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1. Introduction

n-Widths were introduced to compare and classify the power of approximation of a wide range
of algorithms. Optimality of the trigonometric system is a frequently discussed topic in the theory
of n-widths [18,22]. We present a new phenomenon in behaviour of the trigonometric system in the
“usual” order, i.e. 1, cos kx, sinkx, k € N. Namely, the sequence of subspaces 7;, n € N of trigono-
metric polynomials of degree at most n is optimal in the sense of order of Kolmogorov n-widths
d, (K * Up, Lq) of convolution classes K*U, in L, (where U, is the unit ballin L,) forall 1 < p, q < o0
in the case of “super-high” smoothness (analytic and entire), that is in the case

o0
K ~ Zx(k) cos kx,
k=1

where

AMk)=-exp(—uk®) © >0, o0>1
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and in the case

Ak) = kiG*é) (Ink+1)7",v >0, (1)

where {2 < p < q <o0o}JU{l < p < 2 < q < oo}. Observe that the rate of decay of A(k) as
k — oo determines the smoothness of convolution classes K * Up,. Hence, it is natural to call the
classes K * U, generated by the kernels K of the type (1) as sets of “super-small” smoothness since

for any r > % —%,p<qwehave
_(1_1)
kT <k \P I (Ink+1)"".

Let A(k) = k™", where r > 0. In the known intermediate cases of “small” and “finite” smoothness,
which will be discussed later, the sequence of subspaces 7,, n € N is not optimal for Kolmogorov
n-widths d, (K * Uy, L) if r > J — 7 and

2<p<g<oo}U{l<p<2=<q<oo}.
Similarly, 7;, n € N is not optimal for linear n-widths 8, (K * Uy, Ly) if

1 1
{fl<p<2<qg<oo}, r>—-——.
p q

We show that Bernstein n-widths behave differently when compared with Kolmogorov and linear
n-widths in the case of “super-small” smoothness. Namely, in the case of “finite” smoothness the
sequence of subspaces 7, is optimal for Bernstein n-widths b, (K * Up, Lq) in the region 2 < q <
p < oo and is not optimal in the case of “small” and “super-small” smoothness, where we have
different weak asymptotics. We conjecture that homological widths, introduced in [10], which are
intermediate between Kolmogorov and Bernstein widths, behave like Kolmogorov widths. Although
we consider here just Kolmogorov, linear and Bernstein n-widths, the problem can be considered
for a wider range of n-widths.

2. Sets of smooth functions

Let T, be the sequence of subspaces of trigonometric polynomials with the “usual” order. As a
model case, we consider usual spaces L, of p-integrable functions ¢ on the unit circle T with the
Lebesgue measure dx, i.e. such that ¢, < oo, where

1
lll, = (f |¢|de>p 1<p<oo,
T

Let ¢ € L, with the formal Fourier series

¢~ Z ay (¢) cos kx + by (¢) sin kx,

k=1
where

1 [" 1 ["
ax (¢) = = ¢ (t) cosktdt, by (¢) = - ¢ (t)sinktdt, ke N

and

Su (. X) = Y a () cos kx + by () sin kx

k=1

be its nth Fourier sum. A wide range of sets of smooth functions on the unit circle T can be
introduced using multipliers A := {A (k), k € N} [19]. We say that f € AgU,, B € R if

fF~) xlo (ak (¢) cos <kx - %”) + by (¢) sin (kx - ’%’T)) ¢ €U,

k=1
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where U, is the unit ball in L,. We shall consider multiplier operator Ag which acts as L, > ¢ —
A¢p = f € Lg. In the case § = 0 we will write Ag = A. In particular, if there exists K € Ly such
that

o0 ﬂj‘[
K Z A (k) cos (kx — 7) (2)

k=1
then the set AgU, can be represented in the convolution form

f(X)=/K(x—y)¢(v)dy.
T

In this case AgU, = K * Up,. In general, if K ¢ L; we should consider generalized convolutions. The
smoothness of the function classes AgU, is mainly governed by the rate of decay of the sequence A.
For instance, if A (k) = k™", B =r, r > 0 we get Sobolev classes W. If A (k) = exp (—uk”), B € R,
u > 0,0 <y < 1, then the class AgU, = K * U, consists of infinitely differentiable functions. In
the cases y = 1 and y > 1, we get classes of analytic and entire functions respectively. To simplify
technical notations we present our new results just in the case 1 < p,q < oo and 8 = 0. We will
need a simple norm estimate for multiplier operators [7].

