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Abstract

The link between the treatments of constrained systems with fractional derivatives by using both
Hamiltonian and Lagrangian formulations is studied. It is shown that both treatments for systems
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1. Introduction

The generalization of the concept of derivative and integral to a noninteger order « has
been subjected to several approaches and some various alternative definitions of fractional
derivatives appeared [1-6]. In the last few years fractional calculus was applied success-
fully in various areas, e.g., chemistry, biology, modelling and identification, electronics
and wave propagation. Fractional calculus, has played an important role in engineering,
science, and pure and applied mathematics [7-9]. Fractional derivatives were applied in
recent studies of scaling phenomena [10-12]. Classical mechanics is one of the fields when
fractional calculus found many applications [13—19]. Riewe has used the fractional calcu-
lus to obtain a formalism which can be applied for both conservative and nonconservative
systems [13,14]. Although many laws of nature can be obtained using certain functionals
and the theory of calculus of variations, not all laws can be obtained by this manner. As it is
known, almost all systems contain internal damping, yet traditional energy based approach
cannot be used to obtain equations describing the behavior of a nonconservative system
[13,14]. Using the fractional calculus one can obtain the Lagrangian and the Hamiltonian
equations of motion for the nonconservative systems.

The understanding of constrained dynamics [20], both at the classical and quantum
level, has been a subject of long standing theoretical interest, which has seen important
confributions ever since Dirac’s quantization of the electromagnetic field. The path integral
approach and the canonical one are two main approaches of quantization.

Recently, an extension of the simplest fractional problem and the fractional variational
problem of Lagrange was obtained [17,18]. Even more recently, this approach was ex-
tended to Lagrangians with linear in velocities [21,22], which represents a typical example
of second-class constrained systems in Dirac’s classification [20]. These Lagrangians are
important because their Euler—Lagrangian equations become systems of first order dif-
ferential equations in contrast with second order corresponding to the regular ones. In
addition, these systems may possess gauge symmetries and gauge ambiguities.

From these reasons it is interesting to study the fractional Hamiltonian formulation of
constrained systems.

The aim of this paper is to obtain the fractional Hamiltonian equations of motion for
Lagrangians with linear velocities.

The plan of our paper is as follows. In Section 2 some basic tools of fractional deriv-
atives as well as Riewe’s approach of the fractional Lagrangian and Hamiltonians are
presented. In Section 3 the Euler-Lagrange equations were obtained using the Agrawal’s
approach and the fractional formulation of systems with constraints is introduced. In Sec-
tion 4 the fractional Hamiltonian analysis of the systems possessing linear velocities is
analyzed. Section 5 is dedicated to our conclusion.

2. Fractional Lagrangian and Hamiltonian formulations
In this section we briefly present the definition of the left and right derivatives together

with Riewe’s formulation of Lagrangian and Hamiltonian dynamics. The left Riemann—
Liouville fractional derivative is defined as
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1 d\" ;
D"f() () f(’r—r)”*"‘*lf(t)dr. (1)
r'n—a)

a

and the right Riemann-Liouville fractional derivative has the form

b
o 1 d\" n—a—1 ¢
Dbf(f)m(—z) f(l'—f) f(o)dr, 2)
1

where the order o fulfills » — 1 < o < n and I' represents the Euler’s gamma function. If
o is an integer, these derivatives are defined in the usual sense, i.e.,

Dy f(1) = 4 . DEf(n = . Loa=1.2,.... (3)
dt di

Now we shall briefly review Riewe’s formulation of fractional generalization of La-
grangian and Hamiltonian equations of motion [13,14]. The starting point is the action
function of the form

b
S=[L([q" Q) 1)di. 4)

a

Here the generalized coordinates are defined as

ay = (aDF) xr (1), Q= ((DF)" xr (1), )
and r = 1,2, ..., R represents the number of fundamental coordinates, n = 0,..., N,
the sequential order of the derivatives defining the generalized coordinates ¢, and n' =
I, ..., N’ the sequential order of the derivatives in definition of the coordinates Q. A nec-

essary condition for S to posses an extremum for given functions x, () is that x, () fulfill
the Euler-Lagrange equations [13,14]

N

NG +Z an =0. (6)

aqo n=1

Using the references [13,14], the generalized momenta have the following form:

N

—n—1 0L
pﬁ: Z (!Dg)k " la r’
k=n+1 Tk
Nf
_a'—1 0L
=3 (WD) o ™
k=n'+1 Qk

Thus, the canonical Hamiltonian is given by

R N—1 R N'—1

H=Y Y "papa+Y. ) Qi — L. )

r=1 n=0 r=1 n'=0
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The Hamilton’s equations of motion are as follows:

oH oH
dqy 20",
Forn=1,...,N,n"=1,..., N we have the following equations of motion:
oH oH
— o F R o_r
8(.]5 _bepn’ BQ;, _“DI Ty (10)
oH dL
=——=,D%pl + ,D¥n/. 11
3(16 aq(,). tVp P T alls Ty (11)

The remaining equations are given by

oH oH

R DY —=0", , =,DY0",, 12
apT qn+1 tdns arr;, Qn+1 Dy O, (12)
oH oL
— = (13)
at at

where n =0, ..., N,n"=1,..., N'.

