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Abstract:  Fresnel integral is modeled with three equivalent functions. The 
first function is derived by considering the sum of the first term of the 

Fresnel integral’s asymptotic expansion ( ){ }xF̂  and an exponential function 
which approaches to infinity at the zero of the Fresnel function’s argument 
and has the properties of a unit step function. The second one is the sum of a 
unit step function and the transition function defined for the simplified 
uniform theory of diffraction. The third function considers directly 

eliminating the infinity coming from ( )xF̂ . The amplitude and the phase of 
Fresnel integral and its equivalent functions are compared numerically. The 
result is applied to the modified theory of physical optics solution of the 
diffraction of edge waves from a half plane problem.        
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1. Introduction 

Fresnel integral has a wide range of application in the electromagnetic diffraction theory. The 
exact solution of the half plane problem is represented with the Fresnel integral by 
Sommerfeld [1]. Lewis, Boersma and Ahluwalia [2, 3] developed the uniform asymptotic 
theory of diffraction (UAT) by changing the geometrical optics fields with the related integral. 
Fresnel integral is also used in the uniform theory of diffraction (UTD), which is introduced 
by Kouyoumjian and Pathak [4]. There are many programs in order to calculate the Fresnel 
integrals, but it requires much time for complex scattering problems. For this reason a new 
transition function is defined by Umul [5] recently in order to express the related function of 
UTD with simple exponential expressions for the simplified theory of diffraction (SUTD).     

It is the aim of this paper to define three equivalent functions instead of the Fresnel 
integral by using a function which will cancel the infinity coming from the pole of the first 
term in Fresnel function’s asymptotic expansion. The amplitude and the phase of the related 
functions will be compared numerically. The result will be applied to the modified theory of 
diffraction (MTPO) solution of the diffraction of edge waves from a half plane problem. This 
solution contains the integration of Fresnel function. 
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A time factor jwte  is assumed and suppressed throughout the paper. 

2. Derivation of the methods 

Three equivalent functions for the Fresnel integral will be derived by considering the 
asymptotic expansion of  
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for ∞→x . ( )xF  is the Fresnel integral, defined by 
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and ( )xF̂  is the first term in its asymptotic expansion, which can be given as 
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for ∞→x . ( )xu −  is the unit step function, which is equal to 1 for x<0 and 0 for x>0.  

2.1 First method 

The method relies on canceling the pole of ( )xF̂  by defining a unit step function which 

approaches to infinity for 0=x . This is a similar approach with the transition function of 
UAT, which can be given as 
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for ∞→x . Equation (4) has a pole at 0=x  and is equal to ( )xu −  everywhere except 

0=x  according to Eq. (1). Equation (1) can be written as 

                                                    ( ) ( ) ( ) ( )xgxuxFxF +−=− ˆ                                               (5) 

where ( )xg  is an unknown function which goes to infinity at 0=x  and is equal to zero, 
otherwise. A function can be introduced as 
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which has the same properties with Eq. (4) and represents ( ) ( )xgxu +− . An equivalent 
function can be defined for the Fresnel integral as 

                                                      ( ) ( ) ( )xFxxEF
ˆ

1 +=ϑ                                                        (7) 
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by considering Eqs. (5) and (6). The infinity of ( )xϑ  is canceled by adding ( )xF̂ . A ∞−∞  
indeterminacy is created as a result of this summation. As a result, the equivalent function can 
be defined by the equation of 
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and can be used instead of the Fresnel integral.  
It is important to note that the equivalent functions are correlated with the uniform theory 

of diffraction (UAT) physically. In a diffraction problem, unit step function represents the 

geometrical optics (GO) fields and ( )xF̂  has relation with the geometrical theory of 
diffraction (GTD) coefficients. The equivalent function uses a modified form of unit step 

function in order to cancel the infinity coming from ( )xF̂ . This is the same approach with the 
modified GO terms of UAT. This is obvious from Eqs. (5) and (7).    

