
ÇANKAYA UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

MASTER THESIS

PARALLEL IMPLEMENTATION OF AES ALGORITHM USING CUDA &

MPI

ÖZGÜR PEKÇAĞLIYAN

SEPTEMBER 2013

ABSTRACT

PARALLEL IMPLEMENTATION OF AES ALGORITHM USING CUDA &

MPI

PEKÇAĞLIYAN, Özgür

M.Sc., Department of Computer Engineering

Supervisor: Assist.Prof.Dr. Nurdan Saran

September 2013, 72 pages

According to today’s standards, life goes online. People do their shopping and

buying electronics through online stores. They date online and banks are transfer-

ring money online. Even, bachelor courses are online [10, 37]. Also, governments

may keep their sensitive data such as tactical information for troops or messages

for embassies on cloud computing systems which might be located on other coun-

tries.

Because of its sensitivity, these type of data must be protected from unautho-

rized access and its integrity should be guaranteed [37]. Cryptography is based

on mathematical techniques which concentrated on data confidentiality, integrity

and origin authentication [41]. Advanced Encryption Standard (AES) is the na-

tional standard of U.S. which is accepted by U.S. government on October 2000

[19, 46]. Encryption is a good way to protect data integrity and confidentiality.

Still, encryption requires time and computation power. Today, computers have

reached high clocking speed measured by Gigahertz. If one tries to encrypt a

data over 1GB it could take more 10 than minutes to finish the operation. Upon

thinking of computers, they come with multiple processors. Also, today we have

very expensive GPUs installed in our computer cases. These GPUs are almost

iv

powerful than CPUs. There are several libraries to get full advantage of CPUs

and GPUs. Two examples for these libraries are OpenMPI and CUDA. While

OpenMPI allows developer to use all CPUs parallelly, CUDA allows developer to

submit his/her code to run on GPU. The application running on GPU might be a

serial application or parallel application divided to GPU cores [13, 37]. This study

aims to paralleling AES algorithm using both OpenMPI and CUDA libraries and

comparing time di↵erences between these two methods and classical serial method

on a CPU.

Keywords: AES, Encryption, CUDA, MPI, Parallel Programming

v

ÖZ

AES ALGORİTMASININ CUDA & MPI KULLANILARAK

PARALLELLEŞTİRİLMESİ

PEKÇAĞLIYAN, Özgür

M.Sc., Bilgisayar Mühendisligi Bolumu

Tez Yöneticisi: Assist.Prof.Dr. Nurdan Saran

Eylül 2013, 72 pages

Bugünün standarlarına göre hayat online olarak ilerlemektedir. İnsanlar mut-

fak alışverişlerini, elektronik eşyalarını internet üzerinden satın alıyorlar, internet

üzerinden arkadaşlık kurup, flört ediyorlar, bankacılık işlemlerini online olarak

gerçekleştiriyorlar. Hatta, bazı internet siteleri üzerinden, online dersler ver-

ilerek insanların lisans eğitiminde ihtiyaç duyduğu dersleri önceden almasının

imkanı sağlanıyor [10, 37]. Bazı devletler, uzak ülkelerdeki askeri birliklerine veya

elçiliklerine gönderilmesi gereken hassas bilgilerini internet üzerinde bulunan bu-

lut çözümlerine yükleyebiliyorlar. Bu verilerin, hassaslıkları nedeniyle, yetkisiz

erişime karşı korunması gerekiyor [37].

2000 yılının ekim ayında, Amerikan hükümeti tarafından ulusal standard olarak

AES algoritması kabul edilmiştir [19, 46]. Kriptografi, temel olarak, verinin

butunluğünü, gizliliğini ve kaynağınının doğrulanmasını hedefleyen matematik

metodlardan oluşmaktadır [41]. Kriptografi, verinin gizliliğinin ve bütünlüğünün

korunması icin guzel bir yöntem olmasına rağmen yine de zaman ve hesaplama

gücüne ihtiyaç duymaktadır. Günümüzde bilgisayarlar Gigahertz olarak ölçülen

yuksek işlemci frekanslarına ulaşmışlardır. Ancak, boyutu 1GB’dan büyük bir

dosya şifrelenmek istendiginde, yaklaşık olarak 10 dakikadan daha uzun bir süreye

vi

ihtiyac duyulabilmektedir. Bankacılık işlemleri göze alındıgında ise, zaman, pahalı

bir kaynaktır. Ayrıca bireyler, günümüzde oldukça pahalı ekran kartları kullan-

maktadırlar. Bu ekran kartlarından bazıları neredeyse normal işlemcilerden bile

daha güçlüdürler. Bu donanımları (ekran kartları ve işlemciler) kullanabilmek için

birtakım hazır kütüphaneler bulunmaktadır. OpenMPI ve CUDA bu kütüphanel-

erden ikisidir. OpenMPI, programcıya CPU üzerinde kodunu parallel olarak

çalıştırma ve bilgisayarın bütün işlemcilerini kullanma imkanı sunarken, CUDA

ise, aynı kodun ekran kartı üzerinde çalıştırılmasına imkan saglamaktadır. Ekran

kartı üzerinde çalıştırılan bu kod, bütün çekirdekleri kullanarak, paralel olabile-

cegi gibi, seri olarak da geliştirilebilir [13, 37]. Bu çalışmanın amacı, AES algarit-

masını hem OpenMPI, hem de CUDA kütüphanelerini kullanarak paralelleştirmek

ve AES’in orjinal seri kodu ile paralelleştirilmiş kodları çalışma süreleri açısından

kıyaslamaktır.

Anahtar Kelimeler: AES, Sifreleme, CUDA, MPI, Paralel Programlama

vii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor Assist.Prof.Dr. Nur-

dan Saran for her patience, advice, criticism and encouragements throughout this

research.

I would like to thank Assoc.Prof.Dr.Cem Ozdogan for his guidance when I was an

undergraduate student. He helped me to decide my field of study.

I wish to thank my family and my friends for their support and patience through-

out my research.

Finally, I would like to thank the person I love. If it wasn’t for her, I wouldn’t be

studying.

viii

TABLE OF CONTENTS

STATEMENT OF NON–PLAGIARISM iii

ABSTRACT. v

ÖZ. vii

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . x

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTERS:

I INTRODUCTION . 1

1.1 ENCRYPTION . 1

1.1.1 HISTORY OF ENCRYPTION 4

1.1.2 AES . 5

1.1.2.1 MODES OF OPERATION 7

1.2 PARALLEL COMPUTING. 10

1.2.1 MPI . 13

1.2.2 CUDA . 14

1.2.3 BACKGROUND . 16

1.2.4 CONTEXT OF THESIS 18

II METHODOLOGY. 19

2.1 TEST ENVIRONMENT 20

2.2 DATA . 21

2.3 SERIAL IMPLEMENTATION OF AES 22

2.4 PARALLEL IMPLEMENTATION OF AES 22

2.4.1 MULTI-THREADED IMPLEMENTATION OF AES . . . 22

2.4.2 MPI . 23

2.4.3 CUDA . 24

ix

III CONCLUSION . 28

3.1 RESULTS. 28

3.1.1 SERIAL . 28

3.1.2 MULTI-THREADED . 29

3.1.3 MPI . 30

3.1.4 CUDA . 31

3.2 COMPRESSION OF RESULTS. 32

3.3 SUGGESTIONS FOR FUTURE WORK. 34

REFERENCES . 36

APPENDICES:

A RIJNDAEL ALGORITHM A1

B CTR MODE . B1

C HEAD NODE PART OF THE MPI IMPLEMENTATION C1

D KERNEL FUNCTION D1

E CURRICULUM VITAE E1

x

LIST OF TABLES

Table 1.1 Basic Lookup Table . 3

Table 2.1 Specifications of GPUs . 26

Table 3.1 Serial Implementation Results 28

Table 3.2 Multi-Threaded Implementation Results 29

Table 3.3 MPI Implementation Results for Data Size 50MB 30

Table 3.4 MPI Implementation Results for Data Size 150MB. 30

Table 3.5 MPI Implementation Results for Data Size 250MB. 30

Table 3.6 CUDA Implementation Results for 50MB-Sized Data 31

Table 3.7 CUDA Implementation Results for 150MB-Sized Data 32

Table 3.8 CUDA Implementation Results for 250MB-Sized Data 32

xi

LIST OF FIGURES

Figure 1.1 Encryption and Decryption [54] 2

Figure 1.2 Shared Key Encryption [43] 4

Figure 1.3 2-Key Encryption [43] . 4

Figure 1.4 AES Rounds [7] . 6

Figure 1.5 ECB Flow Chart [54] . 7

Figure 1.6 CBC Flow Chart [54] . 8

Figure 1.7 CFB Flow Chart [54] . 8

Figure 1.8 OFB Flow Chart [54] . 8

Figure 1.9 PCBC Flow Chart [54] . 9

Figure 1.10 CTR Flow Chart [54] . 9

Figure 1.11 Home Made Cluster . 11

Figure 1.12 Seti@Home Logo [8] . 12

Figure 1.13 Basic Cluster . 14

Figure 1.14 CUDA Memory Diagram [34] 15

Figure 1.15 CUDA Grid Schema [3] 15

Figure 3.1 Serial Implementation Performance Comparison 29

Figure 3.2 MPI Implementation Performance Comparison 31

Figure 3.3 Performance Change of Multi-Threaded and MPI Implementations 33

Figure 3.4 Performance Change throughout Test Machines 34

xii

Figure 3.5 Speedup Change Throughout Implementation Approaches 35

xiii

xiv

CHAPTER I

INTRODUCTION

People live in a technological world. Everyday, news have been announcing that

some people have been wired or listened by some other people. Today, it is

easily possible to intercept a mobile phone communication or read others e-mails.

People can think that their mails are secure on the providers servers. Provider

may have taken necessary precautions, still, people may be victim of the man-in-

the-middle attacks and their mails can be read during the transfer operation to

mail server. In order to prevent eavesdroppers from reading e-mails or listening

phone communications, one may use encryption algorithms [16].

1.1 ENCRYPTION

Encryption is a part of cryptography. Cryptography is the principle to convert a

data to something which is almost impossible to reverse back to original form by

unauthorized people. Cryptography is focused on 4 goals;

• Confidentiality: Data should be kept away from unauthorized eyes, it may

include sensitive information and it may turn to be harmful to owner, if it

it is exposed by other people.

• Data Integrity: Data integrity is also an important matter. For example,

if someone changes some other people’s medical record, they can have false

treatment or no treatment at all. This might cause casualties of innocent

people.

• Authentication: Money transactions are go through online. People have

teleconferences and have mails over Internet. The origin server, sender,

receiver and the data itself should be authenticated as permitted sender,

receiver etc...

1

• Non-Repudiation: Operations shouldn’t be deniable by the entities. For

example, assume a money transaction over Internet, later on, sender claims

that he/she didn’t execute or approve for the transaction. In the other

hand, receiver would be on the position of claiming that the transaction

was approved by the sender. To be able to solve this kind of conflicts,

procedures should involve a third party person or institution for transaction

to investigate operation. Encryption might be used to solve this kind of

conflicts.

Encryption is the method which used to convert data into an unreadable form

(cipher) [21, 41]. Decryption is the reverse operation of encryption. Encryption

and decryption operations can be seen on Figure 1.1. Here plaintext is the input

data as being converted to ciphertext (encrypted) using an encryption function.

Later on, ciphertext is used as an input for decryption function and the output is

same as the input which is the string “Hello World!”.

Figure 1.1: Encryption and Decryption [54]

There are basically two methods for cryptography. Symmetric and Asymmetric

cryptography. In symmetric or shared key cryptography, there is only one key

is being used for both encryption and decryption. Assume that lookup table in

Table 1.1 is being used for encryption. With a specific key and using lookup table,

it is possible to generate ciphertext. If the key is given, it is also possible to regain

plaintext back. For example;

PlainText: It is rainy today.

Key: QWERTYUIOPASDFGHJ

CipherText: ZQ YM MJXDZ XUKII

2

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

G H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

H I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

I J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

J K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

K L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

L M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

M N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

O P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

Q R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

R S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

S T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

T U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

U V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

V W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

W X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Table 1.1: Basic Lookup Table

In this example, spaces are ignored with the keys matching with space character.

Crossing of other characters with their matching keys on lookup table have been

found and assembled together to generate ciphertext. After getting ciphertext, if

the key is known, it is possible to regenerate plaintext. Only thing which should

be done is that checking key rows for the matching ciphertext columns [11, 21, 43].

This is the most basic encryption method and the most basic lookup table. Ba-

sically, encryption is just merging key with the plaintext. This can be also done

with a lookup table, XOR’ing them or with any other specific merging method.

The key point of shared key encryption is to use the same key for both decryption

and encryption. Procedure can be seen on Figure 1.2.

3

Figure 1.2: Shared Key Encryption [43]

In the other hand, asymmetric or public key cryptography, in simple manners, is

based on di↵erent keys for encryption and decryption. Basically a person, who

wants to communicate secretly, generates 2 di↵erent keys in his/her private and

secure computer. One key is for encryption and the other one is for decryption.

Later on, they will be called public and private keys. Person announce one of his

keys for encryption on his/her own website for others use. That is the public key.

Anyone can encrypt any message using the public key and then send to receiver.

Only the person who has private key (key for decryption) can decrypt and read

the message [26, 43]. Procedure is described simply on Figure 1.3.

