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Abstract

The non-commutative convolution f s g of two distributions f and g in D’ is defined to be the limit
of the sequence {(f 1) * g}, provided the limit exists, where {7} is a certain sequence of functions
in D converging to 1. It is proved that

2sin(Am/2) cos(um/2)
sin[(A + p)m /2]

for—1 <i4+p<0and A, u# —1, =2, ..., where B denotes the Beta function.
v 2005 Elsevier Inc. All rights reserved.
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In the following, D denotes the space of infinitely differentiable functions with compact
support and D’ denotes the space of distributions defined on D.

The convolution of certain pairs of distributions in D’ is usually defined as follows, see
for example Gel’fand and Shilov [1].

Definition 1. Let f and g be distributions in D’ satisfying either of the following condi-
tions:
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(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

Then the comvolution f % g is defined by the equation

((f % 2)(x), p(0)) = (2(x), (£ (1), p(x + 1)) (h
for arbitrary test function ¢ in D.

The classical definition of the convolution is as follows:

Definition 2. If f and g are locally summable functions, then the convolution f * g is
defined by

(f xg)x)= ] fngle —ndi= f flx=ng@)dt 2

for all x for which the integrals exist.

Note that if f and g are locally summable functions satisfying either of the conditions
(a) or (b) in Definition 1, then Definition 1 is in agreement with Definition 2.

It follows that if the convolution f * g exists by Definitions 1| or 2, then the following
equations hold:

frg=gx[, (3)
(f*g)=f*g'=f*g 0
Definition 1 is rather restrictive and so a neutrix convolution was introduced in [2].

In order to define the neutrix convolution, we first of all let ¢ be the function in D, see
Jones [3], satisfying the following conditions:

(1) T(x)=1(—x),
(i) 0<T(0) <1,
(1) t(x) =1, |x|
() t(x) =0, |x|

The function 7, is now defined by
1, lx] < n,
,(x)=1{ t(n"x —n"thH, x=n,
T(n"x +n"th, x < —n.

Definition 3. Let f and g be distributions in 7’ and let f,, = fr, forn=1,2,.... Then
the neutrix convolution f @ g is defined to be the neutrix limit of the sequence { f;, * g},
provided the limit A exists in the sense that

1§j§g(fh *g,9)=(h,¢)
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for all ¢ in D, where N is the neutrix, see van der Corput [4], having domain N" = {1, 2,
., 1, ...} and range the real numbers with negligible functions finite linear sums of the
functions

Wi e, Infh (>0, r=1,2,..)

and all functions which converge to zero as n tends to infinity.

Note that the convolution f, * g in this definition is in the sense of Definition 2, the
support of f, being bounded. Note also that the neutrix convolution in this definition, is in
general non-commutative.

It was proved in [2] that if the convolution f * g exists by Definition 1, then the neutrix
convolution f & g exists and

frg=f®@g,

showing that Definition 3 is a generalization of Definition 1.
We now give a definition of the convolution which generalizes both Definitions 1 and 2
but is a particular case of Definition 3.

Definition 4. Let f and g be distributions in D" and let f,, = ft, forn =1,2,.... Then
the convolution f * g is defined to be the limit of the sequence { f,, * ¢}, provided the limit
h exists in the sense that

dim (fux g, 9) = (1. ¢)

forall ¢ in D.
From now on, we will use Definition 4 for the definition of the convolution.

Theorem 1. Let f and g be distributions in D' and suppose that the convolution f * g
exists. Then the comvolution f * g’ exists and

(f*g)=f*g" (5

Further, if lim,_ oo {(f7,) * g. ¢) exists and equals (h. @) for all ¢ in D, then the convolu-
tion f' * g exists and

(fxg) =f"#g+h (6)
Proof. Suppose that f x g exists. Since f;, has compact support, Eq. (4) holds and so

(faxg) @)= (fu*g @) (7

for all ¢ in D. Equation (5) follows on letting » tend to infinity in Eq. (7).
Next we have

((fax2)s o) ={(f) * g, 0)=((fn* g+ (f1,) % g, ) (&)
for all ¢ in D. Equation (6) follows on letting » tend to infinity in Eq. (8). O
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Theorem 2. Let [ and g be distributions in D' and suppose that the convolution ' * g ex-
ists and lim, . oo {(f 7)) * g, @) exists and equals (h. ¢) for all ¢ in D. Then the convolution
f * g exists and

frg'=fxg+h ©)
Alternatively, if f * g’ exists, then the convolution f' % g exists and
ffeg=fxg —h. (10)

Proof. Suppose that f * g exists. Since f; has compact support, Eq. (4) holds and so

(faxg o) =) *g.0)=((fIn* g+ (fT) *g.¢) (11)

for all ¢ in D. Equation (9) follows on letting » tend to infinity in Eq. (11).
Ifnow f * g’ exists, then Eq. (10) follows on letting » tend to infinity in Eq. (11). O

We now prove our main theorem.