The phase and amplitude of the Fresnel function will be compared with ( )xEF1 . The 
Fresnel integral can be written as 

                                                        ( ) ( ) ( )xFjexFxF ∠=                                                         (9) 

where ( )xF  is defined as ( ) ( )xFxF * . The amplitude and the phase functions are equal to 
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respectively. The Matlab codes of the Fresnel function and the integrals, written in Eq. (10) is 
given in the Appendix. It is also possible to express the equivalent function as 
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for the amplitude and the phase functions can be written as 
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and 
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respectively. The functions, defined in Eqs. (13) and (14) can be expressed as 
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by considering Eq. (8). The amplitude and phase functions of ( )xF  and ( )xEF  will be 
compared in order to test their identity. 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

Fig. 1. The amplitude and phase errors   

Figure 1 shows the variation of the amplitude and phase error functions versus the 
variable of x. The natural logarithm of the proportion of the Fresnel integral and the 
equivalent function can be written as 
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where ( )xeA  shows the amplitude error of  
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and ( )xeP  represents the phase error as  

                                                     ( ) ( ) ( )xExFxe FP 1∠−∠= .                                              (18) 

Such a representation gives a physical understanding of the error. Equation (17) shows the 
deviation in amplitude. Equation (18) expresses the phase error directly in degrees and puts 
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forward the amount of the point to point phase error. This representation is more meaningful 
from a logarithmic expression.  

Figure 1(a) is the plot of the amplitude error. It can be observed that The maximum error 
change occurs in the interval of [ ]4,4−∈x  and maximum error is nearly 0.027. 

Figure 1(b) shows the graph of the phase error function. The maximum errors occur in the 

interval of [ ]4,0∈x  and has four maxima values, nearly equal to 0177− .  

It is important to note that the ripples, seen in Fig. 1(a) for 4≥x  are the result of the step 
size N, given in the Appendix. When N increases, the amplitude of the ripples will decrease, 
but it is apparent that computing time will increase. N is taken as 20.000 for the plots, given in 
Fig. 1.           

2.2 Second method 

The property of  

                                               ( ) ( ) ( ) ( )xFxxuxF sgn+−=                                          (19)    

will be taken into account in order to derive the second equivalent function. ( )xsgn  is the 
signum function, which is defined as 
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 The transition function of SUTD can be written as 
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which is given in Ref. [5]. The transition function of UTD can be expressed as 
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and the term of ( )xF  can be evaluated as 

                                                           ( ) ( ) ( )xFxfxF ˆ=                                                      (24) 

by equating Eq. (23) to Eq. (21). As a result one obtains 

                                               ( ) ( ) ( ) ( ) ( )xFxfxxuxEF
ˆsgn2 +−=                                      (25) 

when Eq. (24) is combined with Eq. (19). 
The relation of the equivalent function with uniform theory of diffraction (UTD) was 

discussed in Ref. [5]. Eq. (25) is derived from Eq. (19), which is the general expression of a 

UTD scattered field for ( ) ( ) ( )xFxFx ˆ/ˆsgn = . SUTD transition function is used instead of 

UTD transition function in order to model the Fresnel integral.   
The equivalent function in Eq. (25) can be written as 
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where ( )xEF 2  and ( )xEF 2∠  are the amplitude and phase functions of ( )xEF 2 , 

respectively. ( )xEF 2  can be represented as 
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and the phase function can be written as 
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which can be evaluated from Eq. (25). The formula of 
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will be used in determining the error comparison of the equivalent function and the Fresnel 
integral. ( )xeA  and ( )xeP  were defined by Eqs. (17) and (18) and are valid for the present 
case when the Eqs. (27) and (28) are considered.       
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. The amplitude and phase errors of ( )xF  and ( )xEF 2  

Figure 2 shows the variation of amplitude and phase errors versus x. The maximum 
amplitude error does not exceed 0,02 and exists in the neighborhood of x=0 according to Fig. 
2(a). It is observed from Fig. 2(b) that there are two error maxima, which occur at x=1,03 and 

x=2,67. The phase error values at these points are nearly equal to 0180∓ . N is taken as 
50.000 for the related plots.   
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2.3 Third method 

An equivalent representation for the function g(x), given in Eq. (5), will be defined as a third 
step. As mentioned before, g(x) is equal to zero everywhere except x=0, where it approaches 
to infinity. Such a function can be defined by 
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and the equivalent Fresnel function can be written as 

                                                    ( ) ( ) ( ) )(ˆ
13 xgxFxuxEF ++−=                                        (32) 

by using Eq. (31) in Eq. (5).  
There is no uniform theory in literature that has the same approach with the third 

equivalent function. A function of g(x), which gives the exact Fresnel function when added to 

the term of ( ) ( )xFxu ˆ+− , is described. Since its properties are known (although the function 

itself is unknown), a function ( )xg1  which shows a similar variation is defined. This function 

eliminates the infinity of ( )xF̂  and when added to ( )xu − , gives an equivalent function for 
the Fresnel integral. A new uniform approach for diffraction can be derived by using this 
concept.                