Figure 1.3: 2-Key Encryption [43]

1.1.1 HISTORY OF ENCRYPTION

History of encryption goes back to Egyptians. An Egyptian draw the hieroglyphs

to his lord’s tomb which tels a story about the lord’s life. The Egyptian’s intention

was not to encrypt the writing. He/She probably just wanted to tell the story

in a fascinating way. He/She wrote “In the year of Our Lord One thousand

eight hundred and sixty three” instead just “1863”. Encryption also didn’t grow

steadily later on. It only appeared in books and literature works. Invention of

electronic communication has increased the development of cryptography. Most

of the countries started to intercept radio and the espionage was a matter of fact.

4

Cryptography had been used during WW1, WW2 and cold war era by the military

of almost every country. It is also known that, today, military is both using codes

for communication with each other and encrypting the whole communication. Till

the late 20th century, cryptography was only available to use of governments and

military [12, 45].

In 1973 Horst Feistel has described cryptography in his paper [11] and in 1976

Di�e Whitfield and Martin E. Hellman have announced public key (2-key) au-

thentication in their paper [26].

In 1984 Phil Zimmermann, who was a software engineer working for military and

as a freelance developer, decided to develop PGP (Pretty Good Privacy). His

intention was to protect rights of every human being on earth and he published

the tool on Internet in 1991. During that time, according to U.S. laws, PGP was

considered a munition and spreading it without a license has been accepted as

illegal exportation of a military equipment. This put Zimmermann to target of

three-years long criminal investigation. After these years, Zimmermann didn’t

found guilty and PGP became most widely used encryption software around the

globe [42].

In 1997, U.S. government had announced a competition in order to select national

encryption standard. Joan Daemen and Vincent Rijmen were applied to compe-

tition. Their algorithm was named after their names as Rijndael. U.S. National

Institute of Standard and Technology (NIST) invited the cryptology community

to perform attacks on candidate algorithms.

On October 2000, Rijndael algorithm o�cially selected as the winner and an-

nounced as Advanced Encryption Standard (AES) without any modification [37,

46].

1.1.2 AES

AES is based on Rijndael algorithm almost without any di↵erences. Like all other

encryption algorithms, AES is also based on mathematical techniques but still it

has one of the simplest algorithms to understand. The main di↵erence between

AES and Rijndael is the block length. AES requires block length to be fixed to

128 bits while Rijndael allows multiples of 32 bits between 128 and 256 to be

5

used as block length. In the other hand, key lengths are still multiples of 32

bits between 128 and 256 for both Rijndael and AES [46]. AES (or Rijndael) is a

serial algorithm based on data blocks. It is described in the book [46] as “Rijndael

is a key-iterated block cipher: it consists of the repeated application of a round

transformation on the state”. Round numbers are determined according to block

length and key length. For example, if both key and block lengths are fixed to

128 bits, there should be 10 rounds to be executed. Rounds are sequenced as four

transformations. These transformations are called steps. These steps are;

• SubBytes: This step is the only nonlinear part of the cipher. During

SubBytes step, data block is being matched with the lookup table (S-Box)

and the data in the block is being replaced with the matched values.

• ShiftRows: Every row should be shifted left with di↵erent o↵sets. Row 0

should be shifted C0 bytes, row 1 should be shifted C1 bytes and so on... If

the block length has chosen as 128 bits then the o↵set values should be 0,

1, 2 and 3 respectively.

• MixColumns: There is a matrix multiplication of each column of data

with the corresponding lookup table. Result of the multiplication is written

on the place of the column which has been used [46]. MixColumns step is

being applied on to data in first 9 steps but it is not applied in 10th step [7].

• AddRoundKey: The key is being added in the AddRoundKey step. The

data is being XORed with a round key [37, 46].

A simple illustration of rounds in AES can be seen on Figure 1.4.

Figure 1.4: AES Rounds [7]

6

1.1.2.1 MODES OF OPERATION

Normally, plaintext with n-bit fixed-size blocks are being encrypted. For AES,

block-length has been fixed to 128 bits, so, n is 128. If the size of data expands

128 bits (16 bytes), then, data is being divided into blocks with size of 128 bits.

Then, each block should be encrypted separately [21]. Some of the examples of

modes of operations are;

• Electronic Code Book Mode (ECB): ECB is the simplest one of the

modes of operations. Divided blocks are just being encrypted separately

[21, 44]. ECB is very simple and very easy to parallelization. Yet, its

disadvantages tempts people to use other modes of operations. Every bit will

be encrypted in the same way, so, same values in the data will be encrypted

to same results. If someone do some statistical work on the encrypted data.

it is possible to find plaintext without the key or it is possible to determine

the key. ECB is very suitable for parallel implementation [22] as it can be

seen on Figure 1.5.

Figure 1.5: ECB Flow Chart [54]

• Cipher Block Chaining Mode (CBC): First of all, each data block is

being XORed with initialization vector and the results enter encryption al-

gorithm among with the key. Output is being used for the next initialization

vector for the next data block and it goes so on. When every block has been

encrypted, outputs of the operations are put together to generate ciphertext

[21, 44]. Flow chart can be seen on Figure 1.6.

7

Figure 1.6: CBC Flow Chart [54]

• Cipher Feedback Mode (CFB): CFB has a di↵erent point of view than

ECB and CBC. Instead of the data blocks, initialization vector has been

encrypted during the procedure. Result of the encryption is XORed with

the data block. Output will be used as initialization vector for the next

data block and so on. Outputs are combined to produce ciphertext [21, 44].

Procedure is described in Figure 1.7.

Figure 1.7: CFB Flow Chart [54]

• Output Feedback Mode (OFB): OFB works almost as same as CFB.

There is slightly one di↵erence. After encryption of the initialization vector,

before XORing result with data block, result is also used as next initializa-

tion vector for next data block at the same time [21, 44]. Procedure and the

data flows can be seen easily on Figure 1.8.

Figure 1.8: OFB Flow Chart [54]

• Propagating Cipher-Block Chaining Mode (PCBC): PCBC is a bit

8

complicated. Before encryption, plaintext and initialization vector are being

XORed and then they enter encryption. Result of the encryption procedure

is a part of the ciphertext and it is also being XORed with plaintext to be

initialization vector for next block [22, 44]. Procedure is described simply

on Figure 1.9.

Figure 1.9: PCBC Flow Chart [54]

• Counter Mode (CTR): CTR requires a di↵erent counter value for each

data block. This value should be combined with the initialization vector

somehow, this combination can be earned by XOR’ing values or concate-

nating them. After combining values, the new counter value should be

encrypted with the key and the result of encryption should be XORed with

the data of the block in order to get ciphertext [9, 22, 37, 44]. Simple flow

chart can be seen on Figure 1.10.

Figure 1.10: CTR Flow Chart [54]

It can be concluded that CTR Mode and ECB Mode are very suitable for parallel

implementation. Rest of the modes are incompatible for parallel implementation

because of their serial dependencies. In the modes (except CTR and ECB), every

block should wait previous blocks to be processed because output of the previous

blocks will be input for the current block. Kipper et al have also mentioned same

thoughts in their page [22].

9

1.2 PARALLEL COMPUTING

Softwares used to developed in a serial manner. During these days multiproces-

sors performance were increasing 50% every year. After 2002, technology nearly

reached its theoretical limits and development is slowed. Manufacturers changed

their vision from single serial processors to multiple processors on a single circuit.

But, increasing number of CPU doesn’t a↵ect the performance of softwares. Tra-

ditionally, softwares have been developed for a single CPU. They are not aware

of multiple CPUs. Operating system’s scheduling algorithms distributes di↵erent

processes to di↵erent microprocessors. Even dough, every process runs sequen-

tially on the assigned processor [23]. Parallel Programming allows developers to

get full advantage of every microprocessor to solve the problems. Simply, parallel

computing is taking advantage of every hardware which has compute capacity to

solve a problem [25]. For example;

Assume that, there are one billion marbles and someone has to count them all.

If the person tries to count them all just by himself, it might take months finish

the operation. Instead, if the person calls his/her friends for help, divides a group

of marbles to each of his/her friends and than each friend count the number of

marbles in their own group and later, if the person sums all of the counts, it

might just take hours to finish the work. Dividing marbles is an example of

parallel computing.

Not every problem can be solved parallelly. Nature of the problem or solution

should be suitable for parallelization. For example, reading a specific book can’t

be done parallelly. One can’t ask his/her friends to read di↵erent chapters and

explain himself/herself. Pages of the book should be read one by one in order to

understand its content. It can’t be parallelized. Situation is same for any problem.

If a math problem in order to be solve requires other values to be found, then,

it can’t be parallelized. Still, most of the problems can be parallelized. Today,

factories runs parallel, they produce many products in the same time. Weather

changes parallelly, it might be rainy in London but in the mean time it might be

sunny in Sydney.

Need of knowledge is increasing constantly and problems are becoming very com-

plex. Parallel computing has many fields of study. It has been widely used in

research projects. There are also examples of commercial usage. Main idea of the

10

parallel computing is to solve hard problems in an acceptable time. Main advan-

tage of the parallel computing is the reduction of time cost with a cost e↵ective

solution [25]. In order to achieve high speed computing power, there are some

di↵erent approaches.

• Multi-threaded Applications: Today, operating systems are capable of

executing several jobs in the same time with the help of scheduling algo-

rithms. Every thread of the application are sharing same resources (CPU,

memory etc) with a unique thread id of their own. Many applications use

multi-threaded solutions, such as web browsers, instant messaging applica-

tions etc... Scheduling algorithm switch between these threads very e�-

ciently, so, it is assumed that they run parallelly. In order to run threads

parallelly, there should be a multi-core CPU and also OS scheduling algo-

rithm should be able to manage multi-core CPUs [35]. This can be assumed

as first attempts of parallel computing.

• Cluster: A cluster (or beowulf cluster) is a group of computers connected

over a network (Ethernet, wifi etc). Computers in a cluster are called nodes.

These nodes have been managed by a master/head node. People submit

their jobs to head node and the head node divides jobs to available nodes,

then collects results back [18, 48]. Clusters can be made out of junk com-

puters, old PCs haven’t been used daily or single board computers. A three-

node home-made cluster made out of RaspberryPi single board computers

can be seen on Figure 1.11 as an example.

Figure 1.11: Home Made Cluster

11

• Supercomputers: Supercomputers are single machines with multiple pro-

cessors and high computing capacity. They are much more expensive sys-

tems when compared to clusters [55]. Today, worlds most powerful su-

percomputer is Tianhe-2 which has been developed by China’s National

University of Defense [49].

• Volunteer Computing: There are lots of machines connected on Internet

and most of them just in idle position most of the time. Volunteer Comput-

ing is focused on these idle times. In order to achieve volunteer computing,

user should download an install client software to his/her computer. Soft-

ware keeps running in background. When user stops using computer and

computer enters idle mode, software becomes activated and receives pack-

ages through Internet, analyses packages and calculates results, then, sends

findings back to server [8, 51]. There are some volunteer computing projects

like seti@home which is aimed to find alien life forms [8].

Figure 1.12: Seti@Home Logo [8]

• GPGPU: Another approach of parallelization is using GPUs. Gaming in-

dustry has driven GPU technologies to be improved. Require of 3D, real-

time, HD etc has forced GPUs to be multi-core processors, highly capable of

parallelization and multi-threaded applications. In the other words, GPUs

are specialized to run programs in parallel which are required to execute

same instructions many times [13, 30].

• Cloud Computing: Cloud Computing actually used for sharing expenses

with smaller companies. Companies with gigantic data centers have lots of

expenses to operate it. To minimize expenses, companies rent available

storage or service to other companies whom doesn’t have any data centers

[1, 53].

That much of computing power is usually used for projects like modeling, medical

identification, scientific research, weather forecasting, alien life form searching,

data redundancy etc [25]. Also, multinational companies may require power of

parallel computing in other means. For example, companies like search engines

need to have distributed server systems in order to keep their uptime high, serve as

12

many customers as possible in the same time and survive from aggressive attacks

like DDOS without losing control of the whole system [20].

Parallel computing is not a new concept. Researches have been started in 50s.

But, till 2000s, CPUs were enough to respond performance requirements and there

were no need for parallel computing. Reduction of time frequency in the devel-

opment of CPUs had forced people to consider parallel computing [23, 47, 52].

During these years, parallel computing used to require supercomputers, computer

clusters or expansive PCs with multi-core CPUs. In 2010, almost every home

user had PCs with multi-core CPUs. This swept o↵ the need for gigantic main-

frames. Till 2006 every computation were done using CPUs. GPUs were only

for processing and computing graphical operations. In November 2006, Nvidia

introduced CUDA architecture for General Purpose Graphics Processing Unit

(GPGPU) [13, 30]. This was another milestone for parallel computing. Almost

after 1.5 years, Apple proposed OpenCL working group as an alternative of CUDA

in June 08. Later, Khronos group has announced OpenCL 1.0 in December 08.

So, OpenCL became alternative for proprietary libraries [24, 36]. Main di↵erence

between CUDA and OpenCL is that CUDA is specifically developed for Nvidia

GPUs while OpenCL is compatible with any GPGPU vendor.

1.2.1 MPI

Message Passing Interface (MPI) is a standard for developing applications which

are passing messages between each other. It has been defined by MPI forum.

MPI is not a programming language instead it’s a standard definition. So, MPI

is defined as functions and implemented by di↵erent groups for di↵erent kind of

languages like C/C++, Fortran etc. There are di↵erent libraries which implement

MPI standard such as OpenMPI and MPICH. Because of its design of portabil-

ity, applications developed according to MPI standard can be executed on any

environment which has a MPI Library installed on it. This means that an ap-

plication which has been developed for distributed memory parallel computers

(such as clusters) can also be executed on a shared-memory computer (such as a

multi-core CPU computer) [6, 27, 28]. Basic journey of a MPI application which

has been submitted to a cluster, can be seen on Figure 1.13. During process, each

node (CPUs or CPU cores) is executing very same serial code simultaneously. It

is possible to execute di↵erent parts of the code on di↵erent nodes with specific

13

keywords and functions. While execution of application, every node might be

sending messages to each other till application complete its calculations [27].