Lemma 1. Let 1 < p < oo, then

| AL, — L
(o]
=X (Z [A (k) — A (k+ 1) + sup IA(m)I) ; (3)
k=1 meN
where
b4
cot—, 2<p<oo,
xp=1+2

tan —, 1<p<2.
2p

Proof. Let U : ¢ — 5 where

Up:=¢ ~ Y —by(¢)coskx + a (¢) sin kx

k=1
and

Sm (9, %) = % Sm (@, %) + Sm—1 (¢, X)) .
Then

Sy (¢, x) = sinmxgy, (x) — cos mxhy, (%)

= sin mxUg, (x) — cos mxUh,, (X) ,
where

gm (x) = f (x) cosmx, hp (x) .= f (X) sinmx.

Clearly,

Sell = L =2|ulL, > L,

)

and

[Sm—Si |l — L[| < 1.
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Hence, for any m € N we get

S Ly = Ly | = [[Sm =S5 + S5 Ly > Ly |

<1+|Spll = L| <1+2|UlL, - L. (4)

It is known [16] that

cotzl, 2 <p<oo,
Ul > L=y P (5)

tan—, 1<p<2.
2p

Comparing (4) and (5) we get

cotzl, 2<p<oo,
sup |[Sm|L, > L | < 1+2 P = Xp. (6)
meN tani, 1<p<2.

Application of Abel transform to S;, A¢ yields

SmAP (x) = Z A (k) (ak (¢) cos kx + by (¢) sin kx)
k=1
-1
= (A (k) — A (k+ 1) S (¢, %) + A (M) Spep (%) . (7)
1

3

=
Il

Comparing (6) and (7) we find
sup [SmA L, —> L ||
meN

m—1
< Xpsup (Z I (k) = & (k+ D) + |2 <m)|>

meN k=1

< 1 (Z 400 =2 (k+ )]+ sup <m)|> .

k=1

Consequently, by the Banach-Steinhaus Theorem we get the proof. =

An analogue of this estimate in the case of compact globally symmetric spaces of rank one is
given in [1], Theorem 2. Observe that the estimate (3) is sufficient for a wide range of applications
in the theory of n -widths instead of commonly used Marcinkiewicz result [14] which is based on
the Littlewood-Paley theory.

3. n-widths in the case of small, finite and infinite smoothness

Let X be a Banach space and let A be a convex, compact and centrally symmetric subset of X.
The Kolmogorov n-width of A in X is defined by

dy (A, X) = inf sup inf ||f —gl,
XnCX feA geXn
where X, runs over all subspaces of X of dimension < n. The linear n-width of A in X is defined by

3 (A, X) == inf sup [If — Lafllx,
In fea

where L, varies over all linear operators of rank at most n that map X into itself.
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We use several universal constants which enter into the estimates. These positive constants are
mostly denoted by C; p, C; 4 etc., to underline their dependence on parameters p and q respectively.
We did not carefully distinguish between the different constants, neither did we try to get good
estimates for them. For the ease of notation we will write a, <« b, for two sequences, if a, < Cb,
forall n € N, and a, =< b, if C1b, < a, < Gb, for all n € N and some constants C, C; and C,. For
a € R we put (a), = max{a, 0}.