( )xEF 3  can be expressed as 
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for the amplitude function is equal to 

                                                         ( ) ( ) ( )xgxgxE irF +=3                                             (34) 

and the phase function can be obtained as 
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The functions in Eqs.(34) and (35) can be defined as 
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where ( )xf3  was given in Eq. (15.c). The error functions can be derived by taking the natural 
logarithm of the proportion of the Fresnel integral and the equivalent function which can be 
written as 
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where ( )xeA  shows the amplitude error of  
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and ( )xeP  represents the phase error as  

                                                     ( ) ( ) ( )xExFxe FP 3∠−∠= .                                              (40) 

 

 

 

 

 

  
 

 
 

 
 

                              Fig. 3. The amplitude and phase errors of ( )xF  and ( )xEF 3  

Figure 3 shows the variation of the amplitude and phase errors, given in Eqs.(39) and 
(40), with respect to x. It can be observed that the maxima of amplitude error are assembled in 
the neighborhood of the value where the argument of the function is zero. This is the result of 
the fact that equivalent functions are constructed by using the large argument expansion of the 
Fresnel integral. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

                                Fig. 4. Comparison of the amplitude and phase errors of the equivalent functions 
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Figure 4 shows the variation of Eqs. (16), (30) and (38) versus x. It can be observed that 
( )xEF 2  shows a better error performance against the other functions. The phase error of 

( )xEF 2  is also more acceptable than the others. In terms of computation cost, all of the 
equivalent functions require the same computing time, approximately 2 seconds. It requires 
one minute to compute the Fresnel integral given in the Appendix for N=50.000. The 
computation time will decrease if lesser terms are considered for N, but this time the 
amplitude of the ripples, seen in the amplitude plots for x>5, increases. This causes more error 
in evaluations.   

It can be seen from Fig. 4 that the error variation of ( )xEF1  and ( )xEF 3  are about the 
same. In order to examine the reason of this result, the difference of the equivalent functions 
can be considered as 

                                   ( ) ( ) ( ) ( ) )(132 xgxuxxExE FF −−−=− ϑ                                    (41) 

from their definitions. The equation of 
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can be obtained for ( ) ππ 24/exp jK = . It is apparent that Eq. (42) is equal to zero for x<0 
and approaches to zero for x>0.  

The equivalent functions are compared with the Fresnel integral for real argument up to 
here. A comparison for complex argument will be performed in order to test their validity. 
The formula derived in Eq. (16) will be taken into account for the first equivalent function. 
The argument will be taken as ( )3/exp πjx .  

 
Fig. 5. Error plot for the complex argument Fresnel function 

 

Figure 5 shows the variation of the amplitude error in a logarithmic scale versus x. It can 
be observed that the error has increased, compared to the real argument case. This is not a 
physical state especially that can be met in diffraction problems but it is important to know the 
behavior of the equivalent functions for a mathematical point of view. 

The first equivalent function will be compared with the Fresnel integral for pure 
imaginary argument as a second step. 
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Fig. 6. Amplitude error for pure imaginary argument 

 

Figure 6 depicts the plot of amplitude error according to an imaginary argument 
[ ])(1 jxEF  with respect to x. It can be seen that the variation of the amplitude error is the same 
with the one, plotted in Fig. 1.   

3. Numerical example: Scattering of edge waves from a PEC half plane 

A physical optics scattering problem will be observed in this section in order to the scattering 
of edge diffracted waves from a half plane will be examined by using the method of modified 
theory of diffraction. The geometry of the problem is given in Fig. 7.  

x

y

0φ

Incident plane wave

Half plane I

Half plane II

P1φ−

φ α β

1R

Edge diffracted
 wave

ρ

R

L

1n
�

u u

1ρ

ρ

1φ

 
          Fig. 7. Geometry of the two half plane problem.  