Figure 1.13: Basic Cluster

1.2.2 CUDA

CUDA is a parallel programming library which extends C to solve problems on a

GPUmore e�ciently than on a CPU. Unlike OpenCL, CUDA can only be designed

to work with Nvidia GPUs. Nvidia introduced CUDA in 2006. It has been

widely used by researchers and developers since its announcement. Applications

developed using CUDA are capable of being both serial and parallel. Just like all

other applications written in C, CUDA applications also have a main function.

The main function is the heart of the application and run by CPU. In terminology

of CUDA, CPU part of the execution is called “Host” and GPU part is called

“Device” and functions executed on GPU are called kernel.

Kernel is run by GPU and divided into blocks and threads. Blocks are parallel

copies of kernel. Threads are located in a block with x and y coordinates, blocks

are also located in a grid with x and y coordinates. There can be 8 blocks per

streaming multiprocessors. Each block may have threads and these threads also

runs simultaneously. Threads have access to shared memory. Shared memory

is visible to every thread in the same block. Blocks have access only constant

and global memories [13, 31, 15, 29]. CUDA memory architecture can be seen on

Figure 1.14. CUDA grid and block architecture can be seen on Figure 1.15.

14

Figure 1.14: CUDA Memory Diagram [34]

Figure 1.15: CUDA Grid Schema [3]

15

1.2.3 BACKGROUND

Michael Kipper et al ported an open source CPU implementation of AES al-

gorithm to GPU. They used 128-bit AES for their testing, divided plaintext to

128-bit blocks and each block encrypted/decrypted parallelly. In order to boost

the performance, they have done keyExpansion on CPU. They have encrypted

and decrypted 64 MB size of message 200 times in order to measure the perfor-

mance of algorithm. As a result, they have processed a total of 25.6 GB data in

23.187 seconds with a 9.26 Gbps throughput. Which means, research was able to

accomplish 14.5x speedup when compared to CPU implementation [22].

Deguang Le et al are sending plaintext directly to kernel. In kernel, it is divided

to blocks and each thread computes one AES block. Finally, encrypted blocks are

combined on CPU to generate ciphertext. Implementation was able to achieve 7x

speedup over a comparable CPU [38].

Wlodzimierz Bielecki et al have chosen OpenMP as a tool to parallelize AES

algorithm. At first, they have determined data dependencies in loops using Petit

program [50]. They have used AES algorithm with ECB mode of operation. Their

strategy was to find most time consuming parts of the algorithm, minimizing data

dependencies and building parallel loops. They have executed tests with di↵erent

plaintexts with sizes are in the range of 1KB and 20MB [39]. They were able to

observe almost 5x speedup for encryption and 12x speedup for decryption.

Keisuke Iwai et al have used as optimized AES C code which is a part of OpenSSL

toolkit. AES algorithm with ECB mode of operation is used for this research and

several approaches have been discussed. The approach was dividing plaintext to

16-bytes blocks and each block being computed by a thread. Another approach

is making every thread to compute 1 byte of plaintext. In this approach, a total

of 16 threads is required to compute a block. Results of the paper shows that,

experiments were able to achieve a maximum of 28.39x speedup when compared

to a i7 2.66GHz CPU [4].

Julian Ortega et al have made small changes in the code of AES algorithm which

enables file reading/writing operations. They have used a fixed 256 KB chunk size,

which limits application to work with file sizes multiples of 256 KB. OpenMP im-

plementation is computing 16-bytes blocks parallelly. On the other hand, CUDA

uses 256 KB chunks. Each chunk is copied to memory and divided into blocks

16

and threads. They have observed 1.33x speedup with OpenMP implementation

and 4x speedup with CUDA implementation [40].

Tomaiga Radu Daniel et al have used AES algorithm with CTR mode of operation

and chosen Nvidia 8800 GT to execute their algorithm. Their approach was to

optimizing access time to lookup tables. To do so, they have divided 128-bits sized

aes blocks to threads and loaded whole data on the GPU’s memory. They have

executed algorithm 1.000.000 times in order to measure the performance. Results

show that they were able to 1.3x speedup AES implementation [5].

Andrea Di Biagio et al have focused on paralleling of internal operations of AES

algorithm with CTR mode of operation. They have used 4 threads to compute

each block. They have tested their work on di↵erent platforms and as a result,

for 32 KB data, they have achieved a maximum 2917 Mbps throughput with a

Nvidia and 531 Mbps throughput with an Intel Premium D540. Results shows

that they were successful to achieve almost 5.5x speedup [17].

Svetlin A. Manavski has developed two di↵erent approaches to execute AES on

GPU. First approach was to use an OpenGL based implementation and second

approach was to use CUDA. On CUDA approach, plaintext has been divided into

1024 bytes chunks and each CUDA blocks and threads were responsible to process

these chunks. He has tested his approaches on an OpenSSL based AES algorithm

and he has measured 19.6x speedup with CUDA compared to CPU [14].

Keisuke Iwai et al have used 128-bit AES algorithm with ECB mode of opera-

tion. They have improved their previous work with overlapping data transfer and

kernel execution. The main idea was to execute encryption of several blocks on

GPU while transferring rest of the data to GPU. They used 256 MB size plain-

text and were able to achieve 22.5 Gbps throughput with overlapping and 13.4

Gbps throughput without overlapping. Their work shows that overlapping boosts

performance up to 1.6x [2].

We have used OpenMPI to parallelize AES algorithm with CTR mode of operation

in the paper of Parallelism of AES Algorithm via MPI. PlainText have been

separated to 16-bytes blocks and divided blocks to di↵erent nodes. Each node

computes its blocks and most of the blocks computed parallelly. We have observed

4.5x speedup with 12 nodes compared to one node [37].

17

1.2.4 CONTEXT OF THESIS

AES Algorithm with CTR Mode of operation has been implemented in this work.

For implementation, several di↵erent approaches have been used. Implementation

methodology, test environment and test data have been discussed in Chapter II.

Results and suggestion have been discussed in Chapter III.

18

CHAPTER II

METHODOLOGY

In this study, 128-bit AES algorithm (from original submission) has been used.

Fist of all algorithm have been modified to be able to read and write data file

from HDD. Then, CTR mode is applied on the algorithm and test vectors in [44]

is used to ensure of the application of CTR mode. The main function of the

application with CTR mode can be seen in Appendix B.1. CTR mode is using a

counter value for every block and every block is being encrypted individually. To

encrypt a block, corresponding counter value should be merged with initialization

vector (by summing, XORing etc) then, initialization vector should be encrypted.

To find ciphertext each block should be XORed with the encrypted initialization

vector and then merged together to generate ciphertext. Normally, all this work

is done in a serial manner, but other blocks do not need to calculate counter value

for previous blocks. It is possible to compute every block parallelly.

For this work, it is decided to use several di↵erent parallelization methods and in

the conclusion section results are compared. AES algorithm is parallelized on two

di↵erent clusters with OpenMPI implementation, on two di↵erent Nvidia GPUs

with CUDA implementation, on three di↵erent multi-core CPUs with OpenMPI

implementation and finally on three di↵erent PCs with multi-threaded implemen-

tation.

In this work, data is read from HDD and then it is divided to 16-byte AES

blocks. Each block is divided to nodes/CPUs/threads and their counter value is

calculated using thread/node/CPU id. Because of the limited number of resources

(nodes/CPUs/GPU Cores), AES blocks are divided as equally as possible. If it is

not possible to divide blocks equally, leap block is being left to be computed by

the last node/CPU/thread. For example, if application reads a data with a size

of 116 bytes, first of all, it will try to divide data into blocks. To do so, it will

simply divide 116 bytes to 16 bytes to find number of 16 bytes-sized blocks. The

calculation 116/16 = 7.25 shows that it is not possible to divide data to equally

19

balanced blocks. So, application will round up the value and it will assume that

there are 8 blocks. As it can be understood that only 1
4 of the last block is filled.

So, application will act like rest of the block (34 of the block) is filled with zeros.

Now, it is easy for application to divide blocks if the number of nodes/CPUs/GPUs

are power of two (1, 2, 4, 8). But, if there are 3 nodes/CPUs/threads, application

will try to divide 8 to 3, since it is not dividable, the result will be 8/3 = 2.6666667

and application will round down the result to 2 and also it will round it up to

3. This means that every node/CPU/thread should compute 2 blocks, but in

order to compute the rest of the blocks, last node/CPU/thread should compute

3 blocks.

This is the basic principle behind dividing blocks. The aim is to compute each

block on a di↵erent resource. Since resources are limited, blocks are divided

equally as possible. The implementation may di↵er from method to method and

it will be detailed for every method in their own section.

2.1 TEST ENVIRONMENT

There are di↵erent test environments deployed for this work. Each test environ-

ment is deployed using same machines, so, results are comparable. Specifications

of the test machines are described below;

• One of Çankaya University’s clusters, which will be named as PC Cluster

from now on is used. Tasks are divided into 12 nodes, specifications of the

nodes are as follows;

– Every node has RedHat Linux installed on them

– Five of twelve nodes have 4 CPU cores (2.4 GHz) and 8 GB memory

for each

– Six of twelve nodes have 4 CPU cores (2.8 GHz) and 16 GB memory

for each

– The last nodes have 2 CPU cores (2.9 GHz) and 2 GB memory

– Each node has openMPI version 1.4.3

• An ordinary PC, which will be named as I7PC from now on is used. It has

following configuration;

20

– Intel i7 - 4 CPU cores (3.4 GHz) with hyper-threading 8 in total

– 8 GB memory

– Ubuntu Desktop Linux 12.04 installed

– openMPI version 1.5.4

– CUDA Toolkit Release 5.5

• Two ordinary PCs, which will be named as I5PCs from now on are used.

They have following configuration;

– Intel(R) Core(TM) i3 - 2 CPU cores (3.33 GHz) with hyper-threading

4 in total

– 4 GB memory

– Ubuntu Server Linux 12.04 installed

– openMPI version 1.5.4

– CUDA Toolkit Release 5.5

• One Research PC, which will be named RSPC from now on is used. It has

following configuration;

– Intel(R) Xeon(R) 16 CPU cores (2.00 GHz) with hyper-threading 32

in total

– 125 GB memory

– RedHat Linux installed

– openMPI version 1.4.3

2.2 DATA

Several di↵erent test data have been used for this work. Used data is randomly

generated files with following sizes; 50MB, 150MB and 250MB. Each file has been

read from disk, encrypted and written back to the disk 100 times. In this way, it

was possible to compute mean time of the encryption procedure. Also, there is

a problem with CUDA for files bigger than 250 MB. Problem will be detailed in

Section 2.4.3. On the other hand, in clusters, only head node has the test data

and it divides data to the rest of the nodes through network.

21

2.3 SERIAL IMPLEMENTATION OF AES

Serial implementation is the basic algorithm. It reads data from file and divides it

into 16-bytes sized AES blocks. After dividing into blocks, it encrypts every block

one-by-one and then writes them to output file. Encryption works as follows;

Application reads a data file from HDD as 16-bytes sized blocks. For every block

there is an incrementing counter value starting from 1 (counter value for block

one is 1, block two is 2 and so on...). Each counter value is being XORed with

initialization vector, then, initialization vector is being encrypted with the key.

Finally, encrypted initialization vector is being XORed with the corresponding

block and the result is being written back to HDD as output.

This is the very basic implementation. Application reads each block and computes

them sequentially. After computation of every block, application halts and the

written output file is the encrypted equivalent of the input data.

2.4 PARALLEL IMPLEMENTATION OF AES

In order to parallelize AES algorithm, there are three di↵erent parallelization

approaches in this work. Each approach has been tested on every suitable test

environment. These approaches are;

• Multi-threaded Implementation of AES

• Parallel Implementation of AES using OpenMPI

• Parallel Implementation of AES Using CUDA

Each approach will be detailed in following sections.

2.4.1 MULTI-THREADED IMPLEMENTATION OF AES

In theory, a slightly better implementation than serial one should be multi-

threaded implementation. Again, data is read from a file and divided into 16-bytes

sized blocks. Then, application executes several threads and separates blocks to

these these threads. Threads encrypt blocks parallelly but application writes

22

blocks to the output file in a serial manner. Writing output serially would create

a bottleneck but running parallel threads might reduce some time on powerful

CPUs. Yet, this method is highly dependent on operating systems scheduling

algorithm. Scheduling algorithm can assign each thread to a di↵erent CPU or

it can assign all threads to the same CPU. Scheduling algorithm’s behavior will

a↵ect the results [35].

2.4.2 MPI

MPI Implementation is a parallel approach to encrypt data and an example of

embarrassingly parallel applications. MPI implementation is based on a head

node/CPU which divides the job to all other nodes/CPUs. Thanks to MPI stan-

dard, MPI implementation can be applied on a cluster or on a multi-core computer

without any change on the code itself [28]. In this work, MPI algorithm has been

tested on both clusters and multi-core CPUs. Performances have been compared

and mentioned in the Section 3.1.3.

If the application is running on a cluster, head node divides jobs to nodes of

cluster, otherwise jobs are being divided to other CPU cores. After the start of

the application, it initializes MPI immediately. Head node (or core, depending on

the environment) reads data from HDD and sending it through network to all other

nodes. Each node (excluding head node) is receiving the data through network

and storing it on the local memory (RAM). Application uses MPI Bcast method

rather than MPI Send. By this way, it only sends the data once through network

and reduces unnecessary network latency. After receiving of the data, nodes are

(for head node after sending it) calculates its own start value for counter (it is

hard-coded as 1 for head node) and end value of the counter. Calculation of the

counter value has been described in the beginning of this Chapter.