Theorem 3. The convolutions |x|* % (sgnx|x|*) and (sgnx|x|*)  |x|* exist and
2sin(Amr/2) cos(urr/2)
sin[(A 4+ ) /2]
2sin(pum/2) cos(Am/2)
sin[(A + p)mr /2]

for =1 <i+pu<0and h,n#—1,-2,....

B+ 1, 4 Dysgnx|e [+ (12)

le|* % (sgnx|x|*) =

(sgnx|x|*) * |x|* = B(A+1, 4 Dsgnx|x T (13)

Proof. We will first of all suppose that &, x > —1 with —1 < A+ p < 0, and put

W=k, (), =xine), (L), =+nw,
Then
el * (sgurlxl) = [(xh), + (62), ] % (6 = 2%)
A I3 A Nz P I3 A o
= (x+)” kol + (xf)n * X, — (x+)n *x~ — (xf)n * x
=I+15L—-13— 1, (14)
the convolutions existing by Definition 1. It is clear that
: Y Y Atptl
nlingoh_er*_er_B(A—l—l.u—l—l)x+ . (15)
lim Iy =x* «x" = BO.+ 1, w4+ x (16)
n—0oo

where B denotes the Beta function. Equations (15) and (16) in fact exist for all 4, & > —1
by Definition 2 and forall A, jt, A + 0+ 1 # —1, =2, ... by Definition 1.
Further,

0 —n

(52), = [t —ofar+ [ upe-otnoar n

—n —n—n""
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If —n < x < 0, we have on making the substitution 7 = xu !

2

0 X

[|r|"(x—r)‘idr=f|r|"‘(x—t)““dr

—n —n

1
= |x|Mrt! f u (L —u) du
—x/n
1
= ||t f w2 (L =) — 1] du
—x/n
+ ‘x|l+,u+l 1 — ‘”/ﬂkﬂﬁ_]
—A—n—1
This equation shows that the convolution x*

If x > 0, we have on making the substitution = x(1 —u '),

0 0
/|I|A(X_f)idf=f|f|}‘(x—r)“df
o o

1
= yArutl f w2 — ) du

x/(x+n)
1
=yl u_l_”_z[(l —u)t — l] du
x/(x+n)
4 At =[x +m)/x)Het
—A—u—1
It is easily seen that
lim [ lt*(x — 1)t (r)d =0
n—00o
for all x.
Similarly,
n n+n="
(x%), *xt :ft)‘(x - dr+ [ *(x — ), (1) dt.
0 n

If n > x > 0, we have on making the substitution 7 = xu ™!

k]

* *xf: does not existif A + ¢ > —1.

(18)

(19)

(20)

b
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n n

]r"(x—r)’idr:frk(t—x)”dr

0 X
1

= et f Lf’k*‘“*z[(l — )t — l]du
x/n

AAptl
JREVIES! 1 —(n/x)*™"

+
—h—u—1
If x < 0, we have on making the substitution r = x(1 — u=h,
n n

fr"(x—r)’idr:frk(t—x)“dr

0 0
1

= |x|* P! f u P —w) du

x/(x—n)
1

= |x|MHHAL f Ltilf‘“*z[(l —u) — l] du

x/(x—n)
st L= L — n) /x At
+ |x| .
—h—p—1
It is easily seen that
n+n""
lim / t*(x — Dl () dr =0
n—0cQ

n

for all x.
It now follows from Egs. (18) and (23) that if —n < x < 0, then

0 n
[|r|*(x—r)‘idr—frk(x—r)‘jdt
—n 0

1

Atpetl
= |x|THt! f u*}‘*”*z[(l —u)t — l]du _
Atp+l
—x/n
! TS
— |x|;”_*"t‘H'1 [ Ll_A_#'_z[(l —u)t — l]du + L
At+p+1

x/(x—n)

and so

369

(22)