A magnetic polarized plane wave with unit amplitude is illuminating the first half plane. 
The second half plane is lying in the shadow region of the first half plane. It is obvious that 
only the edge diffracted waves reach the second plane. The main objective of this analysis is 
to obtain an integral which contains Fresnel function. The computation time of the integral is 
expected to increase, but it will be shown that this defeat can be eliminated by using 
equivalent functions instead of Fresnel integral.  
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The MTPO integral of reflected fields will be considered. The edge diffracted waves of 
the first half plane can be written as 
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which are the detour parameters of UTD. 1ρ  and 1φ  are the cylindrical coordinate quantities 
of the first half plane and are related to the second half plane coordinates as 
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for L is the distance between the half planes. MTPO surface current can be found by 

considering the boundary condition of 
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where the modified unit vector of the second surface is equal to  
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where the curl operation will be applied according to the observation point coordinates [6]. 
The resultant integral can be expressed as 
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where 
'SdizH  represents the value of the incident field on the reflection surface and is equal 

to 
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for 1R  is the value of 1ρ  on the surface. The related quantities are equal to  
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                                                          ( ) 22

1 ' LxR +=                                                (50.a)  

                                                             απφ −= 21                                                     (50.b) 

on the surface of reflection. α is equal to ( )'/1 xLtg − . Equation (48) will be plotted for the 
Fresnel integral and the first equivalent function, used in Eq. (49). 

 
                             Fig. 8. Reflected magnetic field from the second half plane  

 
Figure 8 depicts the variation of the reflected magnetic field from the second half plane 

versus observation angle. L is taken as 3λ and 0φ  is equal to 030 . It can be seen that using the 
equivalent functions in Eqs. (48) and (49) instead of Fresnel integrals, gives the same result by 
requiring lesser computation time. N is equal to 20000 for this computation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Scattering integral for L=λ/2 and L=10λ 

Figure 9 shows the variation of the scattering integral in Eq. (48) with respect to the 
observation angle for L=λ/2 and L=10λ. 0φ  is equal to 3/π . It can be seen that the plots, 
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obtained for the Fresnel integral and ( )xEF1  are in harmony. The ripples, observed in the first 
plot of Fig.9, are the result of the step size. Fresnel integral is plotted for 5000 terms in these 
graphs. If the value of N is increased, these ripples will become smaller and vanish. A 
computation cost analysis will be given below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. Scattering integral for a) 6/0 πφ = , b) 6/50 πφ =  

Figure 10 shows the variation of the scattering integral of Eq. (48) versus the observation 
angle for 6/0 πφ = , 6/50 πφ =  and L=5λ. It can be observed that the two integrals, 
evaluated for the Fresnel function and the first equivalent function are in harmony. 

It is important to give information about the computation cost. Equation (48) contains the 
sum of two Fresnel integrals and this means that there are two “for loops”, each containing 
another “for loop”. The integral in Eq. (48) is computed by a “for loop” which consists of the 
sum of 700 terms. The time, required for the evaluation of Eq. (48), is nearly 90 seconds when 
N has the value of 5000 at the Fresnel integral code, given in the Appendix. This value causes 
some cripples at the plots as can be seen from Figs. 9 and 10. If the value of N is increased, 
the time of computation will also increase. It takes only 4 seconds to evaluate the integral, 
given in Eq. (48), when the equivalent functions are used instead of the Fresnel function in the 
integral.           

4. Conclusion 

In this work, three equivalent functions are derived for the Fresnel integral. It is stated that the 
first two functions are related with UAT and UTD approaches. The third equivalent function 

attempts to eliminate the infinity coming from ( )xF̂  and can be thought as a variation of 
UTD since UTD makes uniform the diffraction field by multiplying the diffraction coefficient 
by a transition function which has a zero at the transition region. This approach creates a 0/0  
indeterminacy. The concept of the third equivalent function is to eliminate the related infinity 
by creating a ∞−∞  indeterminacy. 

 The numerical comparisons show that the functions represent the Fresnel integral with a 
very good degree of correctness. The equivalent functions consist of the sum of two or three 
basic functions. It is always easy to deal with these functions for numerical or analytic 
evaluations. Fresnel integrals can be found in many simulation programs, but there is always a 
need of integral evaluation and this creates a problem when dealing with the diffraction of 
complex bodies.  

Appendix 

The Matlab code, used for the plot of the Fresnel integral can be introduced as follows; 
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Fresnel integral 

The Matlab code can be written as 

x=-10:.01:10; 
N=10000; 
sum=0; 
lwbound=0; 
upbound=x; 
delta=(upbound-lwbound)./N; 
for i=0:N; 
     t=lwbound+(i.*delta); 
     f=exp(-j.*(t.^2)); 
     sum=sum+f; 
end 
fres=0.5-(exp(-j.*pi./4).*sum.*delta./sqrt(pi));  

  

for the Fresnel integral, defined in Eq. (2).  
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