Nodes read the data from their local memory as 16-bytes sized blocks, then, they

encrypt and store them back on local memory. Every node selects data blocks

according to current calculated counter values. Every node has whole data but

each of them computes di↵erent blocks. To do so, blocks are being located on

the data bu↵er, as counter value being used as coordinate pointer. Encryption of

blocks are done sequentially by nodes. Nodes (except last node) encrypt blocks

only if they are in the calculated counter range. Last node encrypts blocks, which

are starting from calculated counter start value to the end of file size. The reason

23

is that, last node is the responsible one of the fraction in the block calculation,

which has been described earlier. Nodes which finish encryption of the blocks,

immediately send the encrypted results back to the head node. If, the head node

didn’t finish its job, then, sent data waits to be received by the head node. When

the head node finishes its job, it starts writing its own encryption result to the

output file and then starts receiving of the sent data by other nodes in a sequential

order (node 1 comes first, nodes 2 second and so on). Head node appends every

received data to the end of the output file and halts the application. Output of

the application is below;

I7PC$ mpirun -np 4 crypt data250

Time spent in seconds: 24

The MPI implementation can be found in Appendix C.1.

2.4.3 CUDA

CUDA implementation is also parallel another approach to encrypt the data and

it is an example of coarse-grained parallelism. Unlike MPI standard, CUDA only

lets developer to run application on selected GPUs (Which are Nvidia products,

for other brands OpenCL is a good alternative). CUDA is a framework to use

GPU for computing purposes in a parallel manner. CUDA implementation is

based on blocks and threads within kernels (these blocks are di↵erent than AES

blocks).

User should be aware of the size of data and how to divide application to kernels,

blocks and threads in order to use CUDA implementation. Application starts

with asking five questions, which are;

PATH to data file

of Kernels

of Blocks in X coordinate

of Blocks in Y coordinate

of Threads in X coordinate

of Threads in Y coordinate

24

First of all, application requires number of kernels, as an input, to be opened.

These numbers are dependent to the size of data and the limits of the device.

Limits can be seen on table 2.1. Both of the GPU cards can run at most 8 blocks

per kernel and 1024 threads for each block parallelly. These limitation can only

be suppressed by increasing number of kernels. First of all, the application reads

whole data to RAM at once and starts KeyExpansion procedure on CPU. The

main reason is that result of the KeyExpansion procedure is only calculated once

and it is same for every node. There is no need to consume valuable GPU com-

puting power with this procedure over and over again. This procedure may look

like a bottleneck, but actually it is enhancing performance by saving a valuable

resource. The application then checks the values which have been entered, multi-

plication of the values shouldn’t be smalled then the data size. If the numbers are

smaller or too big from the size of the data, then application will raise an error

and quit. If there is no error, application calculates the size of the data to be

copied on GPU and copies the first part of data to GPUs global memory. Shared

memory didn’t used in this work because, threads doesn’t require to use same

data. Before execution of kernels, application calculates the initializing counter

value for that kernel. For example, the value will be 1 for the first kernel.

During kernel, each thread calculates the block’s counter value according to initial

kernel counter value with using thread id x/y, block id x/y, grid dimensions and

block dimensions. In order to calculate counter values, position of blocks and

threads are assumed they are in a matrix. At first, thread calculates position of

the block on the grid and multiplies its value with the total number of threads

in a block. With that, it finds initial value for thread with thread id X=0 and

Y=0 of that block. Then, it calculates position of thread in the block, adds this

calculation to the previously calculated value. In the end, it has raw value of the

counter, after adding initial counter value to sum, finally, thread finds its counter

value.

Calculated counter value is being used by threads to find the data block in global

memory and use as counter value for CTR mode encryption. Each thread only

calculates one block of data and after encryption of the data block, it has been

copied back to global memory. Kernel terminates its existence after each thread

has been halted. Host copies encrypted data from global memory back to RAM

and calculates counter value for the next kernel and then triggers it. After ex-

ecution of every kernel, host flushes the encrypted data from RAM to HDD as

25

output.

Kernels can run sequentially or concurrently with using streams in CUDA. Streams

also allows developer to copy some data to the device while executing a kernel.

This increases parallelism and speed.Kernel implementation can be found on Ap-

pendix D.1.

Property GTX 480 GTX 650

CUDA Driver Version / Runtime Version 5.5 / 5.5 5.5 / 5.5

CUDA Capability Major/Minor version number 2.0 3.0

Total amount of global memory 1536 MBytes (1610153984 bytes) 2047 MBytes (2146762752 bytes)

CUDA Cores/MP 480 CUDA Cores 384 CUDA Cores

GPU Clock rate 1401 MHz (1.40 GHz) 1189 MHz (1.19 GHz)

Memory Clock rate 1848 Mhz 2800 Mhz

Memory Bus Width 384-bit 128-bit

L2 Cache Size 786432 bytes 262144 bytes

Total amount of constant memory 65536 bytes 65536 bytes

Total amount of shared memory per block 49152 bytes 49152 bytes

Warp size 32 32

Maximum number of threads per multiprocessor 1536 2048

Maximum number of threads per block 1024 1024

Max dimension size of a thread block (x,y,z) (1024, 1024, 64) (1024, 1024, 64)

Max dimension size of a grid size (x,y,z) (65535, 65535, 65535) (2147483647, 65535, 65535)

Table 2.1: Specifications of GPUs

Based on output of deviceQuery application in CUDA Toolkit

During CUDA implementation, some interesting problems have been encountered.

First of all, it have been observed that application responded di↵erently on dif-

ferent GPUs. It has been proven that the configuration of I5PCs and I7PC are

same. Kernel versions, library versions and driver versions have been checked. All

of them had the same release version. Application have been compiled on both

test environments and also it has been compiled on just one environment and bi-

nary file copied to another. Application again showed di↵erent behavior. Results

were acceptable on I7PC but unacceptable on I5PCs. Only solution found was

to compile application with debugging symbols on I5PCs. When it was compiled

with debugging symbols, it was giving acceptable results. Times should be slower

than no-debugging symbol compilation. So, results in Section 3.1.4 have been

normalized. For normalization, GTX650 have been executed with both debug-

ging and no-debugging symbols, then percentage of the time di↵erence have been

computed and applied to the results of GTX480 with multiplication of a constant

value 0.93. Value has been chosen randomly according to experiences in order to

reduce the di↵erence of cache sizes and bus speeds.

26

Another problem which have been encountered was large data encryption. Prob-

lem was occurring for files bigger than 250MB. I’ve tried to run profiler on the

application but the output was saying that application returning non-zero error

code. Next thing I’ve done was to check error code. Its value was clearly zero as

it can be seen below;

cudaadmin@cudalab2:~$ nvprof -s ./main

==23055== NVPROF is profiling process 23055, command: ./main

Maximum block numbers: 65535 65535 65535

Please enter the path of file: mega

Please enter kernel call count: 2400

Please enter number of X blocks per kernel: 2

Please enter number of Y blocks per kernel: 4

Please enter number of X threads per block: 32

Please enter number of Y threads per block: 32

Internal profiler error (12884901897:999)

==23055== Profiling application: ./main

==23055== Profiling result:

Time(%) Time Calls Avg Min Max Name

100.00% 211.09us 3 70.363us 1.1520us 208.15us

[CUDA memcpy HtoD]

======== Error: Application returned non-zero code 1

cudaadmin@cudalab2:~$./main

Maximum block numbers: 65535 65535 65535

Please enter the path of file: mega

Please enter kernel call count: 2400

Please enter number of X blocks per kernel: 2

Please enter number of Y blocks per kernel: 4

Please enter number of X threads per block: 32

Please enter number of Y threads per block: 32

Time spent in seconds: 5

cudaadmin@cudalab2:~$ echo $?

0

I was unable to solve this problem, so, I have decided to encrypt files with

specific sizes with many iterations. This way, it is possible to measure performance

for every approach equally with bigger data sizes.

27

CHAPTER III

CONCLUSION

3.1 RESULTS

During this work, every approach has been tested on every capable machine with

a total of 48 di↵erent tests. Results and related discussions about results can be

found for any approach on its own sections below.

3.1.1 SERIAL

Serial implementation of AES algorithm is the slowest one and mostly dependent

on the performance of CPU. This performance can be a↵ected by any other run-

ning processes, because, OS has to schedule between processes and at the single

time, only one job can be processed by CPU.

Test Environment One Node of PC Cluster I5PC I7PC RSPC

Data Size 50MB 150MB 250MB 50MB 150MB 250MB 50MB 150MB 250MB 50MB 150MB 250MB

Mean Time (in seconds) 37.55 108.91 182.94 27.69 84.48 138.85 16.83 50.44 86.13 64.22 195.93 332.89

Average of the Results

Data Size 50MB 150MB 250MB

Average Time (in seconds) 36.56 109.94 182.20

Table 3.1: Serial Implementation Results

Serial implementation of AES algorithm requires long time to be processed. As it

can be seen on Table 3.1, best time could only be achieved with a new generation,

high frequency CPU (16.83 seconds for 50MB, 50.44 seconds for 150MB and 86.14

seconds for 250MB) and the worst time could only be achieved with a low fre-

quency CPU (64.13 seconds for 50MB, 195.193 seconds for 150MB, 332.89 seconds

for 250MB). Performance comparison of the machines can be seen on Figure 3.1.

Highest bars are showing worst performance.

28

Figure 3.1: Serial Implementation Performance Comparison

3.1.2 MULTI-THREADED

Multi-threaded implementation of AES algorithm is the very basic way to par-

allelize it. Algorithm shows potential of implementation, yet as its described in

Section 2.3, it is highly dependent on operating system’s scheduling algorithm and

it will show no di↵erence on a single-core CPU. Results can be seen on Table 3.2.

Test Environment One Node of PC Cluster I5PC I7PC RSPC

Data Size 50MB 150MB 250MB 50MB 150MB 250MB 50MB 150MB 250MB 50MB 150MB 250MB

Number of Threads 4 2 4 16

Mean Time (in seconds) 9.71 29.07 48.69 14.26 42.88 72.29 4.80 14.43 24.11 4.47 13.72 21.88

Average of the Results

Data Size 50MB 150MB 250MB

Average Time (in seconds) 8.31 25.02 41.74

Table 3.2: Multi-Threaded Implementation Results

By results, it can be understand that it is possible to have equivalent perfor-

mance of MPI implementations with a higher frequency, new generation CPU, if

taking advantage of every CPU core is being considered while determining thread

count.

29

3.1.3 MPI

MPI Implementation has the potential of increasing performance since its nature

is taking advantage of every possible CPU core. Results show that increasing

number of CPUs slightly decreases the time requirement of the algorithm. For

di↵erent data sizes and di↵erent environment several tests have been executed

and the results compared in the tables below;

Test Environment Cluster I5PC I7PC RSPC

Number of CPUs 12 2 4 16

Mean Time (in seconds) 2.44 14.44 4.82 1.80

Average Time (in seconds) 5.87

Table 3.3: MPI Implementation Results for Data Size 50MB

Test Environment Cluster I5PC I7PC RSPC

Number of CPUs 12 2 4 16

Mean Time (in seconds) 6.97 24.56 14.38 6.49

Average Time (in seconds) 13.1

Table 3.4: MPI Implementation Results for Data Size 150MB

Test Environment Cluster I5PC I7PC RSPC

Number of CPUs 12 2 4 16

Mean Time (in seconds) 13.29 41.17 23.99 10.77

Average Time (in seconds) 22.30

Table 3.5: MPI Implementation Results for Data Size 250MB

It can be seen on the results that large and cheap cluster can easily compete with

the new generation CPUs. It is possible to obtain better performance values if

many CPUs brought together to build a cluster, even if the CPUs are cheap and

nasty. It can be said that beowulf clusters have very good potential in computa-

tion, they can be used to increase performance of AES algorithm. Performance

comparison of the machines can be seen on Figure 3.2. Highest bars are showing

the worst performances.

30

Figure 3.2: MPI Implementation Performance Comparison

3.1.4 CUDA

CUDA is a brand-new and increasing technology. GPUs are very young in the

field of computation, but they have already proved themselves with their image

processing abilities.

Test results of this work show that with a higher GPU clock rate and more cores

it is possible to decrease required time of the application. Still, both GPUs, which

are used for tests, are limited with the same thread and block counts. Results of

tests can be seen in tables below;

Test Environment GTX480 GTX650

Data Size 50MB 50MB

Mean Time (seconds) 1.27 1.35

Kernel Count 400 400

Block Count X&Y 2 4 2 4

Thread Count X&Y 32 32 32 32

Average 1.31

Table 3.6: CUDA Implementation Results for 50MB-Sized Data

31

Test Environment GTX480 GTX650

Data Size 150MB 150MB

Mean Time (seconds) 3.88 4.07

Kernel Count 1200 1200

Block Count X&Y 2 4 2 4

Thread Count X&Y 32 32 32 32

Average 3.97

Table 3.7: CUDA Implementation Results for 150MB-Sized Data

Test Environment GTX480 GTX650

Data Size 250MB 250MB

Mean Time (seconds) 6.36 6.82

Kernel Count 2000 2000

Block Count X&Y 2 4 2 4

Thread Count X&Y 32 32 32 32

Average 6.59

Table 3.8: CUDA Implementation Results for 250MB-Sized Data

3.2 COMPRESSION OF RESULTS

Test results point out that all of the methods show di↵erent level of improve-

ments. Serial implementation requires the most time as expected. In the meaning

of parallelism, if we compare each method with each other, multi-threaded imple-

mentation is a good start to increase performance, yet, as it mentioned before, it

is highly dependent on operating systems scheduling algorithm. So, it may not

give the best results always. MPI is also another good approach for multi-core

computers. Both MPI and Multi-Threaded implementations are giving similar

results and the increase in performances are almost 78% for Multi-Threaded and

84% for MPI solution. Performance change can be seen on Figure 3.3

Also when compared MPI approaches between each other, it is easily seen that core

number has a very important factor on the results. This was also expected, but,

if results compared between RSPC and the cluster, RSPC has 16 cores running

and cluster using 12 nodes, clusters performance is in a very close range to RSPCs

especially for data size 150MB. So if we increase the number of nodes in cluster, it

32

Figure 3.3: Performance Change of Multi-Threaded and MPI Implementations

is possible get better results than RSPC, but network connection between nodes

would create a bottleneck. So, if it is possible to obtain a multi-core computer

with many cores, it should have better performance than a cluster. Yet, costs of

buying a multi-core computer would be higher.