(23)

(24)

+ 0 (n**") (25)
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n

0
hm(b—1g=1m1[/uﬁu-qﬁdr—]}ﬂx—nﬁm}
n—00o n—0Q
—n 0
=[B(—h—p—1pu+1)—B(—=r—p—1,0+D]lx*#H 0 (26)

on using Eqgs. (17), (20), (21) and (24), see Gel’fand and Shilov [1].
Similarly, it follows from Eqs. (17), (19), (21) and (22) that if n > x > 0, then

n

0
jmﬁw—ﬂbh—fﬂu—nﬁm

0
! , xJH—p:—H
= et LFA*V“*“[(I —u) - l]du -
1
x/(x+n)
| Al
_ Ml f;.ﬁ;““*z[(l — )y — 1]du + P + 0

x/n

and so

0 n
hm(b—lg=1m1[fuﬁu—4ﬁdr—j}ﬂx—n“m}
n—-0oQo n—0Q
—n 0

=[B(—h—p—1LA+1)—B(—r—pu—1,pn+ D"t 27
on using Egs. (17), (20), (21) and (24).
It now follows from Egs. (14) to (16), (26) and (27) that
’B&MQ*@@ﬂﬂﬂzhﬁ*@@ﬂﬂﬂ
=[BO+ 1L u+D)+B(—r—p—1r+1)
— B(—=h—p—1, p+ D] sgnx|x[* Tt (28)
Now, if © #0,
F(=A—p—DIG+1)
r'(—w)
O+ DI+ D)sin(ur)
T TOcp+2)sin[ (A + )]
_ BO+ 1, p+ Dsin(um)
B sin[(A + po)7]

where I denotes the Gamma function, and if ;¢ =0,

B(=A—pu—1,41)=

(29)

B(—A—1,A+1)=0,

which is in agreement with Eq. (29).
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Similarly,
B(L+ 1,1+ 1)sin(im)
sin[(x + o)

B(—h—pu—1,A+1)=—
and so

Bh+1l,n+D+B(—2—p—LA+D)—B(—r—pn—1,n+1)
. |:l sin(Arr) — sin pr)
B sin[(h + p)7]
_ 2sin(hmr/2) cos(pm /2)
T sin[(x + p)m/2]
Equation (12) now follows from Egs. (28) and (30) for —1 <A+ <0Oand A, 0 > —1.
Similarly, putting (sgn x|x|*), = (sgn x|x|*)z,, we have

}B(A—I—l,,u-l—l)

BOA 1, +1). (30)

(sgnoxlel®), # Ll = (xh), #al = (x2), sl 4 (), o = (62),

=L-L+5L5-1
and so
nlingo(sgll.x|x|l)n # x| = (sgnx|x|*) * |x|*
=[BA+1Lpu+1)—B(—r—pu—1,A+1)
+ B(—h — o — 1, 4 )] sgnxfe !
2sin(pum/2) cos(im/2)
- sin[(A + w)m/2]

proving Eq. (13) for —1 <A+ p <0Oand A, o > —1.
Now suppose that Eqgs. (12) and (13) hold when —1 <A+ p <Oandr — 1 < A < r for
some non-negative integer . This is true when » = 0. Then with |x| < n, we have

B(h+ 1, + 1)sgnx|x e+

n+n—" —n
[l 2 (0)] * (sgnxlx|*) = — [ (1 — )" d, (1) + ] 11 (x = 1) dy (1)
=n*(n—x)* +n*(x +n)H
n+n="

+ f (A7 — )" + it (0 — ) g, (1) dt

—h

— f [l o = " — pt (x = 0F (0 de

and it follows that
nlingo[|.x\*r;(x)] % (sgnx|x|") = 0. (31)

It now follows from Theorem 2, our assumptions and Eq. (31) that
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(e lPF) s el = e e (el ™) = el P (sgmoclx 1)
= (A + D)(sgnox|x|*) = |x|*
and so the convolution |x|*+! % (sgnx|x|*~1) exists and

A1
e[ (sgnx]e 1) = +

(sgnoxlxl*) * x|*

_ 2(x + D)sin(um/2) cos(rm/2)
© psin[(+ pwm/2]
_ 2sin[(A + D /2] cos[(pe — 1) /2]
a sin[(x + p)7/2]
Equation (8) therefore holds for r < A < r + | and so follows by induction for A > —1 and
-1l <Ai4+pu<0.
Similarly, Eq. (13) holds for A > —l and —1 <A 4+ u < 0.
A similar induction argument proves that Eqgs. (12) and (13) hold for A < —1, A #
—2,—-3,...and —1 <A+ < 0.
This completes the proof of the theorem. O

B(.+ 1, + 1)sgnx|x|*T#H!

