=

∫
S2n−1

(∫
T

⏐⏐⏐⏐⏐
n∑

k=1

rk (θ) ak cos kτ + rn+k (θ) an+k sin kτ

⏐⏐⏐⏐⏐
p

dτ

) 1
p

dµ (a)

=

∫ 1

0

∫
S2n−1

(∫
T

⏐⏐⏐⏐⏐
n∑

k=1

rk (θ) ak cos kτ + rn+k (θ) an+k sin kτ

⏐⏐⏐⏐⏐
p

dτ

) 1
p

dµ (a) dθ .

Hence, by Jensen inequality and Fubini theorem,

E
[
∥·∥(p)

]
≤

(∫
S2n−1

∫
T

∫ 1

0

⏐⏐⏐⏐⏐
n∑

k=1

rk (θ) ak cos kτ + rn+k (θ) an+k sin kτ

⏐⏐⏐⏐⏐
p

dθdτdµ (a)

) 1
p

.

Applying Khinchin inequality [17, p.41],(∫ 1

0

⏐⏐⏐⏐⏐
n∑

k=1

ckrk (θ)

⏐⏐⏐⏐⏐
p

dθ

) 1
p

≤ C(p)

(
n∑

k=1

c2k

) 1
2

,

where

C(p) := 2
1
2

(
Γ
( 1+p

2

)
Γ
( 1
2

) ) 1
p

we obtain

E
[
∥·∥(p)

]
≤ C(p)

⎛⎝∫
S2n−1

∫
T

(
n∑

k=1

a2k cos
2 kτ + a2n+k sin

2 kτ

) p
2

dτdµ (a)

⎞⎠
1
p

< C(p)

⎛⎝∫
S2n−1

(
n∑

k=1

a2k + a2n+k

) p
2

dµ (a)

⎞⎠
1
p

= C(p)
(∫

S2n−1
|a|p dµ (a)

) 1
p

= C(p)
(∫

S2n−1
dµ (a)

) 1
p

= 2
1
2

(
Γ
( 1+p

2

)
Γ
( 1
2

) ) 1
p

≍ p
1
2 . (27)

Let Xm be an m-dimensional Banach space with the norm ∥·∥ and |x| ≤ ∥x∥ ≤ b |x| for any x ∈ X .
Then there is a subspace

Yn ⊂ Xm, dim Yn = n ≥
[
CXmm (E [∥·∥])2 b−2] (28)

such that ∥x∥ ≤ CX |x| for all x ∈ Yn [2]. In particular, let ∥x∥ = ∥x∥(p), then b = Cm
1
2 −

1
p and by (27)

E
[
∥·∥(p)

]
< Cp

1
2 . Hence, by (28) there is such subspace Yn ⊂

(
R2m, ∥x∥(p)

)
, dim Yn = n =

[
Cpm

2
p
]

that ∥x∥(p) ≤ |x| for all x ∈ Yk or there is Ln = IYn ⊂ Tm such that ∥tm∥p ≤ ∥tm∥2 for any tm ∈ Ln.
This implies

bn
(
Up ∩ Tm, L2 ∩ Tm

)
≥ Cp.

Consequently, from (26) we get bn
(
K ∗ Up, L2

)
≥ λ (m) Cp and by embedding

bn
(
K ∗ Up, Lq

)
≥ Cp,qλ (m) , 2 ≤ q < p < ∞,

or

bn
(
K ∗ Up, Lq

)
≥ Cp,qλ

(
Cpn

p
2

)
≫ λ (n) , 2 ≤ q < p < ∞.
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Finally, applying (3) for the multiplier sequence (18) we get

∥Λ−1
n tn∥p ≤

Cp

λ(n)
∥tn∥p ≤

Cp,qn
1
q −

1
p

λ(n)
∥tn∥q (29)

for any tn ∈ Tn or Cp,qλ(n)n
1
p −

1
q Uq ∩ Tn ⊂ K ∗ Up. Observe that (29) is sharp in the sense of order.

Hence Tn is not optimal if 2 ≤ q < p < ∞. ■
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