If GPU compared with the other approaches, test results show that paralleliza-

tion on a GPU has the best performance values. Performance change of every

approach can be seen on Figure 3.4. Also, when compared GPU with MPI, it

shows 11% better performance for data size 150MB. CUDA is new in the field of

parallelization, but tests show that it really shows a very good performance in the

field. The speedup values are 27.64 for 250MB, 27.69 for 150MB and 27.90 for

50MB and the average speedup value for GPU is 27.74.

Speedup values have been calculated with the following formula;

Sp =
Ts

Tp
(3.1)

In the formula, Tp is the time spend of parallel algorithm, Ts is the time spend of

serial algorithm and Tp is the speedup value. Figure 3.5 shows speedup di↵erences

between approaches. In the figure, speedup values are based on average of the

speedup values of all three data sizes.

33

Figure 3.4: Performance Change throughout Test Machines

This work shows that GPU is a good choice to amplify performance of AES algo-

rithm. It is easy to build-up a beowulf cluster using second hand cheap computers.

Many nodes might give great performance but increasing number of nodes won’t

increase speedup linearly. In parallel computing, speedup increases exponentially

growth but at some peak point its growth will start slowing exponentially accord-

ing to Amdahl’s law[48]. So, buying a lot of nodes for a cluster won’t be e�cient.

Also today, end users can easily a↵ord to buy a brand new GPU. Prices are in

an acceptable range and GPUs show better performance than clusters. If the

aim is to increase performance of an every day application’s encryption (like web

browsers etc), GPU is a good choice, but, if the purpose of encryption is much

more important (such as military documents) and the data has very big sizes,

buying a supercomputer could be an alternative option.

3.3 SUGGESTIONS FOR FUTURE WORK

In order to increase performance, instead of Rijndael algorithm in Appendix A.1,

an optimized version should be used for parallelization. Also, optimization can

be done using assembly commands.

Stream library should be added to CUDA implementation, parallelly running

kernels should also increase performance.

34

Figure 3.5: Speedup Change Throughout Implementation Approaches

Multiple graphics cards with SLI technology should be used and multiple kernels

should be run on di↵erent cards parallelly [33]. After successful implementation,

stream should also be implemented, then, algorithm can take full advantage of

hardware.

CUDA aware MPI library should also be tested. CUDA aware MPI library allows

developer to use CUDA abilities with MPI extensions. Through this library, it is

possible to build-up a GPU powered cluster. Developer might use both power of

GPUs and CPUs of every node in cluster. Implementation of CUDA aware MPI

might possibly increase performance of AES algorithm [32].

35

REFERENCES

[1] M.ARMBRUST, A.FOX, R.GRIFFITH, A.D.JOSEPH,

R.H.KATZ, A.KONWINSKI, G.LEE, D.A.PATTERSON,

A.RABKIN, I.STOICA, M.ZAHARIA, (2009), Above the Clouds:

A Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-

2009-28, University of California, Berkeley

[2] K.IWAI, N.NISHIKAWA, T.KURUKAWA, (2012), Acceleration of

AES Encryption on CUDA GPU, International Journal of Networking and

Computing, Vol.2 No.1, 131-145

[3] Retrieved from http://www.arcos.inf.uc3m.es/˜ii ac2 en/dokuwiki/lib/exe/f-

etch.php?id=slides&cache=cache&media=lecture2 cuda spring 2010.ppt on

2013-08-27

[4] K.IWAI, T.KURUKAWA, N.NISHIKAWA, (2010), AES Encryption

Implementation on CUDA GPU and Its Analysis, First International Con-

ference on Networking and Computing, Hangzhou

[5] T.R.DANIEL, S.MIRCEA, (2010), AES on GPU Using CUDA, European

Conference for the Applied Mathematics and Informatics, Minnesota

[6] Retrieved from http://www.mcs.anl.gov/research/projects/mpi/ on 2013-08-

13

[7] Retrieved from http://www.cs.bc.edu/˜straubin/cs381-05/blockciphers/rijnd

ael ingles2004.swf on 2013-02-13

[8] Retrieved from http://boinc.berkeley.edu/ on 2013-02-17

36

[9] H.LIPMAA, P.ROGAWAY, D.WAGNER, (2000), Comments to NIST

concerning AES Modes of Operations: CTR-Mode Encryption Symmetric

Key Block Cipher Modes of Operation Workshop, Baltimore, Maryland

[10] Retrieved from https://www.coursera.org/ on 2013-07-23

[11] H.FEISTEL, (May 1973), Cryptography and Computer Privacy, Scientific

American Vol.288, Number 5

[12] Retrieved from http://cryptozine.blogspot.com/2008/05/brief-history-of-

cryptography.html on 2013-07-19

[13] J.SANDERS, E.KANDROT, (2011), CUDA by Example, Addison-

Wesley, Michigan

[14] S.A.MANAVSKI, (2007), CUDA Compatible GPU as an E�cient Hard-

ware Accelerator for AES Cryptography, International Conference on Signal

Processing and Communications, Dubai

[15] S.COOK, (2013), CUDA Programming a Developer’s Guide to Parallel

Computing with GPUs, Elsevier Inc., Waltham

[16] Retrieved from http://www.daviddfriedman.com/Libertarian/Why Crypto M-

atters.html on 2013-07-22

[17] A.D.BIAGIO, A.BARENGHI, G.AGOSTA, G.PELOSI, (2009), De-

sign of a Parallel AES for Graphics Hardware Using the CUDA Framework,

Parallel & Distributed Processing, Rome

[18] Retrieved from http://www.phy.duke.edu/˜rgb/Beowulf/beowulf book/beowul-

f book on 2013-08-17

[19] NIST (2001), Federal Information - Processing Standards Publication 197,

National Institute of Standards and Technology

[20] Retrieved from http://research.google.com/pubs/DistributedSystemsandParal-

lelComputing.html on 2013-05-12

37

[21] A.J.MENEZES, P.C.V.OORSCHOT, S.A.VANSTONE, (2001),

Handbook of Applied Cryptography, CRC Press, Florida

[22] M.KIPPER, J.SLAVKIN, D.DENISENKO, (2009), Implementing AES

on GPU Final Report, University of Toronto, Toronto

[23] P.PACHECO, (2011), Introduction to Parallel Programming Elsevier Inc.,

Burlingron

[24] Retrieved from http://www.khronos.org/opencl/ on 2013-03-22

[25] Retrieved from https://computing.llnl.gov/tutorials/parallel comp/ on 2013-

08-02

[26] W.DIFFIE, M.E.HELLMAN, (1976), Multiuser Cryptographic Tech-

niques, Stanford University, National Computer Conference

[27] Message Passing Interface Forum (2009), MPI: A Message-Passing In-

terface Standard, University of Tennessee, Tennessee

[28] M.SNIR, S.OTTO, S.HUSS-LEDERMAN, D.WALKER,

J.DONGARRA, (1996), MPI: The Complete Reference, MIT Press,

London

[29] Nvidia CUDA C Programming Guide Version 5.5, (2013), Nvidia,

California

[30] Nvidia OpenCL Programming Guide for the CUDA Architecture

Version 2.3, (2009), Nvidia, California

[31] Retrieved from https://developer.nvidia.com/what-cuda on 2013-01-29

[32] Retrieved from https://developer.nvidia.com/content/introduction-cuda-

aware-mpi on 2013-08-27

[33] Retrieved from http://www.nvidia.com/object/sli-campaign.html on 2013-01-

17

38

[34] Retrieved from http://cs.nyu.edu/courses/spring12/CSCI-GA.3033-

012/lecture6.pdf on 2013-08-30

[35] A.SILBERSCHATZ, P.B.GALVIN, G.GAGNE, (2010), Operating

System Concepts, John Wiley & Sons, Je↵erson City

[36] White Paper, OpenCLTM : The Future of Accelerated Application

Performance Is Now (2011), AMD, California

[37] Ö.PEKÇAĞLIYAN, N.SARAN (2013), Parallelism of AES Algorithm

via MPI, 6th MTS Seminar, Ankara

[38] D.LE, J.CHANG, X.GOU, A.ZHANG, C.LU, (2010), Parallel AES

Algorithm for Fast Data Encryption on GPU, 2nd International Conference

on Computer Engineering and Technology, Chengdu

[39] W.BIRLECKI, D.BURAK, (2005), Parallelization of the AES Algorithm,

4th WSEAS International Conference on Information Security, Canary Islands

[40] J.ORTEGA, H.TREFFTZ, C.TREFFTZ, (2011), Parallelizing AES on

Multi-cores and GPUs, IEEE International Conference on Electro/Informa-

tion Technology (EIT), Minnesota

[41] U.K.PRODHAN, A.H.M.S.PARVEZ, Md I.HUSSAIN, Y.F.RUMI,

Md A.HOSSAIN (2012), Performance Analysis Of Parallel Implementa-

tion Of Advanced Encryption Standard (Aes) Over Serial Implementation

IJITS Vol.2, No.6, November 2012

[42] Retrieved from http://www.philzimmermann.com/ on 2013-08-20

[43] Retrieved from http://raviranjankr.wordpress.com/ on 2013-08-22

[44] M.DWORKIN, (2001), Recommendation for Block Cipher Modes of Op-

eration Methods and Techniques, NIST Special Publication 800-38A 2001

Edition

[45] D.KAHN, (1973) The Codebreakers, Sphere; New edition

39

[46] J.DAEMEN, V.RIJMEN(2002), The Design of Rijndael: AES - The Ad-

vanced Encryption Standard Springer, Germany.

[47] P.J.DENNING, J.B.DENNIS, (2010), The Profession of IT The Resur-

gence of Parallelism, Communications of the ACM, June 2010 Vol.53 No.6,

30-32

[48] Retrieved from http://siber.cankaya.edu.tr/ozdogan/ on 2013-03-12

[49] Retrieved from http://www.top500.org on 2013-09-02

[50] Retrieved from http://www.cs.umd.edu/projects/omega/ on 2013-08-30

[51] Retrieved from http://www.volunteer-computing.org/EN/volunteer-

computing-in-30-sec.html on 2013-08-12

[52] Retrieved from http://ei.cs.vt.edu/ history/Parallel.html on 2013-07-20

[53] Y.CHEN, V.PAXSON, R.H.KATZ, (2010), What’s New About Cloud

Computing Security?, Technical Report No. UCB/EECS-2010-5, University

of California, Berkeley

[54] Retrieved from http://www.wikipedia.org on 2013-09-04

[55] Retrieved from http://www.wisegeek.org/what-is-a-supercomputer.html on

2013-08-13

40

APPENDIX A

RIJNDAEL ALGORITHM

Listing A.1: Rijndael Algorithm

// R i j nda e l code August 01

//

// author : Vincent Rijmen

// This code i s based on the o f f i c i a l r e f e r e n c e code

// by Paulo Barre to and Vincent Rijmen

//

// This code i s p l a c e d in t h e p u b l i c domain .