B(A+2, ) sgnx|x|HrrL,

Particular cases of Eqs. (12) and (13) are
x* x (sgnx|x|*) = (sgnx|x[") % x* =0
forr=0,1,2,...and =1 < —2r + . <0 and
|x |2+« (sgnx\x|”) = (sgnx|x\“) # x| =2BQ2r + 2, i+ 1) sgnx|x[7FT2HE
forr=0,1,2,...and =1 <2r +1 4+ p < 0.

A

Theorem 4. The convolutions x* * xi and x_‘}_ xx" exist and

P =B —p =1+ D B — =1+ D (32)

Fad =B —p =L+ DT B — = L+ DT (33)

fori+p<—landd, pu, A +pu£—1,-2,....

Proof. Suppose first of all that —2 < A+ < —1 and A, & > —1. Then it follows from
Eqgs. (18) and (19) that

0
lingof MA(X _f)I:-:B(—K —pn—=1u+ 1)\x|l+“+l, (34)
—n

ifx <0and
0
lim f\r|A(x—r)‘i=B(—A—,u— 1+ DxArett (35)
n—0cQ

—n
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if x > 0, since L + « + 1 < 0. Equation (32) now follows from Egs. (17), (20), (34) and
35)for2<Ai+pu<—land A, pu>—1.

Equation (33) follows on replacing x by —x in Eq. (32) for =2 < A + u < —1 and
A > —1.

Induction arguments similar to those given above now prove that Egs. (32) and (33)
holdfor -2 <A+ pu<—land A, u#—1,-2,....

Now suppose that Eqs. (32) and (33) hold for —r — |l <A 4+ < —r and A, u #
—1,—2,... for some positive integer ». This is true when » = 1. Then with |x| < n, we
have

—n

[x)_“r;(x)] *xﬁ = f [t = ) dTa(1)

—n—n""

—n

=n*(x+n)H — f [t o = 0% — ur (x — ) ea(r) di

—n—n""

and it follows that
. Y B 5
nlingo[x_rn(x)] *xll =0. (36)
It now follows from Theorem 2, our assumptions and Eq. (36) that
(xf *xi)’ = —ax*! *xi
=G+ DBk —p—1, o+ D
+O4+p+DB(=r—p— 1A+ it

and so the convolution xiﬁl * xi exists and

A 1
el = %B(—A — =1 D
A+l
_ +(A+u+ DB(=h — =1, A+ D)™

= B(—h — pt, o+ D 4 B(—h — . aT

Equation (32) therefore holds for —r — 2 < A 4+ ¢ < —r — 1 and so follows by induction
fori4+p<—land i, p, A +p#—-1,-2,....

Replacing x by —x in Eq. (32) gives Eq. (33). This completes the proof of the theo-
rem. [

Note that it now follows immediately from Eq. (14) that Eqgs. (12) and (13) hold for
Adp<—landi,u, A +p#-—1,-2,....

Corollary 4.1. The convolutions |x|* x |x|"* and (sgnx|x|*) * (sgnx|x|*) exist and
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2sin(Asr/2) sin(pr /2)
 cos[(u 4 w7 /2]
2 cos(Aam/2)cos(pum/2)

cos[(X + p)m /2]
fori+p<—landh,pu, A +pu#—1,-2,....

el e =

B+ 1, + D|x[Mrt (37)

(sgnx|x|*) * (sgnx|x|*) = B+ 1, u+ Dx L (38)

Proof. We have

lx|* % |x|#) = (x_)"_ —I-Xi) * (x_’f_ +xE)
=xi*xi—l—xi=kxf —&-xi *xi—&-xﬁ % x!
=[B()L+l.u+l)—|—B(—A—,u—l.u+l)
+ B(=h—pr = 1, A+ 1) Pret
2sin(Amr/2) sin(prr /2)
T ooslh+ wm/2]

B(A+1, 4 D]x1*HFL

proving Eq. (37).
Equation (38) follows similarly. O
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