Let A C L,

&n (A Lg) = sup If —Sa(f)ll
feA
and
En (A, Ly) = sup inf IIf —gll,-
If A (k) is a positive and monotone decreasing to zero sequence such that A (k) < A (2k) and
limy, o0 A(K)k ) 0 then from Theorem 8 [20] we get

En (K % Up, Lg) < & (K % Uy, Lg) < A (n) n(%_%)t (8)

where 1 < p,q < oco. If A (k), k € N is a positive and monotone decreasing to zero sequence such
that Zﬁil A (k) < oo then it follows from Theorem 1 in [11] that

En (K % Up, Lg) < & (K % Uy, Ly)

(ST
|
Q=
~—

+

1 0 (
= (n+ 1))1‘(%‘5)+ ( 3 A(I<)> 1<p,q<oo. 9)

k=n+1
In particular, let A (k) = k™" in (8) then
re(1_1
En (K % Up, Lg) =< & (K % Up, Lg) < n i), (10)

where r > (11) - %) . If we put in (9) A (k) = exp (—uk?), . > 0, y > 0, then
+

En (K % Uy, L) = & (K % Uy, Lg) < exp (—un”) W), (11)

Let A (k) = k™", B =, then it is well-known [4,22,23] (the case of “finite” smoothness) that

n, r>0, lT<g=p<oo
Tt r>1—1, l<p=q=2
p q
dn (WPr’Lq) = —ryl-] 1
ntrz, r> -, T<p<2=q<oo,

p
. 1/1 1), (1 1
n', r>5 13_5 / 5_6 , 2<p<q<oo.

Hence, the sequence of subspaces of trigonometric polynomials 7;, n € N is optimal in the sense of
order of Kolmogorov n-widths in the “Ismagilov triangle”

1 1
{1<p§q§2,r>f—f}
p q

and in the “Makovoz triangle”

{fl<q<p<oor=>0}.
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In the remaining “Kashin cases”,

1 1/1 1 1 1
{1<p<2§q<oo,r>f}u{2§p<q<oo,r>7<f_7>/<f_7>}
p 2\p ¢ 2 q

the sequence 7, is not optimal. In the case of linear n-widths we have (see [22,23] for more details)
(11
8n (W), Lg) =< n (i),
ifr > (1—1) and
poa),

{1<p=<qg=<2}U{2=<p=<qg<oo}U{l<q=<p<oo}.

11
r>9:=max{1—q,p} l<p<2<qg<o©

then
8 (W), Lg) = n"+03, (12)

Comparing (12) and (10) we get that 7, is not optimal if 1 <p <2 <q < o0.
fl-1cr< %, 1 <p < 2 < q < oo then Kolmogorov n-widths change the order of decay.
Namely,

a(_pyl_1
o (W) 1) = nd (7570). (13)
Also, if
1 1 1 <l 1) (1 1)
———-<r<-=|-—=)/lz—-), 2<qg<p<o0
p q 2\p ¢ 2 q
then again
q(_ppl_1
dn (W], Lg) < nd(3), (14)
Similarly, in the case of linear n-widths we have [23]
8n (W, Lg) = n%<7r+%7%)min{p/’q}, (15)
where 1 <p<2<gqg<oo -1 <r <9 141 =1 This phenomenon was discovered by

p
Kashin [5] (see also [6]) and is known as “smalIE' smoothness. Comparing (11) with (13)-(15) we
see that 7, is not optimal in these cases.

Ifin (2)

Ak)y=exp(uk”),u>0,=0,0<y <1,
i.e. K x U, is a class of infinitely differentiable functions, then

dan (K Uy, Lg)

_(1_1
exp ()4, l<p<gq<2
= exp (—un?), l<q<p=<2o0r2<p,q<o0o (16)
_(1-1
exp(—/m)’)n(1 V)(" 2), 1<p<2=<qg<x

(see [8-11,21], for details). Comparing (16) and (11) we get that the sequence 7, is not optimal if
l<p<2<g<ooand?2 <p < q < oo similarly to the case of “small” and “finite” smoothness.
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Ifin (2) A (k) = exp(uk?),u > 0,8 = 0,y > 1, then we have the case of “super-high”
smoothness. Comparing (11) and [8] we get
dan (K % Up, Lg) < By (K % Up, Lg) < & (K % Uy, Ly)
=exp(—uk’),1<p,q<oo.
Hence, in this case the sequence 7, is optimal for any 1 < p, g < oo like in the case of “super-small”
smoothness.
4. n-widths in the case of “super-small” smoothness

We consider the case of “super-small” smoothness here.