// Without any warranty o f f i t n e s s f o r any purpose

//===

#include<s t d i o . h>

#include<s t d l i b . h>

us ing namespace std ;

//===

typedef unsigned char word8 ;

typedef unsigned int word32 ;

//===

// The t a b l e Lo g t a b l e and A l o g t a b l e are used to perform

// mu l t i p l i c a t i o n in GF(256)

//===

word8 Logtable [2 5 6] = {
0 , 0 , 25 , 1 , 50 , 2 , 26 , 198 ,

75 , 199 , 27 , 104 , 51 , 238 , 223 , 3 ,

100 , 4 , 224 , 14 , 52 , 141 , 129 , 239 ,

76 , 113 , 8 , 200 , 248 , 105 , 28 , 193 ,

125 , 194 , 29 , 181 , 249 , 185 , 39 , 106 ,

77 , 228 , 166 , 114 , 154 , 201 , 9 , 120 ,

101 , 47 , 138 , 5 , 33 , 15 , 225 , 36 ,

18 , 240 , 130 , 69 , 53 , 147 , 218 , 142 ,

150 , 143 , 219 , 189 , 54 , 208 , 206 , 148 ,

19 , 92 , 210 , 241 , 64 , 70 , 131 , 56 ,

102 , 221 , 253 , 48 , 191 , 6 , 139 , 98 ,

179 , 37 , 226 , 152 , 34 , 136 , 145 , 16 ,

126 , 110 , 72 , 195 , 163 , 182 , 30 , 66 ,

58 , 107 , 40 , 84 , 250 , 133 , 61 , 186 ,

43 , 121 , 10 , 21 , 155 , 159 , 94 , 202 ,

78 , 212 , 172 , 229 , 243 , 115 , 167 , 87 ,

175 , 88 , 168 , 80 , 244 , 234 , 214 , 116 ,

79 , 174 , 233 , 213 , 231 , 230 , 173 , 232 ,

44 , 215 , 117 , 122 , 235 , 22 , 11 , 245 ,

89 , 203 , 95 , 176 , 156 , 169 , 81 , 160 ,

127 , 12 , 246 , 111 , 23 , 196 , 73 , 236 ,

216 , 67 , 31 , 45 , 164 , 118 , 123 , 183 ,

204 , 187 , 62 , 90 , 251 , 96 , 177 , 134 ,

59 , 82 , 161 , 108 , 170 , 85 , 41 , 157 ,

151 , 178 , 135 , 144 , 97 , 190 , 220 , 252 ,

188 , 149 , 207 , 205 , 55 , 63 , 91 , 209 ,

83 , 57 , 132 , 60 , 65 , 162 , 109 , 71 ,

20 , 42 , 158 , 93 , 86 , 242 , 211 , 171 ,

68 , 17 , 146 , 217 , 35 , 32 , 46 , 137 ,

180 , 124 , 184 , 38 , 119 , 153 , 227 , 165 ,

103 , 74 , 237 , 222 , 197 , 49 , 254 , 24 ,

13 , 99 , 140 , 128 , 192 , 247 , 112 , 7

} ;

//===

word8 Alogtab le [2 5 6] = {

A1

1 , 3 , 5 , 15 , 17 , 51 , 85 , 255 ,

26 , 46 , 114 , 150 , 161 , 248 , 19 , 53 ,

95 , 225 , 56 , 72 , 216 , 115 , 149 , 164 ,

247 , 2 , 6 , 10 , 30 , 34 , 102 , 170 ,

229 , 52 , 92 , 228 , 55 , 89 , 235 , 38 ,

106 , 190 , 217 , 112 , 144 , 171 , 230 , 49 ,

83 , 245 , 4 , 12 , 20 , 60 , 68 , 204 ,

79 , 209 , 104 , 184 , 211 , 110 , 178 , 205 ,

76 , 212 , 103 , 169 , 224 , 59 , 77 , 215 ,

98 , 166 , 241 , 8 , 24 , 40 , 120 , 136 ,

131 , 158 , 185 , 208 , 107 , 189 , 220 , 127 ,

129 , 152 , 179 , 206 , 73 , 219 , 118 , 154 ,

181 , 196 , 87 , 249 , 16 , 48 , 80 , 240 ,

11 , 29 , 39 , 105 , 187 , 214 , 97 , 163 ,

254 , 25 , 43 , 125 , 135 , 146 , 173 , 236 ,

47 , 113 , 147 , 174 , 233 , 32 , 96 , 160 ,

251 , 22 , 58 , 78 , 210 , 109 , 183 , 194 ,

93 , 231 , 50 , 86 , 250 , 21 , 63 , 65 ,

195 , 94 , 226 , 61 , 71 , 201 , 64 , 192 ,

91 , 237 , 44 , 116 , 156 , 191 , 218 , 117 ,

159 , 186 , 213 , 100 , 172 , 239 , 42 , 126 ,

130 , 157 , 188 , 223 , 122 , 142 , 137 , 128 ,

155 , 182 , 193 , 88 , 232 , 35 , 101 , 175 ,

234 , 37 , 111 , 177 , 200 , 67 , 197 , 84 ,

252 , 31 , 33 , 99 , 165 , 244 , 7 , 9 ,

27 , 45 , 119 , 153 , 176 , 203 , 70 , 202 ,

69 , 207 , 74 , 222 , 121 , 139 , 134 , 145 ,

168 , 227 , 62 , 66 , 198 , 81 , 243 , 14 ,

18 , 54 , 90 , 238 , 41 , 123 , 141 , 140 ,

143 , 138 , 133 , 148 , 167 , 242 , 13 , 23 ,

57 , 75 , 221 , 124 , 132 , 151 , 162 , 253 ,

28 , 36 , 108 , 180 , 199 , 82 , 246 , 1

} ;

//===

word8 S [2 5 6] = {
99 , 124 , 119 , 123 , 242 , 107 , 111 , 197 ,

48 , 1 , 103 , 43 , 254 , 215 , 171 , 118 ,

202 , 130 , 201 , 125 , 250 , 89 , 71 , 240 ,

173 , 212 , 162 , 175 , 156 , 164 , 114 , 192 ,

183 , 253 , 147 , 38 , 54 , 63 , 247 , 204 ,

52 , 165 , 229 , 241 , 113 , 216 , 49 , 21 ,

4 , 199 , 35 , 195 , 24 , 150 , 5 , 154 ,

7 , 18 , 128 , 226 , 235 , 39 , 178 , 117 ,

9 , 131 , 44 , 26 , 27 , 110 , 90 , 160 ,

82 , 59 , 214 , 179 , 41 , 227 , 47 , 132 ,

83 , 209 , 0 , 237 , 32 , 252 , 177 , 91 ,

106 , 203 , 190 , 57 , 74 , 76 , 88 , 207 ,

208 , 239 , 170 , 251 , 67 , 77 , 51 , 133 ,

69 , 249 , 2 , 127 , 80 , 60 , 159 , 168 ,

81 , 163 , 64 , 143 , 146 , 157 , 56 , 245 ,

188 , 182 , 218 , 33 , 16 , 255 , 243 , 210 ,

205 , 12 , 19 , 236 , 95 , 151 , 68 , 23 ,

196 , 167 , 126 , 61 , 100 , 93 , 25 , 115 ,

96 , 129 , 79 , 220 , 34 , 42 , 144 , 136 ,

70 , 238 , 184 , 20 , 222 , 94 , 11 , 219 ,

224 , 50 , 58 , 10 , 73 , 6 , 36 , 92 ,

194 , 211 , 172 , 98 , 145 , 149 , 228 , 121 ,

231 , 200 , 55 , 109 , 141 , 213 , 78 , 169 ,

108 , 86 , 244 , 234 , 101 , 122 , 174 , 8 ,

186 , 120 , 37 , 46 , 28 , 166 , 180 , 198 ,

232 , 221 , 116 , 31 , 75 , 189 , 139 , 138 ,

112 , 62 , 181 , 102 , 72 , 3 , 246 , 14 ,

97 , 53 , 87 , 185 , 134 , 193 , 29 , 158 ,

225 , 248 , 152 , 17 , 105 , 217 , 142 , 148 ,

155 , 30 , 135 , 233 , 206 , 85 , 40 , 223 ,

140 , 161 , 137 , 13 , 191 , 230 , 66 , 104 ,

65 , 153 , 45 , 15 , 176 , 84 , 187 , 22

} ;

//===

word8 Si [2 5 6] = {
82 , 9 , 106 , 213 , 48 , 54 , 165 , 56 ,

191 , 64 , 163 , 158 , 129 , 243 , 215 , 251 ,

124 , 227 , 57 , 130 , 155 , 47 , 255 , 135 ,

52 , 142 , 67 , 68 , 196 , 222 , 233 , 203 ,

84 , 123 , 148 , 50 , 166 , 194 , 35 , 61 ,

A2

238 , 76 , 149 , 11 , 66 , 250 , 195 , 78 ,

8 , 46 , 161 , 102 , 40 , 217 , 36 , 178 ,

118 , 91 , 162 , 73 , 109 , 139 , 209 , 37 ,

114 , 248 , 246 , 100 , 134 , 104 , 152 , 22 ,

212 , 164 , 92 , 204 , 93 , 101 , 182 , 146 ,

108 , 112 , 72 , 80 , 253 , 237 , 185 , 218 ,

94 , 21 , 70 , 87 , 167 , 141 , 157 , 132 ,

144 , 216 , 171 , 0 , 140 , 188 , 211 , 10 ,

247 , 228 , 88 , 5 , 184 , 179 , 69 , 6 ,

208 , 44 , 30 , 143 , 202 , 63 , 15 , 2 ,

193 , 175 , 189 , 3 , 1 , 19 , 138 , 107 ,

58 , 145 , 17 , 65 , 79 , 103 , 220 , 234 ,

151 , 242 , 207 , 206 , 240 , 180 , 230 , 115 ,

150 , 172 , 116 , 34 , 231 , 173 , 53 , 133 ,

226 , 249 , 55 , 232 , 28 , 117 , 223 , 110 ,

71 , 241 , 26 , 113 , 29 , 41 , 197 , 137 ,

111 , 183 , 98 , 14 , 170 , 24 , 190 , 27 ,

252 , 86 , 62 , 75 , 198 , 210 , 121 , 32 ,

154 , 219 , 192 , 254 , 120 , 205 , 90 , 244 ,

31 , 221 , 168 , 51 , 136 , 7 , 199 , 49 ,

177 , 18 , 16 , 89 , 39 , 128 , 236 , 95 ,

96 , 81 , 127 , 169 , 25 , 181 , 74 , 13 ,

45 , 229 , 122 , 159 , 147 , 201 , 156 , 239 ,

160 , 224 , 59 , 77 , 174 , 42 , 245 , 176 ,

200 , 235 , 187 , 60 , 131 , 83 , 153 , 97 ,

23 , 43 , 4 , 126 , 186 , 119 , 214 , 38 ,

225 , 105 , 20 , 99 , 85 , 33 , 12 , 125

} ;

//===

word32 Rc [3 0] = {
0x00 , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0x1B ,

0x36 , 0x6C , 0xD8 , 0xAB, 0x4D , 0x9A , 0x2F , 0x5E , 0xBC, 0x63 ,

0xC6 , 0x97 , 0x35 , 0x6A , 0xD4 , 0xB3 , 0x7D , 0xFA, 0xEF , 0xC5

} ;

//===

#define MAXBC 8

#define MAXKC 8

#define MAXROUNDS 14

//===

stat ic word8 s h i f t s [5] [4] = {
0 ,1 ,2 ,3 ,

0 ,1 ,2 ,3 ,

0 ,1 ,2 ,3 ,

0 ,1 ,2 ,4 ,

0 , 1 , 3 , 4} ;

//===

stat ic int numrounds [5] [5] = {
10 ,11 ,12 ,13 ,14 ,

11 ,11 ,12 ,13 ,14 ,

12 ,12 ,12 ,13 ,14 ,

13 ,13 ,13 ,13 ,14 ,

14 ,14 ,14 ,14 ,14} ;

//===

int BC;

int KC;

int ROUNDS;

//===

// mu l t i p l y two e l emen t s o f GF(256)

// r e q u i r e d f o r MixColumns and InvMicolumns

//===

word8 mul (word8 a , word8 b)

{

i f (a&&b)

return Alogtab le [(Logtable [a] + Logtable [b]) % 25 5] ;

else

return 0 ;

}
//===

// XOR cor r e spond ing t e x t i npu t and round key inpu t b y t e s

//===

A3

void AddRoundKey(word8 a [4] [MAXBC] , word8 rk [4] [MAXBC])

{
int i ;

int j ;

for (i =0; i <4; i++)

{
for (j =0; j<BC; j++)

{
a [i] [j] ˆ= rk [i] [j] ;

}
}

}
//===

// Rep lace eve ry b y t e o f t h e i npu t by t h e b y t e a t t h a t p l a c e

// in t h e non�l i n e a r S�box

//===

void SubBytes (word8 a [4] [MAXBC] , word8 box [2 5 6])

{
int i ;

int j ;

for (i =0; i <4; i++)

{
for (j =0; j<BC; j++)

{
a [i] [j] = box [a [i] [j]] ;

}
}

}
//===

// Row 0 remains unchanged

// The o t h e r t h r e e rows are s h i f t e d a v a r i a d l e amount

//===

void ShiftRows (word8 a [4] [MAXBC] , word8 d)

{
word8 tmp [MAXBC] ;

int i ;

int j ;

i f (d==0)

{
for (i =1; i <4; i++)

{
for (j =0; j<BC; j++)

{

tmp [j] = a [i] [(j + s h i f t s [BC�4] [i]) % BC] ;

}
for (j =0; j<BC; j++)

{
a [i] [j] = tmp [j] ;

}
}

}
else

{
for (i =1; i <4; i++)

{
for (j =0; j<BC; j++)

{

tmp [j]=a [i] [(BC + j � s h i f t s [BC�4] [i]) % BC] ;

}

for (j =0; j<BC; j++)

{
a [i] [j] = tmp [j] ;

}
}

}
}
//===

// Mix t h e f ou r b y t e s o f e v e ry column in a l i n e a r way

//===

A4

void MixColumns (word8 a [4] [MAXBC])

{
word8 b [4] [MAXBC] ;

int i ;

int j ;

for (j =0; j<BC; j++)

{
for (i =0; i <4; i++)

{
b [i] [j] = mul (2 , a [i] [j]) ˆmul (3 , a [(i +1)%4][j]) ˆa [(i +2)%4][j] ˆ a [(i +3)%4][j] ;

}
}

for (i =0; i <4; i++)

{
for (j =0; j<BC; j++)

{
a [i] [j] = b [i] [j] ;

}
}

}
//===

// Mix t h e f ou r b y t e s o f e v e ry column in a l i n e a r way

// This i s t h e o p p o s i t e o p e r a t i on o f Mixcolumns

//===

void InvMixcolumns (word8 a [4] [MAXBC])

{
word8 b [4] [MAXBC] ;

int i ;

int j ;

for (j =0; j<BC; j++)

{
for (i =0; i <4; i++)

{
b [i] [j] = mul (0 xe , a [i] [j]) ˆ mul (0xb , a [(i + 1) % 4] [j])

ˆ mul (0xd , a [(i + 2) % 4] [j]) ˆ mul (0x9 , a [(i + 3) % 4] [j]) ;

}
}
for (i =0; i <4; i++)

{
for (j =0; j<BC; j++)

{
a [i] [j] = b [i] [j] ;

}
}

}
//===

int KeyExpansion (word8 k [4] [MAXKC] , word8 w[MAXROUNDS+1] [4] [MAXBC])