3. Fractional Euler—Lagrange equations

Recently Agrawal has obtained the Euler—Lagrange equations for fractional variational
problems [17]. In the following we like to present briefly his approach.
Consider the action function

b
R
S[q&.....qﬁ]sz({q;.Q;,},t)dr, (14)
a
subject to the independent constraints
Ou(tigh, .. qf gl 07) =0, m <R, (15)
where the generalized coordinates are defined as
gy = (D) 50, Q= (D))" (o). (16)
Then, the necessary condition for the curves qé, ey q(f with the boundary conditions

gyla) = ‘i't} , qo(b) = ng, r=1,2,..., R, to be an extremal of the functional given by
Eq. (14) is that the functions q6 satisty the following Euler-Lagrange equations [17]:

N

aL
P+ (D
n=1

=0, (17)

a7 a Qf

where L has the form [17]

L({qh. 00 bt k() = L({gh. Q1o 1) + A (D@ (1. g - g gl ). (18)

Here the multiple 1,, () € R™ are continuous on [a, b].
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3.1. Fractional Hamiltonian formulation of Agrawal’s approach

In order to obtain the Hamilton’s equations for the fractional variational problems, we
redefine the left and the right canonical momenta as

N -
_n—1 0L
P; = Z (IDz)k " la r’
k=n+1 Tk
all Y
= Y o) 1)
, I
k=n'+1

Using (19), the canonical Hamiltonian becomes

R N—I R N'—1
H=)Y > phan+). D my @ — L (20)
r=1 n=0 r=1 n'=0

Then, the modified canonical equations of motion are obtained as

o A) =050 [Qf A} =D, e
{ag. H} = D§ py+ D g, (22)
wheren=1,..., N,n'=1,..., N'.
The other set of equations of motion are given by
Py HY=qp01 =aDfq). Ay H} =0} =D50,, (23)
daH oL
o= (24)
Jat at
Here, n=0,....,N,n’ =1, ..., N’ and the commutator {-, -} is the Poisson’s bracket de-
fined as

dA 0B dB 0A n dA 0B 0B 0A
n Tt T aq;; ap; aq:,; ap; BQ;, aﬂ':;, BQ;; aﬂ';;’

{A, Blgy.pr.0 (25)

wheren =0, ..., N,n=1,..., N'.

4. Equivalence of fractional Hamiltonian and Lagrangian formulations for systems
with linear velocities

Recently, for 0 < o < 1, the Lagrangians with linear velocities were investigated in
[21]. For example, the Euler-Lagrange equations of the following Lagrangian:
L'=aj(q"aDfq’ = Vi), (26)
were obtained as [21]

daj(q")
k

: VgD
Dig) - Dfarlgh = = = =0, 27)
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Now we would like to obtain the Hamiltonian equations of motion for the same model.
Let us define

X =(Df)"q;, n=0,1,....N—1, j=12,....R. (28)

The generalized momenta are given by

aL
0 0
J

The canonical Hamiltonian reads as

H = (= a; ()5 + V(). (30)
The Hamiltonian equations of motion are calculated as
oH
- =P —ai(x)) = (D) p; =0. (31)
i

In fact, this equation is the primary constraint in the Dirac’s formalism. The other equations
of motion are calculated as

OH da;(x? av(x?
__daitd) o oved)

— = = (,D%) p?, (32)
Bx,? 8x2 ! dq* (t b)Pk
dH
— = x]i = (an)qk. (33)
apg
Making use of Eq. (31) we obtain
dajlq") -, V@)
Wa])?qj +Djai(q') — 3k =0. (34)

It is obvious the equivalence between Egs. (34) and (27). An interesting point to be
specified here is that, primary constraints in the Dirac’s formalism are present as equations
of motion in our treatment, while the other Hamiltonian equations of motion are equivalent
to the Lagrangian equations of motion as given in [21].

5. Conclusion

One of the main problems encountered in applying the fractional calculus to a given
singular Lagrangian and Hamiltonian is the existence of multiple choices of the possible
fractional generalizations. In addition, the solutions of the fractional Euler-Lagrange equa-
tions contain more information than the classical ones. In this paper, Hamiltonian equations
have been obtained for systems with linear velocities, in the same manner as those obtained
by using the formulation of Euler-Lagrange equations for variational problems introduced
by one of us [21]. We study the general model for systems with linear velocities and it was
observed that the Hamiltonian and Lagrangian equations which are obtained by the two
methods are in exact agreement.
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