Theorem 1. Let ¢ (k), k € N, be a sequence of positive numbers which is decreasing for k > N for some
N and satisfies the following conditions: limy_., ¢(k) = 0 and ¢ (k) < ¢ (k) for any fixed s > 0. Let
1_1

A k) = o (k) k’(ﬁ’a)+ and

o0
K (x) ~ Y (k) coskx
k=1
be the associated kernel. Then

En (K % Up, Lg) < & (K % Up, Ly) =< dy (K * Up, Ly)

<8 (K*Up,Lg) <p (), 1 <p,q <00

and the sequence of subspaces T, of trigonometric polynomials in the “usual” order is optimal for any
1<p,q<oc.

Proof. We present the proof only for Kolmogorov widths, the statement for linear widths follows
similarly. The following upper bounds follow from (8),

dn (K *Up, Lg) < ¢ (), 1<p,q< 0. (17)

We turn to the lower bounds now. As usual, we reduce the problem to a finite dimensional one.
For given m € N, consider the multiplier operator

» { 11 1 }
Al = ——s e, ,0,0, ...1. (18)
A(1)'AQ) A (m)

1

WOk which implies

Applying (3) we get | AL L, — L, | <G,
Cor (M) - Uy N Ty C K % U, (19)
From the definition of Kolmogorov n-widths and (19) we get
dn (K % Up, Lg) = Goh (m) dy (Up N T, L) -

Next, we need to reduce L; to Ly N Ty Let Sy, (¢) be the Fourier sum of ¢ € L, of order m. Since
the projection operator Sy, : ¢ —> Sy (¢) is bounded if 1 < g < oo, i.e. [Smllg —> Lg N Tw | < Cq,
then for any t, € Tn and y € Ly we get ||Sp (tm _}’)”q = |ltm —SmJ/IIq < G lltm —J’Ilq or
ltm —yllqg = CL;1 ltm — Smyllq (Ismagilov lemma on projections [3]). Since Sy € Ly N Ty, and for
any X, C Lg, dimX, = n we have dimS,X, < n, then by the definition of n-widths

dn (Up N T, Lg) = Cg ' (Up N Ty Lg N Tin) - (20)

Finally, applying Marcinkiewicz inequality [12,13],

123 2k
Crplltmll, < (m > |t (2m+ l)

k=1

P\ P
) = Gplitmlly. (21)
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which is valid for any t,, € 7, and 1 < p < oo, we get
dn (K % Uy, Lg) > & (m) md~ad, (B (p. 2m + 1), 1(q. 2m + 1))

=¢ (m)d, B(p,2m+1),1(q,2m + 1)),
where the norm in [ (g, 2m + 1) is defined as usual,

2m+1 q
IXllig.2m+1) = (Z |Xk|q) ,

k=1

X= (X1, ..., %me) €RT™T 1<g<oo

and B (p, 2m + 1) is the unit ball in [ (p, 2m + 1). To get the lower bounds for Kolmogorov n-widths
we will need the following result [22]

d, B(p,2m+1),1(q, 2m + 1))
@ (m,n,p,q)

C1.p,q =< =< Cz.p,q

for any m > n, where

1
® (m,n,p,q) = (min [1, m%n—l/zb(p

if2<p<gq<ooand

(22)

1
@ (m, n, p, q) ;== max {m;; min {1, m%n‘f} (1 — —)2 } , (23)
m

1
ifl§p<2§q§oo.Let2§p§q§oo.Letusputin(ZZ)m:n% thenmin{l,mﬁn‘%}:l
and

d, (B (p, s + 1) L 1(q, 2m + 1)) > Crpg® (n%, n,p, q) = Cipa.

Hence, in this case

dy (K  Up, L) > Cpap (n%) d, (B (p, ot + 1) N (q, nd + 1))

q
> Gy (nz) ~ ).
Similarly, if 1 < p < 2 < q < co then we put in (23) m = n2. This gives
11 17 nyz
max{mq P, min{l,mqnfi} (1 _ f) } -1
m
and

dn (K Up, Lg) = G (n) nd (-

%)dn (B (p, 2n? + 1) , l(q, 2n? + 1))
> Gt (n) =< (m).