{
// Ca l c u l a t e t h e r e q u i r e d round keys

int i ;

int j ;

int t ;

int RCpointer = 1 ;

word8 tk [4] [MAXKC] ;

for (j =0; j<KC; j++)

{
for (i =0; i <4; i++)

{
tk [i] [j] = k [i] [j] ;

}
}
t=0;

// copy v a l u e s i n t o round key array

for (j =0; (j < KC) && (t < (ROUNDS + 1) ∗ BC) ; j++, t++)

{
for (i =0; i <4; i++)

{
w[t / BC] [i] [t % BC] = tk [i] [j] ;

}
}
while (t<(ROUNDS+1)∗BC)

{

A5

// wh i l e not enough round key ma t e r i a l c a l c u l a t e d ,

// c a l c u l a t e new v a l u e s

for (i =0; i <4; i++)

{
tk [i] [0] ˆ= S [tk [(i +1)%4][KC�1]] ;

}
tk [0] [0] ˆ= Rc [RCpointer++] ;

i f (KC <= 6)

{
for (j =1; j<KC; j++)

{
for (i =0; i <4; i++)

{
tk [i] [j] ˆ= tk [i] [j �1] ;

}
}

}
else

{
for (j =1; j<4 ; j++)

{
for (i =0; i <4; i++)

{
tk [i] [j] ˆ=tk [i] [j �1] ;

}
}
for (i =0; i <4; i++)

{
tk [i] [4] ˆ= S [tk [i] [3]] ;

}
for (j =5; j<KC; j++)

{
for (i =0; i <4; i++)

{
tk [i] [j] ˆ= tk [i] [j �1] ;

}
}

}
// copy v a l u e s i n t o round key array

for (j =0; (j<KC) && (t<(ROUNDS+1)∗BC) ; j++,t++)

{
for (i =0; i <4; i++)

{
w[t /BC] [i] [t%BC] = tk [i] [j] ;

}
}

}
return 0 ;

}

int Encrypt (word8 a [4] [MAXBC] , word8 rk [MAXROUNDS+1] [4] [MAXBC])

{
int r ;

AddRoundKey(a , rk [0]) ;

for (r=1; r<ROUNDS; r++)

{
SubBytes (a , S) ;

ShiftRows (a , 0) ;

MixColumns (a) ;

AddRoundKey(a , rk [r]) ;

}
// l a s t round i s s p e c i a l : t h e r e i s no MixColumns

SubBytes (a , S) ;

ShiftRows (a , 0) ;

AddRoundKey(a , rk [ROUNDS]) ;

return 0 ;

}

int Decrypt (word8 a [4] [MAXBC] , word8 rk [MAXROUNDS+1] [4] [MAXBC])

{
int r ;

AddRoundKey(a , rk [ROUNDS]) ;

SubBytes (a , S i) ;

ShiftRows (a , 1) ;

A6

for (r=ROUNDS�1; r>0; r��)

{
AddRoundKey(a , rk [r]) ;

InvMixcolumns (a) ;

SubBytes (a , S i) ;

ShiftRows (a , 1) ;

}
AddRoundKey(a , rk [0]) ;

return 0 ;

}

int main ()

{
int i ,mmm;

int j ;

word8 a [4] [MAXBC] ;

word8 rk [MAXROUNDS+1] [4] [MAXBC] ;

word8 sk [4] [MAXKC] ;

for (KC=4; KC<=8; KC++)

{
for (BC=4; BC<=8; BC++)

{
{

ROUNDS = numrounds [KC�4] [BC�4] ;

}
for (j =0; j<BC; j++)

{
for (i =0; i <4; i++)

{
a [i] [j] = 0 ;

}
}
for (j =0; j<KC; j++)

{
for (i =0; i <4; i++)

{
sk [i] [j] = 0 ;

}
}
KeyExpansion (sk , rk) ;

Encrypt (a , rk) ;

p r i n t f (” block length %d key length %d\n” , 32∗BC, 32∗KC) ;

for (j =0; j<BC; j++)

{
for (i =0; i <4; i++)

{
p r i n t f (”%02X” , a [i] [j]) ;

}
}
p r i n t f (”\n”) ;

Decrypt (a , rk) ;

for (j =0; j<BC; j++)

{
for (i =0; i <4; i++)

{
p r i n t f (”%02X” , a [i] [j]) ;

}
}
p r i n t f (”\n”) ;

p r i n t f (”\n”) ;

for (j =0; j<BC; j++)

{
for (i =0; i <4; i++)

{
a [i] [j] = i ;

}
}
Encrypt (a , rk) ;

for (j =0; j<BC; j++)

{
for (i =0; i <4; i++)

{

A7

p r i n t f (”%02X” , a [i] [j]) ;

}
}
p r i n t f (”\n”) ;

Decrypt (a , rk) ;

for (j =0; j<BC; j++)

{
for (i =0; i <4; i++)

{
p r i n t f (”%02X” , a [i] [j]) ;

}
}
p r i n t f (”\n”) ;

p r i n t f (”\n”) ;

}
}
// system (” pause ”) ;

return 0 ;

}

A8

APPENDIX B

CTR MODE

Listing B.1: CTR Mode

int main ()

{
int i ;

int j ;

unsigned char rk [MAXROUNDS+1] [4] [MAXBC] ;

unsigned char sk [4] [MAXKC] = {{0x2b , 0 x28 , 0 xab , 0 x09 } ,{0 x7e , 0 xae , 0 xf7 , 0 xc f } ,{0x15 , 0

xd2 , 0 x15 , 0 x4f } ,{0x16 , 0 xa6 , 0 x88 , 0 x3c }} ;

//CASE 1 Encrypt

// uns i gned char a [4] [MAXBC] = {{0 x6b , 0 x2e , 0 xe9 , 0 x73 } ,{0 xc1 , 0 x40 , 0 x3d , 0 x93 } ,{0 xbe , 0

x9f , 0 x7e , 0 x17 } ,{0 xe2 , 0 x96 , 0 x11 , 0 x2a }} ;

// uns i gned char i v [4] [MAXBC] = {{0 xf0 , 0 x f4 , 0 x f8 , 0 x f c } ,{0 xf1 , 0 x f5 , 0 x f9 , 0 x f d } ,{0 xf2 , 0

x f6 , 0 x fa , 0 x f e } ,{0 xf3 , 0 x f7 , 0 x f b , 0 x f f }} ;

// uns i gned char i v 2 [4] [MAXBC] = {{0 xf0 , 0 x f4 , 0 x f8 , 0 x f c } ,{0 xf1 , 0 x f5 , 0 x f9 , 0 x f d } ,{0 xf2 , 0

x f6 , 0 x fa , 0 x f e } ,{0 xf3 , 0 x f7 , 0 x f b , 0 x f f }} ;

//CASE 2

// uns igned char a [4] [MAXBC] = {{0 xae , 0 x2d , 0 x8a , 0 x57 } ,{0 x1e , 0 x03 , 0 xac , 0 x9c } ,{0 x9e , 0

xb7 , 0 x6f , 0 xac } ,{0 x45 , 0 xaf , 0 x8e , 0 x51 }} ;

// uns i gned char i v [4] [MAXBC] = {{0 xf0 , 0 x f4 , 0 x f8 , 0 x f c } ,{0 xf1 , 0 x f5 , 0 x f9 , 0 x f d } ,{0 xf2 , 0

x f6 , 0 x fa , 0 x f f } ,{0 xf3 , 0 x f7 , 0 x f b , 0 x00 }} ;

// uns i gned char i v 2 [4] [MAXBC] = {{0 xf0 , 0 x f4 , 0 x f8 , 0 x f c } ,{0 xf1 , 0 x f5 , 0 x f9 , 0 x f d } ,{0 xf2 , 0

x f6 , 0 x fa , 0 x f f } ,{0 xf3 , 0 x f7 , 0 x f b , 0 x00 }} ;

//CASE 3

// uns igned char a [4] [MAXBC] = {{0x30 , 0 xc8 , 0 x1c , 0 x46 } ,{0 xa3 , 0 x5c , 0 xe4 , 0 x11 } ,{0 xe5 , 0

x fb , 0 xc1 , 0 x19 } ,{0 x1a , 0 x0a , 0 x52 , 0 x e f }} ;

// uns i gned char i v [4] [MAXBC] = {{0 xf0 , 0 x f4 , 0 x f8 , 0 x f c } ,{0 xf1 , 0 x f5 , 0 x f9 , 0 x f d } ,{0 xf2 , 0

x f6 , 0 x fa , 0 x f f } ,{0 xf3 , 0 x f7 , 0 x f b , 0 x01 }} ;

// uns i gned char i v 2 [4] [MAXBC] = {{0 xf0 , 0 x f4 , 0 x f8 , 0 x f c } ,{0 xf1 , 0 x f5 , 0 x f9 , 0 x f d } ,{0 xf2 , 0

x f6 , 0 x fa , 0 x f f } ,{0 xf3 , 0 x f7 , 0 x f b , 0 x01 }} ;

//CASE 4

unsigned char a [4] [MAXBC] = {{0 xf6 , 0 x9f , 0 x24 , 0 x45 } ,{0 xdf , 0 x4f , 0 x9b , 0 x17 } ,{0xad , 0

x2b , 0 x41 , 0 x7b} ,{0 xe6 , 0 x6c , 0 x37 , 0 x10 }} ;

unsigned char i v [4] [MAXBC] = {{0 xf0 , 0 xf4 , 0 xf8 , 0 x f c } ,{0 xf1 , 0 xf5 , 0 xf9 , 0 xfd } ,{0 xf2 , 0

xf6 , 0 xfa , 0 x f f } ,{0 xf3 , 0 xf7 , 0 xfb , 0 x02 }} ;

unsigned char iv2 [4] [MAXBC] = {{0 xf0 , 0 xf4 , 0 xf8 , 0 x f c } ,{0 xf1 , 0 xf5 , 0 xf9 , 0 xfd } ,{0 xf2 , 0

xf6 , 0 xfa , 0 x f f } ,{0 xf3 , 0 xf7 , 0 xfb , 0 x02 }} ;

BC = 4 , KC = 4 ;

ROUNDS = numrounds [KC�4] [BC�4] ;

KeyExpansion (sk , rk) ;

Encrypt (iv , rk) ;

p r i n t f (” block length %d key length %d\n\nEncrypted data : ” , 32∗BC, 32∗KC) ;

for (j =0; j <4; j++)

{
for (i =0; i <4; i++)

{
i v [i] [j] ˆ= a [i] [j] ;

p r i n t f (”%02X” , iv [i] [j]) ;

}
}

p r i n t f (”\n\n\nDecrypted data : ”) ;

Encrypt (iv2 , rk) ;

for (j =0; j <4; j++)

{
for (i =0; i <4; i++)

{

B1

i v [i] [j] ˆ= iv2 [i] [j] ;

p r i n t f (”%02X” , iv [i] [j]) ;

}
}
p r i n t f (”\n”) ;

p r i n t f (”\n”) ;

p r i n t f (”\n”) ;

return 0 ;

}

B2

APPENDIX C

HEAD NODE PART OF THE MPI IMPLEMENTATION

Listing C.1: Head Node Part of the MPI Implementation

void c t r i v x o r (double ctr , unsigned char i v [4] [MAXBC] , int i = 0 , int j = 0 , int p = 0)

{
i f (j != BC)

{
double power ;

int r e s = 0 ;

int newctr ;

int newp ;

i f (p == 0 && j == (BC � 1) && i == 3)

{
newp = 1 ;

power = 10 ;

r e s = fmod (ctr , power) ;

i v [i] [j] ˆ= r e s ;

i = 0 ;

j++;

return ;

}
i f (p == 0)

{
newp = 4 ∗ BC � 1 ;

}
else

{
newp = p ;

}
power = (int)pow((double) 10 , newp) ;

r e s = c t r / power ;

i v [i] [j] ˆ= r e s ;

newctr = fmod (ctr , power) ;

i++;

i f (i == 4)

{
i = 0 ;

j++;

}
c t r i v x o r (newctr , iv , i , j , ��newp) ;

}
}

int main (int argc , char∗∗ argv)

{
int i ;

int j ;

int myid ;

unsigned char rk [MAXROUNDS+1] [4] [MAXBC] ;

unsigned char sk [4] [MAXKC] = {{0x2b , 0 x28 , 0 xab , 0 x09 } ,{0 x7e , 0 xae , 0 xf7 , 0 xc f } ,{0x15 , 0

xd2 , 0 x15 , 0 x4f } ,{0x16 , 0 xa6 , 0 x88 , 0 x3c }} ;

unsigned char a [4] [MAXBC] ;

unsigned char i v [4] [MAXBC] = {{0 xf0 , 0 xf4 , 0 xf8 , 0 x f c } ,{0 xf1 , 0 xf5 , 0 xf9 , 0 xfd } ,{0 xf2 , 0

xf6 , 0 xfa , 0 x f e } ,{0 xf3 , 0 xf7 , 0 xfb , 0 x f f }} ;

BC = 4 , KC = 4 ;

ROUNDS = numrounds [KC�4] [BC�4] ;

int st ime = time (0) ;

KeyExpansion (sk , rk) ;

C1

unsigned char iv2 [4] [MAXBC] ;

MPI Init (&argc , &argv) ;

MPI Comm size (MPI COMMWORLD, &wor ldS ize) ;

MPI Comm rank(MPI COMMWORLD,&myid) ;

i f (myid == 0)

{
int i t e r = 0 ;

while (i t e r < 100)

{
ofstream out ;

char t i nyBu f f e r [4∗BC] ;

int f s i z e ;

char ∗ bu f f e r ;

// read data and send i t t o t h e nodes

i f s t r e am in ;

in . open (argv [1] , i o s : : in) ;

in . seekg (0 , i o s : : end) ;

f s i z e = in . t e l l g () ;

in . seekg (0 , i o s : : beg) ;

bu f f e r = (char ∗) mal loc (f s i z e ∗ s izeof (char)) ;

in . read (bu f f e r , f s i z e) ;

MPI Bcast ((void ∗)&f s i z e , 1 , MPI INT , 0 , MPICOMMWORLD) ;

MPI Bcast ((void ∗) bu f f e r , f s i z e , MPI BYTE, 0 , MPICOMMWORLD) ;

//Do own c a l c u l a t i o n s

int c t r = 1 ; //There shou l d be a coun te r i n t e r v a l f o r e ve ry node .