In the case of linear n-widths &, (K * Up, Lq) we just need to apply a finite dimensional result [22]
Sn (B(p,2m+1),1(g,2m + 1))

Cipg = ¥ (m,n,p,q) =C2po
where
®(m,npq, 1<p<q<p,
¥ (m,n,p.q) = {db(m,n,p,q), maX{P‘P’]<Q<°°’
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and @ (m,n, p, q) was defined in (22) and (23) and repeat the line of arguments we used for
Kolmogorov n-widths.

The upper bounds in the “Makovoz triangle”, i.e. if 1 < q¢ < p < oo follow from (17). The
respective lower bounds are the consequence of (19), (20), (21) and a well-known result [22], p.
209,

_(1_1
dn (B(p, 2m + 1), (g, 2m + 1)) = (2m — n) G ‘1), 1<qg=<p=<oo. =
A typical example of the sequence A (k), k € N which satisfies the conditions of Theorem 1 is
given by

1

Ak) = 1<‘(P‘%)+ (In(k+1)"" (Inln (k+3))?, ke N,

where v > 0and o € R.
The Gel'fand n-width of A C X is defined by

d'(A, X) = inf sup lxllx

xeAnxn

where X" runs over all subspaces of X of codimension at most n. Let X be a Banach space and let
i : X —> X be a linear isometry. We denote the pairing of these objects by (X, i). The absolute
linear n-width, A, (A, X) is defined as

An (A, X) = inf &, (A, X),
(*x.0)

where inf is taken over all extensions ()N( , i) of X. It is known [3] that
Ap (A, X) = d"(A, X).
Applying duality between Kolmogorov and Gelfand n-widths [22],
1 1 1 1

n —_ — —
d (K*Up,Lq)—dn<K*Uq/,Lp/),5+17—a—i-q, =1,

we get
An (K % Uy, L) = d, (K U, Lp/)

which implies that an analogue of Theorem 1 remains valid for absolute linear n-widths.
To underline an opposite situation with respect to the “super-small” smoothness we consider
Bernstein n-width of A in X defined as

b, (A, X) := sup sup {eBx N X, C A},
Xny1 €>0
where X;,;1 is any (n 4 1)-dimensional subspace of X and By is the unit ball of X.
It is known (see [15] Remark 5.6, Theorem 2.2 and [22] p. 212) that in the case of “finite”
smoothness

b (W, L)
B 1 1
n’, r>—-———,1<p<q<oo,
q
n’, r>01<q<p<2,1<q=p<oo,
= o 1_1 (24)
ntra, r>g_§,2§q<p<oo,
2
S O | 1
n P2, r>B,1<q§2<p<oo
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and in the case of “small” smoothness
by (W), Lg) =< n™ 3, (25)

where

Q=
SRS

2<qg<p<oo, O0<r<

INTSS)
|
—_

or
1<qg<2<p<oo, 0<r<-—.

Comparing (24) and (3) we get that in the case of “finite” smoothness the sequence 7, is not optimal
ifeither 1 <q<p<2o0rl1<q=<2<p<ooandisoptimal if either 1 <p <q < o0, r>1—l
or2 <q<p<oor > 0.In the case of “small” smoothness (25) 7, is not optimal in both cases
2<gq<p<ocandl<qg<2<p<oo

Next statement shows that in the case of “super-small” smoothness the asymptotic behaviour
of Bernstein widths changes and the sequence 7, remains not optimal if 2 < qg < p < oo.

Theorem 2. Let A (k), k € N, be a sequence of positive numbers which is decreasing for k > N for some
N and satisfies the following conditions: limy_, o, A(k) = 0 and A (k%) < A (k) for any fixed s > 0. Let

K (x) ~ Z A (k) cos kx

k=1
be the associated kernel. Then
En (K Up, Lg) < by (K*Up, Lg) < A(n), 2<q<p<o0

and the sequence of subspaces T, of trigonometric polynomials in the “usual” order is not optimal.