This h e l p s to c r e a t e t h a t i n t e r v a l

out . open (” te s tF i l e1outCrypt ” , i o s : : out) ;

int f i n a l c t r = ((int) c e i l (((double) f s i z e / (4∗BC))) / wor ldS ize) ∗
(myid + 1) ;

while (c t r <= f i n a l c t r)

{
for (j = 0 ; j < BC; j++)

{
for (i = 0 ; i < 4 ; i++)

{
iv2 [i] [j] = iv [i] [j] ;

}
}
c t r i v x o r (ctr , iv2) ;

Encrypt (iv2 , rk) ;

for (i = 0 ; i <= 4∗BC; i++)

{
t i nyBu f f e r [i] = ’ \0 ’ ;

}
j = 0 ;

for (i = 0 ; i < 4∗BC && j < f s i z e ; i++)

{
j = ((c t r � 1) ∗ 4∗BC) + i ;

t i nyBu f f e r [i] = bu f f e r [j] ;

}
for (j = 0 ; j < BC; j++)

{
for (i = 0 ; i < 4 ; i++)

{
a [i] [j] = t inyBu f f e r [j ∗BC+i] ;

iv2 [i] [j] ˆ= a [i] [j] ;

t i nyBu f f e r [j ∗BC+i] = iv2 [i] [j] ;

}
}
out . wr i t e (t inyBuf f e r , 4∗BC) ;

c t r++;

}
f r e e (bu f f e r) ;

// S t a r t r e c e i v i n g from nodes

int n f s i z e ;

char ∗ r e c i e v eBu f f e r ;

MPI Status s t a tu s ;

for (i = 1 ; i < wor ldS ize ; i++)

{
MPI Recv ((void ∗)&n f s i z e , 1 , MPI INT , i , 0 , MPI COMMWORLD,

&s ta tu s) ;

C2

r e c i e v eBu f f e r = (char ∗) mal loc (s izeof (char) ∗ n f s i z e) ;

MPI Recv ((void ∗) r e c i e v eBu f f e r , n f s i z e , MPI BYTE, i , 0 ,

MPI COMMWORLD, &s ta tu s) ;

out . wr i t e (r e c i e v eBu f f e r , n f s i z e) ;

f r e e (r e c i e v eBu f f e r) ;

}

// c l e an th e r e s t

out . f l u s h () ;

out . c l o s e () ;

i t e r++;

}
int etime = time (0) ;

cout<<”Time spent in seconds : ”<<etime � stime<<endl ;

}
else i f (myid != wor ldS ize � 1) //machines o t h e r than f i r s t and l a s t

{
int i t e r = 0 ;

while (i t e r < 100)

{
char t i nyBu f f e r [4∗BC] ;

int f s i z e ;

char ∗ bu f f e r ;

// r e c e i v e data from master

MPI Bcast ((void ∗)&f s i z e , 1 , MPI INT , 0 , MPICOMMWORLD) ;

bu f f e r = (char ∗) mal loc (s izeof (char) ∗ f s i z e) ;

MPI Bcast ((void ∗) bu f f e r , f s i z e , MPI BYTE, 0 , MPICOMMWORLD) ;

//Do Own c a l c u l a t i o n s

int c t r = ((int) c e i l (((double) f s i z e / (4∗BC))) / wor ldS ize) ∗ myid

+ 1 ; //There shou l d be a coun te r i n t e r v a l f o r e ve ry node .

This h e l p s to c r e a t e t h a t i n t e r v a l

int f i n a l c t r = ((int) c e i l (((double) f s i z e / (4∗BC))) / wor ldS ize) ∗
(myid + 1) ;

while (c t r <= f i n a l c t r)

{
for (j = 0 ; j < BC; j++)

{
for (i = 0 ; i < 4 ; i++)

{
iv2 [i] [j] = iv [i] [j] ;

}
}
c t r i v x o r (ctr , iv2) ;

Encrypt (iv2 , rk) ;

for (i = 0 ; i <= 4∗BC; i++)

{
t i nyBu f f e r [i] = ’ \0 ’ ;

}
j = 0 ;

for (i = 0 ; i < 4∗BC && j < f s i z e ; i++)

{
j = ((c t r � 1) ∗ 4∗BC) + i ;

t i nyBu f f e r [i] = bu f f e r [j] ;

}
for (j = 0 ; j < BC; j++)

{
for (i = 0 ; i < 4 ; i++)

{
a [i] [j] = t inyBu f f e r [j ∗BC+i] ;

iv2 [i] [j] ˆ= a [i] [j] ;

t i nyBu f f e r [j ∗BC+i] = iv2 [i] [j] ;

}
}
j = 0 ;

for (i = 0 ; i < 4∗BC && j < f s i z e ; i++)

{
j = ((c t r � 1) ∗ 4∗BC) + i ;

bu f f e r [j] = t inyBu f f e r [i] ;

}
c t r++;

}
// S t a r t s end ing data

int e c t r = c t r ;

C3

c t r = ((int) c e i l (((double) f s i z e / (4∗BC))) / wor ldS ize) ∗ myid +

1 ; //There shou l d be a coun te r i n t e r v a l f o r e ve ry node . This

h e l p s to c r e a t e t h a t i n t e r v a l

int n f s i z e = ((e c t r � 1) ∗ (4∗BC)) � ((c t r � 1) ∗ (4∗BC)) ; //

d i f f e r e n c e o f end s e e k po i n t and head s e e k po i n t . This g i v e s

t o t a l da ta count

char ∗ sendBuf fe r = (char ∗) mal loc (n f s i z e ∗ s izeof (char)) ;

j = 0 ;

for (i = 0 ; i < n f s i z e && j < f s i z e ; i++)

{
j = ((c t r � 1) ∗ 4∗BC) + i ;

sendBuf fe r [i] = bu f f e r [j] ;

}
MPI Send ((void ∗)&n f s i z e , 1 , MPI INT , 0 , 0 , MPICOMMWORLD) ;

MPI Send ((void ∗) (sendBuf fe r) , n f s i z e , MPI BYTE, 0 , 0 ,

MPICOMMWORLD) ;

f r e e (bu f f e r) ;

f r e e (sendBuf fe r) ;

i t e r++;

}
}
else //Man, I am the l a s t node in c l u s t e r

{
int i t e r = 0 ;

while (i t e r < 100)

{
char t i nyBu f f e r [4∗BC] ;

int f s i z e ;

char ∗ bu f f e r ;

char ∗ sendBuf fe r ;

// r e c e i v e data from master

MPI Bcast ((void ∗)&f s i z e , 1 , MPI INT , 0 , MPICOMMWORLD) ;

bu f f e r = (char ∗) mal loc (s izeof (char) ∗ f s i z e) ;

MPI Bcast ((void ∗) bu f f e r , f s i z e , MPI BYTE, 0 , MPICOMMWORLD) ;

//Do own c a l c u l a t i o n s

int i c t r = ((int) c e i l (((double) f s i z e / (4∗BC))) / wor ldS ize) ∗
myid + 1 ; //There shou l d be a coun te r i n t e r v a l f o r e ve ry node

. This h e l p s to c r e a t e t h a t i n t e r v a l

int c t r = i c t r ;

int t read = 0 ;

int read = (wor ldS ize � 1) ∗ ((int) c e i l (((double) f s i z e / (4∗BC)))

/ wor ldS ize) ∗ (4∗BC) ;

int n f s i z e = ((f s i z e � read) / (4 ∗ BC)) ∗ 4 ∗ BC + ((f s i z e � read

) % (4 ∗ BC) == 0?0 :16) ;

sendBuf fe r = (char ∗) mal loc (n f s i z e ∗ s izeof (char)) ;

while (read < f s i z e)

{
for (j = 0 ; j < BC; j++)

{
for (i = 0 ; i < 4 ; i++)

{
iv2 [i] [j] = iv [i] [j] ;

}
}
c t r i v x o r (ctr , iv2) ;

Encrypt (iv2 , rk) ;

t read = f s i z e � read ;

for (i = 0 ; i <= 4∗BC; i++)

{
t i nyBu f f e r [i] = ’ \0 ’ ;

}
i f (t read <= 4∗BC && tread > 0)

{
for (i = 0 ; i < t read && j < f s i z e ; i++)

{
j = ((c t r � 1) ∗ 4∗BC) + i ;

t i nyBu f f e r [i] = bu f f e r [j] ;

}
}
else

{
for (i = 0 ; i < 4∗BC && j < f s i z e ; i++)

{
j = ((c t r � 1) ∗ 4∗BC) + i ;

C4

t i nyBu f f e r [i] = bu f f e r [j] ;

}
}
read += 4∗BC;

for (j = 0 ; j < BC; j++)

{
for (i = 0 ; i < 4 ; i++)

{
a [i] [j] = t inyBu f f e r [j ∗BC+i] ;

iv2 [i] [j] ˆ= a [i] [j] ;

t i nyBu f f e r [j ∗BC+i] = iv2 [i] [j] ;

}
}
for (i = 0 ; i < 4∗BC && j < f s i z e ; i++)

{
j = ((c t r � i c t r) ∗ 4 ∗ BC) + i ;

sendBuf fe r [j] = t inyBu f f e r [i] ;

}
c t r++;

}

// S t a r t s end ing data

MPI Send ((void ∗)&n f s i z e , 1 , MPI INT , 0 , 0 , MPICOMMWORLD) ;

MPI Send ((void ∗) (sendBuf fe r) , n f s i z e , MPI BYTE, 0 , 0 ,

MPICOMMWORLD) ;

f r e e (bu f f e r) ;

f r e e (sendBuf fe r) ;

i t e r++;

}
}

MPI Final ize () ;

return 0 ;

}

C5

APPENDIX D

KERNEL FUNCTION

Listing D.1: Kernel Function

g l o b a l void kerne lCrypt (f loat d , char ∗ buf f e r , int b s i z e) //d i s t h e i n i t i a l i z e r o f

t h e coun te r

{
char t i nyBu f f e r [4∗BC] ;

unsigned char iv2 [4] [MAXBC] ;

unsigned char a [4] [MAXBC] ;

int i ;

int j ;

f loat c t r = ((blockIdx . x ∗ gridDim . y + blockIdx . y) ∗ blockDim . x ∗ blockDim . y) + (

threadIdx . x ∗ blockDim . y + threadIdx . y) + d ; // c a l c u l a t e c t r v a l u e

for (j = 0 ; j < BC; j++)

{
for (i = 0 ; i < 4 ; i++)

{
iv2 [i] [j] = iv [i] [j] ; // save o r i g i n a l IV va l u e

t i nyBu f f e r [j ∗BC+i] = ’ \0 ’ ; // c l e an t i n yBu f f e r b e f o r e use

}
}
c t r i v x o r (ctr , iv2) ; // coun te r i l e i v y i x o r l a

Encrypt (iv2 , rk) ; // enc ryp t ed new i v v a l u e w i th rk

int zgrw = (int) ((4∗BC) ∗ (c t r � d)) ; // th e v a r i a b l e which ho l d s t h e c o o r d i n a t e s

on th e b u f f e r

i f (zgrw < b s i z e) // i f i t i s b i g g e r or e qua l i t means we are out o f bounds and t h i s

might cause prob l ems

{
for (j = 0 ; j < BC; j++)

{
for (i = 0 ; i < 4 ; i++)

{
t i nyBu f f e r [j ∗BC+i] = bu f f e r [zgrw + (j ∗BC+i)] ;

a [i] [j] = t inyBu f f e r [j ∗BC+i] ;

iv2 [i] [j] ˆ= a [i] [j] ; // xor i v w i th Bu f f e r

t i nyBu f f e r [j ∗BC+i] = iv2 [i] [j] ; // F i l l b u f f e r w i th

enc ryp t ed data

bu f f e r [zgrw + (j ∗BC+i)] = t inyBu f f e r [j ∗BC+i] ;

}
}

}
}

D1

APPENDIX E

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Pekçağlıyan, Özgür

Nationality: Turkish (TC)

Date and Place of Birth: 12 December 1985, Ankara

Marital Status: Single

Phone: +90 535 364 22 00

e-mail: ozgur.pekcagliyan@gmail.com

EDUCATION

Degree Institution Year of Graduation

B.Sc. Çankaya Univ.Computer Engineering 2008

High School Private Evrensel High School 2003

WORK EXPERIENCE

Year Place Enrollment

2011-Present Turkish Coast Guard Command Project Manager

2010 Labris Technologies System Administrator & C++ Developer

2009 Alcatel-Lucent C++ Developer

2008-2009 Alcatel-Lucent System Administrator

FOREIGN LANGUAGES

English - Advanced

German - Beginner

PUBLICATIONS

1. Özgür Pekçağlıyan, Nurdan Saran, Parallelism of AES Algorithm via MPI,

6th MTS Seminar, April 2013

E1

2. Özgür Pekçağlıyan, Yusuf Soyman, Parallel Password Cracking Using Brute

Force B.Sc. Thesis Report, Cankaya University, February 2008

HOBBIES

Movies, Karting, Animes.

E2