Proof. Let2 < q < p < 00. Since by (K x Uy, Lg) < dy (K * Up, L), the upper bounds follow from (8),
b (K # Uy, Lg) < A (n).

We turn to the lower bounds now. From the definition of Bernstein n-widths and (19) we get
by (K # Up, Lg) > by (K % Uy N Ty, Lg N Ta)

> A (m) by (Up N Trny Lg N Tir) (26)

for a given m > n. Let (X,y) Zk Xkyx be the canonic scalar product of vectors x and y in
R" and [x| = (x,X)"/2. Let S*~ 12 {xlx € R", |x| = 1} be the unit sphere with the normalized
invariant surface measure du. Denote by E = (R", ||-]|) a Banach space with the norm ||-||. Let
| : R** — 73, be the coordinate isomorphism that assigns to a = (as, ..., az,) € R?" the
polynomial Ia =t3 (-) = ZZ=1 g cos k () + anik sink (-). The definition ||a||,, = H O] ||p induces a
norm on R?". We will get an upper bound for the expectation,

E[ll-I1] =/ lalldu (@),
s2n—1

or the Lévy mean, of the function ||-|| : $**~! — R, in the case ||| = Il y» P = 2 with respect
to the normalized invariant measure du. Let r, (0), 6 € (0, 1), k € N be the Rademacher functions.
Since dy is invariant on S?*~! then for any 6 € (0, 1)

E[lll ] = /S - lnall, dpe @) = /S g ol,de@

Ll

n
Z Ay COS KT + apyg SINKT
k=1

p f
d‘t) du (@)
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PN
dr) du (@)

p P
dt) du (@) do.

n
Z 1 (0) ag cos kt + 11y (0) apyg Sinkt

L
[ LA

Hence, by Jensen inequality and Fubini theorem,

E{lllln ]

(L]

Applying Khinchin inequality [17, p.41],

1| n p % n 3
( / > ) d0> < C(p) (qu) :
0 Jk=1 k=1
where

(TN
C(p).=22(r(;)>

n
Z 1, (0) ag cos kt + 1,1y (0) Qnyg SINkT
k=1

p

n P
Z 1 (0) ag cos kt + 1y (0) anyi Sinkt| dodrdu (a)) .
k=1

we obtain

b
n 2
E[ll-ll] < Clp) / / (Z aj, cos” kt + az,, sin’ kr) drdu (a)
s2n—=1 Jp =1

. ; v
< C(p) / (Z a + aﬁ+k> du@ ) =C(p) (/ lal” du (a)>
§2n—1 =1 §2n—1

: NEDNG
=C d =2 2 = p2.
(p) (/SZH u(a)) ( ) ) p

1
P

1

Nl—
Nl—

11

(27)

Let X, be an m-dimensional Banach space with the norm ||-|| and |x| < ||x|| < b|x]| for any x € X.

Then there is a subspace

Yo C Xp, dimY, =n > [Cx,m E[|-IID? b7?]

(28)

such that ||x|| < Cx |x| for all x € Yy [2]. In particular, let [|x|| = [|x]|,), then b = Cm%fé and by (27)

2
E[lllp] < Cp3. Hence, by (28) there is such subspace Y, C (R¥™, [IX[lp), dimY, =n = Cpmﬁ]

that [[x||, < || for all X € Y} or there is L, = 1Y, C T, such that ||t
This implies

by (Up N T, L2 N ) > G

Ilp

Consequently, from (26) we get by, (K Uy, L) > A (m) G, and by embedding
by (K % Up, Lg) = Cpqh (M), 2 < q < p < 0,
or

by (K # Uy, Lg) > Cpgh (cpn%) > h(m),2<q<p < oo

< |[tmll, for any &y € Ly.
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Finally, applying (3) for the multiplier sequence (18) we get
Cp,qn%_

A(n)

1_1
for any t, € T, or G, gA(n)n?~aUy N T, C K * Up. Observe that (29) is sharp in the sense of order.
Hence 7, is not optimal if 2 <qg<p<oo. N

=

q
—1 P
A7 tallp < —litallp <

o l[tallq (29)
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